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Abstract
Boolean Satisfiability (SAT) has broad usage in Electronic Design

Automation (EDA), artificial intelligence (AI), and theoretical studies.

Further, as an NP-complete problem, acceleration of SAT will also

enable acceleration of a wide range of combinatorial problems.

We propose a completely new custom hardware design to acceler-

ate SAT. Starting with the well-known fact that Boolean Constraint

Propagation (BCP) takes most of the SAT solving time (80-90%), we

focus on accelerating BCP. By profiling a widely-used software SAT

solver, MiniSAT v2.2.0 (MiniSAT2) [1], we identify opportunities

to accelerate BCP via parallelization and elimination of von Neu-

mann overheads, especially data movement. The proposed hardware

for BCP (HW-BCP) achieves these goals via a customized combina-

tion of content-addressable memory (CAM) cells, SRAM cells, logic

circuitry, and optimized interconnects.

In 65nm technology, on the largest SAT instances in the SAT Com-

petition 2017 benchmark suite, our HW-BCP dramatically accelerates

BCP (4.5ns per BCP in simulations) and hence provides a 62-185x

speedup over optimized software implementation running on general

purpose processors.

Finally, we extrapolate our HW-BCP design to 7nm technology

and estimate area and delay. The analysis shows that in 7nm, in a

realistic chip size, HW-BCP would be large enough for the largest

SAT instances in the benchmark suite.
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1 Introduction
Boolean Satisfiability (SAT) problem is a problem which determines

if there exists an assignment of values to variables that satisfies a given

Boolean formula. SAT solvers are widely used in various domains,

especially in Electronic Design Automation (EDA) to test and verify

hardware/logic designs. SAT solvers are also heavily used in AI,

theorem proving, and so on.

Modern software SAT solvers are very efficient at solving large

and difficult problem instances in practical runtimes. Most solvers

are based on Davis-Putnam-Logemann-Loveland (DPLL) algorithm

[2], heuristic local search [3], and conflict-driven clause learning

(CDCL) [4]. DPLL approach tries a variable assignment, backtracks
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if there is a conflict, and repeats this process until a given formula is

satisfied. DPLL performs Boolean Constraint Propagation (BCP), a

process that finds an unsatisfied clause (if any) where all variables are

assigned false except one. This one unassigned variable must neces-

sarily be true. Recent software SAT solvers use additional methods

to efficiently prune the decision tree, including a function that deter-

mines the level of decision to backtrack to. They also use CDCL, i.e.,

a clause learning step that identifies a new clause based on the conflict

information. MiniSAT v2.2.0 (MiniSAT2) [1] was implemented with

these advanced techniques and constitutes the basic structure of many

leading software SAT solvers.

Performance of MiniSAT2 [1] is limited due to overheads of von

Neumann machines. First, even for running a simple task, the fetch-

decode-execute cycle is required. Second, due to the fact that BCP is

memory bounded [5], it requires lots of table lookups and sustained

memory accesses and hence high data movement overheads.

Gulati et al. showed a full implementation of a SAT solver in ASIC

[6]. Clauses are partitioned into multiple banks, where clause/variable

ID is used as row/column address. Each clause cell contains the value

of a literal (0, 1, or 𝑥) and logic circuits for implication. It achieved

considerable speedup on some SAT instances, but is not scalable to

large SAT instances, due to the limitation of the addressing mecha-

nism. They also demonstrated a similar design in FPGA [7]. However,

to fit into small-sized memory on FPGA, the original instance is

grouped into multiple bins and loaded/solved sequentially. Consider-

able bin-swapping overhead limits performance improvement.

Davis et al. proposed BCP accelerators on FPGA (FPGA-BCP) [8].

By implementing tree walk to maximize the utility of limited capacity

of FPGA Block RAMs (BRAM), an efficient mechanism is devel-

oped. The original clauses are divided into 2𝑝 groups so that in each

group a specific variable appears at most once. To implement clause

index tree walk, variable ID (𝑘-bit) is divided into 𝑘/𝑚 chunks, and a

multi-step index computation is used to find the clause. Each clause

group can perform the tree walk to accelerate BCP. This design is

limited by FPGA BRAM capacity. They achieve 6.1x speedup over

MiniSAT2 [1] for SAT benchmark instances with up to 64K clauses.

Thong et al. [5] proposed a memory architecture that uses variables

as addresses of hardware memory specially designed for multithread-

ing. This design requires large memory and complex Network-on-

Chip (NoC) between processing elements. Hence, their actual imple-

mentation is for instances with hundreds of clauses. Other approaches

that implement fast SAT accelerators are also able to handle only

small-sized instances [9, 10].

Among the studies mentioned above, we focus on FPGA-BCP [8]

due to its scalability. Multiple clock cycles are required to complete

a BCP operation, due to multiple table lookups for tree walk and

multiplexing. We verified that memory used and latency are both

optimized when the chunk size (𝑚) is 4. We also profiled benchmark
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Figure 1: A. Execution profile for MiniSAT2 [1]: % CPU time required

by key functions, average for 70 instances, B. Total runtime devoted to

BCP for SAT instances with various sizes.

instances to derive the distributions of the numbers of clauses in

which variables appear. This profile shows that there is no speedup

for numbers of inference engines > 64 (i.e., for 𝑝 > 6). Using above,

for their study, which uses SAT instances with ≤ 64K clauses and a

65nm FPGA with a 5ns clock, the latency for each BCP operation is

10 clocks cycles and hence 50ns.

We propose a custom hardware design for BCP (HW-BCP), a co-

processor that replaces software-BCP and accelerates MiniSAT2 [1].

Since BCP only performs Boolean operations once the clauses and

variable values are identified, we design a fully parallel architecture

using content-addressable memory (CAM) to eliminate table lookups

and data movement, which is completely different from all above

existing designs. We demonstrate that our design is scalable to the

largest SAT benchmark instances for a realistic chip area, and provides

significant acceleration via complete parallelization. (Specifically,

in Section 4.3 we demonstrate this via a detailed comparison of

performances of FPGA-BCP and our HW-BCP.)

2 Background: Profiling of MiniSAT2
Due to its high performance, MiniSAT2 [1] is used in this study as a

target software SAT solver.

2.1 Focus on BCP

Generally, BCP operations take 80-90% of total CPU time of mod-

ern software SAT solvers like MiniSAT2 [1]. To better understand

and characterize the instance-to-instance variations in the percentage

of run-time required for BCP, we profiled SAT Competition 2017

benchmark suite using MiniSAT2 [1]. Whereas easy SAT instances

are solved in a few seconds, hard ones take more than several hours.

We selected 70 instances that have medium-difficulty (total runtime

in the 10-5000 sec range) for our profiling and show the summary

in Fig. 1A. We confirmed that the average of total BCP runtime

is 82% of the total runtime for these SAT instances. Further, on

our system, the average runtime per BCP instance is 500ns, which

corresponds approximately to 1000 clock cycles. Fig. 1B reports the

range of total BCP time across benchmarks and shows that, regardless

of instance sizes (number of variables and number of clauses), the

average of total BCP time falls in the 56-93% range. Further, while

small-sized instances have a tendency to have more than 90% of

runtime devoted to BCP, generally speaking, BCP time is a dominant

part and independent of the instance size. Hence, we focus on BCP

as the target for hardware acceleration.

2.2 Opportunities for Acceleration

BCP is used in MiniSAT2 [1] and in most other software SAT solvers.

Each instance of BCP starts with the SAT algorithm assigning a spe-

cific value to a particular variable. BCP must identify all clauses

where the assigned variable appears, plug in the assigned value, com-

pute the value of the clause, and generate and return the values of key

signals. If this assignment causes a conflict in any of the clauses, BCP

must return the backtrack signal which the SAT algorithm must use

to reverse the previous decision. On the other hand, if in any clause,

all-but-one variables are assigned specific values but the clause is

still not satisfied, it is necessary that the sole unassigned variable is

assigned a value that causes the clause to be satisfied. This is called a

unit propagation, and its identification causes BCP to return a unit-

propagation (UP) signal, along with the ID of the variable and the

necessary value. In summary, BCP is the procedure that identifies all

the variable value assignments that become necessary when the SAT

algorithm assigns a specific value to a variable.

As is clear from above, software BCP has long serial execution

[5] on von Neumann machines. While several researchers [8] have

parallelized BCP at coarse-grain, however, each BCP instance is

essentially executed serially in the manner summarized above.

The key challenge to parallelizing BCP beyond above in multi-core

von Neumann systems is that each time BCP is called, it must visit

the relevant parts of all the large data structures in SAT. Specifically,

each BCP call necessitates visits to all the memories shown in Fig. 2.

To identify all clauses where the assigned variable is used, it accesses

global clause memory to retrieve one clause at a time. To evaluate the

value of each clause, it needs the value of each variable in the clause.

For this, it accesses global literal value memory, where a literal is a

variable with its polarity (e.g., 𝑥𝑖 or 𝑥𝑖 ). This makes BCP a critically

memory bounded process [5]. When the size of the SAT instance is

large, entire clause information cannot be held in small-sized on-chip

memory (SRAM caches), and hence requires the use of full memory

hierarchy from cache to main memory (DRAM). Thus, extremely

high memory latencies caused by cache misses become performance

bottlenecks for the software SAT solvers.

To accelerate BCP in new ways, we started by conducting de-

tailed analysis of the BCP algorithm and data structure used in Mini-

SAT2 [1]. We first carried out qualitative analysis to derive a symbolic

expression for BCP runtime complexity. We then complemented this

with profiling to incorporate the actual runtime information into our

symbolic expressions and used this to identify the key performance

bottlenecks and completely new hardware designs to accelerate BCP.

The BCP implementation in MiniSAT2 [1] uses advanced ap-

proaches beyond the simple summary above. Specifically, to resolve

the memory bottleneck, two-watched-literal (2WL) [11] and blocking

literal [12] were developed to reduce the number of clauses to be

observed by monitoring the activities of only two literals in each

clause, which substantially improved performance of software SAT

solvers. To implement the 2WL scheme, Watched List Table (WLT)

and Watched List (WL) are required, as shown in Fig. 2. WLT is

a table containing pointers to watched lists for each literal and the

list sizes. Let the average size of watched list be denoted by 𝛼 . Each

WL, which is retrieved by directly indexing WLT with a literal, is a

two-column table; clause references (cref s) and blockers. cref is one

of indices of associated clauses to global clause memory. blocker is

a copied literal from the clause, which is used to reduce the proba-

bility of accessing the clause memory. This takes advantage of the

observation that we don’t need to visit the clause if one of its literals

is known to be assigned true and thus the clause is already satisfied.

This is why another level of indirection, WL, is inserted to minimize
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Figure 2: BCP algorithm and data structure.

the frequency of access to the global clause memory. Even with the

above two very effective schemes, modern software SAT solvers like

MiniSAT2 [1] still spend 80-90% of total CPU time on BCP.

As our goal is to fully parallelize BCP at very fine-grain, we design

our custom hardware in ASIC and thus have complete freedom to

maximize parallelism, specifically for MiniSAT2 [1]. To identify the

opportunities for hardware acceleration, we analyze BCP algorithm’s

complexity and memory accesses qualitatively.

As shown in Alg. 1 in Fig. 2, BCP algorithm starts when a literal,

𝑝, is assigned true. MiniSAT2 [1] uses the 2WL scheme where the

clauses containing the watched literal just assigned false needs to be

updated. Thus, a WL for 𝑝 is retrieved from WLT as shown in Fig.

2. Since the size of WL is 𝛼 , 𝛼-size iterations are required to check

whether each blocker of the associated clauses is true or not. For each

time to get the value of the literal, global literal value memory (shown

in Fig. 2) must be accessed. Since checking blocker (line 6 in Alg. 1)

is performed for all the related clauses being watched, this becomes a

dominant part of performance bottlenecks.

If blocker is not true, then BCP algorithm must visit global clause

memory (lines 9-10 in Alg. 1). Thus, we denote a probability that this

branch is reached, by 𝜖1. After getting the header of the clause by

directly indexing with cref on global clause memory, a preliminary

job to maintain the 2WL structure (the second literal is 𝑝) is executed

(lines 11-13 in Alg. 1). Then, BCP algorithm tries to check whether

the first watched literal is already true (𝛽1 cycles; lines 9-14 in Alg.

1). If it is true, BCP algorithm does not need to examine this clause

anymore. Thus, blocker is set to this first literal and skip to the next

clause. If it is not true (probability, 𝜖2, this branch is reached), non-

watched literals must be examined serially to find a new watched

literal (the clause has 𝛾 ′ literals). If there is a literal not assigned

false, the 2WL structure is updated with this literal and skip to the

next clause (𝛽2 cycles; lines 18-23 in Alg. 1). Since there is a early

termination of this loop (line 18 in Alg. 1), the actual number of visits

in this loop, 𝛾 , is much less than 𝛾 ′ (𝛾/𝛾 ′ ≃ 0.1). If a non-false literal

is not found (probability, 𝜖3, this branch is reached), this clause has

either an UP or a conflict, which is determined by checking whether

the first literal is false (𝛽3 cycles; line 24 in Alg. 1). If it is false, this

clause cannot be satisfied and BCP algorithm returns cref to the SAT

algorithm to deal with the conflict. If it is non-false (unassigned), it

causes the UP and thus this literal must be assigned true.

Overall, the number of cycles taken on von Neumann machine for

BCP algorithm, ℎ, is approximately represented as follows:

ℎ = 𝛼 (𝛽0 + 𝛽1𝜖1 + 𝛽2𝛾𝜖2 + 𝛽3𝜖3). (1)

Eq. (1) gives a qualitative view how BCP is organized in terms of

algebraic coefficients; nested two loops (𝛼 and 𝛾), cycles for each task

(𝛽𝑖 ; 𝑖 = 0, 1, 2, 3), and its probabilities (𝜖𝑖 ; 𝑖 = 0, 1, 2, 3).

To understand BCP algorithm quantitatively, in other words, how

large these coefficients are, we profiled benchmark instances and

revealed that 𝛼 , 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝛾 are 10, 25, 30, 30, 21, and

1.8, respectively. Also probabilities 𝜖1, 𝜖2, and 𝜖3 are 39%, 35%,

and 11%, respectively. We noticed that even a simple task, only

checking a value of a blocker, requires 25 cycles due to data movement

overheads across all the memories (shown in Fig. 2) and the fetch-

decode-execution cycle of von Neumann machines. Above that, BCP

algorithm executes this task for 𝛼 (= 10) times. As a result, ℎ is around

500+ cycles with an assumption that we don’t have any cache misses.

With cache misses and subsequent memory accesses, overall ℎ grows

over 1000 cycles. So far, we identified that we have opportunities to

parallelize BCP algorithm. Thus, in the next section, we will discuss

that how we design our custom hardware to parallelize BCP and

process it efficiently, and thus eliminate data movement and von

Neumann overheads depicted in Eq. (1).
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3 Proposed Custom Hardware

3.1 Key Ideas

Our goal is to design unique chip architecture which can increase

parallelism and significantly improve the performance of BCP by

optimizing memory architecture, logic processing, and wire design,

and also reduce the overheads (shown in Eq. (1)).

First, as mentioned above, the required operations for BCP are

quite simple: checking values, chasing pointers, and logic operations.

This fact allows us to design simple custom logic for processing

and eliminate most of the high-area modules. Further, the simplicity

allows us to incorporate a large number of processing elements and

place them next to the data. This helps with parallelization as well as

elimination of von Neumann overheads, especially data movement.

Second, our above study showed that BCP needs to access all the

large data structures used by MiniSAT2 [1] (see Fig. 2). To avoid the

high delays associated with off-chip DRAM accesses, our goal is to

fit all the memories required for large SAT instances on-chip. The

above elimination of high-area modules already frees up area.

Generally, CAM is expensive structure in terms of area and de-

lay. However, we remove the high-area high-delay part, namely the

priority encoder. For each row of CAM array, CAM matchline is

horizontally connected to SRAM wordline, thus we remove the de-

coder for SRAM as well. Further, we place logic circuitry for clause

evaluation right next to SRAM and directly use data stored on SRAM

to evaluate the clause.

Third, to achieve very high degree of parallelism, we propose to

use CAM to store clauses. Specifically, each row of CAM cells (see

bottom of Fig. 3) stores the IDs of the variables in a particular clause,

i.e., 𝑖 is stored if a variable 𝑥𝑖 or 𝑥𝑖 appears in the clause. This enables

completely parallel search across all clauses to look for the specific

variable for each BCP run and avoids all indexing operations (pointer

chasing). Specifically, this parallelization eliminates 𝛼 in Eq. (1). Our

use of CAM also avoids serially going through each literal in the

clause to find a non-false literal. This also eliminates 𝛾 in Eq. (1).

Fourth, next to each row of CAM cells mentioned above, we place

SRAM cells to store literal values as shown in Fig. 3. Three SRAM

cells are required for each literal: two-bits to store the value of the

three values (0, 1, or 𝑥) of the literal and one bit to store its polarity

(0 for 𝑥𝑖 and 1 for 𝑥𝑖 ). Further, to enable HW-BCP to output the ID of

the clause identified to have a conflict or a unit propagation, we have

SRAM cells to store the clause ID.

Finally, to parallelize evaluation of the clause to identify whether

the clause is satisfied, has a conflict, or a unit propagation, in each

row, we incorporate logic elements to evaluate the SAT clause with

the updated literal values. This also eliminates much of the data

movement overheads. In this manner, we also eliminate the need

for blocking literals [12], indirection memory, and the 2WL [11]

structure. More importantly, we eliminate the complex sequence of

operations required to update two-watched literals, which are expen-

sive to implement in custom hardware.

In this manner, via parallelization, we eliminate all the algebraic

coefficients shown in Eq. (1). Consequently, the proposed HW-BCP

takes only one cycle but with an increased clock period. In compari-

son, 1000+ cycles are required on general purpose processors. In our

HW-BCP, the fanout of variable ID (VID) increases by order 𝛼 , since

the VID is broadcast to all the CAM rows. However, careful wire and

Figure 3: Floorplan with H-Tree data bus and BCP submodules.

buffer design in the H-tree structure (shown in Fig. 3) to optimize the

delay of VID broadcast, reduces this delay to order of 𝑙𝑜𝑔(𝛼). 𝑙𝑜𝑔(𝛼)

primarily determines the clock period for HW-BCP.

Hence, overall our HW-BCP design reduces BCP delay by a factor

that is greater than:

𝑂 (𝛼/𝑙𝑜𝑔(𝛼)) . (2)

3.2 Architecture Design

To search all clauses in parallel where the given variable (VID) ap-

pears, in our design the VID and its value are broadcast to all BCP

submodules using the data bus in the H-tree structure as shown in Fig.

3. The data bus is bidirectional to get clause ID (CID) out when there

is a unit propagation. Once VID arrives at each BCP submodule, it

goes to the CAM array as a search key. If there is a matched VID

stored in the CAM, it activates a CAM matchline which is connected

to the wordline of the SRAM cells in the same row. The SRAM stores

associated clause information: CID (k-bit) and the values (2-bit) and

polarity (1-bit) of each variable. The stored data directly drive the ad-

jacent logic circuity, namely the determiner, which evaluates whether

the clause is satisfied (DONE), or there is a conflict (BACKTRACK),

or a unit propagation (UP). The BACKTRACK signal has the high-

est priority, since it requires MiniSAT2 [1] to backtrack (handled

by software). If there is no conflict, UP signal has a higher priority

than DONE signal. After these signals are output at each row, we

incorporate logic circuitry to combine these signals up the H-tree and

deliver the final output to the root of the tree.

3.3 VLSI Design

We use custom design flow for memory cells and general digital

design flow for logic cells.

TSMC 65nm GP PDK is used in this design. Custom schemat-

ics and layouts of memory cells are designed using the minimum

metal/wire pitches and shown in Fig. 4. Both the CAM and SRAM

cells are abuttable and can be placed side by side, horizontally and

vertically. Also, CAM matchlines are aligned with SRAM wordlines

and tri-state buffers are placed between matchlines and wordlines to

control a write operation on the SRAM cells. Literal values stored on

the SRAM cells directly drive the logic circuitry next to the SRAM

cells (Determiner in Fig. 3) to evaluate the clause. (This eliminates a

SRAM read operation. In a future implementation, we will incorpo-

rate the read mode to support post-fabrication testing.) Each clause

occupies 3 rows. Finally, CIDs are also stored on the SRAM cells.

32



HW-BCP: A Custom Hardware Accelerator for SAT Suitable for Single Chip Impl. for Large Benchmarks ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Figure 4: Our schematics and layouts of CAM and SRAM cells.

The entire memory part of the BCP submodule is designed at

netlist level with complete floorplan and precise wire information.

The logic part of the BCP submodule is designed using standard

library cells. Thus we create a detailed netlist of the BCP submodule,

which includes all extracted RC parasitics from our memory cell

layouts (shown in Fig. 4) and perform accurate simulations.

Once we know the precise dimensions and parasitics of each BCP

submodule, as shown in Fig. 3, we design and optimize layout of the

H-tree data path.

We repeat the above process by exploring the design space across

different sizes of BCP submodules, i.e., different numbers of clauses

in each BCP submodule, as well as different buffer sizes for memory

write drivers, and different place and route options on the logic cir-

cuitry. Finally we select the H-tree and BCP submodule design that

optimizes a desired combination of area and delay.

Specifically, in the selected design, the number of rows for the

BCP submodule is 384 and the number of BCP submodules is 218 for

the largest SAT instances. All delay and area evaluations ahead are

for this detailed design.

4 Evaluation and Extrapolation
Based on the 65nm HW-BCP design, we want to see how area, de-

lay, and largest SAT instance size change, especially as we move

from 65nm to 7nm technology. For this 65nm to 7nm transformation,

simply applying a scaling factor would be imprecise, because 7nm

technology uses FinFET and the wire pitch/spacing rules are very

different. Hence, we carry out a more careful transformation.

By maintaining the same design floorplan and configuration, we

estimate area and delay based on the size of library SRAM cells

for 65nm and 7nm. Based on our memory cells as well as from the

literature [13], we assume that CAM cell area is two times the SRAM

cell area. Thus, for extrapolation, based on the SRAM cell size, we

calculate the size of the BCP submodule, overall chip size including

space of the data bus and logic circuitry, and wire length of the data

bus. Since we do not have delay models of 65nm library memory

cells and 7nm library cells, we estimate an upper bound of total delay

for the 65nm library cells and only wire delay for the 7nm design.

4.1 Area and Scaling

As mentioned above, in our HW-BCP, SRAM cell area is a key factor

which decides entire chip area, the H-tree data path length (shown in

Fig. 3) and the maximum instance size loaded on the chip.

To extrapolate area as well as delay (discussed in Section 4.2)

realistically, we start by designing our own CAM and SRAM cells

(shown in Fig. 4). Since we use the standard PDK and follow its design

rules to design our memory cells, its size is quite a bit larger than

industry’s library memory cells. Thus, we extrapolate area and delay

based on the library cells. The library SRAM cell area suggested

by TSMC is 0.520um2 at 65nm [14] and 0.027um2 at 7nm [15].

Considering theoretical area scaling from 65nm to 7nm, we expect

SRAM cell area would decrease by 86x (= (65/7)2), but in reality

Figure 5: Area and wire delay with different instance sizes on different

technologies: (1) 65nm with our memory cells, (2) 65nm with library

memory cells, and (3) 7nm with library memory cells. In 65nm, wire de-

lay is the dominant part (>75%) of total delay for the largest benchmark

instances.

it is just 19.2x smaller. This is because it is difficult to make a very

compact SRAM cell in recent technologies like 7nm, as FinFET front-

end is combined with much more stringent back-end metal routing

rules. Thus, anticipated performance enhancement from 65nm to 7nm

may not be proportional to the gate length of the transistor.

Fig. 5 shows how area and wire delay change with different target

instance sizes for three cases; (1) 65nm with our memory cells, (2)

65nm with library memory cells [14], and (3) 7nm with library mem-

ory cells [15]. The instance size, 𝑥-axis, has four cases; the numbers

of clauses are 216, 219, 222, and 225, respectively. Total area increases

with the instance size. In 65nm, target instance size for practical chip

size would fall in the range 216-220.

However, if we can re-design the proposed HW-BCP using 7nm

technology, we can have HW-BCP which is able to load the largest

SAT instances with 225 clauses on a reasonable chip size (less than

4cm2). Due to the much smaller 7nm SRAM cell area, overall chip

area and wire delay shrink significantly as shown in Fig. 5.

4.2 Delay and Scaling

By estimating total BCP delay for our 65nm cells and further wire

delay for 65nm/7nm library cells, we evaluate accelerated BCP per-

formance and see potential for the advanced technology.

Total delay for BCP is composed of three parts: 2x the wire delays

on the H-tree (shown in Fig. 3, 1x for data-in and 1x for data-out),

memory operation delay from the point that data arrive at the BCP

submodule to the point that a new value is updated to the SRAM, and

subsequent logic circuit delay. The wire delay is the dominant part

of the proposed HW-BCP. Using our memory cells, we achieve the

optimal total delay of 4.5ns, in which wire delay, memory operation

delay, and logic delay are 3.8ns (84%), 0.5ns (11%), and 0.3ns (5%),

respectively. When the 65nm library memory cells are used, wire de-

lay is estimated to 2.3ns and the upper-bound total delay is estimated

by adopting the rest delay from our 65nm cells, which is 3.0ns.

Thus with the HW-BCP using our 65nm cells, BCP speedup over

MiniSAT2 [1] on general purpose processors is 62-123x. In a version

of our HW-BCP design with the 65nm library memory cells, the

speedup is a minimum of 93-185x. (We assume the range of clock

frequency of general purpose processors is 2-4GHz.)
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Table 1: BCP performance comparison between MiniSAT2 [1], FPGA-

BCP [8], and the proposed HW-BCP.

MiniSAT2 [1] FPGA-BCP [8] HW-BCP

Technology N/A 65nm 7nm 65nm 7nm

Largest instance

(No. of clauses)
N/A 64K 2M 670K 32M*

Avg. clock

cycles per BCP
1000 10 11+ 1 1

Clock period (ns) 0.25-0.5 5 2.5 1.6 1.24-

Avg. BCP delay (ns) 250-500 50 27.5+ 1.6 1.24-

* Largest instance size in SAT Competition 2017 benchmark suite

Then, we carefully address the estimation of wire delay on the 7nm

node. By using the normalized inverter FO4 delay which decreases by

4x on 7nm, logic circuit delay is estimated. RC (Ω · 𝐹/𝑢𝑚2) increases

by 8-18x when technology changes from 180nm to 35nm [16]. With

this tendency, we extrapolate RC for 7nm. RC is expected to increase

by 15x when the technology changes from 65nm to 7nm. We estimate

delay of the data bus (shown in Fig. 3) by assuming that it is a semi-

global wire and RC estimation is in the middle of conservative and

aggressive estimation.

Considering the above factors, wire delay using the 7nm library

cells is estimated and shown in Fig. 5. Wire delay significantly reduces

to 0.22ns, which is 10.2x enhancement compared to the HW-BCP

with the 65nm library cells.

4.3 Feasibility and Comparison

Since the proposed HW-BCP is an ASIC design and scalable, the

largest SAT instance that can be solved is limited by chip size. We

assume that 4cm2 is a feasible chip size for each technology.

Table 1 shows that, on HW-BCP using our 65nm cells, the largest

instance that fits in a 4cm2 chip has 670K clauses and has a clock

period of 1.6ns. Compared to FPGA-BCP [8], setting aside the fact

that our HW-BCP can load 10x larger instances, in 65nm, HW-BCP

achieves at least 30x speedup for BCP operations. Also, on SAT

instances with up to 670K clauses, in 65nm, our HW-BCP provides

156-312x speedup over MiniSAT2 [1] for BCP operations.

In 7nm, we estimate that the HW-BCP can hold the largest SAT

instances (32M clauses), in a 3.3cm2 chip. In our HW-BCP, the clock

period can be considerably reduced due to lower wire delays in 7nm.

As an upper bound, even with a pessimistic assumption that the

memory operation delay is the same as that for 65nm technology, we

can achieve 1.24ns clock period. FPGA-BCP can also be implemented

on Xilinx’s largest 7nm FPGA [17] and load an instance with 2M

clauses due to 32x larger BRAM capacity on the 7nm chips. FPGA

clock period can decrease by 2x [17]. Compared to FPGA-BCP, our

HW-BCP can load 16x larger SAT instances and achieve at least 22x

speedup on BCP. On the largest SAT instances, in 7nm, our HW-BCP

has 201-403x speedup over MiniSAT2 [1] for BCP.

4.4 MiniSAT2-level Speedup

We evaluate the overall speedup at the MiniSAT2 [1] level, not just

at the level of BCP operations. We assume that our HW-BCP is a

co-processor along with MiniSAT2 [1] on general purpose processors,

namely MiniSAT2+HW-BCP, where BCP runs on our HW-BCP and

the rest of the MiniSAT2 [1] runs on general purpose processors. Com-

pared to the software MiniSAT2 [1], on the 70 benchmark instances,

in 65nm, the overall SAT speedup of MiniSAT2+HW-BCP is shown

in Table 2. Since total BCP time is 80-90% of total SAT solving

time, the maximum speedup we can achieve at the entire MiniSAT2-

level is 5-10x. Even though we achieved significant speedup on BCP

operations, MiniSAT2-level speedup is bounded by Amdahl’s Law.

Table 2: BCP speedup on HW-BCP and SAT speedup on MiniSAT2+HW-

BCP compared to software MiniSAT2 [1].

BCP speedup

on HW-BCP* (range)

SAT speedup on

MiniSAT2+HW-BCP* (range)

w/ our cells 98.9x (62-123x) 6.6x (2.2-15.3x)

w/ lib cells 148.8x (93-185x) 6.7x (2.3-15.5x)

* Designed in 65nm technology

We expect that on 7nm, HW-BCP achieves significantly increased

BCP speedup over MiniSAT2 [1], which is anticipated to be 300-

1000x. In our future work, we plan to simplify our HW-BCP design to

save chip area and use it to accelerate other parts of MiniSAT2 [1] to

improve overall SAT performance. We also plan to optimize HW-BCP

delay by pipelining our HW-BCP architecture.

5 Conclusion
We have designed a custom hardware accelerator for BCP (HW-BCP)

to fully parallelize BCP operations and eliminate von Neumann over-

heads, especially data movement. Also by storing on-chip all major

large data structures (clauses, variable values, etc.), we completely

eliminate cache misses and associated performance overheads. In

65nm technology, HW-BCP achieves at least 62x speedup over gen-

eral purpose processors with full custom combinations of memory,

logic circuitry, and interconnect design. We also show that on 7nm,

besides performance enhancements, HW-BCP can support the largest

SAT benchmark instances in a practical chip size.
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