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Abstract

Since the characterization of messenger RNA in
1961, our understanding of the roles of RNA
molecules has significantly grown. Beyond serving
as a link between DNA and proteins, RNA
molecules play direct effector roles by binding to
various ligands including proteins, DNA, other
RNAs and metabolites. Through these interactions,
RNAs mediate cellular processes such as the
regulation of gene transcription and the
enhancement or inhibition of protein activity. As a
result, the misregulation of RNA molecules is often
associated with disease phenotypes, and RNA
molecules have been increasingly recognized as
potential targets for drug development efforts,
which in the past had focused primarily on proteins.
Although both small molecule and oligonucleotide-
based therapies have been pursued in efforts to
target RNA, small molecule modalities are often
favored owing to several advantages including
greater oral bioavailability. In this review, we
discuss three general frameworks (sets of premises
and hypotheses) that, in our view, have so far
dominated the discovery of small molecule ligands
for RNA. We highlight the unique merits of each
framework as well as the pitfalls associated with
exclusive focus of ligand discovery efforts within
only one framework. Finally, we propose that RNA
ligand discovery can benefit from utilizing progress
made within these three frameworks to move
toward a paradigm that formulates RNA-targeting
questions at the level of RNA structural subclasses.

Introduction

In 1947, Boivin and Vendrely hypothesized that
deoxyribonucleic acid (DNA) produced ribonucleic
acids (RNA) that then produced different proteins
(1). In the 14 years that followed, the
characterization and isolation of “messenger” RNA
(mRNA) were reported by two research groups—
Brenner, Jacob and Meselson on the one hand, and
Watson and co-workers on the other—in 1961(2-4).
This same year, Nirenberg and Matthaei
demonstrated the function of mRNA via an array of
in vitro translation experiments, one of which
showed that a poly-U RNA molecule acting as a

template resulted in polyphenylalanine peptide (2).
These years proved a critical period in the history
of the genetic code. Prior to these discoveries,
although DNA was accepted as the locus of genetic
information, it was still obscure just how this
information was transferred to proteins. The
“central dogma” of molecular biology, which
Francis Crick had proposed in 1957, was thus fully
established.

From 1961 onwards, apart from ribosomal RNA
(rRNA) and transfer RNA (tRNA) discovered in
1955 and 1957, respectively, RNA molecules were
largely viewed simply as “messengers”. This view
began to change with the discovery of catalytic
RNAs by Thomas Cech and Sydney Altman in the
early 1980s as well as the discovery of regulatory
RNAs that did not code for proteins (5). The earliest
class of regulatory non-coding RNA discovered
consisted of “small RNAs” that regulate mRNA
translation in prokaryotes (5). The discovery of
microRNAs (miRNA) in the early 1990s through
observations by multiple researchers continued to
lend evidence to the fact that RNA could directly
perform regulatory function (5). The early 1990s
also marked the discovery of the first long non-
coding RNA (IncRNA), HI19, important in
mammalian embryonic development, as well as
IncRNA Xist (X-inactive-specific transcript),
which is responsible for X-chromosome
inactivation in mammalian females (XX) to achieve
dosage compensation relative to males (XY) (5).
These early discoveries of non-coding RNAs, along
with the observation that most of the human
genome produces non-coding transcripts (5,6), led
to the so-called “revolution” in RNA biology, a
shift towards an increased appreciation of RNA
functions beyond templating protein synthesis.

Today, several classes of non-coding RNAs with
diverse functions have been identified, and their
structures and functions are being further
investigated. These include miRNAs mentioned
above that regulate protein expression (7), small
nucleolar RNAs involved in ribosomal RNA
modification and in mRNA splicing (8,9), small
nuclear RNAs involved in splicing (10), IncRNAs
(operationally defined as RNAs with >200
nucleotides) (11), and many more (12). LncRNAs,
in particular, are involved in several cellular
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processes including the regulation of chromatin
architecture, transcriptional regulation, inhibition
or enhancement of protein activity (5), and the
regulation of nuclear bodies (13). Additionally,
IncRNAs have been implicated in the progression
of various cancers. For example, IncRNA MALAT-
1 (metastatic associated lunch adenocarcinoma
transcript 1) is overexpressed in many cancers and
is associated with tumor growth and metastasis
(14). Non-coding portions of mRNAs can also be
implicated in disease progression, as is the case
with many neurological disorders that result from
the expansion of trinucleotide repeats in
untranslated regions of a key mRNA (15).

With the discovery of functional RNA molecules, it
became clear that drug discovery, which had
previously focused solely on proteins, should also
be applied to RNA. This approach carries great
potential for at least three reasons. First, targeting a
mis-regulated disease-related RNA might be more
amenable to drug development especially if
targeting proteins involved in the same pathway
may lead to undesirable side-effects. For example,
achieving selectivity when targeting structurally-
related proteins such as kinases may prove difficult,
while targeting the respective mRNAs may allow a
higher level of selectivity (16). Second, for some
proteins currently considered difficult-to-drug, it
might only be possible to modulate their effect by
targeting the corresponding mRNA (17). Lastly,
several functional RNAs have been found to play
essential roles in the proliferation of viral, fungal
and bacterial pathogenic organisms (18-20). For
example, the early 2000s marked the discovery that
some mRNAs could regulate their own expression
either at the transcriptional or translational level by
directly binding to metabolites without
involvement of a protein sensor (21-25). The RNA
structural elements responsible for this regulation,
termed riboswitches, have so far been identified in
all three domains of life (26). Inmany cases, RNAs
essential for pathogenic organisms do not have
close orthologs in humans, which makes them
orthogonal targets thus increasing the chances of
selective targeting. Targeting RNA thus opens the
door to novel treatments for both infectious and
non-infectious diseases.

Early interest in modulating the function of RNA
dates back to 1978 with the study of an
oligonucleotide inhibiting replication of Rous
sarcoma virus (27). Possible mechanisms included
blocking translation initiation. In 1998, the U.S.
Food and Drug Administration (FDA) approved the
antisense oligonucleotide (ASO) Vitravene for
cytomegalovirus (CMV) retinitis, although it has
now been discontinued (16). Vitravene inhibited
the synthesis of proteins essential for wviral
replication by binding to the mRNA sequence
encoding these proteins (28). Another ASO,
Kynamro (mipomersen), was approved by the FDA
in 2013 for familial hypercholesterolemia (16).
Interaction of Kynamro with apolipoprotein B-100
mRNA induced its cleavage by Ribonuclease H,
leading to reduced production of lipoproteins
(29,30). More recently, Spinraza (nusinersen), an
ASO targeting pre-mRNA splicing, was also
approved by the FDA for spinal muscular atrophy.
Nusinersen bound to an intron-silencing sequence
in the SMN2 pre-mRNA and induced the inclusion
of exon 7 resulting in production of the full length
SMN protein (31). Other protein replacement
approaches have included the delivery of mRNA
therapeutics as replacement for deficient
endogenous sequences (32). These initial successes
with ASOs would find even more appreciation as
their applicable domain expanded with the
discovery of ncRNAs. Similar to how they block
mRNA translation either sterically or by inducing
cleavage, ASOs can bind to ncRNAs and induce
their cleavage or block their interactions with
endogenous ligands (e.g., proteins, nucleic acids,
metabolites,  etc.), ultimately  abrogating
downstream cellular processes. Additional RNA-
cleavage mechanisms not mediated by ASOs have
also been pursued. These include the development
of small interfering RNAs (siRNAs), which are
double stranded RNAs that recognize and induce
cleavage of a target RNA via endogenous RNA
interference (RNAi) pathways. The first RNAi
therapy, Patisiran, was approved in 2018 for
hereditary transthyretin amyloidosis, an autosomal
dominant neurodegenerative disease (33). The
siRNA Patisiran binds in the 3’ untranslated region
of mutant and wild-type transthyretin mRNA,
inducing cleavage of mRNAs and thus reducing the
deposition of transthyretin proteins (34,35).
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Although the FDA approval of the siRNA Patisiran
represented significant progress, the nearly two-
decade delay between the discovery of RNAI in the
early 2000s (36,37) and the first approval of an
RNAi-based therapy points to challenges inherent
to developing oligonucleotide-based therapies that
limit widespread use compared to traditional small
molecule drugs (33,38). For example, although
small single-stranded ASOs can be taken up by
cells and escape the endosome more readily than
larger agents like double stranded siRNAs, their
delivery to non-hepatic tissues is still difficult. In
particular, given that ASOs cannot cross the blood-
brain barrier, their application to treat neurological
diseases requires direct injection into the spinal
canal (38). Additionally, oligonucleotide therapies
can elicit both extracellular and intracellular
immunological  responses. = Small  organic
molecules, on the other hand, can be orally
bioavailable with systemic delivery and are not
immunogenic. Finally, given that oligonucleotides
work through base-pairing, it proves difficult to
target structured RNAs without accompanying
structural rearrangement. In contrast, the high
tunability of small molecule physiochemical and
shape properties allows them to target diverse
highly structured RNA motifs. These advantages of
small molecules, along with the desire to apply the
cumulative knowledge in medicinal chemistry to
these newly appreciated RNA targets, have turned
the interest of targeting RNA from oligonucleotides
to traditional small molecules. This interest is
particularly exemplified by the growing number of
academic research laboratories and startup
companies that are dedicating their efforts to
developing small molecules that directly bind RNA
to alter function.

The earliest class of small molecules known to
interact with RNA and modulate RNA function was
identified in the late 1980s when it was discovered
that aminoglycoside antibiotics acted by binding to
bacterial ribosomal RNA (39). Researchers soon
observed that these molecules could bind to a
variety of non-ribosomal RNAs, mainly due to the
high content in positively charged amino groups
that lends a certain degree of non-specific binding
to RNA due to its negatively charged backbone.
Several researchers viewed this promiscuity as a
potential opportunity and focused on tuning

aminoglycoside derivatives for various RNA
targets. As RNA was increasingly viewed as a
potential drug target, research efforts were
expanded to also include more general drug-like
small molecules often described as those with
physiochemical properties satisfying Lipinski’s
“rule of 5 (40,41), although other methods to
describe drug-likeness have been proposed (42).

In this review, we will discuss the main research
frameworks that have driven the study of targeting
RNA with small molecules. We define a framework
as a set of premises and hypotheses underlying any
individual research strategy. For example, a study
of how the properties of small molecules affect their
interaction with differentially-sized RNA bulges
would be operating within a framework that
considers RNA secondary structures to play an
important role in determining ligand interaction. In
our evaluation of RNA-small molecule literature,
we observed that many of the approaches to RNA
ligand discovery have so far operated within three
main frameworks: (1) RNA secondary structure
motifs can be used as modules for ligand binding;
(2) RNA-targeted small molecules may have
distinct properties compared to protein-targeted
molecules; and (3) RNA-targeted small molecules
may look like typical drugs targeting proteins. For
each framework, we will first discuss how it is
generally conceived and implemented and then we
will provide a critical evaluation in relation to other
frameworks. Having focused our analysis mainly
on major themes, we will not discuss important
work that may not fit into the three main
frameworks such as modulation of the RNA
conformational landscape, which we discussed in a
previous review article (43), or the use of small
molecules to induce degradation of pathogenic
RNAs (44).

Framework 1: RNA secondary structure motifs
can be used as modules for ligand binding.

Early investigations in how aminoglycosides
interact with RNA showed that recognition may
depend on RNA shape and not on sequence (45). In
the absence of complex tertiary interactions asis the
case for the short stem-loops often used in in vitro
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experiments, the shape of a potential binding site is
defined by the secondary structure motifs (e.g.,
loop, bulge, etc. (Figure 1B)). The uniqueness of
this shape originates from the size of the unpaired
region and the identity of the unpaired bases and
their neighbors. Therefore, to target an RNA with
small molecules it might be beneficial to focus on
the unique set of secondary structure motifs it
contains. This idea quickly matured into a more
general approach to solving the problem of RNA
recognition with small molecules.

For example, Hergenrother and co-workers
published several studies aimed at targeting apical
loops or bulges selectively (46-48). In a study
aimed at identifying general RNA apical loop
binders, Hergenrother and co-workers reported
deoxystreptamine dimers that had high affinity for
apical loops (46). In a follow-up study, a
combinatorial library of deoxystreptamine dimers
was synthesized and evaluated for size-specific
binding of RNA apical loops (47). Compounds with
selectivity for octaloops and others with selectivity
for tetraloops were identified. In addition to apical
loops, Hergenrother and co-workers also
investigated bulge-binding compounds. In one
study, they synthesized a library of compounds with
a wedge-like geometry that gives them high affinity
for nucleic acid bulges. In this compound series, the
wedge-like geometry was essential for binding
while cationic character was not as important (48).

The Disney laboratory took a large-scale approach
to identify what secondary structure motifs are
preferred by what molecules (49-52). In a seminal
study, Disney and co-workers screened a
randomized library of internal loops against a
kanamycin A derivative to identify what types of
internal loops, in terms of size and sequence,
kanamycin A prefers to bind (49). They proposed
using this type of information to construct a
database of RNA motifs that small molecules
recognize. This database could then be used to
identify small molecules that can be linked to bind
sequential secondary structure motifs in an RNA of
interest (Figure 2). Using a technique termed 2DCS
(two-dimensional combinatorial screening), the
Disney laboratory constructed the proposed
database, now known as Inforna, which they have
used to target several RNAs with small molecules

possessing activity in cell culture and/or animal
models of cancer and neurological disorders (50-
56). A key strategy in Disney’s work has been that
of modular assembly, where at least two binding
moieties are linked together to interact with
neighboring secondary structure motifs such as
those found in precursor microRNAs and in
trinucleotide repeat RNAs (Figure 2B).

A similar strategy using different building blocks
has also been used by the Zimmerman group to
target trinucleotide-repeat RNAs with ligands
active in cell culture and animal models (57-60). In
an effort to target the CUG repeat RNA in myotonic
dystrophy type 1 (DM1), the Zimmerman group
developed multivalent ligands consisting of two
acridine-triaminotriazine moieties connected by an
oligoamino or oligoether linker (57). Given the
multivalent nature of the target RNA (repeating
U:U internal loops), utilization of dimeric
compounds with an optimized linker was expected
to improve potency. One dimeric compound in this
series was found to have over 200-fold greater
potency than the monovalent parent ligand in in
vitro assays. In a recent study, the multivalent
approach was further expanded to produce
oligomeric compounds composed of alternating
bisamidinium and triaminotriazine moieties (60).
These compounds were designed to bind both the
CUG repeat RNA as well as the corresponding
CTG repeat DNA to provide a multitargeting
approach to developing treatments of DMI.
Importantly, in addition to improving nucleic acid
binding, the presence of multiple bisamidinium
moieties in these oligomeric compounds also
served to improve cellular uptake of the
compounds, presumably through the mechanisms
employed by cell-penetrating peptides (60). As a
result, the final compound showed greater efficacy
in cellular and in vivo assays compared to the
monomeric compound.

The idea that secondary structure motifs can serve
as modules, or units, for targeting RNA has
delivered several bioactive small molecules (50-
60). These successes testify to the strength of this
approach as a general RNA-targeting strategy.
However, this approach remains limited in its
application, as it seems applicable only to simple
stem-loop structures such as microRNA precursors
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and trinucleotide repeat RNAs and is not as easily
applied to complex three-dimensional pockets such
as those found in higher-level junctions.
Additionally, because highly similar secondary
structure motifs can be found in multiple RNAs,
targeting one RNA selectively using Framework 1
may prove difficult. As aresult, this approach may
be limited to targeting overexpressed RNA
transcripts, as this abundance can significantly
contribute to small molecule selectivity even in the
presence of RNAs that may have similar secondary
structure motifs.

Framework 2: Potential existence of an “RNA-
biased chemical space”

Similar to Framework 1, the second dominant
framework in RNA ligand discovery is also based
on the dissimilarity of RNA as a biopolymer
compared to proteins. Unlike Framework 1,
however, Framework 2 isnot focused on “modules”
of RNA structure that can be used as units in
designing selective small molecules. In this
framework, researchers take the RNA molecule as
a whole, and after considering its unique
properties—such as its high negative charge and
relatively low chemical diversity (Figure 1A)—
they hypothesize that, in general, RNA-binding
small molecules will have distinct structural
properties compared to protein-binding small
molecules. As such, there may exist a region of
chemical space that is “privileged” or “biased” to
interact with RNA (61). Given that compound
libraries compiled by medicinal chemists before the
broad acceptance of RNA as a drug target were
mostly aimed at targeting deep hydrophobic
pockets of proteins (62), it follows that the research
focus turns to identifying new types of small
molecule scaffolds that interact with RNA, and to
designing compound libraries that have been
statistically biased to yield a higher number of hits
for RNA targets.

Scaffold-based synthesis

The first main approach within Framework 2 has
been scaffold-based synthesis, where a molecular
scaffold known to interact with an RNA molecule
is further diversified to produce analogs that are

optimized for differentially modulating different
RNA structures. The molecular scaffold retains
core structural features that confer general RNA
binding, while the substitution pattern allows the
researcher to engineer selectivity for a desired RNA
molecule. In some cases, scaffold-based research
programs originated from the realization that DNA-
interacting molecules could potentially be tuned to
interact with RNA. Such was the case with some of
the work from the Wilson and Zimmerman
laboratories where expertise in targeting DNA with
aromatic heterocyclic compounds and molecular-
tweezer-like compounds, respectively, was applied
to RNA targets (63,64). The Miller laboratory also
used a similar approach. A dynamic combinatorial
library initially designed for DNA using building
blocks from DNA-interacting natural products was
later successfully employed for RNA targets
(65,60).

In addition to DNA-inspired research efforts
already-known RNA-binding scaffolds such as the
aminoglycosides were further investigated in an
effort to finetune them for specificity. Several
laboratories have published extensively on
aminoglycosides (67-82), including some of the
early efforts to target RNA in a multivalent manner
(78) as well as the first examples to reveal the
importance of structural electrostatic
complementarity between an RNA target and a
small molecule (77). A general theme emerging
from the aminoglycoside work has been the
difficulty of achieving selectivity between different
RNAs—although different strategies were pursued
including  conformational  restriction  and
conjugation of aminoglycosides to other moieties,
achieving selectivity remained difficult (71,79,81).
It is noteworthy, however, that in some instances
the lack of selectivity appeared to be coming from
the flexibility of the RNA target rather than inherent
promiscuity of the compounds (71,81).

Lastly, high-throughput screening approaches have
led to identification of novel highly tunable
scaffolds, as is the case with the amiloride scaffold
initially identified by the Al-Hashimi laboratory
(83). Our laboratory has since synthesized ~60
derivatives some of which have high specificity for
select viral RNAs (84-86). Other scaffolds
investigated for RNA binding through scaffold
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optimization have included benzimidazoles (87),
aminoglycoside-benzimidazole conjugates (88-91),
2-aminobenzoxazoles (92), thienopyridines (93),
diarylpyridines (94), diaryltriazines (99),
oxazolidinones  (96), 3,5-diamino-piperidines
(97,98), diphenylfurans (14,63,99-101), verapamil
(102), methylquinolinium derivatives (103),
aminoquinolones (104), and triptycene-based
molecules designed for DNA and RNA junctions
(105) (Figure 3).

RNA-biased libraries

The second major approach in Framework 2 has
focused on studying structural properties of RNA-
binding molecules and using these properties to
design RNA-biased libraries. For example, the
Disney laboratory designed a library enriched in
moieties observed to interact with RNA in their
earlier 2DCS studies (106). This library was
screened against the r(CUG)®*? RNA in myotonic
dystrophy and resulted in a higher hit rate than
typically observed for general high-throughput
libraries. From an efficiency standpoint, higher hit
rates in RNA screens are often desired especially in
academic settings where the libraries available are
orders of magnitude smaller than those available to
large companies. As such, creating RNA-biased
libraries may be highly advantageous in RNA lead
discovery, especially since compound libraries
have so far been optimized around protein binding
(62). Aboul-ela and co-workers used an analogous
approach, where published RNA ligands were
fragmented and an RNA-biased library was
assembled based on structural similarity to the
original RNA-binding fragments (107). This library
led to the identification of five hits for the bacterial
ribosomal A-site RNA, including chemotypes not
previously known to interact with this RNA.
However, this work did not allow general
conclusions about small molecule properties that
lead to RNA binding.

Our laboratory recently took a complementary
approach to investigating RNA-privileged
chemical space (108,109). The approach was
heuristic similarly to the examples discussed above,
but we focused on ligands that had biological
activity in cells or animal models. Bioactive
compounds were expected to already possess some

level of selectivity because they recognize their
target RNA in a cellular context, where ribosomal
and transfer RNA make up over 90% of total
cellular RNA (110). Analysis of published RNA-
targeted bioactive ligands showed that these
compounds have unique trends in structural and
shape properties compared to FDA-approved
drugs, which are considered to mostly target
proteins, while at the same time having similar
medicinal chemistry properties (108) (Figure 4).
For example, compounds in the Hargrove RNA-
targeted Bloactive ligaNd Database (R-BIND) had
a higher nitrogen count, a higher number of
aromatic rings, a lower oxygen count, a lower
fraction of sp3-hybridized carbon atoms and a lower
number of stereocenters. R-BIND compounds also
had a more rod-like shape compared to FDA-
approved drugs. This work suggested that bioactive
RNA-targeted ligands may occupy a focused corner
of drug-like chemical space. These results were
further supported by recent work from the Disney
laboratory in collaboration with AstraZeneca (53).
The researchers observed that although the RNA-
binding hit compounds were structurally dissimilar
to those in R-BIND (109), they still shared the
identified physicochemical properties. We envision
that these physicochemical properties could be
harnessed by designing an RNA-biased library
using compound similarity algorithms on R-BIND
ligands, potentially allowing the identification of
novel ligands for a variety of RNA targets.

Kutchukian, Nickbarg and co-workers recently
published a study in which they investigate small
molecule properties that lead to selective RNA
binding (111). They screened a library of ~50,000
drug-like and 5100 tool compounds against a
variety of RNA structures using a mass-
spectrometry-based assay and used a machine-
learning algorithm on identified binders to build an
RNA-biased library, which had a higher hit rate
compared to the starting libraries. Similar to the
studies discussed above, Kutchukian, Nickbarg and
co-workers observed that RNA-binding ligands
were found within drug-like chemical space but that
there were chemical substructures, particularly
heteroaromatic rings, that promoted general RNA
binding.
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The observation that RNA binding ligands may
have distinct features compared to general protein
binders yielded several lines of research which we
discussed above under two umbrella approaches—
scaffold-based synthesis and the design of RNA-
biased libraries. Both of these approaches have
advanced the field of targeting RNA through the
identification and optimization of new scaffolds as
well as through the higher hit rates obtained with
biased libraries that expedite lead discovery. For
example, one of the first ligands for a IncRNA
structural element was identified in our laboratory
via diversification of a diphenyl furan scaffold (14).
Screening of RNA-biased libraries has also led to
successful targeting of RNA in disease, as
demonstrated by the Disney study that was enriched
in  RNA-binding features, including the
benzimidazole moiety, and led to compounds that
improve splicing defects in myotonic dystrophy
type 1 (106). Importantly, we note that in contrast
to Framework 1, which is limited to simple stem
loops, Framework 2 has allowed the targeting of
complex structures such as a IncRNA triple helix
structure  (14), G-quadruplexes (103), and
riboswitches (112,113), thus establishing it as a
general RNA-targeting strategy.

Framework 3: RNA-targeted small molecules
may look like typical drugs targeting proteins

From our discussions of RNA-biased chemical
space in Framework 2, we observe that RNA-
binding small molecules often have distinct
properties compared to general protein-targeted
drugs. However, the two groups are often found
within the same larger chemical space, sharing
properties that include those used to define “drug-
likeness” such as Lipinski’s and Veber’s rules
(108). It is this key concept of similarity that
expands and becomes the foundation for
Framework 3, which posits that traditional
medicinal chemistry approaches can readily be
applied to RNA targets. The key defining feature of
Framework 3 is that researchers can take their focus
away from the uniqueness of RNA and redirect it to
its similarity to proteins. For example, recent
discourse in the field points to the opportunity of
targeting protein-like binding pockets in higher

level folding RNA structures. This perspective was
recently discussed in great detail by Weeks and co-
workers in their 2019 perspective article. They
emphasized the importance of choosing RNAs with
complex structures (Figure 5) in order to achieve
both potency and selectivity and argued that, in this
way, targeting RNA would become “(only) roughly
as difficult as for protein targets” (17). While this
approach may increase the overall number of RNA
molecules targeted with small molecules, we note
that an exclusive focus on complex structures may
preclude opportunities to develop needed
medicines for conditions mediated by RNAs with
simpler structures.

Although Framework 3 is not yet as established in
the literature as Frameworks 1 and 2, a few recent
studies applied this concept. For example, Pyle and
co-workers recently reported a study targeting
fungal group II self-splicing introns in which they
identified novel antifungal agents via a standard
drug discovery approach used in pharmaceutical
companies—high-throughput  screening  for
inhibitory activity, followed by structure-activity
relationship studies for lead optimization (18). In
this report, the authors highlight the approach taken
as a significant contribution to efforts towards
targeting RNA. Pyle and co-workers point out that
although previous studies focusing on identifying
physicochemical properties that lead to selective
RNA recognition have been successful, they remain
limited because they rely on already-known RNA-
small molecule interactions. With the successful
application of a standard drug discovery approach
to an RNA target, the authors conclude that
determinants for RNA binding are sufficiently
similar to those for protein targeting to warrant use
of established medicinal chemistry libraries, and
that targeting complex RNA molecules will not
necessarily require a re-imagined RNA-centric
medicinal chemistry approach.

Another example of applying a traditional drug
discovery approach to RNA targets was employed
by Merck in their discovery of the antibacterial
ribocil (114). Ribocil inhibits the biosynthesis of
the essential vitamin B2 (riboflavin) by binding to
the FMN riboswitch, which controls the expression
of the rib biosynthetic genes. The discovery of
ribocil occurred via a screen of 57,000 antibacterial
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small molecules for growth inhibition of an
antibiotic-sensitized E. coli strain in the presence or
in the absence of riboflavin (114,115). Ribocil
emerged as the only compound whose effect was
fully suppressed by riboflavin supplementation,
indicating that it was inhibiting growth through the
riboflavin pathway. Ribocil-resistant E. coli
mutants were then found to have mutations in the
FMN riboswitch rather than in the open reading
frame of a riboflavin biosynthetic gene, supporting
that ribocil binds to the FMN riboswitch to inhibit
gene expression. This mode of action was further
supported by additional assays including the
inhibition of FMN-controlled gene expression by
ribocil in a reporter system as well as in vitro
binding of ribocil to purified FMN riboswitch
RNA. The discovery of ribocil and characterization
of'its mode of action in this manner emphasized that
successful targeting of RNAs with small molecule
drugs can be achieved using strategies that have
been traditionally used for protein targets (114).

In addition to the ability of medicinal chemists to
apply to RNA the libraries and methods they
customarily use for protein targets, another
important motivation within Framework 3 relates to
the danger of relying on already-known RNA-
binding ligands, a theme that is particularly salient
in Framework 2. As beneficial as it is to utilize
properties of known ligands to design new ones, it
is unlikely that this approach will work for any
RNA target given that the ligands we currently have
target only a small subset of the RNA structure
space. Additionally, researchers may encounter
increased challenges with selectivity if the same set
of small molecule scaffolds is continually
employed for ligand design. As such, it becomes
necessary to balance these efforts with screening
approaches that allow expanded exploration of
chemical space and are thus likely to yield novel
molecules. The Schneekloth, Garner, Campos-
Olivas and Gonzalez laboratories have highlighted
this point in their recent high-throughput screening
studies (116-118).

Lastly, as RNA-targeting becomes increasingly
pursued using the same strategies and compound
collections used to target proteins, the cross-
fertilization of knowledge from both the RNA-
targeting and protein-targeting efforts will benefit

both fields. At the level of compound optimization
for general features such as drug transport, lessons
learned from years of optimizing compounds for
cellular uptake can equally benefit RNA-targeted
compounds. For example, consideration of
compound physicochemical properties that affect
passive transport such as the water-octanol partition
coefficient (119) will be important in optimizing
compounds for targeting RNAs. It is important to
note, however, that the relative contribution of
passive transport and carrier-mediated transport in
drug internalization is a subject of on-going
investigations, with some studies pointing to the
coexistence of both mechanisms (119,120). In
addition to gains in compound optimization for
transport, the RNA-targeting and protein-targeting
fields will benefit at the level of validating the mode
of action of lead compounds in that researchers can
no longer focus only on one class of biomolecules
for assessing binding and functional selectivity. For
example, recent publications have emphasized the
importance of including RNA molecules in off-
target screens of protein-targeted compounds (39).
Similarly, researchers developing RNA-targeted
compounds should remain mindful of the
possibility of off-target interactions with proteins.
A recent evaluation of a subset of RNA-targeted
ligands with biological activity found that
appropriate selectivity assays are often not
performed  comprehensively, with  some
compounds exhibiting interactions with assay
reporter proteins (121). While it remains difficult
for a compound to interact with only one
biomolecule in the complex cellular environment,
expansion of binding and functional selectivity
evaluations both for RNA-targeted and protein-
targeted compounds will be crucial to ensure a
higher success rate of drug discovery efforts.

Conclusions and perspectives

With the discovery of myriad functional non-
coding RNAs across all domains of life, many of
which lead to disease when mis-regulated, there has
been increased interest in pursuing RNA molecules
as drug targets. In our discussion of the three main
frameworks that have driven research in this field,
we have highlighted the successes and limitations
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of the versatile approaches taken to target RNA
molecules. Importantly, it would appear that one
framework may be better suited for certain RNA
structure subclasses. For example, Framework 1
may be the best option for targeting a well
characterized functional stem loop, while
Framework 3 may be better suited for complex
structures such as riboswitches. We note that it is
possible for a study to fall under two frameworks,
as would be the case for a modular approach
(Framework 1) that utilizes RNA-biased libraries or
scaffold-based synthesis (Framework 2) as the
discovery method.

Finally, we would like to discuss an aspect of RNA
ligand research that, in our view, underlies all three
Frameworks discussed herein. This aspect is the
tendency to treat “RNA” as a monolithic collection
of biomolecules in the context of medicinal
chemistry, and thus requiring (or not) umbrella
“RNA-centric” methods, even as one
simultaneously recognizes the structural diversity
of RNA molecules in other contexts. This aspect of
our current discourse leads to questions like “what

kinds of molecules can target RNA?”, as opposed
to “what kinds of molecules target triple
helices/pseudoknots?” or “what kinds of molecules
target this particular cancer-related RNA
fragment?”. While our attempts to find
generalizable approaches at the level of “RNA”
have led to important successes and remain
important, it is likely that generalization may be
more meaningful and more useful if tailored to a
particular structural class of RNA, as routinely done
for protein targets. We believe that effortsto “target
RNA” will greatly benefit from approaches that
embrace and capitalize on both the similarities
between RNA molecules and their rich three-
dimensional structure diversity but without being
hindered by the former. Importantly, the strategies
developed within the three Frameworks have laid
the groundwork for more detailed exploration of
RNA-targeting with small molecules. As such, the
field is poised to make significant progress that in
time will lead to the discovery of several RNA-
targeted life-saving medicines as exemplified by
the recent FDA-approval of Risdiplam for spinal
muscular atrophy (122).
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Figure 1. Chemical composition and secondary structure motifs of RNA. (A) Chemical structure of a
sample RNA strand composed of the four bases found in RNA. Because they utilize only four monomers,
RNA molecules are often considered to have low chemical diversity considered to proteins which are made
of 22 amino acids (123). Additionally, unlike proteins which exhibit a wide range of net charge, RNA
molecules are negatively charged at physiological pH due to the acidic phosphate backbone. (B) Canonical
secondary structure motifs of RNA. RNA molecules fold through complementary base-pairing. In addition
to the canonical A-U and G-C base pairs, RNA folding also utilizes non-Watson-Crick base pairs such as
the well-studied G-U wobble pair (124) and several others (125). Unpaired regions are highlighted in red.
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Figure 2. Example study in Framework 1. (A) Illustration of how the Inforna Database is used to identify
small molecules interacting with a disease-causing RNA of interest. Inforna compares secondary structure
motifs in the target of interest to those found in the database and then outputs small molecules predicted to
bind to one or more of the secondary structure motifs in the target RNA. The figure was adapted from
Disney and co-workers (126) with permission. Copyright (2016) American Chemical Society. (A) The
modular assembly technique where moieties binding neighboring secondary structure motifs are linked

together to increase potency.
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Figure 4

A

A Ll e
\ \ \ \

=
S
\ o
=

£ [eR-BIND (SM)

® R-BIND (MV)

© NALDB (SM)

NALDB (MV)

FDA

Cumulative frequency / %

1.0

0.8 4

06—

0.4+

0.2+

00

Rod

— R-BIND (SM)
— NALDB (SM)
FDA

I I I 1
00 02 04 06 08 1.0

Distance from rod

Figure 4. Comparison of molecules in the RNA-targeted Bioactive ligand database (R-BIND) to FDA-
approved drugs and general nucleic-acid-binding ligands (NALDB). (A) Principal component analysis on
20 calculated cheminformatics parameters. R-BIND ligands occupy a focused region of the chemical space
defined by the three libraries. (B) Ligand shape expressed in terms of rod-likeness. The R-BIND database
is enriched in molecules with rod-like character compared to the FDA and NALDB libraries. “SM” denotes
the monovalent small molecule category within R-BIND and NALDB, while “MV” denotes multivalent
compounds defined as having two binding moieties connected by a linker and a molecular weight greater
than 500 amu. The figure was adapted from Morgan et al. (108) with permission. Copyright (2017) Wiley-

VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 5
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Figure5. Pocket analysis in RNA structures performed by Weeks and co-workers (17). Complex structures
have “good” quality pockets (green/blue), while stem loops have poorer pockets (orange & red). (A,B)
Currently targeted RNA structures with good quality pockets. (C) Currently targeted RNA structures with
low-to-medium quality pockets. (D,E) Aspirational targets with potential good quality pockets. The figure
was reprinted with permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Nature Reviews Drug Discovery (17), Copyright 2018.
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