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It has been pointed out that the holonomy of generic extended loops is not gauge
covariant. We show how to define a family of extended loops for which previous
criticism does not apply. We also give sufficient conditions that extended loops must
satisfy in order to yield covariant holonomies. This makes a quantum representation
for Yang—Mills theories and gravity based on extended loops viable.

I. INTRODUCTION

The use of loop based variables to study gauge theories can be traced all the way back
to Faraday. In the context of Yang—Mills theory holonomies have been widely used to
analyze the quantization, both in the continuum and in the lattice in gauge invariant terms.
They have also been used to base a complete quantum representation in terms of loops, the
loop representation, again both for Yang—Mills theories and gravity (see [1] and references
therein). Broadly viewed, the holonomies can be seen as a way of providing test functions
against which to smear the fields of a theory. Because loops are one dimensional objects,
the resulting smearings tend to be distributional in nature. This creates regularization
problems when operators act on the holonomies. In the context of gravity for instance,
where one wishes to have quantum states that are invariant under diffeomorphisms, this has
led to considering functions of thickened or framed loops [2]. In the Yang-Mills context,
the definition of the inner product in the loop representation would require summations
over families of loops that are not well defined. To deal with these issues the concept of
extended loops and the ensuing extended holonomies was introduced [3, 4]. The idea is to
construct smearing functions that share some of the properties of the smearings provided
by loops, but that are more general and have three-dimensional support. Maps from the
gauge connection to the elements of a group formally similar to the ones used to define the
non-Abelian holonomy can be constructed in terms of those smeared functions to construct
an extended holonomy.

It was shown [5], however, that in spite of the formal analogy with the case of loops, some
convergence issues appeared in the expansion which rendered the extended holonomy to be
non-gauge covariant. A potential solution was suggested [6] to this problem by considering
certain subsets of extended holonomies. However, the solution was not entirely satisfactory
since the proposed subsets were ad-hoc in nature. In spite of these difficulties the techniques
attracted some attention in the mathematical and particle physics literature [7]. Here we
would like to overcome those limitations by providing a generic definition of the families of
extended loops that yield properly covariant holonomies.

The structure of this paper is as follows. In the next section we will review the concept
of multitangents in ordinary holonomies. In section 3 we discuss extended holonomies. In
section 4 we will propose the construction of extended loops that yield covariant extended



holonomies. Section 5 proposes an explicit construction of extended loops leading to covari-
ant holonomies. We end with a discussion.

II. ORDINARY HOLONOMIES AND MULTITANGENTS

The holonomy (whose trace is the Wilson loop) of a connection one-form A(z) = A,(z)dz®

is given by its path ordered exponential along a loop!. It can be rewritten as,
Ua(y) =1+ (=) / By den Agy (€1) - Ag, (2) T (21, 20,7) (21)
n=1

where v is a loop with a base point o which we take as its origin and the loop dependent
multitangents 7" are given by,

UYn Y2
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v 0 0
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with the multi Heaviside function ©,(0, y1, . . ., y,,) ordering the points along the loop starting
at the origin and the Dirac deltas are three dimensional ones. These relations define the
multitangents of “rank” n. It will be convenient to introduce the notation

THL (7) — T @T1 anln (7) — T an ([L’l, ey, Ty, ’Y) ) (23)

with u; = (a;z;), which suggests better the role played by the x variables under diffeomor-
phisms [3, 4].

The multitangents satisfy a set of algebraic identities, which follow directly from proper-
ties of the Heaviside function,

AL [ g1 s — ZTPk(NI'“Nn) = A B T kL B (2‘4)
Py
with the summation over all the permutations P, of the first k£ of the p variables which
preserve the ordering of the pq, ..., ur and the pgyq, ..., i, among themselves.
They also satisfy a differential constraint,
0

W T O1TL " QT - Anln ((5(371 _ xi—l) _ (5(1.1 _ $i+1> )Talﬁl“'ai—lxifl ai+1xi+l“‘anxn7 (25)
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with xq and x, 1 equal to the origin of the loop o.
The holonomy is gauge covariant, that is, if we consider a gauge transformation U,

A, = AL =UAU" — (0,U) UT, (2.6)

L Tt should be noted that in this context a “loop” is an equivalence class of curves that differ by retracings

called “trees”. All curves in the class yield the same holonomy and have the same multitangents.



we have that,
Ua () = UsUa(7)US (2.7)

Notice that the gauge transformation is a function of point and U, is the gauge transforma-
tion evaluated at the origin of the loop. The covariance of the holonomy follows from the
path ordered nature along the loop of the holonomy. It is customary to take the loop origin
at infinity and the small gauge transformations (the ones connected to the identity) as the
identity at infinity. However, we will not make assumptions about this in this paper.

A gauge field can be viewed as stemming from a representation of the group of loops in
a Lie group G. Every representation defines a connection up to gauge transformations that
leads to expansions for the holonomy that are convergent (for a detailed discussion see [8]).

The multitangents transform as multivector densities under the subgroup of coordinate
transformations that leaves the base point o fixed. That is, if one has a transformation,

x® — 2 = D%(x) (2.8)
then B B4/ . |
! "'anx,n I x z nn 121 OnTn
T (DY) = =~ T o bnn () (2.9)

ozl b J(zy)  J(x)

where J is the Jacobian of the transformation. We will call objects whose components
transform in this way multitensors.

III. EXTENDED LOOPS AND HOLONOMIES

Given a multitensor £ = (E°, E* ... [ E#in ...) where E° is a real constant that in
what follows we take equal to one, we can define an extended holonomy,

UA(E) :1+Z/(—z’)”d?’xl---d?’anm--~AunE“1'““". (3.1)
n=1

with E satisfying the differential and algebraic constraints. The multitensors E are a gen-
eralization of the multitangents. They have a product,

(By x Ep)tttin =y " Bt g, (3.2)

i=0
that is related to the product of loops, which form a group [1],
T(mone)=T(n)xT (7). (3.3)

The product is associative and satisfies the differential constraint.
It is convenient to rewrite the generalized holonomy as,

Ua(E) = Z Apy oo Ay BT (3.4)
n=0
where from now on A,(z) = —iA,(x) and implicit in the sum are the integrals along space,

with the term with n = 0 (E with zero components, which we will call E°) equal to one. It
is also useful to define the term containing n powers of the connection as,

U (B) = Ay Ay BP0, (3.5)



Let us address the issue of gauge invariance. Consider an infinitesimal gauge transforma-
tion,

A?=A+dg+[A,4g] (3.6)
the terms in the sum transform as,

UL = U + [US0(E), 60| + 100 (B) = £ ) (B). (3.7)

where g, stands for the infinitesimal local gauge transformation evaluated at the origin of
the loop and,

FO (B =Bt Ay Ay A, Ay A (3.8)
k
and therefore,
N N N
n n n N N
S UL E) =S UPE) + |3 UPE) | - [U0E) 0| + 1B (39)
n=0 n=0 n=0

If Us(E) converges, U;N)(E) — 0 for N — oo, the 2nd term corresponds to the infinitesi-
mal gauge transformation at the origin, and the 3rd term vanishes. Therefore, the extended

holonomy is covariant if and only if f((ivg])(E) = 0 for N — oo. It is not obvious that this

holds for all £ and A. In a nutshell, this was one of the points of the criticism in [5]. The
possibility of having extended loops for which f(44) is non-vanishing allows in principle [5]
to find counterexamples of extended loops that do not lead to gauge covariant holonomies.
In what follows we will show how to construct explicitly extended loops that lead to gauge
covariant holonomies and we will establish sufficient conditions that ensure the covariance.

IV. CONSTRUCTING EXTENDED INVARIANTS

Let us see that one can define extended loops that lead to gauge covariant extended
holonomies. The starting point of the construction is the invariance for the case of loops,
equation (2.7), and the observation made in [6]: one needs to restrict the type of extended
loops considered, as we shall see in detail. We will confine the discussion to SU(N) but it
can be extended to other Lie groups. Let us define, as we did with the extended loop a
multitangent 7'(y) with T°(y) = 1 and introduce its product with a “multiconnection” (a
product of connections),

T(7) - A=Us(y) =Y TH-#A, . A, (4.1)
n=0

and
T(y) - Ag = Ua, () = Uy (T(v) - A) U], (4.2)

where A, is the gauge transformed A connection.
A first example of an extended loop could be given by the real power of a loop. Integer
powers of T'(vy) are trivially defined,

(T(y)" =T(y) xT(y) x -+ xT(y),=T(yoyo---07), (4.3)



and (T'(7))" - A= Ua(y)" is also gauge covariant.

Let us consider non-integer powers T'(y)* with X real resulting in T'(y)* - A = Ua(y)*.
This is non trivial because in general the real power of a complex number (recall that the
connections are complex) is not uniquely defined.

Indeed since z = exp (27ni) z, the quantity (exp(2mni)z)” is multi-valued. A real power
can be uniquely defined via the principal part of the logarithm, Log,

Log (2) =1In(|z]) + iArg (2), (4.4)
with — < Arg (z) < 7.
For z = 1 4+ u with |u| < 1,
2 3 > —1)ntt
Log(1+u):u—u—+u—+---: Qu” (4.5)
2 3 ~ n

If one defines Z = exp(Log(z)) the phase of Z is between exp(—in) and exp(ir) and z° is
well defined,

2P = exp(BLog(2)). (4.6)

It will be useful in what follows to introduce Z° in terms of an analytic extension as
follows. We define

> —1)nt1
Z(a)” = exp (BLog (1 + a(z — 1))) = exp (ﬁ; ( Tz (a(z - 1))") S N
which exists Va < 1/(]z — 1|) real. Therefore one can write,
7 = AE. (3(a)”) |az1. (4.8)

With A.E. means the analytic extension of the expression given in (4.7). Note that even
though the series has a finite radius of convergence, the analytic extension of the exponent
is well defined and leads to the principal value of the logarithm, the exponential also has
a well defined extension. The idea is to repeat this argument for the mappings from the
connections to the Lie group induced by the multitangents T'(7y).
Let us define
T(a,v) = (1 —a)I+aT(v), (4.9)

with Z a multitensor that has as only non-vanishing component Z° = 1, that is, Z##» = (
for n # 0. To put it another way, T°(a, ) = 1 and T+ (a,~) = aT* (). We therefore
have that,

T<a7 7) A= (1 - a)[ + aUA(V) = UA<a7 7)7 (410)

with I the identity in the group, and for a = 1 we have that T'(1,7)- A = Ua(1,v) = Ua(7).
Notice however, that U(a, ) is not an element of the group SU(N) if a # 1.

In order to define the family of extended loops that will lead to a covariant holonomy, let
us consider the formal expansion of the logarithm of T,

Fa,7) = Log (T(a,7) = 3 5 (@ - 70, (11)



(the i —th power is computed with the multitensor product introduced before) and therefore,

Pl A=Y S via)y, (4.12)

7
=1

and we shall see that the series converges for a sufficiently small. Let ||M|| be the Frobenius
norm of the matrix M defined as,

1Ml = VIO = 37 ()P (4.13)

with \; the eigenvalues, for diagonalizable matrices. An important property of the Frobenius
norm is that it is submultiplicative ||AB|| < || A|||| B].
Let us consider the norm of I — Ux(a, ). If we have that

I = Uala, )|l <1, (4.14)

given the submultiplicative property of the norm, this immediately implies the expansion of
the logarithm converges and therefore F'(a,y) is well defined. Evaluating,

17— U@l = llal — alla()] = JTr ((or = a0 (o1 - at7,))

_ \/Tr (2a21 _a? (U;(y) + UA(7)>> < 2aVN, (4.15)

which can be seen given the generic form of a unitary transformation in SU(N). Therefore
F(a,v) - Ais well defined if a < 1/(2v/N).

Let us proceed to verify that the extended holonomy transforms appropriately. Given
that InUyx(a,y) = F(a,v) - A and taking into account that,

Ua,(a,7) = Us(1 = a)UJ + aUUa(1)US = UpUa(a,7)U, (4.16)
where U, is the gauge transformation at the loop origin, and that,
Ua(a,7) = exp (F(a,7) - A), (4.17)
it follows from (4.12) that
F(a,y) - A, = U,F(a,v) - AU]. (4.18)

Equality (4.17) holds for a < 1/(2v/N) and can be extended analytically to the value
a = 1. The resulting series in the exponent of (4.17) converges for a < 1/(2v/N), and can be
analytically extended in the same way that for a complex number x the analytic extension
leads to In(|z|) +¢Arg(x) with Arg(z) is the phase of x in the interval [—7, 7]. Summarizing,
the analytic extension of (4.17) to a=1 is perfectly well defined.

Evaluating at a = 1 we have,
Ua(1,7) = Ua(v), (4.19)



and the evaluation for a = 1 of the exponential of F' yields a distribution in the space of
multitensors that coincides with T,

T(y) =T(1,7) = AE. (exp (F(a,7))) la=1, (4.20)

where in this case A.E. means that, when considered as a mapping from the space G of
connections fields to SU(N), T(y) and the exponential have identical action. This is anal-
ogous to when one defines a distribution as (non-existent) limit of functions, that exists as
a linear map from test functions to the real numbers. Note that F'(a,v)|.=1 - A belongs in
the algebra su(/N) and is well defined and its exponential is unitary.

The analytic extension allows various generalizations of the concept of loop that constitute
extended loops for which the holonomy transforms covariantly.

For instance, starting from (4.17) and using (4.18) we can define a gauge covariant real
power of a holonomy,

Ua,(a,7)" = exp (AF(a,7) - Ay) = exp (U,AF(a,v) - AU}) = U,U(a,7)U{, (4.21)
and Ux(a = 1,7v)" is the real A-th power of a holonomy associated with
T(7) = AE.exp (AF(a,7)) |a=1, (4.22)

of the mapping G — SU(N), and is an example of an extended loop that leads to a covariant
holonomy. Here, the limit taken after evaluating the contraction with a gauge connection
converges to a group element, just as the limit of a family of functions converge to a Dirac
delta only if the limit is taken after acting on a function. There are many examples of
covariant extensions of loops. The technique presented obviously includes ordinary loops.
Real powers of loops are clearly invertible and form a group, the associated holonomies are
unitary and gauge covariant.
The covariant extensions stem from observing that the analytic extension,

Fa(v) = F(a,7) - Ala=t, (4.23)

belongs to the SU(N) algebra (see appendix) and is gauge covariant for all loops 7. That
implies that,
Fa(m) + Fa(y2), AFa(7), [Fa(n), Fa(12)] (4.24)

lead, through exponentiation, to elements of the group that are gauge invariant and define
an extended loop algebra with their corresponding extended holonomies.

The idea that this algebra allows to define smoothed loops can be confirmed considering
a bi-parametric family v(«, ) of loops. The quantity,

- UA(V(OQﬂ):)‘(O‘?ﬁ)) (425)

a=1

oxp ( [ dadona, ) Flar(,0) - A1)

where A(a, 8) a suitable functional coefficient for each member of the family is an example
of smoothed loop. The analytic extensions of F(a,7v).A|.,—1 and its exponential are well
defined and allow to define a generating set of the space of extended loops. Therefore, in the
same way that we may define distributions as limits of functions when considered as linear
applications acting on certain space of functions, one can define a family of extended loops
E(\F,) as

T*v) = A.E.exp (AF(a,7)) |a=1 = E(\F,), (4.26)



and construct,
E(AF,, + pFy,) = exp (AF(a, 1) + pF(a,72)) [a=1, (4.27)

or E( [ dadfX(e, B)Fyap), or E([F,,, F,,]) and E of multiple commutators defined analo-
gously. All of them take the form,

E = (E°=1,E" E'# Bt (4.28)

but the E#*#» satisfy additional conditions to the differential and algebraic constraints:
they are exponentials of F’s, as constructed above. The components of F lead to a series
that converges when a = 1 to unitary and gauge covariant transformations and are examples
of extensions that satisfy equations (3.3) and (3.4) of [5].

Notice that the F’s satisfy the differential constraint and a simpler version of the algebraic

constraint given by F'(a,y)tlotkbkti-tn = (0. This constraint is a key ingredient in the

=1
construction of elements of the Lie group algebra [4].
To prove that the constraint is satisfied, let us consider the continuous binomial expansion

T(a,a) = (Z(1 - a) + aT(a)) = > (2) (1—a)™a*"T*"™(a), (4.29)

with a a loop. Given that the multitangents satisfy the algebraic constraint
TA—m(a)Ml---Mkuk+1---ﬂn — T/\_m(a)ﬂl---,UkTA_m<a)Mk+1---Mn’ (4.30)
differentiating the product in T?(a, o )HLthbhs--fin

d = d A
_T)\<(l, a)Mlu’k+l».-/"‘n = E (1 _ a)m_ ( )ak—m T)\_m(Oé)‘ul""ukT)‘_m(Og)'“k*l'““”
dA — d>\< )

m

+ Z (m) (1 — a)maA_mJT)‘_W(a)’ul"'“kT/\_m(a)l‘kH---Mn
m=0

/A d
+ Z (m> (1-— a)ma’\’mTA’m(a)”l"'”’“aTk’m(a)”’““'““”, (4.31)
m=0

where 77" (a) = T™(&) [4]. Evaluating the derivative at A\ = 0, we obtain the algebraic
constraint of the generators of T(a, a),

F’(a7 Q)Mﬂwﬂ..-#n :d—T/\<CL, a)Mﬂlﬁlen

= (4.32)

= Z(% - 1)’”%(1 +y(m — 1)) T @)kt FET™ (@)l etrtn

+F(a)ul~~~ukzﬂk+1mun + THL P F(Oé)/»‘k+1--~ﬂn’

where v is the Euler-Mascheroni constant. Finally, for 1 < k£ < n and a — 1,

F(a, ry )ittt obin = 0 since ZW#» = 0 for n > 1. This ensures that the product
a=1
F - Ais in the algebra (see appendix). One can also demonstrate that the exponential of

any quantity satisfying the homogeneous algebraic constraint produces a multitensor that
satisfies the algebraic constraint.




V. AN EXPLICIT CHARACTERIZATION OF EXTENDED LOOPS LEADING
TO COVARIANT HOLONOMIES

Up to now we have followed a constructive process to identify extended loops, either
considering real powers of a loop or more general constructions, always starting from ordinary
loops. However, it is convenient to have a notion of extended loops that lead to covariant
holonomies, independent of their construction procedure .

The non covariance of the extended holonomy discussed in [5] was based on a two fold
argument. One of them can be solved by regularization: gauge transformations of extended
holonomies based on real powers of loop holonomies may appear to be non invariant due to
the appearance of different branches of the exponentiation of a function by a real parameter.
The complex power function is a multi-valued function The principal branch of the function
is obtained by replacing In(z) with the principal branch of the logarithm. If one adds to
this observation that ordinary loops lead to gauge invariant holonomies then this leads to
extensions that also yield gauge invariant holonomies as we showed in previous sections.

The second problem regards the difficulty to prove that the gauge transformation of the
holonomy is correct in the limit where the holonomy includes contributions with an infinite
number of nodes, that is, connection fields contracted with the extended loop (3.9). That
is, the last term in (4.12) vanish when ¢ — oo. It is known that holonomies constructed in
terms of loops transform correctly and one can prove it as in [9], by partitioning the loop
7 into a collection of infinitesimal straight segments S;/™" that form a polygonal that, as
you increase the number of segments approaches the curve . For a large number N + 1 of
segments

Ua(y) = Pexp { /Aa(a:)da:“} ~ (1 + (231 — 23 ) Aoy (2n) + O((xn — xN_l)Q)) .

Y

X (1 F (2% — 289) Ay, (20) + O((z1 — x0)2)>, (5.1)

and we note that in the limit N — oo the right hand side reproduces the left hand side.
We can identify the loop holonomy as an ordered product of infinitesimal open path parallel
transports

Ua(S) = 1+ (2} — 2f") Ag, (2:) + O((wi1 — 2:)%) (5-2)

where it has been assumed that the distance between one point and the next is infinitesimal.
It can easily be proven that arbitrary gauge transformations act as

UAQ [S$Z+1] = Ug($Z)UA[S§;+1]UJ($Z+1) + O(ZL’Z‘_H — [I)i)Q,

with g the element of the group associated with the gauge transformation, and we immedi-
ately get in the limit where the infinitesimal intervals go to zero

Uas[7] = Uyg(w0)Ua[y] U} (w0),

where we have used xy11 = 7.

To understand how these results extend to the case of extended loops, let us rewrite the
above expression in terms of multitangents. To this aim, it is convenient to partition space
into cubes and consider the set of cubes that are intersected by the path. We consider a
cubic lattice characterized by a lattice size [, and substitute the curve inside each cell by a
straight line, entering through y; and exiting through 1,1, and composing the straight lines



10

into an N + 1 sided polygonal. Substituting the tangent vector dy® — yi' | —yi' = €4, with
€; of order [ and 4f unit vectors, we get,

Ta1--an (1‘1,,. %,7 /dy / dya" 1/ dy1 5( yn)...5($1 _?/1)

N T](\zflxl...anxn (7> — 11 €1nu;111 . 5<y11 ) .. 6(yln — $n>7(5.3)
1 <lg...<lip
0<i; <N

where i = szz_ol eru” 4+ yi . Notice that this expression is valid for n < N + 1 since the
inequalities in the sum cannot be satisfied if n > N + 1, in that case T{'*' " = 0.
Taking into account (5.1) we have that,
UA(’)/) = lim (1 + T]/\lflAp,l N T]/f,l"'”pAul .. 'Aﬂp N T]/\’}l--~/l«N+1Aul .. 'AMN+1) (5'4)

N—oo

and the term,

TN AL - Ay =0 ((2)Y) (5.5)

and this is true for any finite connection A since T%' " will have N factors of order [ =
O(L/N). In particular for both A and its gauge transformed A,. Let us note that the
polygonal multitangents T satisfy the algebraic constraint and the differential constraint
up to higher order terms,

aI?T]L\lflm7---,az‘v’vi7---,anv’vn — @(N _ n) [5(371 _ xH—l) _ 5(371 _ -Ti—l)] T]‘\Iflxlv--waiflxifl7ai+1$i+17---,anl‘n
1

+0(553)-

where ©(N —n) is 1 for N > n.
Since expression (5.4) is equivalent to (5.1) which is manifestly gauge invariant in the
limit N — oo, (5.4) is too. This can be verified directly observing that the remainder term

of f&va\)(E) of (3.9) is O((1/N)) and vanishes in the limit N — oo due to (5.5) and (5.6).
In what concerns the algebraic constraint

(5.6)

M1 Pk Hk410 Bn W1 Pht1 " Mn
T e b, (57)

Notice, however, that the polygonal multitangents do not form a group because T X Ty =
Tninr+1- However the inverse of Tl is a T and the polygonal loops for arbitrary N do
form a group.
So the multitangent,
T = lim Ty, (5.8)

N—o0

where T are the vectors associated with the multitangent in the notation of (4.28) and,

lim 74" =0. (5.9)
N—oo
These properties of the multitangents can be directly generalized to extended loops giving
a sufficient criterion for the latter to lead to a covariant holonomy: the extended loop must
be given by a limit £ = limy_,, Ey with the Ey’s satisfying a differential constraint (5.6)
and a condition like (5.5) that implies limit like (5.9).
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It is immediate to show that the explicit constructions presented in previous sections
satisfy these conditions for a suitable definition of the limits involved. Let us see this
explicitly for the case of a real power X of a loop. Let us define a polygonal approximation
to the algebra element F'(a,~),

F(m,a,7) =) — (I = Tw(a,7))", (5.10)
i=1
with the extended loop,
L (AF 7
E(m,a,7") = Z ( (77;,'61,7)) ) (5.11)
Jj=0 '

The mutitangents T),3(a, v) need to include polygonals with m?3 segments in order to ensure
in the limit m — oo the gauge invariance of the sums in the two previous equations. That
is, the covariance of the holonomy T, - A can be checked up to order O(=5), for F(m) the
error in the covariance of F(m)- A goes as O(-), and for E(m) the error in the covariance
of E(m)-Ais O(L). Thus, the extended loops introduced in section 4 satisfy the sufficient
conditions given here.

VI. CONCLUSIONS

We have shown how to generate large families of extended loops that yield covariant
holonomies. They include ordinary loops and real powers of them, among others. The real
powers of loops constitute a group with associated holonomies that are unitary and gauge
invariant. The center of the idea is to construct extended loops using the expansion of
the logarithm of multitensors. Through an analytic extension they can be shown to yield
covariant holonomies. We have also given sufficient conditions for extended loops that lead
to covariant holonomies and showed that the extended loops obtained from the previous
construction satisfy them.

This opens the possibility of using the ensuing extended loops to create extended loop
representations of interest for the non perturbative quantization of Yang—Mills theories and
potentially gravity. In the case of Yang—Mills theories the use of extended loops could have
advantages over the use of ordinary loops when one wishes to define the inner product
and the closure relations, and for the renormalization of non-perturbative Schrodinger-like
equations.
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Appendix

Let us show explicitly that F'(a,~)-A with F satisfying the homogeneous algebraic identity
Frate e in — () s in the algebra. To do that we use a technique developed in [3, 4]. We
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define the matrix of delta functions,

grhm = OOl - 00 (7.1)
and the vector (using the same notation as in (4.28)),
S, = (0, 5#11/1“%7 o ,5#1“'%”1._.%7 c) (7.2)

We define then a projector from generic multitangents to those satisfying the homogeneous
algebraic constraint, given by

1)
Qi Vi Um — :r;m [ [ o [51117 61/2]7 T ]7 5l/n]m.”#n9(m - 1) + 5m715511 (7'3)
where
[Ouy, 00, [F1H2 = (80,00 — 00,0, )11 = 041612 — 6,007, (7.4)

and the 6 function means that the terms is non-vanishing for m > 1. From the above
definition,

QE Bk i +1V1---Vn+1 - n-+1 (Qm Rl i V1---Vn511jn++11
_|_ QMl“'Nk—lHk+1'“ﬂn+lylmyn55:+l
— OH1 QQH2 Mk Pkt1t Bl
Vn+1 Vi...Un
_ 55:1119#1”'%MHMH”HW...IM)7 (7.5)
we immediately have that if|
QUi =0, VI/1<1<n, (7.6)
then,
Qe 20 VSl <n 1. (7.7)
Given that €2 is a projector, one has that
F-A=(Q-F)-A=F-(Q-A), (7.8)
and - A is in the algebra and F - A is too. This can be seen in the following way,
(QVI---VTL ' A)V1-~-Vn = Qul.nunlll...ynAul e Al,l,n (7-9)

1

_ - (Qul.“#nilljl...ljnflA,Ufl e A“Thl e A“nilAl,n
n
—AynQu2munll1...Vn—1A#2 . A#n (710)
1

= — Q0 A A, 11
1

= Sl A AL AL (7.12)

as can be seen inductively and therefore if A, is in the algebra, so is €2, .. - A.
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