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Potential gravitational-wave signatures of quantum gravity
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We show that gravitational-wave astronomy has the potential to inform us on quantum aspects
of black holes. Based on Bekenstein’s quantization, we find that black hole area discretization could
impart observable imprints to the gravitational-wave signal from a pair of merging black holes, af-
fecting their absorption properties during inspiral and their late-time relaxation after merger. In
contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves
our ability to probe quantum effects. Our analysis shows that gravitational-wave echoes and sup-
pressed tidal heating are signs of new physics from which the fundamental quantum of black hole
area can be measured, and which are within reach of future detectors. Our results also highlight
the need to derive predictions from specific quantum gravity proposals.

Introduction. We are in the midst of a revolution in as-
trophysics and gravitation. The advent of gravitational-
wave (GW) astronomy now allows a close scrutiny of bi-
naries of compact objects coalescing at close to the speed
of light [I 2]. In parallel, new techniques such as opti-
cal/infrared interferometry and radio large baseline inter-
ferometry have opened the possibility to measure matter
in the close vicinity of black holes (BHs) with unprece-
dented accuracy [3H5]. These new precision tools give us
the ability to study strong-field gravity as never before,
and make coalescing BH binaries the prime contender to
unravel new physics beyond general relativity (GR).

In this paper we explore the possibility that the GWs
emitted in BH binary mergers carry information about
the quantum properties of the BHs, and study the way
this information can be extracted from observations.
Quantum BHs are expected to have a discrete energy
spectrum, and to behave in some respects like excited
atoms. A general argument supporting this idea was
originally formulated and explored in [6] (see also [7H9]),
based on the realization that the BH area A behaves as an
adiabatic invariant. General arguments then give rise to
a “Bohr-Sommerfeld-like” quantization of the area spec-
trum Ay = alZN, where £, = \/hG/c? ~ 1.6 x 1073 m
is the Planck length, N a positive integer, and o € R
is a phenomenological constant, about which we will say
more below. (We will use units in which ¢ = G = 1.)
The idea of BH area quantization has been materialized
in theories of quantum gravity based on first principles,
as for instance in loop quantum gravity [I0HI6], as we
further discuss below. Similarly, the BH angular mo-
mentum is also expected to be quantized. Bekenstein
and Mukhanov then concluded that BHs must have a dis-
crete spectrum of mass, and worked out the consequences
for the emission spectrum of BHs, i.e. for Hawking radi-
ation [§] (see [I7] for the discussion of rotating BHs).
We rather investigate the implications for the absorption
spectrum. Interestingly, although the area quantization

takes place at the Planck scale, it can leave observable
imprints on GWs [18, 19]. A simple calculation with a
Schwarzschild BH serves to illustrate why. The area-mass
relation A = 47(2M)? implies that the mass M can only
change in discrete amounts AM = %AWN Thus, the
frequencies that can be absorbed or emitted must also

be quantized
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These frequencies scale as 1/M. Numerically, w =
c3/(GMg) (where we have temporarily restored ¢ and
G) corresponds to f = w/(27) ~ 32.3kHz. Therefore, for
M ~ (10 — 50) Mg, as typical of the astrophysical BHs
detected by LIGO/Virgo, and taking o = 87 (see below)
and AN of order unity, the values of f = w/(27) are
0O(10% — 10%) Hz! Hence, astrophysical BHs act as “mag-
nifying lenses”, in the sense that they bring the Planck-
scale discretization of the horizon within the realm of
GW-observations.

The constant o determines the quantum of area of a
BH. In Bekenstein’s original proposal it takes the value
a = 8 [6]. Interestingly, this same value was ob-
tained in [20] (elaborating on an earlier proposal in [21]),
by modeling the quasinormal modes of a Schwarzschild
BH, labeled by overtone number n, as a collection of
damped harmonic oscillators, fn + Yo,nén + W%,ngn = 0.
Demanding the behavior &, o e wimtEwrat where
(wr + iwy)y, is the complex frequency of the n-th quasi-
normal mode, leads to the identification v, /2 = wyrp

and wo, = y/wk ,, +w?,,, whose large n asymptotic be-

havior [22], 23] yields wo, ~ n/(4M). Now, if one inter-
prets the excitations of a quantum Schwarzschild BH by
the collection of these damped harmonic modes, a transi-
tion between levels n; and ns can only emit or absorb the
discrete frequencies w ~ #7712, Two ‘miracles’ happened
here: first, transitions between QNMs reproduce the area
linear quantization; and second, the constant o matches



the value obtained by Bekenstein with a completely dif-
ferent reasoning. Some other values of « derived in the
literature with different arguments suffered from various
inconsistencies, as discussed in [20]. Even if these argu-
ments make a = 87 a preferred choice, we will keep «
as a free parameter, and argue that it can be determined
from observations.

The arguments above neglect BH rotation [I8][19]. The
consideration of BH spin has recently opened a debate in
the literature. It was argued that astrophysical BHs may
recover a continuum absorption spectrum due to spectral
broadening enhanced by spin [24]. If true, this would
wash away any remnant of the underlying discrete BH
energy spectrum. However, a detailed analysis of the in-
clusion of spin is missing. We provide such study here.
As a result, we arrive at a different and novel framework,
which does offer observable predictions of BH area dis-
creteness. We shall find that BH spin enriches the GW
phenomenology in an unforeseen manner, increasing our
ability to test the underlying hypothesis of BH area quan-
tization.

Problem statement. A complete analysis requires con-
sideration of the full energy spectrum, including spinning
BH states. The Kerr family of geometries is parame-
terized by the mass M and angular momentum J (and
electric charge, which however is considered to be as-
trophysically irrelevant). In terms of the area, we have

M = 16% + 47;{2. Following Bekenstein’s heuristic
quantization, A = af?)N, J = hj, (where j is a semi-
integer number bounded by 0 < j < «N/87), one finds

aN  4mj2
My =V 1o+ (2)
The set of all My ; for all allowed values of N,j con-
stitutes the energy spectrum of the quantum BH. No-
tice that it is much richer than the set of Schwarzschild
states; in particular, it is highly non-uniform and this
could invalidate on its own the results above for non-
rotating BHs. In order to evaluate the potential physical
consequences of the discreteness of the energy levels, we
will address three questions: (i) What are the relevant
energy transitions for the physical problem under con-
sideration? IL.e., are there selection rules that must be
taken into account? (ii) What is the exact width T' of
these energy levels? Do consecutive levels overlap, as
suggested in [24]? (iii) If there is no overlapping, what
are the expected imprints in the interaction with GWs?
Relevant BH transitions. Since we are interested in
the absorption of GWs in BH binary mergers, we focus on
interactions between an incident GW and a BH, and pro-
ceed similarly to what is done in atomic physics. Namely,
radiative transitions of the BH can be studied with a
Hamiltonian of the form H(t) = Hgy + Hint(t), where
Hpgy denotes the (unperturbed) Hamiltonian of the quan-
tum BH, and H;,; describes the interaction with the ra-

diation field. An explicit expression for these Hamiltoni-
ans would require a detailed understanding of the micro-
scopic quantum theory. We adopt instead a phenomeno-
logical approach, and apply the familiar results of time-
dependent perturbation theory in quantum mechanics.
More precisely, we assume that Hgp has an orthonor-
mal basis of eigenstates |M) with eigenvalues My ; given
by eq. . We then study transitions between differ-
ent eigenstates caused by the interaction Hi,g, which we
treat perturbatively. Then, for the interaction with a
harmonic wave of frequency w, the probability distribu-
tion is peaked around final energies M; = M;+hw, where
the plus/minus sign represents absorption/ emission. No-
tice that this reasoning requires focusing on transitions
between different eigenvalues of the ADM mass, My ;j—
and not on transitions of the area quantum number Ay—
since it is the quantity defined from the Hamiltonian of
GR, Hppy, and to which the frequencies relate to directly.
Gravitational perturbations around a BH background
can be studied using the Newman-Penrose formalism [25]
20]. In this framework, the dynamics of relevant fluctu-
ations is described by a wave-like equation for a master
wavefunction describing the Weyl scalar 4. One can use
the isometries of the Kerr background and decompose 14
in modes 1y ~ e~ Y, (6, 0)Ryem(r)/r?, character-
ized by the numbers (w, £, m). The relative relevance of
each mode is determined by the amplitude R(r). The
dominant mode in GWs emission from interesting astro-
physical systems (most notably quasi-circular inspirals,
which comprehend nearly all of LIGO/Virgo events thus
far) is the quadrupolar (¢ = 2, m = 2) mode, and we will
focus our attention on it. Angular momentum conserva-
tion imposes then a selection rule, similar to the familiar
ones in atomic physics. This means that only energy
levels differing in Aj = 2 are relevant for this problem:

My ; — MNiaNj+2- (3)

These are the accessible energy levels of the BH when the
¢ =2 m =2 GW mode impinges on it. This discussion
answers question (i) raised above.

In view of this, the BH is unable to absorb the in-
cident GW mode (w,2,2) unless the frequency of the
wave matches one of the characteristic frequencies, hw,, =
Mpn,j+2 — Mn,j, with n = AN. For large values of N,
corresponding to macroscopic BHs, one obtains from

h
Fion = g—an+ 21y + O(N 1), (4)
™
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where k£ = m, QH = m, are the

surface gravity and angular velocity of the horizon, re-
spectively, and a = J/M? is the dimensionless BH angu-
lar momentum (0 < a < 1). Notice that expression () is
in agreement with the first law of classical BH mechanics.
The line-width. The width I' of the energy levels can
be written as the inverse of a decay rate, T, as ' = h/7.



This timescale is intrinsically associated with the spon-

taneous decay of the BH energy states due to Hawking
_w)

radiation, and it can be estimated as 7 = , where
(w) denotes the average frequency over all possible decay
channels, and M the power or luminosity (which is neg-
ative for the spontaneous Hawking decay). Both quanti-
ties can be computed using semiclassical arguments, fol-

lowing Page’s calculations [27]
o0
M= —Z/ ds s (Nom () |
tm V0

— Zé,m fOOO dw w <Nlm(w)>
ZZ,m fooo dw <N€m(w)> ’

where (Np,(w)) is the number expectation value. The
luminosity can be written as M = —hf(a)/M?, where
the dimensionless function f(a) depends only on the spin
parameter a. We have computed f(a), following Ref. [27]
and considered emission into gravitons, photons, and the
three families of neutrinos (the contribution from heavier
fundamental particles is negligible). On the other hand,
we find that the combination M (w) is a dimensionless
function of a, and it does not depend on the BH mass.
Gathering all the ingredients together, we find
h_f(a)

(M, a) = N OL@) (5)

{w)

As expected, I o« M1, confirming that heavier BHs are
“more stable”. Note also that we have assumed that the
BH can emit any real frequency w during the Hawking
evaporation process. This is not true if the energy levels
are quantized, since only decay channels that end in a
permissible value of the energy are allowed. Adding this
restriction would make the BH more stable, and con-
sequently would decrease I'. Therefore, expression
overestimates I', and acts as an upper bound.

No overlap of energy lines, and the critical . We
are now in a position to compare the BH energy levels
with their widths. Figure [1| shows these quantities, as a
function of the spin parameter a and for two representa-
tive values of a. This figure contains two messages. On
the one hand, the energy of the first level, which cor-
responds to n = AN = 0 in and is independent of
a, is larger than the width I' for all values of a, except
for a very close to 0 where the energy of this level van-
ishes. This implies that there is a minimum absorption
frequency w = 2hQy for the GW mode (w,2,2). On the
other hand, there is no overlap of the other spectral lines
except for extremely high rotation. More precisely, the
ratio between the width I and the energy of consecutive
levels, R(a) =T'/[Mwy, — w,—1)], depends on both « and
a—+the M dependence cancels out. We obtain that the
critical value of a(a) below which there is overlapping of
the energy levels (R(a) > 1) is

erit (@) = 0.0842 + 0.2605a% + 0.0320e5-34220° ()
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FIG. 1. BH absorption frequencies, line-widths and QNMs
of spinning BHs. Black lines represent the frequencies w,—
defined in Eq. —corresponding to the energy transitions
of Kerr BHs characterized by AN and Aj = 2, for different
values of AN, as a function of the rotation parameter a. The
thickness of the black lines measures the width I' of the spec-
tral lines. The upper panel shows these lines for a = 4log2,
while @ = 87 is shown in the bottom panel. The (real part
of the) frequency Mwo22(a) of the dominant QNM is shown
in red. The dominant QNM will be absorbed by the BH only
for values of a for which the red curve intersects one of the
black lines.

accurate to within 2% for a < 0.9. As an example, con-
sider a BH binary of two non-spinning BHs. The rem-
nant’s spin was found through numerical relativity sim-
ulations to be a ~ 0.7 [28]. This value is in good agree-
ment with the spin of the remnant BH of a large fraction
of the observed mergers [29]. For this value of a we ob-
tain it = 0.415, which is one order of magnitude below
4log?2, the smallest value of o considered in the litera-
ture, and hence there is no overlap.

We remark that these conclusions hold for the BH ab-
sorption spectrum in the coalescence of a binary system,
due to the existence of selection rules imposed by the
particular GWs generated in the process. However, for
the spontaneous (Hawking) emission spectrum any mode
(¢,m) can be emitted, and all levels in the Bekenstein en-
ergy spectrum are now accesible. The full spectrum



is complex and highly irregular (in particular, the clos-
est energy levels of My ; are not simply Mpy41 4, but
involve an energy-dependent change in N and j). Using
a computer, we observe that the existence of many more
accessible levels partially recovers the original continuous
Hawking spectrum, giving support to previous ideas [17].
The emission spectrum is not the main goal of this paper
however, and it deserves further analysis.

The analysis of this and the previous section answers
question (ii), and we now focus on (iii).
Gravitational-wave echoes. Observational conse-
quences of BH area quantization could include a dis-
torted ringdown signal, or most likely the presence of
late-time echoes [I9]. The ringdown signal from the
merger of a BH binary, as computed from GR, is de-
scribed very well by the QNM of the final Kerr BH.
For the dominant quadrupole mode, £ = 2, the fre-
quencies of the QNM for a Kerr BH can be found in
Table VIIT of [30] for all m, and for the first over-
tones n = 0,1,2. For example, the fundamental mode,
n = 0,1 = m = 2, is well described by the expres-
sion MRewgaz ~ 1.5251 —1.1568(1 — a)®1292 . The QNM
modes, “localized” at the BH photonsphere, are excited
during the merger and start propagating. A fraction
of the energy in these modes moves outwards to GW
detectors, but a significant fraction is directed inwards
towards the horizon, where it is absorbed according to
GR [31H33]. However, when quantum effects are consid-
ered, absorption takes place only if the oscillation fre-
quency of the QNM matches one of the transition lines
of the Bekenstein spectrum, i.e., if

r

Rewgas € |wy, — wn + % (7)
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where w,, is given by Eq. . Figure (1| compares wga2
and wy,, for « = 4log?2 and a = 87. We observe that for
these values of « the absorption of the dominant QNM
will be suppressed, except for a set of values of a, and
consequently echoes are expected for values of a between
consecutive intersections of the red line and black lines
in Fig.[1} This, in turns, offers a way of determining «a: if
echoes are observed for binary mergers sampling a large
enough range of a, their frequencies will provide a direct
measurement of a.

The ability of measuring « is of obvious interest for fun-
damental theories of quantum gravity. For instance, in
loop quantum gravity (LQG) the canonical BH area spec-
trum is not equally spaced [I0HI5], and the gap between
consecutive values decreases exponentially with the area
[34} B5]. One finds an almost continuum area spectrum
for macroscopic BHs, and therefore no echoes are ex-
pected in GW observations. However, an alternative way
of defining the operator associated with the area of a BH
in LQG has been recently proposed in [16], in which the
BH area spectrum has indeed equally spaced eigenvalues,
in agreement with Bekenstein’s proposal, and it predicts

a = 4log3. In such a scenario, BH mergers would gen-
erate GW echoes. Our analysis shows that forthcoming
observations will be able to discriminate between these
two possibilities.

The ability to detect echoes in GW signals depends on
how much energy is converted from the main burst into
echoes, and on the ability to produce faithful templates.
Following the initial suggestion in [36], fully Bayesian
searches for echos in the LIGO/Virgo data, tied to phe-
nomenological families of echo waveforms, do not find ev-
idence for echoes and rule out echos amplitude as large
as 0.1 — 0.2 relative to the original signal peak [37H40].
These constraints will improve significantly in the near
future with ground-based 3G detectors such as the Ein-
stein Telescope (ET) [4I] and the planned space mission
LISA [42].

We remark that QNM perturbations were treated here

as wave fronts. Their pulse character and other sources of
uncertainty in the energy of individual quanta may add
corrections to the intensity of echoes. However, a quan-
titative analysis would require inputs on the microscopic
interaction between BHs and radiation.
Tidal heating. As we showed, finite but small values of
a will lead to peculiar echoes in the GW signal. In ad-
dition to the effects on the ringdown phase, an imprint
of BH area quantization can also be present in the early
inspiral, where the GW frequency is even smaller than
the one during the ringdown phase. Classically, individ-
ual components of a BH binary absorb GWs at a rate
which, although a small fraction of the rate of radiation
to infinity, is not negligible [43]. These waves produce
tidal forces that act on the bodies causing distortions of
their event horizons [44]. But as a BH rotates under this
bulge, its rotational energy is dissipated gravitationally
[45], and it is transferred to the orbital motion of the
binary. This phenomenon is known as tidal heating.

Consider a binary made of spinning BHs. Due to the
energy gap of the Bekenstein’s energy spectrum, the ab-
sorption of low frequency GWs impinging on each indi-
vidual BH is now highly suppressed, and this causes a
change in the binary evolution with respect to the pre-
diction of classical GR [46]. In particular, tidal heating
affects the GW as a 2.5 PN (x logv, with v the orbital
velocity) correction to the GW phase of spinning bina-
ries, relative to the leading term [47]. A promising strat-
egy is therefore to parametrize the waveform with an
absorption parameter v multiplying the 2.5 PNx logwv
GR term (see Ref. [47] for details). For classical BHs
~v = 1, and one recovers the standard GW phase of quasi-
circular BH binaries. However, when area quantization
is taken into account, and for highly spinning BH bina-
ries, the energy gap 2hQ2y in Eq. suggests that ab-
sorption is highly suppressed for the entire duration of
the inspiral, and one expects v < 1. Can we use GW
signals to discriminate between v = 0,17 This study
was done recently in the context of exotic compact ob-



jects [33] [47H50], and the conclusions can be extended to
our setup: advanced detectors such as LISA and ET have
a strong potential to discriminate between absorption or
no-absorption at the horizon.

Discussion. Testing Planck-scale physics with kHz in-
terferometers is a mind-blowing prospect; as now usual in
BH physics, this possibility seems to be open due to the
“holographic” properties of BHs, in the sense that their
mass squared is proportional to their surface area. We
have shown that the merger of two BHs may not gener-
ate GWs with the appropriate frequency so as to excite
transitions in quantum states, leading to peculiar fea-
tures in GW signals, most notably echoes and modified
GW phase at 2.5 PN order in the ringdown and inspiral
phases, respectively. We note however, that the number
of gravitons hitting each BH is very large. The use of the

. 9/2
quadrupole formula [51] yields N ~ 7 x 107 (10%6)
8

gravitons emitted per second. Of these, a fraction ~ v°,
with v the orbital velocity, goes down the horizon (at
least in an EMRI) [43]. This is equivalent to ~ 10%* gravi-
tons crossing the horizon of a stellar-mass BH, per sec-
ond. Multi-graviton effects may become relevant [52] 53]
and deserve further study.

The analysis done in this work rests on Bekenstein-
Mukhanov semi-heuristic arguments on quantum BHs.
A more accurate description requires an understanding
of the fundamental BHs degrees of freedom, and the way
they interact with the radiation field. That these as-
pects of BHs are within the reach of forthcoming ob-
servations should encourage advances in frameworks of
quantum gravity to develop concrete predictions.

After submission of this work, it has been suggested
that quantum effects may also have an impact on the
tidal deformability of black holes, with testable observa-
tion consequences [54]. This effect adds to the one de-
scribed here and is in fact consistent with our approach.
Other approaches that do not involve area quantization
have reached different conclusions [55].
Acknowledgments. We are indebted to A. Coates,
S. Volkel, K. Kokkotas, and M. Van de Meent for use-
ful comments and correspondence. V. C. would like
to thank Waseda University for warm hospitality and
support. V. C. and A.D.R. acknowledges financial sup-
port provided under the European Union’s H2020 ERC
Consolidator Grant “Matter and strong-field gravity:
New frontiers in Einstein’s theory” grant agreement no.
MaGRaTh-646597. This project has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under the Marie Sklodowska-Curie
grant agreement No 690904. We thank FCT for finan-
cial support through Project No. UIDB/00099/2020 and
through grant PTDC/MAT-APL/30043/2017. The au-
thors would like to acknowledge networking support by
the GWverse COST Action CA16104, “Black holes, grav-
itational waves and fundamental physics.” The work of

MM is supported by the Swiss National Science Foun-
dation and by the SwissMap National Center for Com-
petence in Research. IA is supported by the NSF CA-
REER grant PHY-1552603 and by the Hearne Institute
for Theoretical Physics. JP is supported by grant NSF-
1903799, by the Hearne Institute for Theoretical Physics
and CCT-LSU.

[1] LIGO Scientific, Virgo Collaboration, B. Abbott
et al., “Observation of Gravitational Waves from a
Binary Black Hole Merger,” | Phys. Rev. Lett. 116 no. 6,
(2016) 061102, arXiv:1602.03837 [gr-qcl.

[2] L. Barack et al., “Black holes, gravitational waves and
fundamental physics: a roadmap,” |Class. Quant. Grav.
36 no. 14, (2019) 143001, |arXiv:1806.05195 [gr-qc].

[3] GRAVITY Collaboration, R. Abuter et al., “Detection
of the gravitational redshift in the orbit of the star S2
near the Galactic centre massive black hole,” |Astron.
Astrophys. 615 (2018) L15, arXiv:1807.09409
[astro-ph.GA]l

[4] GRAVITY Collaboration, R. Abuter et al., “Detection

of the Schwarzschild precession in the orbit of the star
S2 near the Galactic centre massive black hole,”
arXiv:2004.07187 [astro-ph.GA].

[5] Event Horizon Telescope Collaboration, K. Akiyama
et al., “First M87 Event Horizon Telescope Results. 1.
The Shadow of the Supermassive Black Hole,”
Astrophys. J. 875 no. 1, (2019) L1, |arXiv:1906.11238
[astro-ph.GA].

[6] J. D. Bekenstein, “The quantum mass spectrum of the
Kerr black hole,” |Lett. Nuovo Cim. 11 (1974) 467.

[7] V. F. Mukhanov, “Are black holes quantized?,” JETP
Lett. 44 (1986) 63-66.

[8] J. D. Bekenstein and V. F. Mukhanov, “Spectroscopy of
the quantum black hole,” |Phys. Lett. B 360 (1995)
7-12, arXiv:gr-qc/9505012.

[9] D. Kothawala, T. Padmanabhan, and S. Sarkar, “Is
gravitational entropy quantized?,” Phys. Rev. D 78
(2008) 104018} arXiv:0807.1481 [gr-qcl.

[10] C. Rovelli and L. Smolin, “Discreteness of area and
volume in quantum gravity,” |Nucl. Phys. B 442 (1995)
593-622, larXiv:gr-qc/9411005. [Erratum: Nucl.Phys.B
456, 753-754 (1995)].

[11] C. Rovelli, “Black hole entropy from loop quantum
gravity,” | Phys. Rev. Lett. 77 (1996) 3288-3291),
arXiv:gr-qc/9603063.

[12] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov,
“Quantum geometry and black hole entropy,” |Phys.
Rev. Lett. 80 (1998) 904-907, arXiv:gr-qc/9710007.

[13] A. Ashtekar, J. C. Baez, and K. Krasnov, “Quantum
geometry of isolated horizons and black hole entropy,”
Adv. Theor. Math. Phys. 4 (2000) 1-94,
arXiv:gr-qc/0005126.

[14] 1. Agullo, J. Barbero G., J. Diaz-Polo,

E. Fernandez-Borja, and E. J. Villasenor, “Black hole
state counting in LQG: A Number theoretical
approach,” |Phys. Rev. Lett. 100 (2008) 211301,
arXiv:0802.4077 [gr-qcl.

[15] 1. Agullo, J. Fernando Barbero, E. F. Borja,


http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1088/1361-6382/ab0587
http://dx.doi.org/10.1088/1361-6382/ab0587
http://arxiv.org/abs/1806.05195
http://dx.doi.org/10.1051/0004-6361/201833718
http://dx.doi.org/10.1051/0004-6361/201833718
http://arxiv.org/abs/1807.09409
http://arxiv.org/abs/1807.09409
http://arxiv.org/abs/2004.07187
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://arxiv.org/abs/1906.11238
http://arxiv.org/abs/1906.11238
http://dx.doi.org/10.1007/BF02762768
http://dx.doi.org/10.1016/0370-2693(95)01148-J
http://dx.doi.org/10.1016/0370-2693(95)01148-J
http://arxiv.org/abs/gr-qc/9505012
http://dx.doi.org/10.1103/PhysRevD.78.104018
http://dx.doi.org/10.1103/PhysRevD.78.104018
http://arxiv.org/abs/0807.1481
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://arxiv.org/abs/gr-qc/9411005
http://dx.doi.org/10.1103/PhysRevLett.77.3288
http://arxiv.org/abs/gr-qc/9603063
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://arxiv.org/abs/gr-qc/9710007
http://dx.doi.org/10.4310/ATMP.2000.v4.n1.a1
http://arxiv.org/abs/gr-qc/0005126
http://dx.doi.org/10.1103/PhysRevLett.100.211301
http://arxiv.org/abs/0802.4077

J. Diaz-Polo, and E. J. Villasenor, “Detailed black hole
state counting in loop quantum gravity,” Phys. Rev. D
82 (2010) 084029, arXiv:1101.3660 [gr-qcll

[16] G. Fernando Barbero, J. Lewandowski, and E. J.
Villasenor, “Flux-area operator and black hole
entropy,” |Phys. Rev. D 80 (2009) 044016,
arXiv:0905.3465 [gr-qcl.

[17] S. Hod, “The quantum emission spectra of
rapidly-rotating Kerr black holes: Discrete or
continuous?,” |Phys. Lett. B 749 (2015) 115-118,
arXiv:1909.04057 [gr-qcll

[18] V. F. Foit and M. Kleban, “Testing Quantum Black
Holes with Gravitational Waves,” arXiv:1611.07009
[hep-th]l

[19] V. Cardoso, V. F. Foit, and M. Kleban, “Gravitational
wave echoes from black hole area quantization,”
arXiv:1902.10164 [hep-th]|

[20] M. Maggiore, “The Physical interpretation of the
spectrum of black hole quasinormal modes,” |Phys. Rev.
Lett. 100 (2008) 141301} arXiv:0711.3145 [gr-qcl.

[21] S. Hod, “Bohr’s correspondence principle and the area
spectrum of quantum black holes,” |Phys. Rev. Lett. 81
(1998) 4293, [arXiv:gr-qc/9812002.

[22] L. Motl, “An Analytical computation of asymptotic
Schwarzschild quasinormal frequencies,” |Adv. Theor.
Math. Phys. 6 (2002) 1135-1162, arXiv:gr-qc/0212096
[gr-qcl.

[23] L. Motl and A. Neitzke, “Asymptotic black hole
quasinormal frequencies,” |[Adv. Theor. Math. Phys. T
no. 2, (2003) 307-330, arXiv:hep-th/0301173.

[24] A. Coates, S. H. Volkel, and K. D. Kokkotas, “Spectral
Lines of Quantized, Spinning Black Holes and their
Astrophysical Relevance,” |Phys. Rev. Lett. 123 no. 17,
(2019) 171104, arXiv:1909.01254 [gr-qc].

[25] S. Teukolsky, “Rotating black holes - separable wave
equations for gravitational and electromagnetic
perturbations,” |Phys. Rev. Lett. 29 (1972) 1114-1118.

[26] S. A. Teukolsky, “Perturbations of a rotating black hole.
1. Fundamental equations for gravitational
electromagnetic and neutrino field perturbations,”
Astrophys. J. 185 (1973) 635—647.

[27] D. N. Page, “Particle Emission Rates from a Black
Hole. 2. Massless Particles from a Rotating Hole,” | Phys.
Rev. D 14 (1976) 3260-3273\

[28] A. Buonanno, G. B. Cook, and F. Pretorius, “Inspiral,
merger and ring-down of equal-mass black-hole
binaries,” |Phys. Rev. D 75 (2007) 124018,
arXiv:gr-qc/0610122,

[29] LIGO Scientific, Virgo Collaboration, B. Abbott
et al., “GWTC-1: A Gravitational-Wave Transient
Catalog of Compact Binary Mergers Observed by LIGO
and Virgo during the First and Second Observing
Runs,” |Phys. Rev. X 9 no. 3, (2019) 031040,
arXiv:1811.12907 [astro-ph.HE].

[30] E. Berti, V. Cardoso, and C. M. Will, “On
gravitational-wave spectroscopy of massive black holes
with the space interferometer LISA,” Phys. Rev. D 73
(2006) 064030, [arXiv:gr-qc/0512160.

[31] V. Cardoso, E. Franzin, and P. Pani, “Is the
gravitational-wave ringdown a probe of the event
horizon?,” |Phys. Rev. Lett. 116 no. 17, (2016) 171101,
arXiv:1602.07309 [gr-qc]. [Erratum: Phys.Rev.Lett.
117, 089902 (2016)].

[32] V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela,

(33]

(34]

(35]

(36]

37]

(38]

39]

(40]

(41]

[42]

(43]

(44]

(45]

[46]

(47]

and P. Pani, “Gravitational-wave signatures of exotic
compact objects and of quantum corrections at the
horizon scale,” |Phys. Rev. D 94 no. 8, (2016) 084031}
arXiv:1608.08637 [gr-qcll

V. Cardoso and P. Pani, “Testing the nature of dark
compact objects: a status report,” |Living Rev. Rel. 22
no. 1, (2019) 4, |arXiv:1904.05363 [gr-qcl.

M. Barreira, M. Carfora, and C. Rovelli, “Physics with
nonperturbative quantum gravity: Radiation from a
quantum black hole,” |Gen. Rel. Grav. 28 (1996)
1293-1299, larXiv:gr-qc/9603064.

J. Fernando Barbero G, J. Margalef-Bentabol, and

E. J. S. Villasefior, “On the distribution of the
eigenvalues of the area operator in loop quantum
gravity,” Class. Quant. Grav. 35 no. 6, (2018) 065008,
arXiv:1712.06918 [gr-qcll

J. Abedi, H. Dykaar, and N. Afshordi, “Echoes from the
Abyss: Tentative evidence for Planck-scale structure at
black hole horizons,” |Phys. Rev. D96 no. 8, (2017)
082004, arXiv:1612.00266 [gr-qcl.

J. Westerweck, A. Nielsen, O. Fischer-Birnholtz,

M. Cabero, C. Capano, T. Dent, B. Krishnan,

G. Meadors, and A. H. Nitz, “Low significance of
evidence for black hole echoes in gravitational wave
data,” |Phys. Rev. D97 no. 12, (2018) 124037,
arXiv:1712.09966 [gr-qcll

A. B. Nielsen, C. D. Capano, O. Birnholtz, and

J. Westerweck, “Parameter estimation and statistical
significance of echoes following black hole signals in the
first Advanced LIGO observing run,” |Phys. Rev. D 99
no. 10, (2019) 104012, arXiv:1811.04904 [gr-qcl.

R. Lo, T. Li, and A. Weinstein, “Template-based
Gravitational-Wave Echoes Search Using Bayesian
Model Selection,” |[Phys. Rev. D 99 no. 8, (2019)
084052, larXiv:1811.07431 [gr-qcl.

N. Uchikata, H. Nakano, T. Narikawa, N. Sago,

H. Tagoshi, and T. Tanaka, “Searching for black hole
echoes from the LIGO-Virgo Catalog GWTC-1,” |Phys.
Rev. D 100 no. 6, (2019) 062006, arXiv:1906.00838
[gr-qcll

M. Maggiore et al., “Science Case for the Einstein
Telescope,” |JCAP 03 (2020) 050, [arXiv:1912.02622
[astro-ph.CO]l

LISA Collaboration, P. Amaro-Seoane et al., “Laser
Interferometer Space Antenna,” arXiv:1702.00786
[astro-ph.IM].

E. Poisson and M. Sasaki, “Gravitational radiation from
a particle in circular orbit around a black hole. 5: Black
hole absorption and tail corrections,” |Phys. Rev. D 51
(1995) 5753-5767, larXiv:gr-qc/9412027.

R. Goswami and G. F. Ellis, “Tidal forces are
gravitational waves,” larXiv:1912.00591 [gr-qc].

J. B. Hartle, “Tidal Friction in Slowly Rotating Black
Holes,” |Phys. Rev. D 8 (1973) 1010-1024.

S. A. Hughes, “Evolution of circular, nonequatorial
orbits of Kerr black holes due to gravitational wave
emission. II. Inspiral trajectories and gravitational wave
forms,” |[Phys. Rev. D 64 (2001) 064004,
arXiv:gr-qc/0104041. [Erratum: Phys.Rev.D 88,
109902 (2013)].

A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin,

L. Gualtieri, and V. Ferrari, “Probing Planckian
corrections at the horizon scale with LISA binaries,”
Phys. Rev. Lett. 120 no. 8, (2018) 081101,


http://dx.doi.org/10.1103/PhysRevD.82.084029
http://dx.doi.org/10.1103/PhysRevD.82.084029
http://arxiv.org/abs/1101.3660
http://dx.doi.org/10.1103/PhysRevD.80.044016
http://arxiv.org/abs/0905.3465
http://dx.doi.org/10.1016/j.physletb.2015.07.068
http://arxiv.org/abs/1909.04057
http://arxiv.org/abs/1611.07009
http://arxiv.org/abs/1611.07009
http://arxiv.org/abs/1902.10164
http://dx.doi.org/10.1103/PhysRevLett.100.141301
http://dx.doi.org/10.1103/PhysRevLett.100.141301
http://arxiv.org/abs/0711.3145
http://dx.doi.org/10.1103/PhysRevLett.81.4293
http://dx.doi.org/10.1103/PhysRevLett.81.4293
http://arxiv.org/abs/gr-qc/9812002
http://dx.doi.org/10.4310/ATMP.2002.v6.n6.a3
http://dx.doi.org/10.4310/ATMP.2002.v6.n6.a3
http://arxiv.org/abs/gr-qc/0212096
http://arxiv.org/abs/gr-qc/0212096
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a4
http://arxiv.org/abs/hep-th/0301173
http://dx.doi.org/10.1103/PhysRevLett.123.171104
http://dx.doi.org/10.1103/PhysRevLett.123.171104
http://arxiv.org/abs/1909.01254
http://dx.doi.org/10.1103/PhysRevLett.29.1114
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1103/PhysRevD.14.3260
http://dx.doi.org/10.1103/PhysRevD.14.3260
http://dx.doi.org/10.1103/PhysRevD.75.124018
http://arxiv.org/abs/gr-qc/0610122
http://dx.doi.org/10.1103/PhysRevX.9.031040
http://arxiv.org/abs/1811.12907
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://arxiv.org/abs/gr-qc/0512160
http://dx.doi.org/10.1103/PhysRevLett.116.171101
http://arxiv.org/abs/1602.07309
http://dx.doi.org/10.1103/PhysRevD.94.084031
http://arxiv.org/abs/1608.08637
http://dx.doi.org/10.1007/s41114-019-0020-4
http://dx.doi.org/10.1007/s41114-019-0020-4
http://arxiv.org/abs/1904.05363
http://dx.doi.org/10.1007/BF02109521
http://dx.doi.org/10.1007/BF02109521
http://arxiv.org/abs/gr-qc/9603064
http://dx.doi.org/10.1088/1361-6382/aaabf9
http://arxiv.org/abs/1712.06918
http://dx.doi.org/10.1103/PhysRevD.96.082004
http://dx.doi.org/10.1103/PhysRevD.96.082004
http://arxiv.org/abs/1612.00266
http://dx.doi.org/10.1103/PhysRevD.97.124037
http://arxiv.org/abs/1712.09966
http://dx.doi.org/10.1103/PhysRevD.99.104012
http://dx.doi.org/10.1103/PhysRevD.99.104012
http://arxiv.org/abs/1811.04904
http://dx.doi.org/10.1103/PhysRevD.99.084052
http://dx.doi.org/10.1103/PhysRevD.99.084052
http://arxiv.org/abs/1811.07431
http://dx.doi.org/10.1103/PhysRevD.100.062006
http://dx.doi.org/10.1103/PhysRevD.100.062006
http://arxiv.org/abs/1906.00838
http://arxiv.org/abs/1906.00838
http://dx.doi.org/10.1088/1475-7516/2020/03/050
http://arxiv.org/abs/1912.02622
http://arxiv.org/abs/1912.02622
http://arxiv.org/abs/1702.00786
http://arxiv.org/abs/1702.00786
http://dx.doi.org/10.1103/PhysRevD.51.5753
http://dx.doi.org/10.1103/PhysRevD.51.5753
http://arxiv.org/abs/gr-qc/9412027
http://arxiv.org/abs/1912.00591
http://dx.doi.org/10.1103/PhysRevD.8.1010
http://dx.doi.org/10.1103/PhysRevD.64.064004
http://arxiv.org/abs/gr-qc/0104041
http://dx.doi.org/10.1103/PhysRevLett.120.081101

[51]

[52]

arXiv:1703.10612 [gr-qcl.

S. Datta and S. Bose, “Probing the nature of central
objects in extreme-mass-ratio inspirals with
gravitational waves,” |Phys. Rev. D 99 no. 8, (2019)
084001, arXiv:1902.01723 [gr-qcl.

S. Datta, R. Brito, S. Bose, P. Pani, and S. A. Hughes,
“Tidal heating as a discriminator for horizons in
extreme mass ratio inspirals,” |Phys. Rev. D 101 no. 4,
(2020) 044004, arXiv:1910.07841 [gr-qc].

S. Datta, K. S. Phukon, and S. Bose, “Recognizing
black holes in gravitational-wave observations: Telling
apart impostors in mass-gap binaries,”
arXiv:2004.05974 [gr-qcl.

M. Maggiore, Gravitational Waves: Volume 1: Theory
and Experiments. Oxford University Press, Oxford,
2008.

M. Géppert-Mayer, “Elementary processes with two

(53]

[54]

[55]

quantum transitions,” |[Annalen der Physik 18 no. 7-8,
(2009) 466-479,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.20091C

https://onlinelibrary.wiley.com/doi/abs/10.1002/
andp. 200910358,

Y. Gontier and M. Trahin, “Multiphoton processes in a
hydrogen atom,” |Phys. Rev. A 4 (Nov, 1971)
1896-1906. https:
//1link.aps.org/doi/10.1103/PhysRevA.4.1896.

R. Brustein and Y. Sherf, “Quantum Love,”
arXiv:2008.02738 [gr-qc.IM].

W. D. Goldberger and I. Z. Rothstein, “An Effective
Field Theory of Quantum Mechanical Black Hole
Horizons,” |JHEP 04 (2020) 056, arXiv:1912.13435
[hep-th]!


http://arxiv.org/abs/1703.10612
http://dx.doi.org/10.1103/PhysRevD.99.084001
http://dx.doi.org/10.1103/PhysRevD.99.084001
http://arxiv.org/abs/1902.01723
http://dx.doi.org/10.1103/PhysRevD.101.044004
http://dx.doi.org/10.1103/PhysRevD.101.044004
http://arxiv.org/abs/1910.07841
http://arxiv.org/abs/2004.05974
http://dx.doi.org/10.1002/andp.200910358
http://dx.doi.org/10.1002/andp.200910358
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.200910358
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.200910358
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.200910358
http://dx.doi.org/10.1103/PhysRevA.4.1896
http://dx.doi.org/10.1103/PhysRevA.4.1896
https://link.aps.org/doi/10.1103/PhysRevA.4.1896
https://link.aps.org/doi/10.1103/PhysRevA.4.1896
http://arxiv.org/abs/2008.02738
http://dx.doi.org/10.1007/JHEP04(2020)056
http://arxiv.org/abs/1912.13435
http://arxiv.org/abs/1912.13435

	 Potential gravitational-wave signatures of quantum gravity
	Abstract
	 References


