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Abstract

Motivation: Third generation sequencing techniques, such as the Single Molecule Real Time technique from PacBio
and the MinION technique from Oxford Nanopore, can generate long, error-prone sequencing reads which pose
new challenges for fragment assembly algorithms. In this paper, we study the overlap detection problem for error-
prone reads, which is the first and most critical step in the de novo fragment assembly. We observe that all the
state-of-the-art methods cannot achieve an ideal accuracy for overlap detection (in terms of relatively low precision
and recall) due to the high sequencing error rates, especially when the overlap lengths between reads are relatively
short (e.g. <2000 bases). This limitation appears inherent to these algorithms due to their usage of q-gram-based
seeds under the seed-extension framework.

Results: We propose smooth q-gram, a variant of q-gram that captures q-gram pairs within small edit distances and
design a novel algorithm for detecting overlapping reads using smooth q-gram-based seeds. We implemented the
algorithm and tested it on both PacBio and Nanopore sequencing datasets. Our benchmarking results demonstrated
that our algorithm outperforms the existing q-gram-based overlap detection algorithms, especially for reads with
relatively short overlapping lengths.

Availability and implementation: The source code of our implementation in Cþþ is available at https://github.com/
FIGOGO/smoothq.

Contact: qzhangcs@indiana.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Q-gram, also called n-gram, k-mer/shingle, has been used extensive-
ly in the areas of bioinformatics (Altschul et al., 1990; Berlin et al.,
2015; Li, 2016; Myers, 2014; Pevzner et al., 2001), databases (Qin
et al., 2011; Wang et al., 2012; Xiao et al., 2008), natural language
processing (Manning and Schütze, 1999), etc. In particular, q-gram
was used to construct the de Bruijn graph (Compeau et al., 2011;
Pevzner et al., 2001), a data structure commonly exploited for frag-
ment assembly in genome sequencing, especially for short reads
obtained using next-generation sequencing (NGS) technologies
(Miller et al., 2010). Another important application of q-gram
in bioinformatics is for sequence alignment, which aims to detect
highly similar regions between long strings (e.g. genomic sequences).
Following the seed-extension approach, many sequence alignment
algorithms, including the popular BLAST (Altschul et al., 1990)
and more recent algorithms (Brudno et al., 2003; Kurtz et al.,
2004; Schwartz et al., 2003), first search for q-gram matches (i.e.
seeds) between each pair of input strings and then extend these
matches into full-length alignment using dynamic programming
algorithms.

Recently, the seed-extension approach was adopted for detecting
overlaps between long, error-prone reads (Berlin et al., 2015;
Chaisson and Tesler, 2012; Li, 2016, 2018; Myers, 2014) generated
by single molecule sequencing technologies, including the PacBio
Single Molecule Real Time (SMRT) technologies (Roberts et al.,
2013) and Oxford MinION technologies (Mikheyev and Tin,
2014). Compared to the NGS reads, the single molecule sequencing
technologies generate reads that are much longer but more error-
prone. Notably, SMRT sequencers generate reads 1000–100 000 bps
long with up to 12–18% sequencing errors (including most inser-
tions/deletions and some substitutions); in comparison, Illumina
sequencers generate reads of 100–300 bps long with < 1% errors.
As a result, two overlapping reads contain highly similar but not
identical substrings (with a relatively small edit distance (The edit
distance between two strings x and y is defined to be the minimum
number of letter insertions, deletions and substitutions needed to
transfer x to y.) due to sequencing errors), which should be
addressed by an overlap detection algorithm.

A straightforward application of the seed-extension approach to
overlap detection may be hurdled by an inherent limitation: Two
strings sharing a highly similar substring may share only a small
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number of, or even zero, matched q-gram pairs (seeds) due to the
pattern of sequencing errors within the shared substring.
Consequently, a seed-extension algorithm may fail to detect some
overlaps because of the lack of seeds between the reads.

To address this issue, we propose a variant of q-gram named the
smooth q-gram, which we can use to identify not only those exactly
matched q-gram pairs (with certainty) but also those q-gram pairs
that have small edit distances (each with a high probability). Our
smooth q-gram construction is based on a recent advance in metric
embedding (Chakraborty et al., 2016) that maps a string from the
edit distance space to the Hamming distance space while (approxi-
mately) preserving the distance; we will illustrate the details of this
embedding method in Section 2.1. Our smooth q-gram-based ap-
proach can, with a high probability, find most pairs of q-grams of
the two input strings whose edit distances are small. We introduce
experiments to further show the advantages of smooth q-gram in
Supplementary Material S1.1.

Using smooth q-grams as seeds, we designed a novel algorithm
for the overlap detection problem. Our algorithm works for both
PacBio and Nanopore sequencing data and only requires a single set
of parameters on all datasets. Our experiments show that for all
real-world datasets that we have tested, the smooth q-gram-based
algorithm achieves a F1 score about 3.8% higher than the best exist-
ing algorithm on average. [The F1 score is the harmonic average of
the precision and recall (see Section 4).] The advantage of our algo-
rithm is even greater on pairs with short overlaps (e.g. with lengths
500–2000 bps), which are the relatively more challenging cases. For
example, the recall of our algorithm for pairs with overlap lengths
<2000 bps is about 7.0% higher than the best existing algorithm on
average.

1.1 Related work
The only line of work, as far as we have concerned, that has a simi-
lar spirit as our smooth q-gram is the gapped q-gram (Burkhardt
and Kärkkäinen, 2001, 2002, 2003), which is also referred to as the
spaced seeds in bioinformatics applications (Keich et al., 2004; Ma
et al., 2002). The idea of gapped q-gram is to make substrings of
each string of a specific pattern. For example, the gapped 3-grams of
the string ‘ACGTACGT’ with pattern ‘XX-X’ are fACT, CGA,
GTC, TAG, ACTg. That is, instead of taking the contiguous sub-
strings as in the traditional q-gram approach, the gapped q-gram
breaks the adjacency dependencies between the characters. Now, if
we are allowed to choose multiple gapped q-gram patterns, then one
will need more edits to make all gapped q-grams between two
strings mismatched. However, the optimal pattern of gapped
q-gram is difficult to find: it needs an exhaustive search on all pos-
sible patterns and the running time for the search has an exponential
dependency on length of the pattern (Keich et al., 2004). In contrast,
our smooth q-grams are systematically generated, and always have
the same theoretical guarantees on all datasets.

The problem of detecting overlaps among long, error-prone
reads has drawn significant attention in bioinformatics (Berlin et al.,
2015; Chaisson and Tesler, 2012; Li, 2016, 2018; Myers, 2014;
Sovi�c et al., 2016). Existing overlap detection algorithms follow the
‘seed-extension’ approach and use conventional q-grams as seeds.
We choose the most sensitive existing algorithms MHAP, Minimap2
and DALIGNER in our comparisons and introduce them in more
detail in Section 4. Note that we find the GraphMap (Sovi�c et al.,
2016) is only optimized for Nanopore data and has worse perform-
ance compared with other algorithms. Thus, we did not include it in
our comparison.

2 Smooth q-gram

As mentioned above, the innovation of this paper is to extend the
conventional q-gram-based approach to the smooth q-gram-based
approach for overlap detection. The main advantage of smooth q-
gram is that it tolerates a small edit distance between matched q-
grams, and is thus able to identify similar substrings at higher

sensitivity. In this section, we present the details of smooth q-gram
construction and its properties.

We will use m to denote the length of a smooth q-gram, and j to
denote the length of a q-gram after the CGK-embedding.

2.1 The CGK-embedding
The key tool that we will use in our construction of smooth q-gram
is the CGK-embedding, which convert a string s 2 Rq to s0 ¼ Rj for
a value j using a random string R1, where R is the alphabet (for
nucleotides, R ¼ fA;C;G;Tg) and R1 is a random string from
f0;1gjjRj.

More precisely, let j ¼ 1; 2; . . . ; j denote the time steps of the
embedding. We also maintain a pointer i to the string s, initialized to
be i¼1. At each step j, we first copy s½i� to s0½j�, and set j jþ 1.
We then determine whether we should increment i or not. We sort
characters in R in an arbitrary but fixed order. For a character
r 2 R, let IndexðrÞ be the index of r in this order. We set

i iþ R1½j � jRj � Indexðs½i�Þ þ 1�:

When i reaches qþ1 while j < j, we simply pad j� j copies of
‘?’ to s0 to make its length equal to j, where ? 62 R is an arbitrary
character.

Denote the CGK-embedding as a function CGKð�;R1Þ for a fixed
string (sampled randomly from f0; 1gjjRj). Given s; t 2 Rq, let s0 ¼
CGKðs;R1Þ and t0 ¼ CGKðt;R1Þ. It has been shown in Chakraborty
et al. (2016) that for any j � 2qþ c

ffiffiffi

q
p

, for some large enough con-
stant c, we have with probability 0.999 that

EDðs; tÞ � HAMðs0; t0Þ � OððEDðs; tÞÞ2Þ;

where EDð�; �Þ and HAMð�; �Þ denote the edit distance and the
Hamming distance, respectively.

It is easy to see that after the CGK-embedding, q-grams with
small edit distance will likely have small Hamming distance, where-
as those with large edit distance will likely have large Hamming dis-
tance. In particular, if s¼ t, then we have s0 ¼ t0 with certainty.

The CGK-embedding has recently been used for sketching edit
distance by Belazzougui and Zhang (2016) and performing edit
similarity joins by Zhang and Zhang (2017).

2.2 From q-gram to smooth q-gram
We show below how to construct a smooth q-gram from a conven-
tional q-gram using random string R2. For convenience we will write
‘smooth q-gram’ instead of ‘smooth m-gram’ although the resulting
smooth q-gram will have length m. Our algorithm is easy to describe
(Algorithm 1): Given a q-gram s, we first perform the CGK-
embedding on s to get a string s0 of length j, and then construct a
substring �s of length m by picking the coordinates i in s0 where
R2½i� ¼ 1. We include running examples of Algorithm 1 in
Supplementary Material S1.2.The motivation of introducing the

smooth q-gram is that we expect the corresponding smooth q-grams
of two q-grams s and t for which EDðs; tÞ is small, can be identical
with a good probability. More precisely, let k ¼ EDðs; tÞ, and let

Algorithm 1 Generate-Smooth-q-Gram(s;R1;R2)

Input: s: q-gram s 2 Rq;

R1: random string from f0; 1gjjRj;
R2: random string from f0; 1gj under the constraint that

there are m 1-bit;

Output: �s: smooth q-gram of s of size m

1: s0  CGK(s, R1)

2: �s is generated by removing coordinates i in s0 s.t. R2½i� ¼ 0

3: return �s
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s0 ¼ CGKðs;R1Þ and t0 ¼ CGKðt;R1Þ. According to the property of
the CGK-embedding, we know that HAMðs0; t0Þ � k2. Let
d ¼ HAMðs0; t0Þ. If we randomly sample without replacement m bits
from two j-bit strings s0 and t0 at the same indices, the probability
that all the sampled bits are the same is

j� d

j
� j� d � 1

j� 1
� � � � � j� d � ðm� 1Þ

j� ðm� 1Þ

¼ ðj�mÞ � � � � � ðj� ðd � 1Þ �mÞ
j� ðj� 1Þ � � � � ðj� ðd � 1ÞÞ :

(1)

In our experiments, we typically choose m ¼ j=c for a constant
c, and we are only interested in d being at most 4. In this case, we
can approximate (1) as ððc� 1Þ=cÞd for some constant c. In other
words, a significant fraction q-gram pairs with distance of d or
below will have their corresponding smooth q-grams to be identical.
Finally, we note that for identical q-gram pairs, e.g. s¼ t, with fixed
R1 and R2 we always have �s ¼ �t.

We note that the construction algorithm for smooth q-gram is
different from a simple subsampling of the original q-grams. Indeed,
given two q-grams s and t with small edit distance i.e. EDðs; tÞ ¼ 2,
if we just sample a constant fraction of symbols from s and t using
common randomness, the resulting strings �s and �t will be different
with high probability.

As mentioned in Section 1, if we are able to identify pairs of
near-identical q-grams (under edit distance), then we are able to
catch similar substrings between two strings that will otherwise be
missed by the conventional q-gram-based approaches. Therefore, we
can significantly improve the sensitivity of the overlap detection al-
gorithm. Of course, by allowing approximate q-gram matching, we
may also increase the number of false positives, i.e. dissimilar pairs
of substrings may share some identical smooth q-grams, and will
thus be considered as seeds. We need to check the actual edit dis-
tance between pairs of q-grams that share the same smooth q-grams,
in the seed identification step for overlap detection.

3 Materials and methods

In this section, we show how to use smooth q-gram for overlap de-
tection among long, error-prone sequence reads. In Table 1, we list
a set of global parameters/notations that will be used in our algo-
rithms. Let ½n� denote the set f1; 2; . . . ; ng.

Our main algorithm (Algorithm 2) consists of three stages. The
first stage (Line 1–11) is signature generation: for each input
sequence xi and each of its q-gram, we generate a smooth q-gram-
based signature (seed). The second stage (Line 12–15) is subsam-
pling and filtering: we sample a portion of signatures for each xi and
only use them to detect candidate overlaps. The last stage (Line 16–
31) is detection and verification: we detect candidate overlaps, verify
and report true overlaps. Below, we will describe each stage in more
detail.

3.1 Signature generation
In the signature generation stage (Line 1–11 of Algorithm 2), we use
the following data structure to store useful information of a q-gram
as a signature.

Definition 1 (q-gram signature) Let dðs; t; r; i; pÞ be the signature of a q-

gram; the parameters are interpreted as follows:

• s: the q-gram;

• t: the smooth q-gram of s;

• r: the hash rank of t;

• i, p: q-gram s is taken from the i-th input string xi from the position

p, i.e. s xi½p; pþ q� 1�.

Obviously, t and r are fully determined by s, given the random-
ness R1, R2 and P, but for the convenience of presentation, we still
include t, r as parameters in the definition of the signature. We omit
the signature generation for the reverse complement of sequences for
the sake of convenience. In practice, for each input sequence, we
consider both the sequence itself and its reverse complement, and
generate signatures for both of them separately.

3.2 Subsampling and filtering
In the subsampling and filtering stage (Line 12–15 of Algorithm 2),
we first perform a subsampling of an a-fraction of smooth q-grams
for each sequence using a random hash function P (Line 13). We
then only focus on these sampled smooth q-grams to identify similar
substrings. The subsampling step could improve the efficiency of our
algorithm by reducing the number of smooth q-gram matches to
consider.On the remaining subsampled signatures, we filter out
those smooth q-grams whose frequency is above a certain threshold
(Line 15). This is a common practice to reduce the number of false
positives in overlap detection algorithms, such as MHAP (Berlin
et al., 2015), Minimap2 (Li, 2016, 2018) and DALIGNER (Myers,
2014). The motivation behind the filtering step is that the highly fre-
quent smooth q-grams often correspond to highly frequent q-grams,
which do not carry many important features about the sequence
(similar to the frequent words such as ‘a’ and ‘the’ in English senten-
ces). On the other hand, these common smooth q-grams will con-
tribute to false positives and consequently increase the running time
of subsequent steps. As a result, with a properly chosen filtering
threshold g, we could reduce the running time without much loss on
the sensitivity of detecting true similar pairs.

3.3 Detection and verification
In the detection and verification stage (Line 16–31 of Algorithm 2),
we use the smooth q-gram signatures to detect candidate overlaps,
verify each of them and output the true overlaps. Below, we describe
the detection and verification steps separately.

3.3.1 Detection

In the detection step, we find, for each pair of input sequences
(xi, xj), their set of matching q-grams (i.e. those with edit distances
less than or equal to K), using Algorithm 3. More precisely, in
Algorithm 3, we try to find for a q-gram s, an (incomplete) list of
matching q-grams s0 by considering all q-gram s0 falls into the same
bucket in hash table D (Line 2). We then check if their edit distance
EDðs; s0Þ � K; if so, then we record the pair and their positions into
L. Finally, we add the signature of s into the table D to build the
table gradually (Line 7).

We record all the matches between each pair of sequences (xi, xj)
inMi;j, where a match (u, v) indicates the u-th q-gram of xi matches
the v-th q-gram of xj. For each pair of sequences with at least C
matched q-grams, we move on to the verification step to see if this
pair indeed share an overlap of a significant length, and if it is the
case, we also identify the shared region in the pair.

Table 1. List of global parameters

Parameters Explanation

m Length of a smooth q-gram

j Length of the q-gram after CGK-embedding

a Fraction of positions selected as smooth q-grams

g Frequency filtering threshold

K Edit distance threshold

C Threshold for #matched signatures between two overlapping

reads

L Overlap length

� Error rate tolerance

P P : Rm ! ð0; 1Þ a random hash function

R1 A random string from f0; 1gjjRj

R2 A random string from fx 2 f0;1gj j kxk1 ¼ mg
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3.3.2 Verification

In the verification step, we employ two subroutines: Algorithm 4 to
perform a basic verification that reports approximate overlap shift
and length, and Algorithm 5 to compute the actual overlap regions.
We describe Algorithms 4 and 5 in more detail.

Let M be the list of starting positions of the matching q-gram
pairs in the input strings xi and xj. We construct a bipartite graph
Gi;j with characters of xi as nodes on the left part and characters of
xj as nodes on the right part. For each matching pair (u, v), an edge
is connected between the nodes xi½u� and xj½v�, denoted as (u, v),
where ðu� vÞ represents the shift corresponding to the edge.
Intuitively, if xi and xj overlap, there must be a large cluster of edges
with similar shifts in Gi;j.

Algorithm 4 consists of two filtering steps. In the first step, we
aim to find a dense cluster of edges with similar shifts and remove
the remaining edges (Line 1–2). This could be implemented by find-
ing an interval Io containing the maximum number of edges whose
width is adjusted according to the maximum error rate and the min-
imum length of overlaps we want to detect. We set the default error
rate tolerance � to be 0.15, as PacBio and Nanopore reads have error
rate around 15% (Berlin et al., 2015; Jain et al., 2015; Li, 2018).
We then use the remaining edges to estimate the shift and the length

of overlap (o;Le) by finding a reference edge (um, vm) with a median
shift over all remaining edges (Line 3–5). In the second step, we try
to find a dense region of edges with similar positions on xi and re-
move all the edges remaining (Line 6–7). This could be implemented
again by finding an interval Ipos containing the maximum number of
edges. Finally, we count the number of unremoved edges: if the
number is at least C, then we consider (xi, xj) to be an overlap candi-
date pair and return its approximate shift and overlap length; other-
wise, we simply return null (Line 8–12).

Algorithm 5 computes the locations of shared substrings between
xi and xj more precisely. In this step, we exploit the complete set of
matching q-gram pairs in order to generate more accurate overlap.
We first construct the list M of matching q-grams, by a synchron-
ized linear scan on the two sets Di and Dj after sorting the tuples
based on their r values. Then, we remove edges with shifts far devi-
ated from our estimate (Line 2). Next, we perform a two-stage
merging process to identify shared substrings. We represent a cluster
of edges after merging as a window where window ðpsi ;pei ;psj ;pej Þ
means xi½psi ; pei � and xj½psj ;pej � are the shared substrings in xi and xj.
We use cur to represent the current window to be considered. In the
first merging process (Line 4–15), we determine if an edge ðp; p0Þ
could be merged with cur. Considering the ‘boundary’ of cur:
cur½2�; cur½4� (the ending positions of shared substrings on both
sequences) and ðp; p0Þ, we compute their difference of shifts d and
difference of locations step on both sequences. If d is no greater than
� � step (Line 9), then we merge the edge with cur. Otherwise, we cre-
ate a new window cur starting from the edge and store the previous
window in W. By the end of the first merge step, we have a collec-
tion of windows stored in W. In the second merging process (Line
16–28), we merge adjacent windows if they satisfy similar criteria
and store the new windows in W0. This process is mainly designed
for Nanopore datasets where overlap regions are often broken into
smaller sub-regions due to continuous sequencing errors. Finally, we
pick the largest window inW0 as our output.

4 Results

We present our experimental studies in the section. We first intro-
duce the setup of our experiments and then present our results.

4.1 Setup of experiments
4.1.1 Datasets

We test all algorithms on both simulated and real-world datasets
(PacBio and Nanopore), on four genomes: Escherichia coli,
Saccharomyces cerevisiae, Drosophila melanogaster and Human.
The PacBio datasets are downloaded from MHAP’s supporting data
website (http://www.cbcb.umd.edu/software/PBcR/mhap). The
Nanopore datasets are downloaded from the Sequence Read

Algorithm 2 Find-overlapping-Strings(X )

Input: X ¼ fx1; . . . ;xng: set of input strings;

Output: O  foverlapping pair (xi, xj) and their overlap re-

gion xi½psi ; pei � and xj½psj ; pej �g
1: Initialize an empty table D

2: for each i 2 ½n� do
3: Di  1
4: for each p 2 ½jxij � qþ 1� do
5: s xi½p;pþ q� 1�
6: t Generate-Smooth-q-Gram(s;R1;R2)

7: r PðtÞ
8: d ðs; t; r; i;pÞ
9: Di  Di [ d
10: end for

11: end for

12: for each i 2 ½n� do
13: Construct D

0

i from Di by keeping signatures in Di with

the smallest ajxij of hash ranks r.

14: end for

15: Count for all t the number ct of signatures in the form of

ð�; t; �; �; �Þ in [i2½n� Di
0, and remove all ðs; t; r; i; pÞ in D

0

i

with ct in the top g of all t for all i 2 ½n�
16: for each i 2 ½n� do
17: Li  1
18: for each d in D

0

i do

19: Li  Li[ Search-Similar-q-Grams(d, D)

20: end for

21: for each j< i do

22: Mij  fðu; vÞ j ðj; u; vÞ 2 Lig
23: end for

24: end for

25: for each jMijj � C do

26: ðo;LeÞ  Verify(xi, xj, Mij)

27: if ðo;LeÞ 6¼ null then

28: ðpsi ;pei ; psj ; pej Þ  Find-Shared-Substrings(xi, xj, o, Le,

Di, Dj)

29: O  O[ ðxi; xj; ½psi ; pei �; ½psj ; pej �Þ
30: end if

31: end for

Algorithm 3 Search-Similar-q-Grams(d, D)

Input: d ¼ ðs; t; r; i;pÞ: a signature for q-gram s (see Definition

1 for detailed explanation of the parameters); D: a table

with buckets indexed by t;

Output: L  fði0;p; p0Þ j 9d0 ¼ ðs0; t; r; i0; p0Þ 2 Ds:t:EDðs; s0Þ �
Kg
1: L  1
2: for each d0 ¼ ðs0; t; r; i0; p0Þ stored in D(t) do

3: if EDðs; s0Þ � K then

4: L  L [ ði0; p; p0Þ
5: end if

6: end for

7: Add d to the D(t)

8: return L
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Archive at the National Center for Biotechnology Information web-
site (https://www.ncbi.nlm.nih.gov). The details of these datasets are
described in Supplementary Material S1.3.

We randomly sample 50 000 reads from each dataset in our
experiments. The details of the subsampled datasets are shown in
Table 2. We test algorithms on subsampled datasets because this can
show the accurate performance of the overlap detection task while
allowing all algorithms to finish in a reasonable amount of time. See
Supplementary Material S1.6 for details.

We also test simulated datasets generated by NanoSim (Yang
et al., 2017), a read simulator designed for Oxford MinION
sequencers. Given the reference genome and a Nanopore dataset of
the same species, NanoSim first analyzes the errors in the dataset to
generate its error profile by mapping the dataset to the reference
genome, and then utilizes the error profile to produce the set of
simulated reads. For each simulated read, we know its exact map-
ping positions on the reference genome, and thus can use it as
ground truth to test the performance of algorithms.

4.1.2 Measurements

We report recall, precision, F1 score, CPU time and memory usage
in our experiments. To compute the precision and recall, we need to
know ground truth, i.e. whether a pair of sequences overlaps or not.
For the simulated datasets, we know the mapping of each read to
the reference genome. For the real-world datasets, we compute such
mapping using Blasr (Chaisson and Tesler, 2012).

We use the evaluation module in MHAP to calculate the recall
and precision. It takes mapping positions of the reads as input and
treats the read pairs sharing at least Cbps region on the reference
genome as true overlaps. To compute the recall, if a true overlap is
reported by an overlap detection algorithm and the length difference
between the reported and true overlaps is within 30% of the true
overlap length, we consider this pair as a true positive. The evalu-
ation program verifies all the true overlap pairs to compute recall.
To compute the precision, the evaluation program first randomly
samples 10 000 reported overlaps. Each sampled overlap pair is con-
sidered as true positive if the edit distance between the reported
overlap region is not greater than 30% of the reported overlap
length. The 30% criteria on both measurements comes from the
15% error rate in sequencing procedure since, in the worse case,

two overlapping reads may contain a 30% fraction of error. We set
the parameter C to be 500. We also compute the recall and precision
for overlaps with lengths ½500; 2000�bps to show the advantage of
SmoothQGram on short overlaps.

We compute F1 score to measure the overall performance of
algorithms: F1 ¼ 2� ðprecision� recallÞ=ðprecisionþ recallÞ, which
is an integrated metric evaluating both precision and recall.

We also report the running time and memory usage of all the
algorithms. Since all algorithms use multiple threads in execution,
we set the number of threads to be 16 for each algorithm and meas-
ure the CPU time for comparison. All experiments were conducted
on Dell PowerEdge T630 server with two Intel Xeon E5-2667 v4
3.2 GHz CPU with eight cores each and 256 GB memory.

4.1.3 Algorithms and parameter selections

We compare SmoothQGram presented in Algorithm 2 with the
state-of-the-art algorithms MHAP (Berlin et al., 2015), Minimap2
(Li, 2016, 2018) and DALIGNER (Chaisson and Tesler, 2012).
(The implementation of MHAP is obtained from https://github.com/
marbl/MHAP. The implementation of Minimap2 is obtained from

Algorithm 4 Verify(xi, xj, M)

Input: xi, xj: two input strings;

M¼ fðu; vÞg: set of pairs of matched q-gram positions

in xi and xj;

Output: o: estimated shift

Le: estimated overlap length

1: Io  ½os; os þ 2� � L� s.t. jfðu; vÞ j ðu; vÞ 2 M; ðu� vÞ 2 Iogj
is maximized

2: Remove all pairs ðu; vÞ 2 M whose ðu� vÞ 62 Io
3: Find ðum; vmÞ 2 M with median ðu� vÞ value among all

ðu; vÞ 2 M
4: o um � vm
5: Le  minfum; vmg þminfjxij � um; jxjj � vmg
6: Ipos  ½os;os þ L� s.t. jfðu; vÞ j ðu; vÞ 2 M; u 2 Iposgj is

maximized

7: Remove all pairs ðu; vÞ 2 M whose u 62 Ipos
8: if jMj < C then

9: return null

10: else

11: return ðo;maxðLe;LÞÞ
12: end if

Algorithm 5 Find-Shared-Substrings(xi, xj, o, Le, Di, Dj)

Input: xi, xj: two input strings;

o: estimated shift;

Le: estimated overlap length

Di;Dj: sets of q-gram signatures of xi and xj
Output: ðpsi ;pei ;psj ;pej Þ: xi½psi ; pei � and xj½psj ;pej � are shared sub-

strings in xi and xj
1: M fðp;p0Þ j ðs; t; r; i;pÞ 2 Di; ðs0; t0; r0; j; p0Þ 2 Dj; t ¼ t0g
2: M0  fðp; p0Þ 2 Mj ðp� p0Þ 2 ½o� � � Le;oþ � � Le�g
3: Sort matches ðp; p0Þ 2 M using p in the increasing order

4: W  fg
5: cur ðp½1�;p½1�; p0½1�;p0½1�Þ, where ðp½1�;p0 ½1�Þ is the first

element in M0, we represent the elements of cur as

cur½i�ði 2 ½4�Þ
6: for each ðp;p0Þ 2 M0 do

7: d1  p� cur½2�; d2  p0 � cur½4�
8: d jd1 � d2j; step maxðd1; d2Þ
9: if d2 � 0 ^ ðd � � � step) then

10: cur ðcur½1�; p; cur½3�;p0Þ
11: else

12: W  W [ fcurg
13: cur ðp;p; p0;p0Þ
14: end if

15: end for

16: W0  fg
17: cur W½1�, where W½1� is the first element in W
18: for each ðpsi ; pei ; psj ; pej Þ 2 W do

19: d1  psi � cur½2�;d2  psj � cur½4�
20: l1  cur½2�þcur½4��cur½3��cur½1�

2 ; l2  
pe
i
þpe

j
�ps

i
�ps

j

2

21: d jd1 � d2j; step d1þd2

2

22: if ðstep < maxðl1; l2ÞÞ _ ðd � 2� � stepÞ then
23: cur ðcur½1�;maxðcur½2�; pei Þ;minðcur½3�; psj Þ;

maxðcur½4�;pej ÞÞ
24: else

25: W0  W0 [ fcurg
26: cur ðpsi ;pei ;psj ;pej Þ
27: end if

28: end for

29: return ðpsi ; pei ; psj ; pej Þ 2 W0 with largest
pe
i
þpe

j
�ps

i
�ps

j

2
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https://github.com/lh3/minimap2. The implementation of
DALIGNER is obtained from https://github.com/thegenemyers/
DALIGNER.) We note that all these algorithms are using the same
‘seed-extension’ framework as ours: they first find all the matched
q-grams between input sequence pairs, and then extend seeds to po-
tential overlaps. The main difference between SmoothQGram and
the other algorithms is that we have relaxed the strict q-gram
matches to approximate q-gram matches (via smooth q-gram) to im-
prove the sensitivity of overlap detection.

In the experiments, we run SmoothQGram with parameters
q¼14, m¼16, j¼35, a ¼ 0:2, K¼2, C¼5, � ¼ 0:15 and L¼500.
We run MHAP with the parameter ‘-num-hash 1256’, which corre-
sponds to its sensitive mode that achieves higher sensitivity and F1

scores. For DALIGNER, we add the parameter ‘-H500’, which con-
siders reads with the length at least 500 bps to improve its efficiency.
Minimap2 provides two different sets of parameters for PacBio and
Nanopore datasets. We use its default parameter set ‘-x ava-pb’ for
PacBio datasets and ‘-x ava-ont’ for Nanopore datasets.

Under the default parameter set, Minimap2 runs extremely fast,
but the recall is not satisfactory. We find that the performance of
Minimap2 is mostly influenced by two parameters: the filter thresh-
old (‘-f’) and the window size (‘-w’). The filter threshold controls the
fraction of frequent signatures that the algorithm ignores, and the
window size controls the size of consecutive q-grams in which one
signature is generated. The lower these two parameters are, the
more signatures are retained in the indexing. We try different combi-
nations of these two parameters and find ‘-f¼1e�7, -w¼3’
achieves the highest F1 scores on most datasets. This is also the set
of parameters that achieves the highest recall with the precision no
smaller than 80%. Thus, beside the default parameters, we also
compare the results from this alternative parameter set for
Minimap2. We call the default version MM2-default and the alter-
native version MM2-alternative. Minimap2 under the alternative
parameter set has the best recall compared with all other existing
‘seed-extension’ methods, but SmoothQGram still outperforms
Minimap2.

We would like to note that we only select a single set of parame-
ters for SmoothQGram to show its robustness. However, one could
adopt different parameters according to datasets to further improve
the sensitivity or running time of SmoothQGram. For instance, on
the E.coli dataset, we could decrease a and g to select fewer signa-
tures and reduce the running time, whereas on Human dataset, we
could increase the a and g to improve our precision and recall.

4.2 Experimental results
4.2.1 Performance comparison

Table 3 shows the performance comparison (recall, precision, F1

score, running time and memory usage) of all algorithms. As we can
see, SmoothQGram always achieves the best F1 score and has about
a 3.8% advantage over the best competitor on average (over all real
datasets). We also achieve the best recall on all datasets and the
second-best precision on all real datasets except PacBio Human
which ranks third. Among all the state-of-the-art algorithms, MM2-

alternative always achieves the best F1 score, followed by MHAP in
most cases.

Our advantage is greater when we consider the short overlaps
with lengths ½500; 2000� where we gain on average about a 7.0%
improvement on recall compared with the best competitor. Short
overlaps are relatively not easy to detect as they contain fewer
matched q-grams. Compared with existing algorithms,
SmoothQGram using smooth q-grams as seeds is more sensitive and
can capture short overlaps with higher probability. We observe that
short overlap is the bottleneck for all the overlap detection algo-
rithms: the recall on short overlaps is typical 20% lower than the
overall recall for all algorithms.

For different datasets and species, we find that E.coli is the easi-
est one for all algorithms while D.melanogaster and Human are
much more challenging, because there are larger numbers of
repeated regions in these genomes. SmoothQGram is more robust
on difficult datasets than the competitors. Moreover, we find that
Nanopore datasets are more challenging than PacBio datasets for
SmoothQGram. We notice that the overlaps in Nanopore are more
likely to be broken into smaller sub-regions, which are more difficult
to handle by our verification algorithm (Algorithm 4).

SmoothQGram’s running time is similar to MHAP but is worse
than MM2-default. The reason is that instead of q-gram,
SmoothQGram considers smooth q-gram, and thus it takes more
time to Generate-Smooth-q-Gram signatures and verify candidate
overlaps. On the other hand, this is also why SmoothQGram signifi-
cantly improves the sensitivity for overlap detection. We note that in
our experimental studies, we mainly focused on the accuracy; our
codes were not optimized for running time.

We present the experimental results on simulated datasets in
Supplementary Material S1.4.

4.2.2 The detection of short overlaps

When we focus on the detection of short overlaps (length
500� 2000 bps), we observe from Table 3 that SmoothQGram con-
sistently outperforms other algorithms on all datasets. We would
like to emphasize that the detection of short overlaps is critical in se-
quence assembly. This is because for long overlaps, the common
mistake in the overlap detection is outputting overlaps with wrong
lengths/locations, which may be corrected in the subsequent layout
step. However, if short overlaps are missed in the overlap detection
stage, they will not be recovered in future stages, which may induce
more contigs in the final assembly, especially when the sequence
coverage is not high.

4.3 Summary
In this section, we provide a thorough experimental study on
smooth q-gram and its application to overlap detection. We observe
that the smooth q-gram-based approach achieved better accuracy
than the conventional q-gram-based approaches for overlap detec-
tion, which is mainly due to the fact that smooth q-gram is capable
of capturing approximate matches between two sequences. Our al-
gorithm is stable and robust on genome sequences that we have

Table 2. Statistics of subsampled datasets

Dataset #Reads Coverage Avg. length Median length Substitution error (%) Insertion error (%) Deletion error (%)

PacBio datasets

E.coli 47 910 84 8283.8 7477.5 2.11 8.35 3.37

S.cerevisiae 50 000 24 6038.8 5113.0 2.50 8.16 4.12

D.melanogaster 50 000 3 9324.8 8028.5 2.45 7.98 3.66

Human 50 000 0.11 7459.4 6533.0 3.03 8.88 4.63

Nanopore datasets

E.coli 50 000 121 11407.7 9082.5 6.46 5.52 8.98

S.cerevisiae 50 000 30 7421.8 6440.0 7.38 5.35 8.30

D.melanogaster 50 000 3 7009.0 4675.0 5.71 4.43 6.23

Human 50 000 0.10 6633.3 6763.0 4.12 4.90 4.84
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tested. The performance of our algorithm is more notable for short
overlaps, and may improve the overall qualify of long-reads
assembly.

5 Discussions

In this paper, we present SmoothQGram, a highly sensitive overlap

detection algorithm for long, error-prone sequencing reads. We first
propose smooth q-gram, a variant of q-gram which can capture q-

grams with small edit distances, and then show that by using smooth

q-gram-based signatures, the sensitivity of the overlap detection al-
gorithm can be significantly improved. We also observe that
SmoothQGram has greater advantage in detecting short overlaps,
which has strong implications in improving the overall quality of
genome assembly using long-reads.

SmoothQGram achieves robust performance on all the datasets
with a single set of parameters. We may obtain even better sensitiv-
ity or running time if we adopt parameters for different datasets. In
contrast, the commonly used Minimap2 used different parameters
for PacBio and Nanopore data, and we have to select additional

Table 3. Comparison of overlap detection algorithms on real datasets

Recall< 2000 (%) Precision< 2000 (%) Recall (%) Precision (%) F1 score CPU (s) Memory (G)

PacBio E.coli

MHAP 34.52 99.88 60.93 99.77 0.757 3786 20.4

DALIGNER 26.36 95.24 58.73 97.41 0.733 1476 8.4

MM2-default 61.11 99.96 81.12 99.97 0.896 195 5.1

MM2-alternative 67.79 99.85 85.01 99.89 0.919 332 7.5

SmoothQGram 73.11 99.85 87.98 99.93 0.936 6550 30.6

PacBio S.cerevisiae

MHAP 39.86 96.67 53.97 93.09 0.683 4176 22.2

DALIGNER 10.07 89.90 31.97 93.21 0.476 1588 5.8

MM2-default 8.00 99.83 12.42 99.79 0.221 74 3.4

MM2-alternative 50.80 95.64 69.35 93.28 0.796 1230 9.0

SmoothQGram 59.49 99.25 75.00 99.34 0.855 4274 24.3

PacBio D.melanogaster

MHAP 28.52 93.16 41.11 90.63 0.566 3971 22.3

DALIGNER 21.88 69.94 48.93 76.26 0.596 60 643 9.3

MM2-default 17.45 98.64 28.48 98.33 0.442 123 5.1

MM2-alternative 47.52 92.94 59.66 88.02 0.711 49 459 32.8

SmoothQGram 57.00 95.55 65.87 96.98 0.785 7976 35.4

PacBio Human

MHAP 16.14 74.70 29.41 72.79 0.419 4152 22.3

DALIGNER 11.21 61.34 31.71 64.47 0.425 2841 7.3

MM2-default 15.09 99.45 27.21 99.21 0.427 100 4.6

MM2-alternative 28.30 97.77 46.19 95.62 0.623 354 6.0

SmoothQGram 33.26 96.43 51.36 95.4 0.667 5551 29.5

Nanopore E.coli

MHAP 28.87 97.06 65.33 96.93 0.781 5887 21.8

DALIGNER 10.79 88.62 32.71 92.86 0.484 4928 12.0

MM2-default 33.38 99.77 73.89 99.41 0.848 390 8.4

MM2-alternative 38.81 96.82 76.53 97.06 0.856 880 11.9

SmoothQGram 48.33 95.80 79.63 97.40 0.876 14 402 45.7

Nanopore S.cerevisiae

MHAP 31.98 98.69 56.04 99.21 0.716 5251 22.0

DALIGNER 3.32 95.85 14.83 97.83 0.258 3941 5.4

MM2-default 4.80 99.29 7.65 99.26 0.142 235 5.6

MM2-alternative 33.48 98.00 70.61 97.32 0.818 3490 22.1

SmoothQGram 41.78 95.77 71.25 97.45 0.823 6555 33.4

Nanopore D.melanogaster

MHAP 53.05 90.71 56.39 89.52 0.692 3713 22.2

DALIGNER 14.97 79.26 31.97 83.21 0.462 18 259 8.1

MM2-default 15.97 98.30 29.19 97.79 0.450 140 5.2

MM2-alternative 57.09 95.00 65.57 92.03 0.766 6416 22.2

SmoothQGram 61.54 93.95 67.47 95.49 0.791 4812 27.1

Nanopore Human

MHAP 28.59 39.62 52.04 42.21 0.466 11 170 22.4

DALIGNER 19.67 71.21 44.46 75.34 0.559 3642 7.6

MM2-default 23.33 99.38 33.03 99.45 0.496 113 5.1

MM2-alternative 32.61 84.28 65.40 81.03 0.724 2587 11.1

SmoothQGram 38.16 93.56 67.36 93.36 0.783 5480 25.9

Note: Recall< 2000 and precision< 2000 show the measurements for overlaps of length 500 to 2000 bps. Recall and precision show the measurements for all

true overlaps.

Highest F1 score should be highlighted in Bold.
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parameters to make its sensitivity satisfying. We observe that its
results are highly sensitive with parameters.

Although we have only studied the overlap detection problem in
this paper, we believe that smooth q-gram can be used in other
cases, e.g. the other steps in fragment assembly (e.g. error correc-
tions, consensus sequence generation) as well as other similarity
search problems (e.g. sequence classification, sequence clustering),
where sensitive and robust q-gram signatures are needed. We leave
these applications as future work.
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