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Abstract
We consider the KZ differential equations over C in the case, when the hypergeo-
metric solutions are one-dimensional integrals. We also consider the same differential
equations over a finite field Fp. We study the space of polynomial solutions of these
differential equations over Fp, constructed in a previous work by Schechtman and the
second author. Using Hasse–Witt matrices, we identify the space of these polynomial
solutions over Fp with the space dual to a certain subspace of regular differentials
on an associated curve. We also relate these polynomial solutions over Fp and the
hypergeometric solutions over C.
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1 Introduction

TheKZ equationswere discovered byVadimKnizhnik andAlexander Zamolodchikov
[5] to describe the differential equations for conformal blocks on sphere in the Wess–
Zumino–Witten model of conformal field theory. The hypergeometric solutions of the
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KZ equations were constructed more than 30 years ago, see [10,11]. The polynomial
solutions of the KZ equations over the finite field Fp with a prime number p of
elements were constructed recently in [12]. We call these solutions over Fp the Fp-
hypergeometric solutions. The general problem is to find the dimension of the space of
Fp-hypergeometric solutions and to understand relations between the hypergeometric
solutions of the KZ equations over C and the Fp-hypergeometric solutions.

In this paper, we consider an example of the KZ differential equations, whose
hypergeometric solutions over C are n-vectors of the integrals

I (γ )(z1, . . . , zn) =
(∫

γ

1

x − z1

dx

y
, . . . ,

∫
γ

1

x − zn

dx

y

)
, (1.1)

where

yq = (x − z1) . . . (x − zn) (1.2)

and γ is a suitable 1-cycle. It is well known that the space of such n-vectors is n − 1-
dimensional. We consider the same differential KZ equations over the field Fp under
the assumption that q is also a prime number and p > q, p > n, n = kq + 1 for some
positive integer k. We show that the dimension of the space of Fp-hypergeometric
solutions equals only a fraction of n. Namely, let a1 be the unique positive integer
such that 1 ≤ a1 ≤ q − 1 and a1 p ≡ 1 (mod q). This a1 is the inverse of p modulo
q. It turns out that the dimension of the space of Fp-hypergeometric solutions equals
a1k. More precisely, the dimension of the space of Fp-hypergeometric solutions can
be defined as follows. Consider the curve X defined by the affine equation (1.2). The
cyclic group Zq of qth roots of unity acts on X by multiplication on the coordinate
y. The space �1(X) of regular differentials on X splits into eigenspaces of the Zq -

action, �1(X) = ⊕q−1
a=1 �1

a(X), where �1
a(X) consists of differentials of the form

u(x)dx/ya . We show that the dimension of the space of Fp-hypergeometric solutions
equals the dimension of �1

a1(X). Moreover, we establish an isomorphism of the space
of Fp-hypergeometric solutions and the space dual to �1

a1(X). That isomorphism is
constructed with the help of the map adjoint to the corresponding Cartier map, and
more precisely, with the help of the corresponding Hasse–Witt matrix. This is our first
main result.

We also choose one solution of the KZ equations over C and call it distinguished.
We expand the distinguished solutions into the Taylor series at some point, reduce the
coefficients of the Taylor expansionmodulo p and present this reduced Taylor series as
an infinite formal sum of Fp-hypergeometric solutions, with coefficients being matrix
elements of iterates of the associated Hasse–Witt matrix. Moreover, this presentation
allows one to recover a basis of Fp-hypergeometric solutions in terms of the reduced
Taylor expansion. This statement is our second main result.

Our comparison of the reduced Taylor expansion of a solution over C and Fp-
hypergeometric solutions is analogous toManin’s considerations of the elliptic integral
in his classical paper [7] in 1961, see also “Manin’s Result: TheUnity ofMathematics”
in the book [2] by Clemens.
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For q = 2, the results of this paper have been obtained in [17].
The paper is organized as follows. In Sect. 2, we describe the differential KZ

equations considered in this paper. We construct the hypergeometric solutions of these
equations over C and the Fp-hypergeometric solutions. In Sect. 3, we define the
module of Fp-hypergeometric solutions, show that it is free, and calculate the rank
of the module. In Sect. 3.3, we describe the fusion procedure for modules of Fp-
hypergeometric solutions.

In Sect. 4, we prove a generalization of the classical Lucas theorem, which allows
us to reduce modulo p the coefficient of the Taylor expansion of the distinguished
solution.

In Sect. 5, we discuss different bases in themodule ofFp-hypergeometric solutions.
One of the bases naturally appears in the defining construction of Fp-hypergeometric
solutions and the other is convenient to relate the Fp-hypergeometric solutions to the
Taylor expansion of the distinguished solution.

In Sects. 6 and 7, we study the Cartier map related to our Fp-hypergeometric solu-
tions and prove our first main result by identifying the module of Fp-hypergeometric
solutions with the space dual to �1

a1(X), see Theorems 6.2 and 7.4. In Sect. 8, we
change variables in the Hasse–Witt matrix preparing it for application to the study of
the distinguished solution.

In Sect. 9, we compare the reduced Taylor series of the distinguished solution and
Fp-hypergeometric solutions, see Theorem 9.8.

The authors thank Etingof for useful discussions.

2 KZ Equations

2.1 Description of Equations

Let g be a simple Lie algebra over the field C, � ∈ g⊗2 the Casimir element corre-
sponding to an invariant scalar product on g, V1, . . . , Vn finite-dimensional irreducible
g-modules.

The system of KZ equations with parameter κ ∈ C
× on a tensor ⊗n

i=1Vi valued
function I (z1, . . . , zn) is the system of the differential equations

∂ I

∂zi
= 1

κ

∑
j �=i

�(i, j)

zi − z j
I , i = 1, . . . , n, (2.1)

where �(i, j) is the Casimir element acting in the i th and j th factors, see [3,5]. The
KZ differential equations commute with the action of g on ⊗n

i=1Vi , in particular, they
preserve the subspaces of singular vectors of a given weight.

In [10,11], the KZ equations restricted to the subspace of singular vectors of a
given weight were identified with a suitable Gauss–Manin differential equations and
the corresponding solutions of the KZ equations were presented as multidimensional
hypergeometric integrals.
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Let p be a prime number and Fp the field with p elements. Let gp be the same Lie
algebra considered over Fp. Let V

p
1 , . . . , V p

n be the gp-modules which are reductions
modulo p of V1, . . . , Vn , respectively. If κ is an integer and p large enough with
respect to κ , then one can look for solutions I (z1, . . . , zn) of the KZ equations in
⊗n

i=1V
p
i ⊗ Fp[z1, . . . , zn]. Such solutions were constructed in [12].

In this paper, we address two questions:

A. What is the number of independent solutions constructed in [12] for a given Fp?
B. How are those solutions related to the solutions over C that are given by hyperge-

ometric integrals?

We answer these questions in an example in which the hypergeometric solutions
are presented by one-dimensional integrals. The case of hyperelliptic integrals was
considered in [17]. The object of our study is the following joint system of differential
and algebraic equations.

2.1.1 Assumptions in This Paper

We fix prime numbers p, q, p > q, a positive integer n, a vector� = (�1, . . . , �n) ∈
Z
n
>0, such that �i < q for all i = 1, . . . , n.
For z = (z1, . . . , zn), we study the column vectors I (z) = (I1(z), …, In(z))

satisfying the system of differential and algebraic linear equations:

∂ I

∂zi
= 1

q

∑
j �=i

�i j

zi − z j
I , i = 1, . . . , n, �1 I1(z) + · · · + �n In(z) = 0, (2.2)

where

�i j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

i ...

j

i · · · −� j · · · � j · · ·
...

...

j · · · �i · · · −�i · · ·
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.3)

and all other entries are zero.
In this paper, this joint system of differential and algebraic equationswill be called

the KZ differential equations.
We will construct solutions of these KZ differential equations over C and over Fp

and compare the properties of solutions.

Remark The system of equations (2.2) is the system of the true KZ differential equa-
tions (2.1) with parameter κ = q, associated with the Lie algebra sl2 and the subspace
of singular vectors of weight

∑n
i=1 �i −2 of the tensor product V�1⊗· · ·⊗V�n , where

V�i is the irreducible �i + 1-dimensional sl2-module, up to a gauge transformation,
see this example in [14, Section 1.1].
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Notice also that the assumption �i < q for i = 1, . . . , n appears when one is
interested in differential equations for sl2 conformal blocks with central charge q −2.

2.2 Solutions overC

Consider the master function

	(t, z1, . . . , zn) =
n∏

a=1

(t − za)
−�a/q (2.4)

and the n-vector of hypergeometric integrals

I (γ )(z) = (I1(z), . . . , In(z)), (2.5)

where

I j =
∫

	(t, z1, . . . , zn)
dt

t − z j
, j = 1, . . . , n. (2.6)

The integrals I j , j = 1, . . . , n are over an element γ of the first homology group of
the algebraic curve with affine equation

yq = (t − z1)
�1 . . . (t − zn)

�n .

Starting from such γ , chosen for given {z1, . . . , zn}, the vector I (γ )(z) can be analyt-
ically continued as a multivalued holomorphic function of z to the complement in Cn

to the union of the diagonal hyperplanes zi = z j .

Theorem 2.1 The vector I (γ )(z) satisfies the KZ differential equations (2.2).

Theorem 2.1 is a classical statement. Much more general algebraic and differen-
tial equations satisfied by analogous multidimensional hypergeometric integrals were
considered in [10,11]. Theorem 2.1 is discussed as an example in [14, Section 1.1].

Theorem 2.2 [13, Formula (1.3)] All solutions of equations (2.2) have this form,
namely the complex vector space of solutions of the form (2.5)–(2.6) is n − 1-
dimensional.

This theorem follows from the determinant formula for multidimensional hyperge-
ometric integrals in [13], in particular, from [13, Formula (1.3)].

2.3 Solutions over Fp

Polynomial solutions of system (2.2), considered over the field Fp, were constructed
in [12].
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For i = 1, . . . , n, choose positive integers Mi such that

Mi ≡ −�i

q
(mod p), (2.7)

that is, project �i , q to Fp, calculate −�i
q in Fp and then choose positive integers

Mi satisfying these equations. Denote M = (M1, . . . , Mn). Consider the master
polynomial

	p(t, z, M) :=
n∏

i=1

(t − zi )
Mi , (2.8)

and the Taylor expansion with respect to the variable t of the vector of polynomials

P(t, z, M) := 	p(t, z, M)

(
1

t − z1
, . . . ,

1

t − zn

)
=
∑
i

Pi (z, M) t i ,

where Pi (z, M) are n-vectors of polynomials in z1, . . . , zn with coefficients in Fp.

Theorem 2.3 [12, Theorem 1.2] For any positive integer l, the vector of polynomials
Plp−1(z, M) satisfies the KZ differential equations (2.2).

Theorem 2.3 is a particular case of [12, Theorem 2.4]. Cf. Theorem 2.3 in [4]. See
also [15–17].

The solutions Plp−1(z, M) given by this construction will be called the Fp-
hypergeometric solutions of the KZ differential equations (2.2).

3 Module of Fp-Hypergeometric Solutions

3.1 Definition of theModule

Denote Fp[z p] := Fp[z p1 , . . . , z pn ]. The set of all polynomial solutions of (2.2) with
coefficients in Fp is a module over the ring Fp[z p] since equations (2.2) are linear and
∂z pi
∂z j

= 0 in Fp[z] for all i, j .
The Fp-hypergeometric solutions Plp−1(z, M) of equations (2.2) depend on the

choice of the positive integers M = (M1, . . . , Mn) in congruences (2.7). Given M
satisfying (2.7), denote by

MM =
{∑

l

cl(z)P
lp−1(z, M) | cl(z) ∈ Fp[z p]

}
(3.1)

the Fp[z p]-module generated by the solutions Plp−1(z, M).
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Let M = (M1, . . . , Mn) and M ′ = (M ′
1, . . . , M

′
n) be two vectors of positive

integers, each satisfying congruences (2.7). We say that M ′ > M if M ′
i ≥ Mi for

i = 1, . . . , n and there exists i such that M ′
i > Mi .

Assume that M ′ > M . Then M ′
i = Mi + pNi for some Ni ∈ Z≥0. We have

P(t, z, M ′) =
(

n∏
i=1

(t − zi )
pNi

)
P(t, z, M) =

(
n∏

i=1

(t p − z pi )Ni

)
P(t, z, M).

(3.2)

This identity defines an embedding of modules,

ϕM ′,M : MM ′ ↪→ MM . (3.3)

Namely, formula (3.2) allows us to present any solution Pl ′ p−1(z, M ′), coming from
the Taylor expansion of the left-hand side, as a linear combination of the solutions
Plp−1(z, M), coming from the Taylor expansion of the right-hand side, with coeffi-
cients in Fp[z p].

Clearly, if M ′′ > M ′ and M ′ > M , then M ′′ > M and

ϕM ′,M ϕM ′′,M ′ = ϕM ′′,M . (3.4)

Theorem 3.1 For any M ′ > M, the embedding ϕM ′,M : MM ′ ↪→ MM is an isomor-
phism.

Proof Let v′ and v be the greatest integers such that v′ p − 1 ≤ degt P(t, z, M ′) and
vp − 1 ≤ degt P(t, z, M). Comparing the coefficients in (3.2), we observe that

⎡
⎢⎢⎢⎢⎣

Pv′ p−1(z, M ′)
...
...

P(v′−v+1)p−1(z, M ′)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0

∗ . . .
. . .

...
...

. . .
. . . 0

∗ · · · ∗ 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

Pvp−1(z, M)
...
...

P p−1(z, M)

⎤
⎥⎥⎥⎥⎦ , (3.5)

where all the diagonal entries are 1s and stars denote some polynomials in Fp[z p].
Hence, this matrix is invertible and thereforeMM ⊂ MM ′ . The theorem is proved. �


The set of tuples M = (M1, . . . , Mn) satisfying (2.7) has the minimal element
M̄ = (M̄1, . . . , M̄n), where M̄i is the minimal positive integer satisfying (2.7). Hence,
for any M = (M1, . . . , Mn) satisfying (2.7), we have an isomorphism

ϕM,M̄ : MM ↪→ MM̄ . (3.6)

The module MM , which does not depend on the choice of M , will be called the
module of Fp-hypergeometric solutions and denoted byM�, where � can be seen in
Sect. 2.1.1.
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3.2 TheModule Is Free

Recall � = (�1, . . . , �n) ∈ Z
n
>0 with �i < q for i = 1, . . . , n. Recall M̄ =

(M̄1, . . . , M̄n) defined in Sect. 3.1. Denote

d� :=
[

n∑
i=1

M̄i/p

]
, (3.7)

the integer part of the number
∑n

i=1 M̄i/p.
Consider the module MM̄ spanned over Fp[z p] by the solutions Plp−1(z, M̄),

corresponding to M̄ . The range for the index l is defined by the inequalities 0 <

lp − 1 ≤∑n
i=1 M̄i − 1. This means that l = 1, . . . , d�.

Theorem 3.2 The solutions Plp−1(z, M̄), l = 1, . . . , d� are linearly independent over
the ring Fp[z p], that is, if ∑d�

l=1 cl(z)P
lp−1(z, M̄) = 0 for some cl(z) ∈ Fp[z p], then

cl(z) = 0 for all l.

Corollary 3.3 The module M� of Fp-hypergeometric solutions is free of rank d�.

For q = 2, this theorem is Theorem 3.1 in [17]. The proof of Theorem 3.2 below
is the same as the proof of [17, Theorem 3.1].

Proof For l = 1, . . . , d�, the coordinates of the vector

Plp−1(z, M̄) = (Plp−1
1 (z, M̄), . . . , Plp−1

n (z, M̄))

are homogeneous polynomials in z1, . . . , zn of degree
∑n

i=1 M̄i − lp and

Plp−1
j (z, M̄) =

∑
Plp−1
j;�1,...,�n z

�1
1 . . . z�nn ,

where the sum is over the elements of the set


l
j =

⎧⎨
⎩(�1, . . . , �n) ∈ Z

n≥0 |
n∑

s=1

�s =
n∑

i=1

M̄i − lp, 0 ≤ � j ≤ M̄ j − 1, 0 ≤ �i ≤ M̄i for i �= j

⎫⎬
⎭

and

Plp−1
j;�1,...,�n = (−1)

∑n
i=1 M̄i−lp

(
M̄ j − 1

� j

)∏
i �= j

(
M̄i

�i

)
∈ Fp.

Notice that all coefficients Plp−1
j;�1,...,�n are nonzero. Hence, each solution Plp−1(z, M̄)

is nonzero.
We show that the first coordinates Plp−1

1 (z, M̄), l = 1, . . . , d� are linearly inde-
pendent over the ring Fp[z p].
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Let 
̄l
1 ⊂ F

n
p be the image of the set 
l

1 under the natural projection Z
n → F

n
p.

The points of 
̄l
1 are in bijective correspondence with the points of 
l

1 since M̄i < p

for all i . Any two sets 
̄l
1 and 
̄l ′

1 do not intersect, if l �= l ′.
For any l and any nonzero polynomial cl(z) ∈ Fp[z p], consider the nonzero polyno-

mial cl(z)P
lp−1
1 (z, M̄) ∈ Fp[z1, . . . , zn] and the set 
l

1,cl
of vectors �� ∈ Z

n such that

the monomial z�11 . . . z�nn enters cl(z)P
lp−1
1 (z, M̄) with nonzero coefficient. Then the

natural projection of 
l
1,cl

to Fn
p coincides with 
̄l

1. Hence, the polynomials Pl
1(z, M̄),

l = 1, . . . , d� are linearly independent over the ring Fp[z p]. �


3.3 Fusion of Fp-Hypergeometric Solutions

Consider solutions I (z1, . . . , zn) of the KZ differential equations over C with values
in some tensor product V1 ⊗ · · · ⊗ Vn . Assume that z1, . . . , zn tend to some limit
z̃1, . . . , z̃ñ , in which some groups of the points z1, . . . , zn collide. It is well known
that under this limit the leading term of asymptotics of solutions satisfies the KZ
equations with respect to z̃1, . . . , z̃ñ with values in the tensor product Ṽ1 ⊗ · · · ⊗ Ṽñ ,
where each Ṽ j is the tensor product of some of V1, . . . , Vn .

In this section, we show that the Fp-hypergeometric solutions of the KZ equations
have a similar functorial property but even simpler.

Namely, let � = (�1, . . . , �n) ∈ Z
n
>0 with �i < q for i = 1, . . . , n, and

�̃ = (�̃1, . . . , �̃ñ) ∈ Z
ñ
>0 with �̃ j < q for j = 1, . . . , ñ.

Assume that there is a partition {1, . . . , n} = I1 ∪ · · · ∪ Iñ such that

∑
i∈I j

�i = �̃ j , j = 1, . . . , ñ. (3.8)

We say that �̃ is a fusion of �.
Recall the modules of Fp-hypergeometric solutions M� and M�̃. We define an

epimorphism of modules,

ψ�,�̃ : M� → M�̃, (3.9)

as follows.
Let M = (M1, . . . , Mn) be a vector of positive integers such that Mi ≡ −�i/q

mod p for i = 1, . . . , n. Define M̃ = (M̃1, . . . , M̃ñ) by the formula

M̃ j =
∑
i∈I j

Mi , j = 1, . . . , ñ.

Then M̃ j ≡ −�̃ j/q (mod p) for j = 1, . . . , ñ.
Consider the module MM generated by the solutions (Plp−1(z, M))l , which are

n-vectors of polynomials in z1, . . . , zn . Consider the module MM̃ generated by the
solutions (Plp−1(z̃, M̃))l , which are ñ-vectors of polynomials in z̃1, . . . , z̃ñ .
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Define the module homomorphism

ψ�,�̃ : M� = MM → MM̃ = M�̃,

as the map which sends a generator Plp−1(z, M) to the generator Plp−1(z̃, M̃).
On the level of coordinates of these vectors, the vectors Plp−1(z, M) and

Plp−1(z̃, M̃) have the following relation. Choose a coordinate Plp−1
a (z, M) of

Plp−1(z, M), replace in it every zi with z̃ j if i ∈ I j , then the resulting polynomial

Plp−1
a (z(z̃), M) equals the bth coordinate Plp−1

b (z̃, M̃) of Plp−1(z̃, M̃) if a ∈ Ib.
It is easy to see that the homomorphism M� → M�̃ does not depend of the

choice of M solving congruences (2.7).
Also it is easy to see that if �̃ is a fusion of � and �̂ is a fusion of �̃, then �̂ is a

fusion of � and

ψ
�̃,�̂

ψ�,�̃ = ψ
�,�̂

. (3.10)

4 Binomial Coefficients Modulo p

4.1 Lucas’Theorem

Theorem 4.1 [6] For nonnegative integers m and n and a prime p, the following
congruence relation holds:

(
n

m

)
≡

k∏
i=0

(
ni
mi

)
(mod p), (4.1)

where m = mk pk +mk−1 pk−1 +· · ·+m1 p+m0 and n = nk pk +nk−1 pk−1 +· · ·+
n1 p+n0 are the base p expansions of m and n, respectively. This uses the convention
that

(n
m

) = 0 if n < m.

On Lucas’ theorem see, for example, [8].

4.2 Factorization of
(−1/q

m
)
Modulo p

In the next sections, we will use the binomial coefficients
(−1/q

m

)
modulo p. Recall

that p > q are prime numbers. Denote by d the order of p modulo q, that is the least
integer k such that pk ≡ 1 (mod q).

Let

pd − 1

q
= A0 + A1 p + A2 p

2 + · · · + Ad−1 p
d−1 (4.2)

be the base p expansion of (pd − 1)/q.
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Theorem 4.2 Let m be a positive integer with the base p expansion given by

m = mb p
b + mb−1 p

b−1 + · · · + m1 p + m0. (4.3)

Then the binomial coefficient
(−1/q

m

)
is a well-defined modulo p and the following

congruence holds:

(−1/q

m

)
≡
∏
j≥0

d−1∏
i=0

(
Ai

md j+i

)
(mod p). (4.4)

The case q = 2 was considered in [17].

Proof The proof of this theorem is based on Lucas’ theorem and the following three
lemmas. �

Lemma 4.3 For any positive integer c

pdc − 1

q
=

c−1∑
j=0

(
d−1∑
i=0

Ai p
i

)
p jd . (4.5)

Proof We have

pdc − 1

q
= (pd − 1)(pd(c−1) + · · · + p + 1)

q
=

c−1∑
j=0

(
d−1∑
i=0

Ai p
i

)
p jd ,

where we use (4.2) to obtain the last equality. �

Lemma 4.4 Let m be a positive integer with the base p expansion given by (4.3). If c
is a positive integer such that dc > b, then

(
(pdc − 1)/q

m

)
≡

c−1∏
j=0

d−1∏
i=0

(
Ai

md j+i

)
(mod p). (4.6)

Proof The lemma follows from Theorem 4.1 and Lemma 4.3. �

Given a prime p, define the p-adic norm on Q as follows. Any nonzero rational

number x can be represented uniquely by x = p�(r/s), where r and s are integers
not divisible by p. Set |x |p = p−�. Also define the p-adic value |0|p = 0. We call
p�(r/s) the p-reduced presentation of x .

Lemma 4.5 Let m be a positive integer with the base p expansion given by (4.3). Then
the following statements hold.

(i) The binomial coefficient
(−1/q

m

)
is well-defined modulo p.
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(ii) For any positive integer c such that dc > b + 1, we have

(−1/q

m

)
≡
(

(pdc − 1)/q

m

)
(mod p). (4.7)

Proof We have

(−1/q

m

)
= (−1/q)m

m−1∏
�=0

q� + 1

� + 1
. (4.8)

We also have

(
(pdc − 1)/q

m

)
= (−1/q)m

m−1∏
�=0

q� + 1 − pdc

� + 1
= (−1/q)m

m−1∏
�=0

q� + 1

� + 1
+ . . . (4.9)

For each � = 0, . . . ,m − 1 we have
∣∣ q�+1−pdc

�+1

∣∣
p = ∣∣ q�+1

�+1

∣∣
p, since q� + 1 < qm <

qpb+1 < pb+2 ≤ pdc.
By the same reasoning for every � the power of p in the p-reduced presentation of

the number pdc

�+1 is greater than the power of p in the p-reduced presentation of q�+1
�+1 .

This observation implies that on the right-hand side of (4.9), the power of p in the
p-reduced presentation of terms denoted by ‘. . . ’ is greater than the corresponding
power in the p-reduced presentation of (−1/q)m

∏m−1
�=0

q�+1
�+1 . Since the left-hand side

of (4.9) is an integer, we conclude that in the p-reduced presentation of the binomial
coefficient

(−1/q
m

)
the power of p is non-negative, i.e.

(−1/q
m

)
is well-defined modulo

p. This gives part (i). Moreover, the following congruence holds:

(
(pdc − 1)/q

m

)
≡ (−1/q)m

m−1∏
�=0

q� + 1

� + 1
(mod p). (4.10)

Formulas (4.8) and (4.10) give (4.7). �

Proof Theorem 4.2 follows from Lemmas 4.4 and 4.5. �


4.3 Factorization of
(u/v
m

)
modulo p

Here are some generalizations of Theorem 4.2. Let p be prime. Let u, v be relatively
prime integers with 0 < u, v < p.

Assume that there exists a positive integer � such that

p� + u ≡ 0 (mod v). (4.11)

Let

p� + u

v
= B0 + B1 p + B2 p

2 + · · · + B�−1 p
�−1 (4.12)
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be the base p expansion of (p� + u)/v.
Let ϕ(v) be the number of positive divisors of v and

pϕ(v) − 1

v
= C0 + C1 p + C2 p

2 + · · · + Cϕ(v)−1 p
ϕ(v)−1 (4.13)

the base p expansion of (pϕ(v) − 1)/v.
Let m be a positive integer with the base p expansion

m = mb p
b + mb−1 p

b−1 + · · · + m1 p + m0.

Theorem 4.6 Under these assumptions the binomial coefficient
(u/v
m

)
is well-defined

modulo p and the following congruence holds:

(
u/v

m

)
≡
[

�−1∏
i=0

(
Bi
mi

)]
·
⎡
⎣∏

j≥0

ϕ(v)−1∏
i=0

(
Ci

m�+ jϕ(v)+i

)⎤⎦ (mod p). (4.14)

Proof The proof of Theorem 4.6 is parallel to the proof of Theorem 4.2 and follows
from the analysis of the base p expansion of the integers of the form

pkϕ(v)+� + u

v
= p� pkϕ(v) − 1

v
+ p� + u

v

for k ∈ Z≥0. �


In the same way, we prove the following statement.

Theorem 4.7 Let p be a prime. Let u, v be integers such that p, u, v are pairwise
relatively prime. Let

u

v
= A0 + A1 p + A2 p

2 + . . . , 0 ≤ Ai < p for i ∈ Z≥0 (4.15)

be the p-adic presentation of u/v. Letm be a positive integerwith the base p expansion

m = mb p
b + mb−1 p

b−1 + · · · + m1 p + m0.

Then

(
u/v

m

)
≡
∏
i≥0

(
Ai

mi

)
(mod p). (4.16)
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4.4 Map�

Recall that p and q are prime numbers, p > q, and d the order of p modulo q. Define
the map

η : {1, . . . , q − 1} → {1, . . . , q − 1}, a �→ η(a), (4.17)

the division by p modulo q. More precisely, η(a) is defined by the conditions

η(a)p ≡ a (mod q), 1 ≤ η(a) < q. (4.18)

Denote η(s) = η ◦ η ◦ · · · ◦ η the sth iteration of η. We have η(s+d) = η(s). Define

as := η(s)(1). (4.19)

We have as+d = as and a0 = 1.
The integer a1 will play a special role in the next sections. It is the unique integer

such that

1 ≤ a1 < q and q | (a1 p − 1). (4.20)

Example 4.8 Let p = 5, q = 3. The order d of 5 modulo 3 is 2. The map η : {1, 2} →
{2, 1} is the transposition. We have a0 = 1, a1 = 2, a2 = 1.

4.5 Formulas for As

Recall the base p expansion

pd − 1

q
= A0 + A1 p + A2 p

2 + · · · + Ad−1 p
d−1. (4.21)

Lemma 4.9 The integers As are given by the formula

As = as+1 p − as
q

, s = 0, . . . , d − 1. (4.22)

Moreover, As > 0 for s = 0, . . . , d − 1.

Proof We have

0 <
as+1 p − as

q
< p (4.23)

for every s. Indeed, since 1 ≤ as ≤ q − 1 and p > q, we have

0 <
p − as
q

≤ as+1 p − as
q

<
as+1 p

q
< p.
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We show that (4.21) holds for As given by (4.22). Indeed

q(A0 + A1 p + · · · + Ad−1 p
d−1) = q

(
a1 p − 1

q
+ a2 p − a1

q
p + · · · + p − ad−1

q
pd−1

)

= pd − 1.

�


5 Solutions for the Case�i = 1, i = 1, . . . ,n

In Sects. 5, 6, and 9, we study the Fp-hypergeometric solutions of the KZ equations
in the case �i = 1, i = 1, . . . , n.

5.1 Basis of Fp-Hypergeometric Solutions

Recall that p, q are prime numbers, p > q. Assume that

n = kq + 1 (5.1)

for some positive integer k and

� = (1, . . . , 1) ∈ Z
n . (5.2)

The minimal positive solution of the system of the congruences

Mi ≡ −1/q (mod p), i = 1, . . . , n, (5.3)

is the vector

M̄ = (M̄1, . . . , M̄n) := ((a1 p − 1)/q, . . . , (a1 p − 1)/q), (5.4)

where a1 is introduced in (4.20).
Recall that the rank of the moduleM� of Fp-hypergeometric solutions in this case

equals

d� = [n(a1 p − 1)/qp] , (5.5)

see Corollary 3.3.

Lemma 5.1 If p > n, then d� = a1k.

Proof We have

d� =
[
n
a1 p − 1

qp

]
=
[
na1
q

− n

qp

]
=
[
ka1 + a1

q
− n

pq

]
.

Notice that 1/q ≤ a1/q < 1 and n/qp < 1/q. Hence, d� = a1k. �
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The master polynomial is

	p(x, z, M̄) =
n∏

i=1

(x − zi )
(a1 p−1)/q . (5.6)

The n-vector of polynomials P(x, z, M̄) is

P(x, z, M̄) = (P1(x, z, M̄), . . . , Pn(x, z, M̄)), Pj (x, z, M̄) = 	p(x, z, M̄)

x − z j
,

(5.7)

with the Taylor expansion

P(x, z, M̄) =
n(a1 p−1)/q−1∑

i=0

Pi (z, M̄) xi , Pi (z, M̄) = (Pi
1(z, M̄), . . . , Pi

n(z, M̄)).

(5.8)

The coefficients Pi (z, M̄) with i = lp − 1 are solutions of (2.2). There are ka1 of
them. They are linearly independent by Theorem 3.2. Denote them

Im(z) = (Im1 (z), . . . , Imn (z)), Im(z) := P(a1k−m)p+p−1(z, M̄), (5.9)

for m = 1, . . . , a1k. The coordinates of the n-vector of polynomials Im(z) are homo-
geneous polynomials in z of degree

(a1 p − 1)/q + (m − 1)p − k.

For example, I 1 = Pa1kp−1(z, M̄) is a homogeneous polynomial in z of degree
(a1 p − 1)/q − k, and I a1k = P p−1(z, M̄) is a homogeneous polynomial in z of
degree (a1 p − 1)/q − k + (a1k − 1)p.

5.2 Change of the Basis ofM�

For future use, we introduce a new basis ofM�. For m = 1, . . . , a1k, define

Jm(z) =
m∑
l=1

Im+1−l(z) z(l−1)p
1

(
a1k − m − 1 + l

a1k − m

)
, (5.10)

that is,

J 1(z) = I 1(z),

J 2(z) = I 1(z) z p1

(
a1k − 1

a1k − 2

)
+ I 2(z),
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J 3(z) = I 1(z) z2p1

(
a1k − 1

a1k − 3

)
+ I 2(z) z p1

(
a1k − 2

a1k − 3

)
+ I 3(z),

and so on. The coordinates of the n-vector of polynomials Jm(z) are homogeneous
polynomials in z of degree

(a1 p − 1)/p + (m − 1)p − k.

Lemma 5.2 The n-vectors of polynomials Jm(z) belong to the module M� of Fp-
hypergeometric solutions and form a basis of M�.

The solutions Jm(z) of the KZ equations (2.2) can be defined as coefficients of
the Taylor expansion of a suitable n-vector of polynomials similar to the definition of
solutions Im(z) in (5.9).

Namely, change x to x + z1 in (5.6) to obtain the polynomial

	̃p(x, z) = x (a1 p−1)/q
n∏

i=2

(x + z1 − zi )
(a1 p−1)/q ∈ Fp[x, z]. (5.11)

Consider the associated n-vector of polynomials

P̃(x, z) = 	̃p(x, z)

(
1

x
,

1

x + z1 − z2
, . . . ,

1

x + z1 − zn

)
(5.12)

and its Taylor expansion

P̃(x, z) =
n(a1 p−1)/q−1∑

i=0

P̃i (z)xi , P̃i (z) ∈ Fp[z]n . (5.13)

Lemma 5.3 [17, Lemma 5.2] For m = 1, . . . , a1k, we have

Jm(z) = P̃(a1k−m)p+p−1(z). (5.14)

5.3 Change of Variables in Jm(z)

Lemma 5.4 For m = 1, . . . , a1k, the homogeneous polynomial Jm(z) can be written
as a homogeneous polynomial in variables z2 − z1, z3 − z1, …, zn − z1, see (5.11)
and (5.12).

Hence, we may pull out from the polynomial Jm(z) the factor
(z2 − z1)(a1 p−1)/q+(m−1)p−k and present Jm(z) in the form

Jm(z) = (z2 − z1)
(a1 p−1)/q+(m−1)p−k Km(λ), (5.15)
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where λ := (λ3, . . . , λn),

λi := zi − z1
z2 − z1

, i = 3, . . . , n, (5.16)

and Km(λ) is a suitable n-vector of polynomials in λ.
Another way to define the n-vector Km(λ) is as follows.
Consider the polynomial

	̂p(x, λ) = x (a1 p−1)/q(x − 1)(a1 p−1)/q
n∏

i=3

(x − λi )
(a1 p−1)/q ∈ Fp[x, λ]

(5.17)

and the associated n-vector of polynomials

P̂(x, λ) = 	̂p(x, λ)

(
1

x
,

1

x − 1
,

1

x − λ3
, . . . ,

1

x − λn

)
(5.18)

with Taylor expansion

P̂(x, λ) =
n(a1 p−1)/q−1∑

i=0

P̂i (λ)xi , P̂i (λ) ∈ Fp[λ]n . (5.19)

Lemma 5.5 For m = 1, . . . , a1k, we have

Km(λ) = P̂(a1k−m)p+p−1(λ), (5.20)

cf. formulas (5.9) and (5.14).

5.4 Formula for Km(λ)

For m = 1, . . . , a1k, denote

�m =
{

(�3, . . . , �n) ∈ Z
n−2
≥0 | 0 ≤

n∑
i=3

�i + k − (m − 1)p ≤ (a1 p − 1)/q,

� j ≤ (a1 p − 1)/q for j = 3, . . . , n

}
. (5.21)

Theorem 5.6 For m = 1, . . . , a1k, we have

Km(λ) =
∑

(�3,...,�n)∈�m

Km
�3,...,�n

(λ), (5.22)

123

Author's personal copy



A. Slinkin, A. Varchenko

where

Km
�3,...,�n

(λ) = (−1)(a1 p−1)/q+(m−1)p−k
( (a1 p − 1)/q

n∑
i=3

�i + k − (m − 1)p

)

×
n∏

i=3

(
(a1 p − 1)/q

�i

)
λ

�3
3 . . . λ�n

n

(
1,−q

(
n∑

i=3

�i + k

)
, q�3 + 1, . . . , q�n + 1

)

(5.23)

modulo p. In particular, all coefficients Km
�3,...,�n

(λ) are nonzero.

Proof We have

Km
1 (λ) = (−1)(a1 p−1)/q+(m−1)p−k

∑
�

(
(a1 p − 1)/q

�2

)
. . .

(
(a1 p − 1)/q

�n

)
λ

�3
3 . . . λ�n

n ,

where

� =
⎧⎨
⎩(�2, . . . , �n) ∈ Z

n−1
≥0 |

n∑
i=2

�i = (a1 p − 1)/q + (m − 1)p − k, �i ≤ (a1 p − 1)/q

⎫⎬
⎭ .

Expressing �2 from the conditions defining �, we write

Km
1 (λ) = (−1)(a1 p−1)/q+(m−1)p−k

×
∑
�m

(
(a1 p − 1)/q∑n

i=3�i − (m − 1)p + k

)

×
n∏

i=3

(
(a1 p − 1)/q

�i

)
λ

�3
3 . . . λ�n

n .

Similarly, we have

Km
2 (λ) = (−1)(a1 p−1)/q+(m−1)p−k

∑
�′

(
(a1 p − 1)/q − 1

�2

)

×
n∏

i=3

(
(a1 p − 1)/q

�i

)
λ

�3
3 . . . λ�n

n ,

where

�′ =
{

(�2, . . . , �n) ∈ Z
n−1
≥0 |

n∑
i=2

�i = (a1 p − 1)/q + (m − 1)p − k,

�2 ≤ (a1 p − 1)/q − 1 and �i ≤ (a1 p − 1)/q for i > 2

}
.
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Expressing �2 from the conditions defining �′, we write

Km
2 (λ) = (−1)(a1 p−1)/q+(m−1)p−k

×
∑
�m

( (a1 p − 1)/q − 1
n∑

i=3
�i − (m − 1)p + k − 1

) n∏
i=3

(
(a1 p − 1)/q

�i

)
λ

�3
3 . . . λ�n

n

= (−1)(a1 p−1)/q+(m−1)p−k

∑n
i=3 �i − (m − 1)p + k

(a1 p − 1)/q

×
∑
�m

( (a1 p − 1)/q
n∑

i=3
�i − (m − 1)p + k

) n∏
i=3

(
(a1 p − 1)/q

�i

)
λ

�3
3 . . . λ�n

n .

For j = 3, . . . , n, we have

Km
j (λ) = (−1)(a1 p−1)/q+(m−1)p−k

∑
�′′

(
(a1 p − 1)/q − 1

� j

) n∏
i=2
i �= j

(
(a1 p − 1)/q

�i

)
λ
�3
3 . . . λ

�n
n ,

where

�′′ =
{

(�2, . . . , �n) ∈ Z
n−1
≥0 |

n∑
i=2

�i = (a1 p − 1)/q + (m − 1)p − k,

� j ≤ (a1 p − 1)/q − 1 and �i ≤ (a1 p − 1)/q for i �= j
}
.

Expressing �2 from the conditions defining �′′, we write

Km
j (λ) = (−1)(a1 p−1)/q+(m−1)p−k

×
∑
�m

( (a1 p − 1)/q
n∑

i=3
�i − (m − 1)p + k

)(
(a1 p − 1)/q − 1

� j

) n∏
i=3
i �= j

(
(a1 p − 1)/q

�i

)
λ
�3
3 . . . λ

�n
n

= (−1)(a1 p−1)/q+(m−1)p−k
(
1 − � j q

a1 p − 1

)

×
∑
�m

( (a1 p − 1)/q
n∑

i=3
�i − (m − 1)p + k

) n∏
i=3

(
(a1 p − 1)/q

�i

)
λ
�3
3 . . . λ

�n
n .

The congruences

∑n
i=3 �i − (m − 1)p + k

(a1 p − 1)/q
≡ −q

(
n∑

i=3

�i + k

)
(mod p),

1 − � j q

a1 p − 1
≡ q� j + 1 (mod p)

allow us to rewrite Km
j (λ), j = 2, . . . , n, in the form indicated in the theorem. �
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5.5 Example

For p = 5, q = 3, n = 4, the module M� of Fp-hypergeometric solutions is two-
dimensional and is generated by solutions J 1 and J 2 which are 4-vectors, whose
coefficients are homogeneous polynomials in z1, z2, z3, z4 of degrees 2 and 7, respec-
tively.

The corresponding 4-vectors K 1 and K 2 are given by the formulas

K 1(λ3, λ4) = (3, 1, 3, 3) + (4, 1, 1, 4)λ3 + (4, 1, 4, 1)λ4
+(3, 3, 1, 3)λ23 + (4, 4, 1, 1)λ3λ4 + (3, 3, 3, 1)λ24,

K 2(λ3, λ4) = (2, 0, 0, 3)λ23λ4 + (1, 0, 2, 2)λ23λ
2
4 + (2, 0, 3, 0)λ3λ

3
4

+(1, 2, 0, 2)λ33λ
2
4 + (1, 2, 2, 0)λ23λ

3
4 + (2, 3, 0, 0)λ33λ

3
4.

6 Cartier Map

6.1 Matrices and Semilinear Algebra, [1]

6.1.1 Bases, Matrices, and Linear Operators

Let W be a vector space over a field K with basis C = {w1, . . . , wn}. Any w ∈ W is
expressible asw =∑ ciwi . Let [w]C denote the column vector [w]C = (c1, . . . , cn)T .

Let V be a vector space with basis B = {v1, . . . , vm}, and f : W → V a linear
map. The matrix of f relative to the bases C and B is [ f ]B←C = (ai j ) ∈ Matm×n(K),
where f (w j ) =∑m

i=1 ai jvi . Matrix multiplication gives

[ f (w)]B = [ f ]B←C [w]C .

Let f : V → V be an endomorphism, and B and D two bases for V . Then

[ f ]D←D = [id]D←B [ f ]B←B [id]B←D.

If S = [id]B←D, then

[ f ]D←D = S−1 [ f ]B←B S.

6.1.2 Semilinear Algebra

Let τ be an automorphism of K and σ = τ−1. Then f : V → V is called τ -linear, if
for a ∈ K and v ∈ V ,

f (av) = aτ f (v),

123

Author's personal copy



Hypergeometric Integrals Modulo p and Hasse—Witt Matrices

where aτ = τ(a). Let f (v j ) =∑i ai jvi . If v =∑ j c jv j , then

f (v) =
∑
j

f (c jv j ) =
∑
j

cτ
j f (v j ) =

∑
j

(∑
i

ai jvi

)
cτ
j

and so

[ f (v)]B = [ f ]B←B [v]τB,

where Bτ is the matrix obtained by applying τ to each entry of B.
Change of basis is accomplished with τ -twisted conjugacy:

[ f ]D←D = [id]D←B [ f ]B←B [id]τB←D = S−1 [ f ]B←B Sτ .

The iterates of f are represented by

[ f ◦r ] = [ f ] [ f ]τ [ f ]τ 2 . . . [ f ]τ r−1
. (6.1)

6.1.3 Adjoint Map

Let V ∗ be the dual vector space of V and (·, ·)V : V × V ∗ → K the natural pairing,
linear with respect to each argument. Similarly, let W ∗ be the dual vector space of W
and (·, ·)W : W × W ∗ → K the natural pairing.

Let f : W → V be τ -linear. Define the adjoint map f ∗ : V ∗ → W ∗ by the
formula

(w, f ∗(ϕ))W = ( f (w), ϕ)σV , w ∈ W , ϕ ∈ V ∗.

The map f ∗ is σ -linear, f ∗(aϕ) = aσ f ∗(ϕ) for a ∈ K. Indeed,

(w, f ∗(aϕ))W = ( f (w), aϕ)σV = aσ ( f (w), ϕ)σV = aσ (w, f ∗(ϕ))W = (w, aσ f ∗(ϕ))W .

Let C = {w1, . . . , wn} be a basis of W and B = {v1, . . . , vm} a basis of V . Let
C∗ = {ϕ1, . . . , ϕn} be the dual basis of W ∗ and B∗ = {ψ1, . . . , ψm} the dual basis of
V ∗.

If [ f ]B←C = (ai j ), then

[ f ∗]C∗←B∗ = ([ f ]σB←C)T . (6.2)

6.2 FieldK(u)

In this paper, we consider some particular fields K(u).
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Let u = (u1, . . . , ur ) be variables. Let K(u) be the field of rational functions in
variables

u1/p
s

i , i = 1, . . . , r , s ∈ Z>0, (6.3)

with coefficients in Fp. Thus, an element of K(u) is the ratio of two polynomials in

variables u1/p
s

i with coefficients in Fp.
For any f (u1, . . . , ur ) ∈ K(u), we have

f (u1, . . . , ur )
1/p = f (u1/p1 , . . . , u1/pr ), (6.4)

cf. [9].
The field K(u) has the Frobenius automorphism

σ : K(u) → K(u), f (u) �→ f (u)p, (6.5)

and its inverse

τ : K(u) → K(u), f (u) �→ f (u)1/p. (6.6)

6.3 Curve X

Recall that n = qk + 1, see Sect. 5.1. Consider the field K(z), z = (z1, . . . , zn).
Consider the algebraic curve X over K(z) defined by the affine equation

yq = F(x, z) := (x − z1)(x − z2) . . . (x − zn). (6.7)

The curve has genus

g := k
q(q − 1)

2
. (6.8)

The space �1(X) of regular 1-forms on X is the direct sum

�1(X) =
q−1⊕
a=1

�1
a(X), (6.9)

where dim �1
a(X) = ak, and �1

a(X) has basis :

xi−1 dx

ya
, i = 1, . . . , ak. (6.10)
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6.4 Cartier Operator

Following [1], we introduce the Cartier operator

C : �1(X) → �1(X), (6.11)

which is τ -linear. It has block structure. For a = 1, . . . , q − 1, we have

C
(
�1

a(X)
)

⊂ �1
η(a)(X), (6.12)

where η : {1, . . . , q − 1} → {1, . . . , q − 1} is the division by p modulo q defined in
(4.17).

We define the Cartier operator by the action on the basis vectors as follows.
For a = 1, . . . , q − 1, formula (4.18) implies q | (η(a)p − a). Hence, for f = 1,

…, ak, we have

xak− f dx

ya
= xak− f yη(a)p−a dx

ya yη(a)p−a
= xak− f (yq)(η(a)p−a)/q dx

yη(a)p

= xak− f F(x, z)(η(a)p−a)/q dx

yη(a)p
=
∑
w≥0

a Fw
f (z) xw dx

yη(a)p
,

(6.13)

where a Fw
f (z) ∈ Fp[z].

The Cartier operator is defined by the formula

xak− f dx

ya
�→

η(a)k∑
h=1

(
a F (η(a)k−h)p+p−1

f (z)
)1/p

xη(a)k−h dx

yη(a)
. (6.14)

This formula has the following meaning. If w in (6.13) is not of the form lp + p − 1
for some l, then the summand a Fw

f (z) xw dx
yη(a)p in (6.13) is ignored in the definition

(6.14), and if w = lp + p − 1 for some l, then the term a Flp+p−1
f (z) xlp+p−1 dx

yη(a)p

produces the summand

(
a Flp+p−1

f (z)
)1/p

xl
dx

yη(a)

in the definition (6.14). It turns out that there are exactly η(a)k such values w =
lp + p − 1 and that explains the upper index η(a)k in the sum in (6.14).

The coefficients
(
a F (η(a)k−h)p+p−1

f (z)
)1/p

form the g × g-matrix of the Cartier

operator with respect to the basis xi−1dx/ya in (7.4). The matrix is called theCartier–
Manin matrix.
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Let �1(X)∗ be the space dual to �1(X). Let

ϕi
a, a = 1, . . . , q − 1, i = 1, . . . , ka, (6.15)

denote the basis of �1(X)∗ dual to the basis (xi−1dx/ya) of �1(X).
The map

C∗ : �1(X)∗ → �1(X)∗

adjoint to the Cartier operator is σ -linear. Following Serre, the matrix of the map C∗
is called the Hasse–Witt matrix with respect to the basis (ϕi

a), see [1]. The entries of
the Hasse–Witt matrix are the polynomials

a F (η(a)k−h)p+p−1
f (z) ∈ Fp[z],

see (6.2).

Remark The map C∗ is identified with the Frobenius map

H1(X ,O(X)) → H1(X ,O(X)),

see, for example, [1].

For each a = 1, . . . , q − 1, consider the columns of the Hasse–Witt matrix, cor-
responding to the basis vectors of �1

η(a)(X)∗ and the rows corresponding to the basis

vectors of �1
a(X)∗. The respective block of the Hasse–Witt matrix of size ak × η(a)k

is denoted by aI. Its entries are denoted by

aIh
f (z) := aF (η(a)k−h)p+p−1

f (z), f = 1, . . . , ak, h = 1, . . . , η(a)k. (6.16)

Lemma 6.1 The entry aIh
f (z) is a homogeneous polynomial in z1, . . . , zn of degree

(η(a)p − a)/q − ( f − 1) + (h − 1)p.

6.5 Cartier Map and Fp-Hypergeometric Solutions

Let W (X) be the n-dimensional K(z)-vector space spanned by the following differ-
ential 1-forms on X :

1

x − zi

dx

y
, i = 1, . . . , n. (6.17)

Notice that these are the differential 1-forms on X , which appear in the construction
of the solutions of the KZ equations over C. Notice also that they are not regular on
X .
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Let W (X)∗ be the space dual to W (X) and ψ j , j = 1, . . . , n, the basis of W (X)∗
dual to the basis (dx/y(x − zi )).

Define the τ -linear Cartier map

Ĉ : W (X) → �1
a1(X) (6.18)

in the standard way. Namely we have

1

x − z j

dx

y
= F(x, z)(a1 p−1)/q

x − z j

dx

ya1 p
= 	p(x, z, M̄)

x − z j

dx

ya1 p

= Pj (z, M̄)
dx

ya1 p
=
∑
i

Pi
j (z, M̄) xi

dx

ya1 p
,

where 	p, Pj , Pi
j see in (5.6), (5.7), (5.8). Define Ĉ by the formula

1

x − z j

dx

y
�→

a1k∑
h=1

(
P(a1k−h)p+p−1
j (z, M̄)

)1/p
xa1k−h dx

ya1
, (6.19)

cf. (6.14).
The map

Ĉ∗ : �1
a1(X)∗ → W (X)∗ (6.20)

adjoint to the Cartier map Ĉ is σ -linear. The matrix of the map Ĉ∗ will be called
the Hasse–Witt matrix with respect to the bases (ϕi

a1) and (ψ j ). The entries of the

Hasse–Witt matrix are the polynomials P(a1k−h)p+p−1
j (z, M̄).

For any m = 1, . . . , a1k, we have

Ĉ∗(ϕm
a1) =

n∑
j=1

P(a1k−m)p+p−1
j (z, M̄) ψ j . (6.21)

This formula shows that the coordinate vector

(P(a1k−m)p+p−1
1 (z, M̄), . . . , P(a1k−m)p+p−1

n (z, M̄)) (6.22)

of Ĉ∗(ϕh
a1) is exactly the Fp-hypergeometric solution Im(z) defined in (5.9).

This construction gives us the following theorem.

Theorem 6.2 The Hasse–Witt matrix of the map Ĉ∗ defines an isomorphism

ι� : �a1(X)∗ → M�, ϕm
a1 �→ Im(z), (6.23)

of the vector space �a1(X)∗ and the moduleM� of Fp-hypergeometric solutions for
� = (1, . . . , 1).
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Proof Clearly the map ι� is an epimorphism. The fact that ι� is an isomorphism
follows from the fact that dimM� = dim�a1(X)∗ = a1k by Lemma 5.1. �


6.6 Fp-Hypergeometric Solutions from Iterates

Consider an iterate of the Cartier map,

C◦ b ◦ Ĉ := C ◦ C · · · ◦ C ◦ Ĉ : W (X) → �1(X).

The image lies in �1
ab (X). Choose any element ϕm

ab of the basis of �1
ab (X)∗ dual to

the basis (xi−1dx/yab ) and express the vector

(C◦ b ◦ Ĉ)∗(ϕm
ab )

in terms of the basis (ψ j ) of W (X)∗. By Theorem 6.2, the coordinates of that vector
is an Fp-hypergeometric solution, namely it is the solution

b Im(z) :=
∑

m1,...,mb

abIm
mb

(
z p

b

1 , . . . , z p
b

n

)
· · · a1Im2

m1

(
z p1 , . . . , z pn

) · Im1(z1, . . . , zn).

(6.24)

Here m = 1, . . . , abk. We will call these Fp-hypergeometric solutions the iterated
Fp-hypergeometric solutions.

We will see these solutions in Sects. 9.5 and 9.6.

7 Cartier Map andModuleM� for More General�

7.1 Curve X̃

Recall that n = qk + 1, see Sect. 5.1. Let �̃ = (�̃1, . . . , �̃ñ) ∈ Z
ñ
>0 be such that

ñ∑
j=1

�̃ j = n, �̃ j < q, j = 1, . . . , ñ.

This means that �̃ is a fusion of � = (1, . . . , 1) ∈ Z
n
>0, see Sect. 3.3.

For j = 1, . . . , ñ, a = 1, . . . , q − 1, denote

e j (a) :=
⌈

�̃ j a + 1

q
− 1

⌉
, e(a) =

ñ∑
j=1

e j (a), (7.1)

where �x� is the smallest integer greater than x or equal to x .
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Consider the field K(z̃), z̃ = (z̃1, . . . , z̃ñ). Consider the algebraic curve X̃ over
K(z̃) defined by the affine equation

yq = F̃(x, z̃) := (x − z̃1)
�̃1(x − z̃2)

�̃2 . . . (x − z̃ñ)
�̃ñ . (7.2)

The space �1(X̃) of regular 1-forms on X̃ is the direct sum

�1(X̃) =
q−1⊕
a=1

�1
a(X̃), (7.3)

where �1
a(X̃) consists of 1-forms

u(x)
dx

ya
, (7.4)

such that u(x) is a polynomial in x of degree < ak, and for any j = 1, . . . , ñ, the
polynomial u(z) has zero at z̃ j of multiplicity at least e j (a).

This fact is checked by writing u(x)dx/ya in local coordinates on X̃ at
∞, z̃1, . . . , z̃ñ . Namely, at x = ∞, we have

x = t−q , y = t−n(1 + O(t)),

where t is a local coordinate. If d = degx u(x), then u(x)dx/ya = −qtan−dq−q−1(1+
O(t))dt . Hence, u(x)dx/ya is regular at infinity if an − dq − q − 1 ≥ 0, which is
equivalent to d < ak. At x = z̃ j , we have

x − z̃ j = tq , y = const t�̃ j (1 + O(t)),

where t is a local coordinate. If d is the multiplicity of u(x) at x = z̃ j , then

u(x)dx/ya = const t−a�̃ j+dq+q−1(1 + O(t))dt . Hence u(x)dx/ya is regular at
x = z̃ j if −a�̃ j + dq + q − 1 ≥ 0, which is equivalent to d ≥ e j (a).

Therefore,

dim�1
a(X̃) = ak − e(a), (7.5)

and �1
a(X̃) consists of elements

ũ(x)
dx

ya

ñ∏
j=1

(x − z̃ j )
e j (a), (7.6)

where ũ(x) is an arbitrary polynomial of degree less than ak − e(a).
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7.2 Rank ofM
�̃

Consider the moduleM�̃ of Fp-hypergeometric solutions of the KZ equations asso-
ciated with �̃.

Theorem 7.1 Let p > n = kq + 1, then the rank d�̃ of M�̃ equals a1k − e(a1).

This theorem is a generalization of Lemma 5.1.

Proof We have d� =
[∑ñ

j=1 M̄ j/p
]
by formula (3.7). Here M̄ j is the minimal

positive integer solution of the congruence

Mj ≡ − �̄ j

q
(mod p). (7.7)

Recall the integer a1 defined by

1 ≤ a1 < q and q | (a1 p − 1). (7.8)

Then

M̃ j = �̃ j
a1 p − 1

q
(7.9)

is another solution of the congruence in (7.7). Denote

M̃ = (M̃1, . . . , M̃ñ). (7.10)

�

Lemma 7.2 We have

M̃ j = M̄ j + e j (a1)p. (7.11)

Proof Clearly, we have M̃ j = M̄ j + lp, where

l =
[

�̃ j (a1 p − 1)/q

p

]
=
[

�̃ j a1
q

− �̃ j

qp

]
.

Since �̃ j < q < p, we have

�̃ j

qp
<

q

qp
<

1

q
.
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Furthermore, since �̃ j , a1 < q and q is prime, we conclude that �̃ j a1/q is not an
integer. These two observations imply that

l =
[

�̃ j a1
q

− �̃ j

qp

]
=
[

�̃ j a1
q

]
.

On the other hand,

e j (a1) =
⌈

�̃ j a1 + 1

q
− 1

⌉
=
⌈

�̃ j a1
q

+ 1

q

⌉
− 1 =

⌈
�̃ j a1
q

⌉
− 1 =

[
�̃ j a1
q

]
,

where the last two equalities follow from the fact that �̃ j a1/q is not an integer. The
lemma is proved. �


To finish the proof of Theorem 7.1, we observe that

d�̃ =
⎡
⎣ ñ∑

j=1

M̄ j

p

⎤
⎦ =

⎡
⎣ ñ∑

j=1

(
�̃ j

(a1 p − 1)/q

p
− e j (a1)

)⎤
⎦

=
[
n
(a1 p − 1)/q

p

]
− e(a1) = a1k − e(a1),

where we use Lemmas 7.2 and 5.1. �


7.3 Cartier Map for X̃

Let W (X̃) be the ñ-dimensional K(z̃)-vector space spanned by the following differ-
ential 1-forms on X̃ :

1

x − z̃i

dx

y
, i = 1, . . . , ñ. (7.12)

Let W (X̃)∗ be the space dual to W (X̃) and ψ j , j = 1, . . . , ñ, be the basis of W (X̃)∗
dual to the basis (dx/y(x − z̃i )).

Define the τ -linear Cartier map Ĉ of the space W (X̃) to the space of differential
1-forms on X̃ in the standard way. Namely we have

1

x − z̃ j

dx

y
= F̃(x, z̃)(a1 p−1)/q

x − z̃ j

dx

ya1 p
= Pj (z̃, M̃)

dx

ya1 p
=
∑
l

Pl
j (z̃, M̃) xl

dx

ya1 p
,

where M̃ , Pj , Pl
j see in (7.10), (5.7), (5.8). Define Ĉ by the formula

1

x − z̃ j

dx

y
�→

a1k∑
h=1

(
P(a1k−h)p+p−1
j (z̃, M̃)

)1/p
xa1k−h dx

ya1
, (7.13)

123

Author's personal copy



A. Slinkin, A. Varchenko

cf. (6.14), (7.13).

Theorem 7.3 For j = 1, . . . , ñ, the 1-form Ĉ(dx/y(x − z̃ j )) lies in �1
a1(X̃), and

hence the Cartier map maps W (X̃) to �1
a1(X̃).

Proof The polynomial

u(x) :=
a1k∑
h=1

(
P(a1k−h)p+p−1
j (z̃, M̃)

)1/p
xa1k−h dx

ya1

has degree < a1k. We need to check that for any i = 1, . . . , ñ, the polynomial u(x)
has zero at x = z̃i of multiplicity at least ei (a1).

Indeed, on the one hand, we have

F̃(x + z̃i , z̃)
(a1 p−1)/q = x M̄i+ei (a1)p

∏
l �=i

(x + z̃i − z̃l)
�̃i (a1 p−1)/q ,

by Lemma 7.2. Hence, in the Taylor expansion

F̃(x + z̃i , z̃)(a1 p−1)/q

x − z̃ j
=:
∑
l

P̃l
j (z̃) x

l , (7.14)

we have

P̃lp+p−1
j (z̃) = 0, l = 0, . . . , ei (a1) − 1. (7.15)

On the other hand, we have

F̃(x + z̃i , z̃)(a1 p−1)/q

x − z̃ j
=
∑
l

Pl
j (z̃, M̃) (x + z̃i )

l . (7.16)

By Lucas’ Theorem 4.1, we have

P̃lp+p−1(z̃) =
∑
h≥0

(
l + h

h

)
z̃(l+h)p
i P(l+h)p+p−1

j (z̃, M̃), (7.17)

for any l. Formulas (7.15) and (7.17) show that the polynomial u(x) has zero at x = z̃i
of multiplicity at least ei (a1). The theorem is proved. �


7.4 Cartier Map and Fp-Hypergeometric Solutions

The map

Ĉ∗ : �1
a(X̃)∗ → W (X̃)∗, (7.18)
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adjoint to the Cartier operator Ĉ is σ -linear.
Elements of �1

a(X̃) have the form

u(x)
dx

ya1
=

a1k−1∑
i=0

ui xi
dx

ya1

with suitable coefficients ui , see Sect. 7.1. For m = 0, . . . , a1k − 1 define an element
ϕm ∈ W (X̃)∗ by the formula

ϕm : u(x)
dx

ya1
�→ um . (7.19)

For any m = 1, . . . , a1k, we have

Ĉ∗(ϕm) =
ñ∑
j=1

Pmp+p−1
j (z̃, M̃) ψ j . (7.20)

This formula shows that the coordinate vector

(Pmp+p−1
1 (z̃, M̃), . . . , Pmp+p−1

ñ (z̃, M̃)) (7.21)

of Ĉ∗(ϕm) is an Fp-hypergeometric solution constructed in Theorem 2.3 and all solu-
tions constructed in Theorem 2.3 are of this form.

This construction gives us the following theorem.

Theorem 7.4 The map Ĉ∗ adjoint to the Cartier map Ĉ : W (X̃) → �1
a1(X̃) defines

an isomorphism

ι�̃ : �a1(X̃)∗ → M�̃, ϕm �→ (Pmp+p−1
1 (z̃, M̃), . . . , Pmp+p−1

ñ (z̃, M̃)),

(7.22)

of the vector space �a1(X̃)∗ and the moduleM�̃ of Fp-hypergeometric solutions for
�̃.

Proof Clearly the map ι� is an epimorphism. The fact that ι� is an isomorphism
follows from the fact that dimM�̃ = dim�a1(X̃)∗ = a1k − e(a1) by Theorem 7.1.

�


8 Hasse–Witt Matrix for Curve Y

In Sect. 6, we introduced the curve X over the fieldK(z) and determined itsHasse–Witt
matrix. In this section, we consider the same curve over a new fieldK(λ), where z and
λ are related by a fractional linear transformation, and calculate its Hasse–Witt matrix.
We will use that new Hasse–Witt matrix to relate the Fp-hypergeometric solutions of
the KZ equations over C and over Fp.
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8.1 Curve Y

Recall that n = qk + 1, see Sect. 5.1. Consider the field K(λ), λ = (λ3, . . . , λn).
Consider the algebraic curve Y over K(λ) defined by the affine equation

yq = G(x, λ) := x(x − 1)(x − λ2) . . . (x − λn). (8.1)

The space �1(Y ) of regular 1-forms on Y is the direct sum �1(Y ) = ⊕q−1
a=1 �1

a(Y ),
where dim �1

a(Y ) = ak, and �1
a(Y ) has basis :

xi−1 dx

ya
, i = 1, . . . , ak. (8.2)

We define the Cartier operator

C : �1(Y ) → �1(Y ) (8.3)

in the sameway as in Sect. 6.4. The operator has block structure. For a = 1, . . . , q−1,
we have C

(
�1

a(Y )
) ⊂ �1

η(a)(Y ).
For f = 1,…, ak, we have

xak− f dx

ya
= xak− f G(x, λ)(η(a)p−a)/q dx

yη(a)p
=
∑
w≥0

aGw
f (λ) xw dx

yη(a)p
, (8.4)

where aGw
f (λ) ∈ Fp[λ]. The Cartier operator is defined by the formula

xak− f dx

ya
�→

η(a)k∑
h=1

(
aG(η(a)k−h)p+p−1

f (λ)
)1/p

xη(a)k−h dx

yη(a)
. (8.5)

Let �1(Y )∗ be the space dual to �1(Y ). Let

ϕi
a, a = 1, . . . , q − 1, i = 1, . . . , ka, (8.6)

denote the basis of �1(Y )∗ dual to the basis (xi−1dx/ya) of �1
a(Y ).

The map

C∗ : �1(Y )∗ → �1(Y )∗

adjoint to the Cartier operator is σ -linear. The matrix of the map C∗ is called the
Hasse–Witt matrixwith respect to the basis (ϕi

a). The entries of the Hasse–Witt matrix

are the polynomials aG(η(a)k−h)p+p−1
f (λ), see (6.2).

For each a = 1, . . . , q − 1, consider the columns of the Hasse–Witt matrix, cor-
responding to the basis vectors of �1

η(a)(Y )∗ and the rows corresponding to the basis
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vectors of �1
a(Y )∗. The respective block of the Hasse–Witt matrix of size ak × η(a)k

is denoted by aK. Its entries are denoted by

aKh
f (z) := aG(η(a)k−h)p+p−1

f (z), f = 1, . . . , ak, h = 1, . . . , η(a)k. (8.7)

8.2 Example

For p = 5, q = 3, n = 4, we have

y3 = x(x − 1)(x − λ3)(x − λ4),

�1(Y ) = �1
1(Y ) ⊕ �1

2(Y ) =
〈
dx

y

〉
⊕
〈
dx

y2
, x

dx

y2

〉
,

dx

y
�→

(
1K1

1

)1/p dx

y2
+
(
1K2

1

)1/p xdx

y2
,

dx

y2
�→

(
2K1

1

)1/p dx

y
,

xdx

y2
�→

(
2K1

2

)1/p dx

y
,

where

1K1
1(λ) = −λ33 − λ34 − 9λ23λ4 − 9λ24λ3 − 9λ23 − 9λ24 − 9λ3 − 9λ4 − 27λ3λ4 − 1,

1K2
1(λ) = 3λ23λ

2
4(λ3λ4 + λ3 + λ4),

2K1
1(λ) = −λ3 − λ4 − 1,

2K1
2(λ) = 1.

The Hasse–Witt matrix is
⎛
⎝ 0 1K1

1(λ) 1K2
1(λ)

2K1
1(λ) 0 0

2K1
2(λ) 0 0

⎞
⎠ .

8.3 Homogeneous Polynomials aJ h
f (z)

Change variables in the polynomial aKh
f (λ),

λ j = z j − z1
z2 − z1

, j = 3, . . . , n,

and multiply the result by (z2 − z1)(η(a)p−a)/q+(h−1)p−( f−1).

Lemma 8.1 The function

aJ h
f (z) := (z2 − z1)

(η(a)p−a)/q+(h−1)p−( f −1) · aKh
f (λ(z)) (8.8)
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is a homogeneous polynomial in z1, . . . , zn of degree (η(a)p − a)/q + (h − 1)p −
( f − 1).

Remark The polynomials aJ h
f (z) are entries of the Hasse–Witt matrix of the curve

defined by equation

yq = x(x − (z2 − z1)) . . . (x − (zn − z1)),

and that curve is isomorphic to the curve with equation

yq = (x − z1)(x − z2) . . . (x − zn),

which is discussed in Sect. 6.

8.4 Formula for asKh
f (λ)

Recall the numbers as introduced in (4.19), the base p expansion

pd − 1

q
= A0 + A1 p + A2 p

2 + · · · + Ad−1 p
d−1

in (4.21), and the relation

As = as+1 p − as
q

, s = 0, . . . , d − 1,

in Lemma 4.9.
For s ∈ Z≥0 , f = 1, . . . , ask, h = 1, . . . , as+1k, define the sets

s�h
f =

{
(�3, . . . , �n) ∈ Z

n−2
≥0 | 0 ≤

n∑
i=3

�i + f − 1 − (h − 1)p ≤ As,

� j ≤ As for j = 3, . . . , n

}
(8.9)

Lemma 8.2 We have

asKh
f (λ) =

∑
(�3,...,�n) ∈ s�h

f

asKh
f ;�3,...,�n (λ), (8.10)

where

asKh
f ;�3,...,�n (λ3, . . . , λn) = (−1)As− f+1+(h−1)p

×
(

As∑n
i=3 �i + f − 1 − (h − 1)p

) n∏
i=3

(
As

�i

)
λ

�3
3 . . . λ�n

n . (8.11)
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In particular, all terms asKh
f ;�3,...,�n (λ3, . . . , λn) are nonzero.

Proof The lemma is proved by straightforward calculation similar to the proof of
Theorem 5.6. �


Similar formulas can be obtained for all entries aKh
f (λ).

9 Comparison of Solutions overC and Fp

In this section, we will

(1) distinguish one holomorphic solution of the KZ equations for � = (1, . . . , 1),
(2) expand it into the Taylor series,
(3) reduce this Taylor expansion modulo p,
(4) observe that the reduction mod p of the Taylor expansion of the distinguished

solution gives all Fp-hypergeometric solutions mod p, and conversely the Fp-
hypergeometric solutions together with matrix coefficients of the Hasse–Witt
matrix determine this Taylor expansion.

9.1 Distinguished Holomorphic Solution

Consider the KZ equations (2.2) for � = (1, . . . , 1) over the field C. We assume that
n = qk + 1 as in Sect. 5.1.

Recall that the solutions have the form I (γ )(z) = (I1(z), . . . , In(z)), where

I j (z) =
∫

γ

1
q
√

(t − z1) . . . (t − zn)

dt

t − z j

and γ is an oriented loop on the complex algebraic curve with equation

yq = (x − z1) . . . (x − zn).

Assume that z3, . . . , zn are closer to z1 than to z2:

∣∣∣∣ z j − z1
z2 − z1

∣∣∣∣ < 1

2
, j = 3, . . . , n.

Choose γ to be the circle
{
t ∈ C | ∣∣ t−z1

z2−z1

∣∣ = 1
2

}
oriented counterclockwise, and

multiply the vector I (z) by the normalization constant (−1)1/q/2π i .
We will describe the normalization procedure of the solution I (z) more precisely

in Sect. 9.2.
We call the solution I (z) the distinguished solution.
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9.2 Rescaling

Change variables, t = (z2 − z1)x + z1, and write

I (z1, . . . , zn) = (z2 − z1)
−1/q−k L(λ3, . . . , λn), (9.1)

where

λ = (λ3, . . . , λn) =
(
z3 − z1
z2 − z1

, . . . ,
zn − z1
z2 − z1

)
,

L(λ) = (L1, . . . , Ln),

L j = (−1)1/q

2π i

∫
|x |=1/2

dx
q
√
x(x − 1)(x − λ3) . . . (x − λn)

1

x − λ j
, (9.2)

and λ1 = 0, λ2 = 1.
The integral L(λ) is well defined at (λ3, . . . , λn) = (0. . . . , 0) and

L j (0, . . . , 0) = (−1)1/q

2π i

∫
|x |=1/2

dx

xk q
√
x − 1

1

x − λ j
.

The q-valued function

(−1)1/q

xk q
√
x − 1

has no monodromy over the circle |x | = 1/2. To fix the value of the integrals in (9.2),
we choose over the circle |x | = 1/2 that branch of the q-valued function

(−1)1/q

q
√
x(x − 1)(x − λ3) . . . (x − λn)

,

which is positive at x = 1/2 and (λ3, . . . , λn) = (0. . . . , 0).
The function L(λ) is holomorphic at the point (λ3, . . . , λn) = (0, . . . , 0). Hence,

L(λ) =
∑

(k3,...,kn)∈Zn−2
≥0

Lk3,...,knλ
k3
3 . . . λknn (9.3)

for suitable complex numbers Lk3,...,kn in a neighborhood of the point (0, . . . , 0).
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9.3 Taylor Expansion of L(λ)

Lemma 9.1 We have

Lk3,...,kn = (−1)k
( −1/q

k3 + · · · + kn + k

) n∏
i=3

(−1/q

ki

)

×
(
1, −q

(
n∑

i=3

ki + k

)
, qk3 + 1, . . . , qkn + 1

)
, (9.4)

where the integer k is defined by the equation n = qk + 1.

Proof Indeed,

L1(λ) =
∞∑

k3,...,kn=0

λ
k3
3 . . . λ

kn
n

k3! . . . kn !
∂k3+···+kn L1

∂λ
k3
3 . . . ∂λ

kn
n

(0)

= (−1)1/q

2π i

∞∑
k3,...,kn=0

λ
k3
3 . . . λknn (−1)

∑n
i=3 ki

n∏
i=3

(−1/q

ki

)

×
∫

|x |=1/2
x−(n−1)/q−∑n

i=3 ki−1(x − 1)−1/qdx

= (−1)k
∞∑

k3,...,kn=0

λ
k3
3 . . . λknn

( −1/q
n∑

i=3
ki + k

) n∏
i=3

(−1/q

ki

)
.

Similarly,

L2(λ) = (−1)k
∞∑

k3,...,kn=0

λ
k3
3 . . . λ

kn
n

( −1/q
n∑

i=3
ki + k

) n∏
i=3

(−1/q

ki

)⎛
⎝−q

⎛
⎝ n∑
i=3

ki + k

⎞
⎠
⎞
⎠

and

L j (λ) = (−1)k
∞∑

k3,...,kn=0

λ
k3
3 . . . λknn

( −1/q∑n
i=3 ki + k

) n∏
i=3

(−1/q

ki

)
(qk j + 1)

for j = 3, . . . , n. The lemma is proved. �


Corollary 9.2 Each coefficient of the series L(λ) is well-defined modulo p.

Proof The corollary follows from Theorem 4.2. �
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9.4 Coefficients Lk3,...,kn NonzeroModulo p

Let (k3, . . . , kn) ∈ Z
n−2
≥0 with

ki = k0i + k1i p + · · · + kbi p
b, 0 ≤ k j

i ≤ p − 1, i = 3, . . . , n,

the base p expansions. Assume that not all numbers kbi , i = 3, . . . , n are equal to zero.
Recall the base p expansion

pd − 1

q
= A0 + A1 p + A2 p

2 + · · · + Ad−1 p
d−1, As = as+1 p − as

q
.

Extend the sequence (As) d-periodically,

As+d := As . (9.5)

Lemma 9.3 We have
∏n

i=3

(−1/q
ki

) �≡ 0 (mod p) if and only if

ksi ≤ As (9.6)

for i = 3, . . . , n, s = 0, . . . , b.

Proof The lemma follows from Theorem 4.2. �

Lemma 9.4 Assume that condition (9.6) holds. Then for s = 0, . . . , b, we have

n∑
i=3

ksi + ask < as+1kp. (9.7)

Proof We have

n∑
i=3

ksi ≤ (n − 2)As = (qk − 1)As = qk
as+1 p − as

q
− As

= as+1kp − ask − As < as+1kp − ask,

where the last inequality follows from the inequality 0 < As , see (4.23). �

Following [17] define the shift coefficients (m0, . . . ,mb+1) as follows.Definem0 =

k + 1. For s = 0 formula (9.7) takes the form

n∑
i=3

k0i + m0 − 1 < a1kp,
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since a0 = 1. Hence there exists a unique integer m1, 1 ≤ m1 ≤ a1k, such that

0 ≤
n∑

i=3

k0i + m0 − 1 − (m1 − 1)p < p.

For s = 1 formula (9.7) takes the form

n∑
i=3

k1i + a1k < a2kp.

By construction m1 ≤ a1k, hence

n∑
i=3

k1i + m1 − 1 < a2kp.

Therefore, there exists a unique integer m2, 1 ≤ m2 ≤ a2k, such that

0 ≤
n∑

i=3

k1i + m1 − 1 − (m2 − 1)p < p,

and so on.
We will obtain ms with 1 ≤ ms ≤ ask for s = 1, . . . , b. We define mb+1 to be the

unique integer such that 1 ≤ mb+1 ≤ ab+1k and

0 ≤
n∑

i=3

kbi + mb − 1 − (mb+1 − 1)p < p.

We say that a tuple (k3, . . . , kn) is admissible with respect to p if the following
inequalities hold

ksi ≤ As, i = 3, . . . , n, s = 0, . . . , b, (9.8)
n∑

i=3

ksi + ms − 1 − (ms+1 − 1)p ≤ As, s = 0, . . . , b, (9.9)

mb+1 − 1 ≤ Ab+1. (9.10)

Lemma 9.5 We have

( −1/q

k3 + · · · + kn + k

)
�≡ 0 (mod p),

if and only if the shift coefficients of the tuple (k3, . . . , kn) satisfy (9.8) and (9.9).
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Proof The p-ary expansion of k3 + · · · + kn + k is

(
n∑

i=3

k0i + m0 − 1 − (m1 − 1)p

)
+
(

n∑
i=3

k1i + m1 − 1 − (m2 − 1)p

)
p + . . .

+
(

n∑
i=3

kbi + mb − 1 − (mb+1 − 1)p

)
pb + (mb+1 − 1)pb+1.

By Theorem 4.2, the following congruence holds modulo p:

( −1/q

k3 + · · · + kn + k

)
≡
(

Ab+1

mb+1 − 1

)
·

b∏
s=0

( As
n∑

i=3
ksi + ms − 1 − (ms+1 − 1)p

)
.

The right-hand side of the congruence above is nonzero, if and only if (9.8) and (9.9)
hold. �


Recall the sets s�h
f defined in (8.9).

Lemma 9.6 The tuple (k3, . . . , kn) is admissible if and only if mb+1 − 1 ≤ Ab+1 and

(ks3, . . . , k
s
n) ∈ s�

ms+1
ms for s = 0, . . . , b.

Theorem 9.7 The following statements hold true:

(i) Lk3,...,kn �≡ 0 (mod p) if and only if the tuple (k3, . . . , kn) is admissible.
(ii) If the tuple (k3, . . . , kn) is admissible, then

Lk3,...,knλ
k3
3 . . . λknn ≡ (−1)(ab+1 pb+1−1)/q+mb+1−1

(
Ab+1

mb+1 − 1

)

×
(

b∏
s=1

asKms+1
ms ;ks3,...,ksn

(
λ
ps

3 , . . . , λ
ps
n

))
Km1

k03 ,...,k
0
n
(λ) (mod p), (9.11)

where asKh
f ;�k(λ) are terms of theHasse–Wittmatrix expansion in (8.10) and Km

�k (λ)

are the terms of the expansion of vector polynomial Km(λ) in (5.22).

Proof We have Lk3,...,kn �≡ 0 (mod p) if and only if each of the binomial coefficients
in (9.4) is not divisible by p. By Lemmas 9.3 and 9.5, this is equivalent to saying that
the tuple (k3, . . . , kn) is admissible. This gives part (i).

By Lemma 9.1, we have

Lk3,...,kn = (−1)k
( −1/q

k3 + · · · + kn + k

) n∏
i=3

(−1/q

ki

)

×
(
1, −q

(
n∑

i=3

ki + k

)
, qk3 + 1, . . . , qkn + 1

)
. (9.12)
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Theorem 4.2 allows us to write the binomial coefficients in formula (9.12) as products
and then formula (9.11) becomes a straightforward corollary of formulas for asKh

f ;�k
and Km

�k .
Notice that calculating the power of -1 on the right-hand side of formula (9.11), we

use the identity

A0 + A1 p + · · · + Ab p
b = a1 p − 1

q
+ a2 p − a1

q
p + · · · + ab+1 p − ab

q
pb = ab+1 p

b+1 − 1

q
.

�


9.5 Decomposition of L(λ) as a Sum of Km(λ)

Define the set

M = {(m0, . . . ,mb+1) ∈ Z
b+2
≥1 | b ∈ Z≥0, m0 = k + 1, 1 ≤ ms ≤ ask

for s = 1, . . . , b, 1 ≤ mb+1 ≤ ab+1k}. (9.13)

For any �m = (m0, . . . ,mb+1) ∈ M , define the n-vector of polynomials in λ :

N �m(λ) = (−1)(ab+1 pb+1−1)/q+mb+1−1
(

Ab+1

mb+1 − 1

)

×
(

b∏
s=1

asKms+1
ms

(
λ
ps

3 , . . . , λ
ps
n

))
Km1(λ3, . . . , λn). (9.14)

Theorem 9.8 We have

L(λ) ≡
∑
�m∈M

N �m(λ) (mod p). (9.15)

Moreover, if a monomial λk33 . . . λ
kn
n enters one of the vector polynomials N �m(λ) with

a nonzero coefficient, then this monomial does not enter with nonzero coefficient any
other vector polynomial N �m′(λ).

Proof The theorem is a straightforward corollary of Theorem 5.6, Lemma 8.2, and
Theorem 9.7. �


For q = 2, this theorem is [17, Corollary 7.4].

9.6 Distinguished Solution overC and Solutions Jm(z) over Fp

Consider the distinguished solution I (z1, . . . , zn) of the KZ equations (2.2) over C,
see (9.1), and the Fp-hypergeometric solutions Jm(z) of the same equations over Fp,
see (5.10).
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We have

I (z1, . . . , zn) = (z2 − z1)
−1/q−k · L(λ3, . . . , λn), (9.16)

Jm(z) = (z2 − z1)
(a1 p−1)/q+(m−1)p−k · Km(λ), (9.17)

aJ h
f (z) = (z2 − z1)

(η(a)p−a)/q+(h−1)p−( f−1) · aKh
f (λ(z)), (9.18)

see (9.1), (5.15), and (8.8).
Expressing L(λ3, . . . , λn), Km(λ), Kh

f (λ(z)) in terms of I (z1, . . . , zn), Jm(z),
aJ h

f (z) from these equations, and using the congruence

L(λ) ≡
∑
�m∈M

N �m(λ) (mod p) (9.19)

of Theorem 9.8, we obtain a relation between the distinguished holomorphic solution
I (z) and the Fp-hypergeometric data Jm(z) and aJ h

f (z).
This relation shows that knowing the distinguished holomorphic solution we may

recover theFp-hypergeometric solutions aswell as the entries of the associatedHasse–
Witt matrix. Conversely, knowing the Fp-hypergeometric solutions and the entries of
the associated Hasse–Witt matrix, we may recover the distinguished holomorphic
solution modulo p.

Remark Notice that summands on the right-hand side of (9.15) correspond to the
iterated Fp-hypergeometric solutions defined in Sect. 6.6. We may interpret formula
(9.15) as a statement that the Taylor expansion of the distinguished holomorphic
solution reduced modulo p is the sum of all iterated Fp-hypergeometric solutions.
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