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Abstract

We consider the KZ differential equations over C in the case, when the hypergeo-
metric solutions are one-dimensional integrals. We also consider the same differential
equations over a finite field ;. We study the space of polynomial solutions of these
differential equations over I ,, constructed in a previous work by Schechtman and the
second author. Using Hasse—Witt matrices, we identify the space of these polynomial
solutions over IF,, with the space dual to a certain subspace of regular differentials
on an associated curve. We also relate these polynomial solutions over F, and the
hypergeometric solutions over C.
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1 Introduction
The KZ equations were discovered by Vadim Knizhnik and Alexander Zamolodchikov

[5] to describe the differential equations for conformal blocks on sphere in the Wess—
Zumino—Witten model of conformal field theory. The hypergeometric solutions of the
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KZ equations were constructed more than 30 years ago, see [10,11]. The polynomial
solutions of the KZ equations over the finite field F, with a prime number p of
elements were constructed recently in [12]. We call these solutions over [, the I -
hypergeometric solutions. The general problem is to find the dimension of the space of
IF ,-hypergeometric solutions and to understand relations between the hypergeometric
solutions of the KZ equations over C and the IF,-hypergeometric solutions.

In this paper, we consider an example of the KZ differential equations, whose
hypergeometric solutions over C are n-vectors of the integrals

Iy (Z15"-7Zn)= BRI I K (1-1)
yX—21)Y yX—Zn Yy

where

yi=—z1)...(x — z) (1.2)

and y is a suitable 1-cycle. It is well known that the space of such n-vectors is n — 1-
dimensional. We consider the same differential KZ equations over the field IF, under
the assumption that g is also a prime number and p > g, p > n,n = kq + 1 for some
positive integer k. We show that the dimension of the space of IF,-hypergeometric
solutions equals only a fraction of n. Namely, let a; be the unique positive integer
suchthat 1 <a; < g —1anda;p = 1 (mod g). This a; is the inverse of p modulo
q. It turns out that the dimension of the space of IF ,-hypergeometric solutions equals
ark. More precisely, the dimension of the space of IF,-hypergeometric solutions can
be defined as follows. Consider the curve X defined by the affine equation (1.2). The
cyclic group Z, of gth roots of unity acts on X by multiplication on the coordinate
y. The space Q!(X) of regular differentials on X splits into eigenspaces of the Zg-

action, Q1(X) = @Z;} Q}l (X), where SZ; (X) consists of differentials of the form
u(x)dx/y“. We show that the dimension of the space of I ,-hypergeometric solutions
equals the dimension of 2 ;1 (X). Moreover, we establish an isomorphism of the space

of IF ,-hypergeometric solutions and the space dual to £ él (X). That isomorphism is
constructed with the help of the map adjoint to the corresponding Cartier map, and
more precisely, with the help of the corresponding Hasse—Witt matrix. This is our first
main result.

We also choose one solution of the KZ equations over C and call it distinguished.
We expand the distinguished solutions into the Taylor series at some point, reduce the
coefficients of the Taylor expansion modulo p and present this reduced Taylor series as
an infinite formal sum of I ,-hypergeometric solutions, with coefficients being matrix
elements of iterates of the associated Hasse—Witt matrix. Moreover, this presentation
allows one to recover a basis of IF,-hypergeometric solutions in terms of the reduced
Taylor expansion. This statement is our second main result.

Our comparison of the reduced Taylor expansion of a solution over C and FF,-
hypergeometric solutions is analogous to Manin’s considerations of the elliptic integral
in his classical paper [7] in 1961, see also “Manin’s Result: The Unity of Mathematics”
in the book [2] by Clemens.
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For g = 2, the results of this paper have been obtained in [17].

The paper is organized as follows. In Sect. 2, we describe the differential KZ
equations considered in this paper. We construct the hypergeometric solutions of these
equations over C and the IF,-hypergeometric solutions. In Sect. 3, we define the
module of IF,,-hypergeometric solutions, show that it is free, and calculate the rank
of the module. In Sect. 3.3, we describe the fusion procedure for modules of [F,-
hypergeometric solutions.

In Sect. 4, we prove a generalization of the classical Lucas theorem, which allows
us to reduce modulo p the coefficient of the Taylor expansion of the distinguished
solution.

In Sect. 5, we discuss different bases in the module of IF,-hypergeometric solutions.
One of the bases naturally appears in the defining construction of I ,-hypergeometric
solutions and the other is convenient to relate the IF ,-hypergeometric solutions to the
Taylor expansion of the distinguished solution.

In Sects. 6 and 7, we study the Cartier map related to our I ,-hypergeometric solu-
tions and prove our first main result by identifying the module of IF ,-hypergeometric
solutions with the space dual to Q}” (X), see Theorems 6.2 and 7.4. In Sect. 8, we
change variables in the Hasse—Witt matrix preparing it for application to the study of
the distinguished solution.

In Sect. 9, we compare the reduced Taylor series of the distinguished solution and
IF,-hypergeometric solutions, see Theorem 9.8.

The authors thank Etingof for useful discussions.

2 KZ Equations
2.1 Description of Equations

Let g be a simple Lie algebra over the field C, Q € g® the Casimir element corre-
sponding to an invariant scalar producton g, Vi, ..., V, finite-dimensional irreducible
g-modules.

The system of KZ equations with parameter k € C* on a tensor ®7_, V; valued
function /(z1, ..., z,) is the system of the differential equations

ar 1 Q@7
3_Zi o K i Zi —Zj

I, i=1,...,n, 2.1)

where Q7)) is the Casimir element acting in the ith and jth factors, see [3,5]. The
KZ differential equations commute with the action of g on ®’_, V;, in particular, they
preserve the subspaces of singular vectors of a given weight.

In [10,11], the KZ equations restricted to the subspace of singular vectors of a
given weight were identified with a suitable Gauss—Manin differential equations and
the corresponding solutions of the KZ equations were presented as multidimensional
hypergeometric integrals.
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Let p be a prime number and I, the field with p elements. Let g” be the same Lie
algebra considered over IF,. Let vP, ..., VP bethe gP-modules which are reductions
modulo p of Vi,...,V,, respectively. If « is an integer and p large enough with
respect to «, then one can look for solutions /(zy, ..., z,) of the KZ equations in

Vv @ Fplz1, ..., za]. Such solutions were constructed in [12].

In this paper, we address two questions:

A. What is the number of independent solutions constructed in [12] for a given F,?
B. How are those solutions related to the solutions over C that are given by hyperge-
ometric integrals?

We answer these questions in an example in which the hypergeometric solutions
are presented by one-dimensional integrals. The case of hyperelliptic integrals was
considered in [17]. The object of our study is the following joint system of differential
and algebraic equations.

2.1.1 Assumptions in This Paper

We fix prime numbers p, q, p > q, a positive integer n, avector A = (A1, ..., A,) €
7L, suchthat A; < q foralli =1,...,n
For z = (z1,...,2,), we study the column vectors 1(z) = (I1(2), ..., 1,(2))

satisfying the system of differential and algebraic linear equations:

al
- = —Z =1,....n, Mh@Q)+ ---+A,1,(z) =0, 2.2)
0z; Zi —z,
where
i .j
i —=Aj e A
$j = : : : 2.3)
Jer A —A;

and all other entries are zero.

In this paper, this joint system of differential and algebraic equations will be called
the KZ differential equations.

We will construct solutions of these KZ differential equations over C and over I,
and compare the properties of solutions.

Remark The system of equations (2.2) is the system of the true KZ differential equa-
tions (2.1) with parameter k = ¢, associated with the Lie algebra s[> and the subspace
of singular vectors of weight ) "7, A; —2 of the tensor product Va, ®- - -®@ V4, where
Va, is the irreducible A; 4 1-dimensional sl>-module, up to a gauge transformation,
see this example in [14, Section 1.1].
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Notice also that the assumption A; < ¢ fori = 1,...,n appears when one is
interested in differential equations for sl conformal blocks with central charge g — 2.

2.2 Solutions over C

Consider the master function
n
Ot 21, rzn) = | [ = za) Mo/ (2.4)
a=1

and the n-vector of hypergeometric integrals

17@) = (1), ..., (), 2.5)
where
dt
Ij=/d>(t,zl,...,zn) , j=1,...,n. (2.6)
r—2zj
The integrals /;, j = 1, ..., n are over an element y of the first homology group of

the algebraic curve with affine equation
Y= —z™ =)t

Starting from such y, chosen for given {zy, ..., z,}, the vector / 2 (z) can be analyt-
ically continued as a multivalued holomorphic function of z to the complement in C”
to the union of the diagonal hyperplanes z; = z;.

Theorem 2.1 The vector 17 (z) satisfies the KZ differential equations (2.2).

Theorem 2.1 is a classical statement. Much more general algebraic and differen-
tial equations satisfied by analogous multidimensional hypergeometric integrals were
considered in [10,11]. Theorem 2.1 is discussed as an example in [14, Section 1.1].

Theorem 2.2 [13, Formula (1.3)] All solutions of equations (2.2) have this form,
namely the complex vector space of solutions of the form (2.5)—(2.6) is n — 1-
dimensional.

This theorem follows from the determinant formula for multidimensional hyperge-
ometric integrals in [13], in particular, from [13, Formula (1.3)].

2.3 Solutions over I,

Polynomial solutions of system (2.2), considered over the field IF,, were constructed
in [12].
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Fori =1, ..., n, choose positive integers M; such that

A
Mi=—"1 (mod p), 2.7)
q

that is, project A;, g to IF, calculate —% in F,, and then choose positive integers
M; satisfying these equations. Denote M = (M, ..., M,). Consider the master
polynomial

n

@, (2, M) = [ — 2™, (2.8)

i=1

and the Taylor expansion with respect to the variable ¢ of the vector of polynomials

r—2zi

1 1 . .
P(t,z, M) =®,(t,z,. M AU = P (z, M)t
(1,2, M) 1= @ )( t_Zn) Z (2, M)

where P! (z, M) are n-vectors of polynomials in z1, ..., z, with coefficients in IF,.

Theorem 2.3 [12, Theorem 1.2] For any positive integer I, the vector of polynomials
P'P=1(z, M) satisfies the KZ differential equations (2.2).

Theorem 2.3 is a particular case of [12, Theorem 2.4]. Cf. Theorem 2.3 in [4]. See
also [15-17].

The solutions P?~!(z, M) given by this construction will be called the F p-
hypergeometric solutions of the KZ differential equations (2.2).

3 Module of Fp-Hypergeometric Solutions
3.1 Definition of the Module

Denote Fp[zP] :=TF p[zf . ..., 7. The set of all polynomial solutions of (2.2) with
coefficients in IF , is a module over the ring IF , [z ] since equations (2.2) are linear and
Bzip

i O0inIFp(z] foralli, j.

The [F,-hypergeometric solutions P'P=1(z, M) of equations (2.2) depend on the
choice of the positive integers M = (M, ..., M) in congruences (2.7). Given M
satisfying (2.7), denote by

My =13 a@PP @ M) | a) eIF,,[zP]} 3.1
l

the IF,[z”]-module generated by the solutions PIP=l(z, M).
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Let M = (My,...,M,) and M’ = (M}, ..., M)) be two vectors of positive
integers, each satisfying congruences (2.7). We say that M" > M if M| > M; for
i = 1,...,n and there exists i such that Mi’ > M;.

Assume that M’ > M. Then Mi’ = M; + pN; for some N; € Z>¢. We have

P(t,z, M) = (]‘[(x —~ z,-)PNf> P(t,z, M) = (]‘[(ﬂ) — z{’)"’f) P(t,z, M).

i=1 i=1
(3.2)

This identity defines an embedding of modules,
oMM My > My (3.3)

Namely, formula (3.2) allows us to present any solution plr-1 (z, M), coming from
the Taylor expansion of the left-hand side, as a linear combination of the solutions
PP=1(z, M), coming from the Taylor expansion of the right-hand side, with coeffi-
cients in IF ,[z7].

Clearly, if M" > M’ and M’ > M, then M" > M and

(PM’,M (PM”,M’ = wM”,M' (34)

Theorem 3.1 Forany M' > M, the embedding @y v - My < Moy is an isomor-
phism.

Proof Let v" and v be the greatest integers such that v'p — 1 < deg, P (¢, z, M') and
vp — 1 < deg, P(t, z, M). Comparing the coefficients in (3.2), we observe that

PUP=l(z, M) 10 - 0] [PP 'z M)
_|* "L R : 7 3.5)
P(v/_v—‘,-l)p—l(z’ M/) K e * 1 Pp_l(z, M)

where all the diagonal entries are 1s and stars denote some polynomials in F ,[z”].
Hence, this matrix is invertible and therefore M ; C M . The theorem is proved. O

B The set of tup_les M = (My,..., My) satisfying (2.7) has the minimal element
M = (M, ..., M,), where M; is the minimal positive integer satisfying (2.7). Hence,
forany M = (My, ..., M) satisfying (2.7), we have an isomorphism

(pM,M ZMM;)MM. (3.6)
The module M ;, which does not depend on the choice of M, will be called the

module of ¥ ,-hypergeometric solutions and denoted by M 5, where A can be seen in
Sect. 2.1.1.
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3.2 The Module Is Free

Recall A = (Ay,...,An) € Z", with A; < g fori = 1,...,n. Recall M =
(My, ..., M,) defined in Sect. 3.1. Denote

= [Z Mi/p} : 3.7
i=1

the integer part of the number ) 7_, M;/p.

Consider the module M ; spanned over F,[z”] by the solutions P'P~!(z, M),
corresponding to M. The range for the index [ is defined by the inequalities 0 <
Ip—1<3"_ | M; — 1. This means that/ = 1, ..., dx.

Theorem 3.2 The solutions Pl” Yz, M), 1 =1, ...,dy arelinearly independent over
the ring IF ,[2"], that is, if Zl | c1(z) PP=1(z, M) = 0 for some c;(z) € Fp[z”], then
c1(z) =0 foralll.

Corollary 3.3 The module M of I ,-hypergeometric solutions is free of rank d .

For g = 2, this theorem is Theorem 3.1 in [17]. The proof of Theorem 3.2 below
is the same as the proof of [17, Theorem 3.1].

Proof Forl =1, ..., dp, the coordinates of the vector
PPz, M) = (PP, M), ..., PPz, M)
are homogeneous polynomials in zj, . .., z, of degree Y\, M; —Ip and

Ip—1 - Vi
P] (z, M) = Z jll ezl...zn",

where the sum is over the elements of the set

n n
rh={e, ... zn)ez’é(ﬂZzS=ZMﬁzp,05£j5Mj71, 0<t <M fori;éj]

s=1

- st (M= 1
Pt = oo (,71)

M:
(}) e
i#j N
Notice that all coefficients P p ¢, are nonzero. Hence, each solution P'?~1(z, M)
is nonzero.

We show that the first coordinates Pllp _l(z, ]l71), l =1,...,dp are linearly inde-
pendent over the ring F,[z”].
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Let I—‘ll C I, be the image of the set Fll under the natural projection Z" — F7.
The points of 1;{ are in bijective correspondence with the points of F{ since M; < p

for all i. Any two sets I_‘q and 1:4/ do not intersect, if [ # [’
For any / and any nonzero polynomial ¢;(z) € IF,[z”], consider the nonzero polyno-

mial cl(z)Pllp_l(z, M) € Fplzi, ..., zs] and the set Fll,c, of vectors £ € Z" such that

the monomial zfl .. .zﬁ" enters ¢ (z)Pllp - (z, M) with nonzero coefficient. Then the
natural projection of Fll o 0 IFZ coincides with Fll. Hence, the polynomials Pll (z, M),
I =1,...,d are linearly independent over the ring I ,[z”]. O

3.3 Fusion of IFp-Hypergeometric Solutions

Consider solutions 1 (zy, ..., z,) of the KZ differential equations over C with values
in some tensor product Vi ® --- ® V,,. Assume that z1, ..., z, tend to some limit
Z1, - -+, Zjz, in which some groups of the points zy, ..., z, collide. It is well known
that under this limit the leading term of asymptotics of solutions satisfies the KZ
equations with respect to z1, . .., z;; with values in the tensor product ‘71 R ® \75,
where each ‘7]- is the tensor product of some of Vi, ..., V.

In this section, we show that the IF ,-hypergeometric solutions of the KZ equations
have a similar functorial property but even simpler.

Namely, let:/\ = (1}1,...,An) € Z%, with A; < g fori = 1,...,n, and
A=(A1,...,Ap) eZ’;OwithAj <gforj=1,...,n.

Assume that there is a partition {1, ...,n} = I} U--- U [; such that
ZA,-:Z\,», ji=1,..., 7. (3.8)
ielj

We say that A is a fusion of A.
Recall the modules of [F,-hypergeometric solutions M and M ;. We define an
epimorphism of modules,

Vai @ Ma > My, (3.9)

as follows.
Let M = (My, ..., M,) be a~vect0r~0f positiye integers such that M; = —A;/q
mod p fori = 1,...,n. Define M = (M, ..., Mj) by the formula

A7Ij=ZMi, j=1,...,%.

lE]j

ThenMj = —[\j/q (mod p)forj =1,...,n.
Consider the module M, generated by the solutions (P?~!(z, M));, which are
n-vectors of polynomials in zy, ..., z,. Consider the module M 7 generated by the

solutions (P'P~1(z, M));, which are /i-vectors of polynomials in Z1, . . . , Z;.
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Define the module homomorphism
I/IA,;\ :MA :MM —> MM :M[\’

as the map which sends a generator PIP=1(z, M) to the generator PIP=1(z, M).

On the level of coordinates of these vectors, the vectors P/P~1 (z, M) and
P!P=1(Z, M) have the following relation. Choose a coordinate Pf,p - (z, M) of
P'P=1(z, M), replace in it every z; with Z; j if i € I}, then the resulting polynomial

PP71(2(3), M) equals the bth coordinate P, =1z M) of PP=1(, M) ifa € I

It is easy to see that the homomorph1sm Mp — My does not depend of the
choice of M solving congruences (2.7).

Also it is easy to see that if A is a fusion of A and A is a fusion of A, then A is a
fusion of A and

VEAAYAR = YAk (3.10)

4 Binomial Coefficients Modulo p
4.1 Lucas’Theorem

Theorem 4.1 [6] For nonnegative integers m and n and a prime p, the following
congruence relation holds:

k

(0)-11(e) o

i=0 V!

where m = my p* +mp_1p* '+ dmip+moandn = npF 1 pF 4+
n1p +ng are the base p expansions of m and n, respectively. This uses the convention

that (') = 0ifn < m.

On Lucas’ theorem see, for example, [8].

4.2 Factorization of (':n/ ) Modulo p

In the next sections, we will use the binomial coefficients (_rln/ q) modulo p. Recall
that p > ¢ are prime numbers. Denote by d the order of p modulo ¢, that is the least
integer k such that p¥ = 1 (mod ¢).
Let
d

p—1 d—1

= Ao+ Aip+Ap? +-+ Agrp 4.2

be the base p expansion of (p¢ — 1)/q.
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Theorem 4.2 Let m be a positive integer with the base p expansion given by

b—1

m=mpp” +mp_1p" + -+ mip+mg. (4.3)

Then the binomial coefficient (7:;1/ q) is a well-defined modulo p and the following
congruence holds:

i) s

j=0i=0
The case g = 2 was considered in [17].

Proof The proof of this theorem is based on Lucas’ theorem and the following three
lemmas. =

Lemma 4.3 For any positive integer ¢

1 c—1 /d—1 . .
= Z (Z Aipl> pld. (4.5)
i=0

j=0

Proof We have

o1 _ @t - 1t p ) (T
P _ p p AL,

q q

j=0 \i=0

where we use (4.2) to obtain the last equality. O

Lemma 4.4 Let m be a positive integer with the base p expansion given by (4.3). If ¢
is a positive integer such that dc > b, then

de c—1d—1
((p 1)/q> T111 ( . +> (mod p). (4.6)
j+i

j=0i=0

Proof The lemma follows from Theorem 4.1 and Lemma 4.3. O

Given a prime p, define the p-adic norm on Q as follows. Any nonzero rational
number x can be represented uniquely by x = p®(r/s), where r and s are integers
not divisible by p. Set |x|, = p~t. Also define the p-adic value [0, = 0. We call
pt(r/s) the p-reduced presentation of x.

Lemma 4.5 Letm be a positive integer with the base p expansion given by (4.3). Then
the following statements hold.

(1) The binomial coefficient (71/‘1) is well-defined modulo p.

m
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(i) For any positive integer ¢ such that dc > b + 1, we have

_ de _
( l/q) _ <(p 1)/q> (mod p). 4.7)

m m

Proof We have

1 +1
( /") (~1/q)" H T 45

We also have

m—1

(p?c—1)/q ny 96+ 1-p% mT gt +1
( ) (—1/q) 1'[ L’+l =(-1/g9) 1'[4,+1 (49

_ ,dc
Foreachﬁ:O,...,m—lwehave|%

qpb+l < pb+2 < pdc

By the same reasoning for every £ the power of p in the p-reduced presentation of

the number 2~ 77 1s greater than the power of p in the p-reduced presentation of qull

This observation implies that on the right-hand side of (4.9), the power of p in the
p-reduced presentation of terms denoted by ...  is greater than the corresponding
power in the p-reduced presentation of (—1/ q)’” ]_[2" 01 qu] Since the left-hand side
of (4.9) is an integer, we conclude that in the p-reduced presentation of the binomial
coefficient (~'/9) the power of p is non-negative, i.e. (/%) is well-defined modulo

p. This gives part (i). Moreover, the following congruence holds:

_ | gqt+1

» since g + 1 < gm <

p

de _q m_l gl +1
<(P . )/q> = (—1/q)" 7 —:_1 (mod p). (4.10)
£=0

Formulas (4.8) and (4.10) give (4.7).

Proof Theorem 4.2 follows from Lemmas 4.4 and 4.5. O

4.3 Factorization of (”,{,") modulo p

Here are some generalizations of Theorem 4.2. Let p be prime. Let u, v be relatively
prime integers with 0 < u, v < p.
Assume that there exists a positive integer £ such that

pl4+u =0 (mod v). 4.11)
Let

¢
+u _
P =Bo+ Bip+Bp*+---+ B pt!

(4.12)
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be the base p expansion of (p* + u)/v.
Let ¢ (v) be the number of positive divisors of v and

prW —1

— = Co+Cip+Cap* + -+ Cpy—1 ! (4.13)

the base p expansion of (p#*® — 1)/v.
Let m be a positive integer with the base p expansion

1

m=mpp” +mp_1p"" "+ +mip + mo.

Theorem 4.6 Under these assumptions the binomial coefficient ("r{lv) is well-defined
modulo p and the following congruence holds:

(un/:)E{ﬁ (;il)} 1_[‘/’@11[—1( ¢ ) (mod p).  (4.14)

Mo s .
i=0 j>0 i=0 O+ jp(v)+i

Proof The proof of Theorem 4.6 is parallel to the proof of Theorem 4.2 and follows
from the analysis of the base p expansion of the integers of the form

PO Ly phe) . P+ u

v v v
for k € Z>y. O
In the same way, we prove the following statement.

Theorem 4.7 Let p be a prime. Let u, v be integers such that p,u, v are pairwise
relatively prime. Let

L A+ Aip+ A ..., 0<A <p forieZs (4.15)
v

be the p-adic presentation of u /v. Let m be a positive integer with the base p expansion

1

m=mpp” +mp_1p" + -+ mip+mo.

Then
u/v _ A;
( . ) = ]1 <m) (mod p). (4.16)
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4.4 Map n

Recall that p and ¢ are prime numbers, p > ¢, and d the order of p modulo g. Define
the map

n:{,....g—1} - {l,...,q—1}, a — n(a), 4.17)
the division by p modulo g. More precisely, n(a) is defined by the conditions
n@p =a (mod q), 1=<n(a)<gq. (4.18)
Denote n®) = nono---on the sthiteration of 7. We have 9 = ) Define
as = n(1). (4.19)
We have a5+4 = ag and ap = 1.
The integer a; will play a special role in the next sections. It is the unique integer
such that
1<a;<q and q|(aip—1). (4.20)

Example 4.8 Let p =5, g = 3. The order d of 5 modulo 3 is 2. The map n : {1, 2} —
{2, 1} is the transposition. We have ag = 1, a1 =2, a2 = 1.

4.5 Formulas for A

Recall the base p expansion

-1
P - — Ao+ Aip+Ap 4+ Agiph 4.21)
Lemma 4.9 The integers Ag are given by the formula
A= BHP TS oo d—1. (4.22)
q
Moreover, Ay > O0fors =0,...,d — 1.
Proof We have
0< BHP—ds p (4.23)
q

for every s. Indeed, since 1 <a; < g — 1 and p > ¢, we have

P — dg ds+1p — dg as+1p
0< < < < p.

q q q
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We show that (4.21) holds for A; given by (4.22). Indeed

pH-+
q q q

:pd—l.

- ajp—1 ap—a P—Ad—1 4—
q(Ag+ Arp + -+ Ag_1 p? 1):4(7+7 £tdl 1)

5 Solutions fortheCase A; =1,i=1,...,n

In Sects. 5, 6, and 9, we study the IF,-hypergeometric solutions of the KZ equations
inthecase A; =1,i=1,...,n.

5.1 Basis of IFp-Hypergeometric Solutions
Recall that p, g are prime numbers, p > ¢. Assume that
n=kqg+1 (5.1)
for some positive integer k and
A=(,...,1)eZ". (5.2)
The minimal positive solution of the system of the congruences
Mi=-1/q (mod p), i=1,...,n, (5.3)
is the vector
M= (Mi,....My) = ((@p=1/q,....(@ap—1/q), (54)
where a; is introduced in (4.20).
Recall that the rank of the module M 5 of IF,-hypergeometric solutions in this case
equals
dn = [n(arp — 1/qpl, (5.5

see Corollary 3.3.
Lemma5.1 If p > n, then dy = ak.
Proof We have

-1
dAz[nalp }:[ﬂ_i]:[kal+ﬂ_i].
qp q qp q rq

Notice that 1 /g <aj/q < 1 andn/qp < 1/q. Hence, dy = ak. O
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The master polynomial is

®,(x, 2, M) = [ [x — zp)@r=V/a. (5.6)

i=1

The n-vector of polynomials P (x, z, M ) is

. _ _ - Dp(x,z, M)
P(-x’za M) = (Pl(va»M)»~--aPn(va»M))a P](va’M) = x—a
—z
5.7
with the Taylor expansion
- n(alp_l)/q_l . - . . - . - . -
P(x,z,M)= Y Pl Mx', Pz M) =P M),... Pz M),
i=0
(5.8)

The coefficients Pi(z, M) with i = Ip — 1 are solutions of (2.2). There are ka; of
them. They are linearly independent by Theorem 3.2. Denote them

") ="z, ..., "), 1"(z):= P@k=mprtr=l pp), (5.9)

form =1, ..., ark. The coordinates of the n-vector of polynomials 1™ (z) are homo-
geneous polynomials in z of degree

(aip—1)/q+ (m —1p —k.
For example, I! = P“*P=1(z, M) is a homogeneous polynomial in z of degree

(aip — 1)/q — k, and 19" = PP~1(z, M) is a homogeneous polynomial in z of
degree (a1p — 1)/q — k + (a1k — 1) p.

5.2 Change of the Basis of M 5

For future use, we introduce a new basis of M. Form =1, ..., aik, define
" artk —m—1+1
J") = 21m+1—1(z)zf‘””< : ) (5.10)
— artk —m
that is,
T'(2) =1'Q).
k—1
J2(2) = ]! p (4 12(2).
(2) (2) 7 ak — 2 +1°(2)
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k—1 ark —2
J3 ) = 11 2p aj 12 P 13 ,
(2) (2) 7 (alk _3 +17(2) 73 ak -3 +1°(2)

and so on. The coordinates of the n-vector of polynomials J™(z) are homogeneous
polynomials in z of degree

(@ip—1/p+m—"1p—k

Lemma 5.2 The n-vectors of polynomials J™ (z) belong to the module My of F -
hypergeometric solutions and form a basis of M.

The solutions J™(z) of the KZ equations (2.2) can be defined as coefficients of
the Taylor expansion of a suitable n-vector of polynomials similar to the definition of
solutions 1 (z) in (5.9).

Namely, change x to x 4 z1 in (5.6) to obtain the polynomial

n
d,(x,z) = x@p=D/a l_[(x +z1—z) PV e Ty, 2] (5.11)
i=2

Consider the associated n-vector of polynomials

- ~ 1 1 1
Px,2) =®,(x,2) | —, e 5.12
(x:2) p( )<x x+z21—22 x+Z1—zn) S
and its Taylor expansion
; n(ap-/g=1 L
Px.2)= > P@x', P)eF,kl" (5.13)
i=0
Lemmab5.3 [17, Lemma 5.2] Form =1, ..., aik, we have
J"(z) = Plkmmrtr=i), (5.14)
5.3 Change of Variables in J7 (2)
Lemma5.4 Form = 1,...,ak, the homogeneous polynomial J™(z) can be written
as a homogeneous polynomial in variables zo — z1, 23 — 21, ..., Zn — 21, See (5.11)

and (5.12).

Hence, we may pull out from the polynomial J™(z) the factor
(z2 — z1)@P=D/a+m=Dp=k and present J™ (z) in the form

JM(2) = (z — zp) P~ D/a+m=Dp=k gm ) (5.15)
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where A := (A3, ..., An),

A= AT o3, (5.16)
72 — 21

and K™ (1) is a suitable n-vector of polynomials in X.
Another way to define the n-vector K™ () is as follows.
Consider the polynomial

n
&)p(X, 2) = x@r=D/a _ 1)((1117*1)/11 H(x —ap)@r=bla ¢ Fplx, A]

i=3
(5.17)
and the associated n-vector of polynomials
Px,n) = d,0x, 0) 1 ! ! (5.18)
X,A) = X, -, , yees .
P x x—1 x—2A3 X — Ay
with Taylor expansion
A map—h/g=1 _ N
P(x,)) = Z P'(M)x', P'(A) e Fpla]". (5.19)
i=0
Lemmab5.5 Form =1, ..., a1k, we have
K™ () = pl@k=mptr=l(y), (5.20)

cf. formulas (5.9) and (5.14).

5.4 Formula for K™ (1)

Form =1, ..., a1k, denote

n
A" =3, ) €ZEF10<Y Litk—(m—1)p < (@p—1)/q.

i=3
¢ <(aip—1)/q forj=3,...,n}. (5.21)
Theorem 5.6 Form =1, ..., a1k, we have
K™(\) = Z K (), (5.22)
“3,..., Ly)EA™
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where
-1
K}, () = (=plap=Diatm=Dp= k( (ap—1/q )
” ZE +k—(m—1)p
i=3
n
1
X l_[<(a1p£. )/q>k )fn (1 —q (ZE +k> qlz+1,. qgn+1>
i=3 i =

(5.23)

modulo p. In particular, all coefficients K Z’; ..t (A) are nonzero.

Proof We have

K"() = (_1)(a1p71)/q+(m71)p7kz ((alpz— 1)/4) <(a1pe— 1)/Q>k§3 Al
A 2 n

where
A={(,..., L) GZ”OI \ ZL’ (arp—1/g+m—-1)p—k, ¢ =< (alp—l)/q]~

Expressing ¢, from the conditions defining A, we write

K"(L) = (— 1) @p=D/g+m=1)p—k

(@rp — 1)/q
XZ( St — m—l)p+k>

(aip—1/q\,¢ 0
x]_[( 0 AT LA

i=3

Similarly, we have

Ky' () = (_1)(‘11P—1)/Q+(m—1)p—kz((alp - D/q - 1>

A b

n
(arip—="D/q\, ¢ A
xH( 0 A LA

i=3

where

n
= {wz,...,en) eZ5 | Y i = (@p—1/g+m—1)p—k,
i=2

< (aip—1)/q—1and ¢ < (a1p—1)/q for i >2
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Expressing £, from the conditions defining A’, we write

KJ' (L) = (=) @p=D/g+m=1p—k

—1 -1 n _
XZ(H (aip—1/q )1—[<(a117€‘ 1)/51))43.”)4,,
A Zﬁ,—(m—l)p-l—k—l i=3 !
i=3

_ (_1y@p-Dfgron-tp—k Lizsli = (n—Dptk
(aip—1/q
(aip—1) n _
xZ(n ap /q )1—[<(a1]7£. 1)/q>)»§3...)»ﬁ".
i=3 L

A ti—(m—Dp+k
i=3

For j =3, ..., n, we have

(arp—1/g—1\ 14 ((@ap—1/q\. ¢ ¢
K;"(A>=(—1><””"”/q+(m“)”"‘§ﬁ( . )H( . )'\33~-~An"’
A J 1:2 !

i#]j

where

n
A= {(@,...,en) eZ%' | Y ti=(aip—D/q+m—1p—k
i=2

tj < (aip—1)/g—1and {; < (a1p—1)/q for i # j}.
Expressing £, from the conditions defining A”, we write

m — (—n@rp—D/q+m—-1)p—k
K *) = (=D

(arp—1D/q (arp—1)/g—1
(3 )

am N b= (m—=1p+k J
i=3

.

<(a1p— 1)/q)kg3 b
2 :

Yl

3
J

— (_p@p=/g+m—1p—k (1 _ l)
aip—1

(a1p—1/q > u ((alp—l)/Q> ¢ e
« R A A
§<.Z34—(m—1>p+k 1:[3 & T

The congruences

Yigli—(m—Dp+k =—q (Zﬁj +k> (mod p),
=3

(aip—1)/q
tjq
l————=¢¢;+1 (mod p)
aip—1
allow us to rewrite K ;” (A), j =2,...,n, in the form indicated in the theorem.

m}
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5.5 Example

For p =5, q = 3, n = 4, the module M of IF,-hypergeometric solutions is two-
dimensional and is generated by solutions J! and J? which are 4-vectors, whose
coefficients are homogeneous polynomials in z1, z2, z3, z4 of degrees 2 and 7, respec-

tively.
The corresponding 4-vectors K ' and K2 are given by the formulas

K'Os,00) = 3,1,3,3) + 4, 1, 1, Hrs + (4, 1,4, 1)a
+(3.3, 1,3)A3 + (4,4, 1, DAshg + (3,3.3, 1A,
K*(A3.24) = (2,0,0,3)A324 + (1,0,2,2)A32F + (2.0, 3, 0)A3)3
+(1,2,0,2)2322 + (1,2,2, 004343 + (2, 3,0, 0)A3A3.
6 Cartier Map
6.1 Matrices and Semilinear Algebra, [1]
6.1.1 Bases, Matrices, and Linear Operators
Let W be a vector space over a field K with basis C = {w1, ..., w,}. Any w € W is
expressibleas w = Y ¢;w;. Let [w]¢ denote the column vector [w]e = (c1, ..., el
Let V be a vector space with basis B = {vy,...,v,},and f : W — V a linear

map. The matrix of f relative to the bases C and Bis [ f1g—c = (a;j) € Mat,,;»,(K),
where f(w;) = Y /" aj;v;. Matrix multiplication gives

Lf (w)ls = [flB—c [wlc-
Let f : V — V be an endomorphism, and 5 and D two bases for V. Then
[flpp = lidlpB [f13<p lid]zDp.
If S = [id]gp, then

[flpep =S [flg—5S.

6.1.2 Semilinear Algebra

Let 7 be an automorphism of K and o = t~!. Then f : V — V is called t-linear, if
fora e Kandv e V,

flav) =a” f(v),
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where a® = 7(a). Let f(vj) = 3 ; a;jvi. ifv =3, cjv;, then
0= 3 e = X0 = 5 (Lo )
J J j i
and so
[f(W]s = [fls5 [V]z,

where BT is the matrix obtained by applying t to each entry of B.
Change of basis is accomplished with t-twisted conjugacy:

[f1pep = lidlpp [flp [i[dlz. p=5S"[flgs 5"

The iterates of f are represented by

2 r—1

T=1AUA LA T (6.1)

6.1.3 Adjoint Map

Let V* be the dual vector space of V and (-, -)y : V x V* — K the natural pairing,
linear with respect to each argument. Similarly, let W* be the dual vector space of W
and (-, )w : W x W* — K the natural pairing.

Let f : W — V be t-linear. Define the adjoint map f* : V¥ — W* by the
formula

W, ff@Hw = (f(w), )y, weW, geV*
The map f* is o-linear, f*(ap) = a’ f*(¢) for a € K. Indeed,
W, fFap)w = (f(w), ap)y = a® (f(w). 9)y = a® (w, f*(eHw = (w. a’ f*(@)w.

Let C = {wi,...,w,} be a basis of W and B = {vi,..., v,} a basis of V. Let
C* ={¢y, ..., @y} be the dual basis of W* and B* = {1, ..., ¥,,} the dual basis of
V*
If [ f1g—c = (aij), then
[ lerens = (f15o)" 6.2)
6.2 Field K(u)

In this paper, we consider some particular fields K(u).
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Letu = (uy,...,u,) be variables. Let KK(«) be the field of rational functions in
variables

Y i1, r, s €T, (6.3)

u; s

with coefficients in IF,,. Thus, an element of K(u) is the ratio of two polynomials in

variables ull /7" with coefficients in F -
For any f(ui,...,u,) € K(u), we have
Fan ' = fay ), (6.4)
cf. [9].

The field K(u) has the Frobenius automorphism

o: Kuw) — Kw), fr— fw?, (6.5)
and its inverse

T K@) — Kw), fu)r— fuw)'?r. (6.6)
6.3 Curve X
Recall that n = gk + 1, see Sect. 5.1. Consider the field K(z),z = (z1,..., Zn)-

Consider the algebraic curve X over K(z) defined by the affine equation
Y =F@&,2)=x—-zD0x—22)...(x —z). (6.7)

The curve has genus

-1
¢ = k%. (6.8)
The space Q! (X) of regular 1-forms on X is the direct sum
q—1
Q'(X) = P uX). (6.9)
a=1
where dim Q}, (X) = ak, and Qé (X) has basis :
_1d
M= ak. (6.10)
ya
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6.4 Cartier Operator

Following [1], we introduce the Cartier operator

Cc: Q'X) - Q'X), (6.11)
which is t-linear. It has block structure. Fora =1, ..., g — 1, we have
c (Q}Z(X)) c Q. (6.12)

where n : {1,...,q — 1} = {1, ..., g — 1} is the division by p modulo ¢ defined in
4.17).

We define the Cartier operator by the action on the basis vectors as follows.

Fora =1,...,qg — 1, formula (4.18) implies g | (n(a) p — a). Hence, for f = 1,

., ak, we have
x“k_fd—): = x“k_fy"(“)p_“% - xak—f(yq)(n(a)p—a)/q%
y yey - y
dx X
xk—f m@p-a)/qg "  _ a
Fx,2) yn(a)p - Z Ff (@)x" yn(a)p
w>0
(6.13)
where “F}”(z) e Fplzl.
The Cartier operator is defined by the formula
dx n@k k—h 1 dx
xak—fy_a . Z (“F}"(“) —h)p+p— (z)) S N@k— hyn(a) (6.14)
h=1

This formula has the following meaning. If w in (6.13) is not of the form Ip + p — 1

for some [, then the summand ¢ F w(z) x¥ d(j) — in (6.13) is ignored in the definition

(6.14), and if w = Ip + p — 1 for some [, then the term “Ffp+p Yg) xlp+r=1 —y,ﬂj)p

produces the summand

a plp+p—1 1/p ldx
( Fr (Z)) . yi(@)

in the definition (6.14). It turns out that there are exactly n(a)k such values w =
Ip + p — 1 and that explains the upper index n(a)k in the sum in (6.14).

- - I/p
The coefficients (“ F ;f’(a)k Wptp 1(z)) form the g x g-matrix of the Cartier

operator with respect to the basis x’ ~'dx/y® in (7.4). The matrix is called the Cartier—
Manin matrix.

@ Springer



A. Slinkin, A. Varchenko

Let Q!(X)* be the space dual to Q! (X). Let
gl a=1,...,q—1, i=1,..., ka, (6.15)

denote the basis of Q!(X)* dual to the basis (x!~'dx/y%) of Q!(X).
The map

c*: ') - Q'x)*
adjoint to the Cartier operator is o-linear. Following Serre, the matrix of the map C*

is called the Hasse—Witt matrix with respect to the basis (goé), see [1]. The entries of
the Hasse—Witt matrix are the polynomials

apPOITPTL ) € Byl
see (6.2).
Remark The map C* is identified with the Frobenius map
H'(X,0(X)) - H' (X, 0(X)),
see, for example, [1].

Foreacha = 1,...,q — 1, consider the columns of the Hasse—Witt matrix, cor-
responding to the basis vectors of Q;} X )* and the rows corresponding to the basis

vectors of Q i (X)*. The respective block of the Hasse—Witt matrix of size ak x n(a)k
is denoted by “Z. Its entries are denoted by

Ih(z) = ”F}”(“)k_h)”ﬂ’_l(z), f=1,....,ak, h=1,...,n@k. (6.16)
Lemma 6.1 The entry “Ij’c (z) is a homogeneous polynomial in z1, . .., 2, of degree
m@p—a)/g—(f =1+ " —1Dp.
6.5 Cartier Map and IF,-Hypergeometric Solutions

Let W(X) be the n-dimensional K(z)-vector space spanned by the following differ-
ential 1-forms on X:

1 dx
X —=2Z; Yy

, i=1,...,n (6.17)

Notice that these are the differential 1-forms on X, which appear in the construction
of the solutions of the KZ equations over C. Notice also that they are not regular on
X.
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Let W(X)* be the space dual to W(X) and ¥, j =1, ..., n, the basis of W(X)*
dual to the basis (dx/y(x — z;)).
Define the t-linear Cartier map
C: WX — Q) X) (6.18)

in the standard way. Namely we have

1 dx F(x,z)@pr=D/a dx . d>p(x,z,M) dx

xX—zj ¥ X —zj yﬂlp - X —2Zj yalp
_  dx i _ i dx
= PiG M) o = Xi:Pj(z, o

where ®,, P;, Pl’: see in (5.6), (5.7), (5.8). Define C by the formula

ark

1 d _ _ -\ d
_.X — Z(P;alk h)p+p I(Z, M)) pxdlkfh_x’ (6]9)
X—=2zjy Pl ya
cf. (6.14).
The map
C*:Ql (X" - WX)* (6.20)

adjoint to the Cartier map C is o-linear. The matrix of the map C* will be called
the Hasse—Witt matrix with respect to the bases (¢, ) and (). The entries of the

Hasse—Witt matrix are the polynomials P;a'k_h)p Pl .

Foranym =1, ..., a1k, we have
n
CH @iy = Y P TmT  iy y. 6.21)
j=1

This formula shows that the coordinate vector
(PP ), L PEETIPET  a) (6:22)

of C *((p(’jl) is exactly the IF ,-hypergeometric solution /™ (z) defined in (5.9).
This construction gives us the following theorem.

Theorem 6.2 The Hasse—Witt matrix of the map C* defines an isomorphism
(A 2 Qg (X)) — Ma, goZ”l — 1" (2), (6.23)

of the vector space Q4,(X)* and the module M of F ,-hypergeometric solutions for
A=(1,...,1).
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Proof Clearly the map t5 is an epimorphism. The fact that ¢4 is an isomorphism
follows from the fact that dim M, = dim Q,, (X)* = ajk by Lemma 5.1. O

6.6 [F,-Hypergeometric Solutions from Iterates
Consider an iterate of the Cartier map,
CtoC:=CoC--0CoC : WX) - Q'(X).

The image lies in Q},b (X). Choose any element ¢, of the basis of Qéb(X )* dual to
the basis (x'~'dx/y“) and express the vector

(C°" 0 O (@)

in terms of the basis (1/;) of W(X)*. By Theorem 6.2, the coordinates of that vector
is an IF ,-hypergeometric solution, namely it is the solution

b b
"Itz = Y eI (Zf»~-~,z,’1’)-~-“lffn"f(me-,sz)~1'"1(11,..-,zn).

miy,..., mp
(6.24)
Here m = 1,..., apk. We will call these [F,-hypergeometric solutions the iterated
F,-hypergeometric solutions.
We will see these solutions in Sects. 9.5 and 9.6.
7 Cartier Map and Module M, for More General A
7.1 Curve X
Recall that n = gk + 1, see Sect. 5.1. Let A= ([\1, R 1~\,~,) IS Z’lo be such that
i
ZA]- =n, Aj<gq, j=1,...,n
j=1
This means that A is a fusion of A = (1,..., 1) e Z’;O, see Sect. 3.3.
Forj=1,...,n,a=1,...,q — 1, denote
1~\ja +1 i
eja) = T—l . ela)=)_eja), (7.1)
j=1

where [x7 is the smallest integer greater than x or equal to x.
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Consider the field K(Z), Z = (Z1, ..., Z;). Consider the algebraic curve X over
K(Z) defined by the affine equation

Yi=Fx,3) = x—ipMax -2 =z (72)

The space Q! (X) of regular 1-forms on X is the direct sum
g—1
Q') = @ X). (7.3)
a=1

where Q; (X) consists of 1-forms

dx
u(x) y—a (7.4)
such that u(x) is a polynomial in x of degree < ak, and for any j = 1,...,n, the

polynomial u(z) has zero at z; of multiplicity at least e (a).
This fact is checked by writing u(x)dx/y® in local coordinates on X at
0, 71, - - -, Z5i- Namely, at x = 0o, we have

x=t"1, y=1t""(1+0®),
where ¢ is alocal coordinate. If d = deg, u(x), thenu(x)dx/y% = —gr—da—q=1(1 4

O(t))dt. Hence, u(x)dx/y® is regular at infinity if an — dq — g — 1 > 0, which is
equivalent to d < ak. Atx = Z;, we have

x—%; =19, y=constt™(14+0@)),
where ¢ is a local coordinate. If d is the multiplicity of u(x) at x = Z;, then
u(x)dx/y* = const t~@AT44+a=1(1 4 O(1))dr. Hence u(x)dx/y® is regular at
x =Zzjif —aAj+dq+q —1 > 0, which is equivalent to d > ¢;(a).
Therefore,

dim Q! (X) = ak — e(a), (7.5)
and Q}, (X) consists of elements

0 T @

i) [T —zpe@. (7.6)

j=1

where u(x) is an arbitrary polynomial of degree less than ak — e(a).
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7.2 Rank of M

Consider the module M ; of F,-hypergeometric solutions of the KZ equations asso-

ciated with A.

Theorem 7.1 Let p > n = kq + 1, then the rank dj of M3 equals ajk — e(ay).

This theorem is a generalization of Lemma 5.1.

Proof We have dy = [Z'}:l Mj/p] by formula (3.7). Here Mj is the minimal

positive integer solution of the congruence

Aj
M; = —7 (mod p).

Recall the integer a; defined by

1<a;<q and gq|(aip—1).

Then

~ ~ ap-—1
M= A, 1p
’ q

is another solution of the congruence in (7.7). Denote

M:(Ml,...,Mﬁ).

Lemma 7.2 We have
]\;[j = Mj +ej(ar)p.

Proof Clearly, we have M = M ; +Ip, where

p q

. [A,-(alp— 1)/q} _ [i\jal B

Since Z\j < q < p, we have

>

~.
_
_

ar  qp  q

@ Springer

(7.7)
(7.8)
(7.9)

(7.10)

(7.11)

A
qp |



Hypergeometric Integrals Modulo p and Hasse—Witt Matrices

Furthermore, since A j»a1 < g and g is prime, we conclude that A jai/q is not an
integer. These two observations imply that

| = IN\jal _ & _ 1~\ja1 '
q qp q
On the other hand,

Aj 1 Aj 1 A; A
ej(a1)=(&—l—‘=[ ’a‘+—-‘—1=[ fa‘—‘—lz jal
q a q q q

where the last two equalities follow from the fact that A jai/q is not an integer. The
lemma is proved. O

To finish the proof of Theorem 7.1, we observe that

noo.o n
M; ~ (aip—1)/q
=[] [ (r o,

— p — p

J J
-1

:=P@£L—ﬂz}—dm)=mk—dmx
P
where we use Lemmas 7.2 and 5.1. O

7.3 Cartier Map for X
Let W(X) be the n-dimensional K(z)-vector space spanned by the following differ-
ential 1-forms on X:
1 dx
xX—2ziy

L di=1,..., 0. (7.12)

Let W(f()* be the space dual to W()N() and ¥, j =1, ..., 7, be the basis of W(f()*
dual to the basis (dx/y(x — Z;)).

Define the t-linear Cartier map C of the space W (X) to the space of differential
1-forms on X in the standard way. Namely we have

1 dx F x,z)@p=D/a gy _ o~ dx o~ dx
P TE P paan S Y Pl
X—2zj ¥ X =z y 1P ydlp ; g yalp
where M, Pj, le. see in (7.10), (5.7), (5.8). Define c by the formula
1 d ik I 1 d
~ e Z (Pgalk h)p+p 1(2’ M)) xalkfh_x, (7.13)
X—=2Zjy P 7 ya
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cf. (6.14), (7.13).

Theorem?7.3 For j = 1,...,n, the I-form é(dx/y(x — Z;)) lies in Q‘]” (X), and
hence the Cartier map maps W()?) to QZ,I (f().

Proof The polynomial

ark

- - - \1/p dx
- (ark=h)p+p=1 = k—h
u(x) = Z (Pj G, M)) g yTl
h=1
has degree < ajk. We need to check that for any i = 1, ..., n, the polynomial u(x)

has zero at x = z; of multiplicity at least e; (ay).
Indeed, on the one hand, we have

F(x +3,5@p=0/a — yMitei@p H(x 4+ —zphi@p=/q,
I#i

by Lemma 7.2. Hence, in the Taylor expansion

F‘(x +7%, Z)(am—l)/q

- =Y PG, (7.14)
X —2Zj ;
we have
PPl@) =0, 1=0.... eia) — 1. (7.15)
On the other hand, we have
F(x +z;, 5)@p=b/q . _
SRR =S PG () (7.16)
X —2Zj ;
By Lucas’ Theorem 4.1, we have
ﬁll’-i-p—l(Z) _ Z [+h Z(H‘h)PP(H‘h)PJFP*] Gz M) (7.17)
— P ; f , M), .

h>0

for any /. Formulas (7.15) and (7.17) show that the polynomial u#(x) has zero at x = z;
of multiplicity at least e; (a1). The theorem is proved. O

7.4 Cartier Map and [F,-Hypergeometric Solutions
The map
C*:QlX)r - wx)r, (7.18)
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adjoint to the Cartier operator C is o-linear.
Elements of Q}l (X) have the form

d ark—1 o d
w@) o= 3 i
y 1 v y 1
with suitatzle coefficients u’, see Sect. 7.1. Form = 0, ..., ajk — 1 define an element
@™ € W(X)* by the formula
d
N W (7.19)
ya
Foranym =1, ..., ajk, we have
n
A —1 .~ ~
CHp™) =Y PTG M)y (7.20)
j=1
This formula shows that the coordinate vector
(PP G M, L PTG ) (7.21)

of C *(¢™) is an F ,-hypergeometric solution constructed in Theorem 2.3 and all solu-
tions constructed in Theorem 2.3 are of this form.

This construction gives us the following theorem.
Theorem 7.4 The map C* adjoint to the Cartier map C: W(X) — Q}” (X) defines
an isomorphism

G Qa(0F = Mi. @™ e (PTG N, L PTG ),
(7.22)

of the vector space Q2 (X)* and the module M i of Fp-hypergeometric solutions for
A.

Proof Clearly the map ¢ is an epimorphism. The fact that ¢4 is an isomorphism
follows from the fact that dim M ; = dim Q4, (X)* = aik — e(a;) by Theorem 7.1.
O

8 Hasse-Witt Matrix for Curve Y

In Sect. 6, we introduced the curve X over the field K(z) and determined its Hasse—Witt
matrix. In this section, we consider the same curve over a new field K()), where z and
A are related by a fractional linear transformation, and calculate its Hasse—Witt matrix.
We will use that new Hasse—Witt matrix to relate the IF,-hypergeometric solutions of
the KZ equations over C and over IF,.
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8.1 CurveY

Recall that n = gk + 1, see Sect. 5.1. Consider the field K(L), A = (A3,..., A,).
Consider the algebraic curve Y over K(A) defined by the affine equation

¥ =G(x, M) :=x(x — D(x —2A2)...(x — Ay). (8.1)

The space QL(Y) of regular 1-forms on Y is the direct sum Qly) = @Z;} Qtll(Y),
where dim Q},(Y) = ak, and Qé(Y) has basis :

- .d
Ao ak. (8.2)
ya
We define the Cartier operator
c: Q'w) - Q) (8.3)
in the same way as in Sect. 6.4. The operator has block structure. Fora = 1,...,¢—1,
i 1
we have C (2}(Y)) C @ niay(X)-
For f = 1,..., ak, we have
xak=1 9% ak=f G sy @p-ajg _9X 3 aGua) v 8.4)
ya yU(“)P 0 77(“)17
w>

where “G}’(X) € Fp[A]. The Cartier operator is defined by the formula

dx "SR (e @k—hypp—1 dx
ak—f =7 a~a)k—h)p+p— r;(a)k h
DY (“cY ()\)) @ ®9

Let Q' (Y)* be the space dual to Q' (). Let
gl a=1,...,q—1, i=1,... ka, (8.6)

denote the basis of Q!(Y)* dual to the basis (x! ~'dx/y%) of Q}I(Y).
The map

ol = ()

adjoint to the Cartier operator is o-linear. The matrix of the map C* is called the
Hasse—Witt matrix with respect to the basis (<pfl). The entries of the Hasse—Witt matrix
are the polynomials “Gy(a)k_h)pﬂ’_l (1), see (6.2).

Foreacha = 1,...,q — 1, consider the columns of the Hasse—Witt matrix, cor-
responding to the bas1s vectors of Q! n(@) (Y)* and the rows corresponding to the basis
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vectors of €2 }1 (Y)*. The respective block of the Hasse—Witt matrix of size ak x n(a)k
is denoted by “/C. Its entries are denoted by

Uh@) =GP ) f=1 L ak, h=1.... 0@k (8.7)

8.2 Example
For p =5, q = 3,n =4, we have
Y =x = Dx = 23)(x — Ag),
d d d
Q') =l @) = <—x> ® <—’2€ x—’2“>
y y y
d_x = (1]C%>1/P d_)26+<llc%)1/l7 g’
y y y
B ()
y y
xdx . (2K1)1/p d_x

2 2
y2

9

’

where

() = =23 =23 — 9430 — 923hs — 923 — 943 — 943 — 9hy — 273k — 1,
YT = 30323 (0h3ha + 23 + Aa),
2RI = A3 —Ag — 1,
2Kl =1.
The Hasse—Witt matrix is
0 IKtoy i
2K () 0 0
2K, 0 0

8.3 Homogeneous Polynomials °7; (z)

Change variables in the polynomial "IC’} ),

Zj—a .
Aj=——, j=3,...,n,
22— 21

and multiply the result by (zo — z1)1(@P=@/q+h=Dp=(f=1)

Lemma 8.1 The function

‘T2 = (za — z)W@OPm/att=Dp=U=D gk (2)) (8.8)
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is a homogeneous polynomial in 71, ..., z, of degree (n(a)p —a)/q + (h — 1)p —

(f =D.

Remark The polynomials ¢ J ;’ (z) are entries of the Hasse—Witt matrix of the curve

defined by equation
y=x(x—(2—z2))...(x = (@ —21)),
and that curve is isomorphic to the curve with equation
Y= -z —22)... (x = z0),

which is discussed in Sect. 6.

8.4 Formula for % Kl'f’ )

Recall the numbers a; introduced in (4.19), the base p expansion

d

pr—1 1

= Ao+ Ap+ Aap*+- -+ Ag_1 p?”
in (4.21), and the relation
Ay=——F——, 5=0,...,d—-1,

in Lemma 4.9.
Fors € Z>o, f =1,...,ask, h =1, ..., as41k, define the sets

n
A =1 ) €ZLF 10D tit f—1—(h—1)p <A,

i=3
L <Ay for j=3,...,n
Lemma 8.2 We have
stch _ s 1h
“Rhm = Y K@)
(63,...,(,,)6%_’;
where
R R W R O

« ( AS ) 11[ (AS) )\’eg )\’en
Siati+f—1—kh-Dp) L \e)
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In particular, all terms % /C?,Q 0 (A3, ..., Ay) are nonzero.

.....

Proof The lemma is proved by straightforward calculation similar to the proof of
Theorem 5.6. o

Similar formulas can be obtained for all entries “IC}]'C ).

9 Comparison of Solutions over C and [,

In this section, we will

(1) distinguish one holomorphic solution of the KZ equations for A = (1, ..., 1),

(2) expand it into the Taylor series,

(3) reduce this Taylor expansion modulo p,

(4) observe that the reduction mod p of the Taylor expansion of the distinguished
solution gives all IF,-hypergeometric solutions mod p, and conversely the IF-
hypergeometric solutions together with matrix coefficients of the Hasse—Witt
matrix determine this Taylor expansion.

9.1 Distinguished Holomorphic Solution

Consider the KZ equations (2.2) for A = (1, ..., 1) over the field C. We assume that
n =gk + 1 asin Sect. 5.1.
Recall that the solutions have the form 1) (z) = (I1(2), ..., I,(z)), where

I'(z)—/ 1 dt
e y VU —z1). .. (t—2zy) t =2

and y is an oriented loop on the complex algebraic curve with equation

Y= —z1)...(x — zp).

Assume that z3, ..., z, are closer to z; than to z3:
Zj—21 1
/— ) ,] = 37 . , n
22— 21 2
Choose y to be the circle {t e C| |Z’2__Zzl1 | = %} oriented counterclockwise, and

multiply the vector /(z) by the normalization constant (— DV 25i.

We will describe the normalization procedure of the solution /(z) more precisely
in Sect. 9.2.

We call the solution 7(z) the distinguished solution.
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9.2 Rescaling

Change variables, t = (z2 — z1)x + 21, and write
I(z1, . zn) = (@2 —2) O LG, ), ©.1)

where

L]

)\.Z()\.:;,...,A.n):( y e
72 — 11 22 — 11

23— 21 Zn_Zl>
9

L) =(Ly,...,Ly),

—_1l/
L= ( 21)' 4 / : dx 1 , ©92)
i Jig=12 Yx@ —= D —A3) ... (x —Ap) X — A4

and Ay =0, = 1.
The integral L(A) is well defined at (A3, ..., A,) = (0....,0) and

L;0,...,0) = (‘l)l/q/ v
jU, i |x|=]/2xkqx—1x—)LjI

The g-valued function

(=n'
xkYx =1

has no monodromy over the circle |x| = 1/2. To fix the value of the integrals in (9.2),
we choose over the circle |x| = 1/2 that branch of the g-valued function

(=phe
Yxx —Dx —23) ... (x — )

which is positive at x = 1/2 and (A3, ..., 1,) = (0....,0).
The function L(A) is holomorphic at the point (A3, ..., x;) = (0, ..., 0). Hence,

k
L) = Z Ly, Ay - M 9.3)
(k3ooskin) €225

for suitable complex numbers Ly, .k, in a neighborhood of the point (0, ..., 0).
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9.3 Taylor Expansion of L())

Lemma 9.1 We have

~1/q ) - (—1/61)
L = (—1)f
k3,....kn (=D <k3~|—---+kn—|—k ll:! k;
n
><<1, —q (Zki+k>,qk3+l,...,qkn+1), 94
i=3

where the integer k is defined by the equation n = gk + 1.

Proof Indeed,

- ks Kn  okzttk
A ...)\,n 8 3 nLl
L)) = E 3 )
! | a5k Tn
o oo Ktk a2k aak
(—1)1/‘1 & L Sk n “1/q
= )» oM (1) &i=3 ki | |
2mi Z n (=1 ki

..... i=3
X/ x7<n71>/q72?=3ki71(x_1)71/qu
Ixl=1/2

S e N\t (~1/a
= (-1 A m( ) ( )
k3,.§<j‘120 . 2:3/( +k H ki

Similarly,

—Va N (-1/a .
Ly(v) = (=K L Ak”< n ) < ) —q | S ki +k
IR RSl Z

,,,,, i
i=3

and

N 1k O k ko —1/q ~(—1/q
Li(n) = (=1 Z A33...kn<z k+k) <k )(c]k +1)

k3,....,k,=0 i=3
for j =3, ..., n. The lemma is proved. O
Corollary 9.2 Each coefficient of the series L()) is well-defined modulo p.

Proof The corollary follows from Theorem 4.2. O
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9.4 Coefficients Ly, ., Nonzero Modulop

Let (k3. ... ky) € Z23* with

ki =k +klp+-- +klp?, Ofkij <p-1, i=3,....n,
the base p expansions. Assume that not all numbers kf? ,i =3,...,nareequal to zero.
Recall the base p expansion
pd —1 2 d—1 As+1P — ds
=Ayg+Aip+Ap +--+AgptT, Ay = —
Extend the sequence (Ay) d-periodically,
Astq 1= As. 9.5)
Lemma 9.3 We have [[7_ (_]ii/q) = 0 (mod p) if and only if
ki < As 9.6)
fori=3,...,n, s=0,...,b.
Proof The lemma follows from Theorem 4.2. O
Lemma 9.4 Assume that condition (9.6) holds. Then for s = 0, ..., b, we have
n
Zkf +ask < asy1kp. 9.7)

i=3
Proof We have
- a —a
Yk < (1-2)4, = (gk— DA, = gk PS4
i=3 q
= ag+1kp — agk — Ay < as41kp — ask,
where the last inequality follows from the inequality 0 < Ay, see (4.23). O
Following [17] define the shift coefficients (my, . .., mp41) as follows. Define mg =
k + 1. For s = 0 formula (9.7) takes the form
n
Zk?—i—mo — 1 < aikp,
i=3
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since ag = 1. Hence there exists a unique integer m1, | < m < a1k, such that
n
0< Zk?—{—mo—l—(ml—l)p < p.
i=3
For s = 1 formula (9.7) takes the form
n
Zkil + a1k < axkp.
i=3
By construction m < ajk, hence
n
Zkil +my; — 1 < azkp.
=3
Therefore, there exists a unique integer mo, 1 < my < ask, such that
n
0< Y ki+m—1—(m—1p < p,
i=3
and so on.

We will obtain mgy with 1 < my < agk fors =1, ..., b. We define mp1 to be the
unique integer such that 1 < mp4; < ap4+1k and

n
0< Y K +mp—1—(mpp1—Dp < p.

i=3
We say that a tuple (ks, ..., k,) is admissible with respect to p if the following
inequalities hold
ki <Ay, i=3,...,n,5=0,...,b, 9.8)
Xn:kf+ms—l—(ms+1—l)p§As, s=0,...,b, 9.9)
i=3
flnb+1 -1 < Apq1. (9.10)

Lemma 9.5 We have

—1/q
<k3+-~-+kn~|-k> # 0 (mod p).

if and only if the shift coefficients of the tuple (k3, . .., k) satisfy (9.8) and (9.9).
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Proof The p-ary expansion of k3 + - - - + k,, + k is

(Zk?—i—mo—l—(ml—l)p>—|—(Zkil—i-ml—l—(mz—l)p)p—i—...

i=3 i=3

n
- (Z kP 4 mp — 1= (mpy1 — 1)17) PP+ (mpyr — HpPH
i=3

By Theorem 4.2, the following congruence holds modulo p:

b
e85 = G2 T )
ka+---+ky +k mp4y — 1 o\ K+ mg — 1 — (mgy — Dp

i=3

The right-hand side of the congruence above is nonzero, if and only if (9.8) and (9.9)
hold. O

Recall the sets ¢ A}}

Lemma 9.6 The tuple (k3, ..., ky) is admissible if and only if mp+1 — 1 < Apy1 and

defined in (8.9).

k5, ..., k) e *Ap™ for s =0,...,b.

Theorem 9.7 The following statements hold true:

(1) Lis,..k, # 0 (mod p) if and only if the tuple (k3, ..., ky) is admissible.
(i) If the tuple (k3, ..., k) is admissible, then

A
Lk},..‘,kn)hlg3 e )L];l" = (_1)(¢1b+|11b+1—1)/51+mb+1—1 (mh+bl+i 1)

b
x (1‘[ i (8 )) K| @) (mod p). (9.11)

ek \0O 7T ) kS
s=1

where “SIC}}.,;(A) are terms of the Hasse—Witt matrix expansion in (8.10) and K I%" )

are the terms of the expansion of vector polynomial K™ () in (5.22).

Proof We have Ly, ., # 0 (mod p) if and only if each of the binomial coefficients
in (9.4) is not divisible by p. By Lemmas 9.3 and 9.5, this is equivalent to saying that
the tuple (k3, ..., k;) is admissible. This gives part (i).

By Lemma 9.1, we have

~1/q ~(—1/q
L = (=DF
taokn = )(k3+~~+kn+k>ill( ki
n
x (1, —q (Zki+k>,qk3+l, qk,,+1>. 9.12)
=3
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Theorem 4.2 allows us to write the binomial coefficients in formula (9.12) as products
and then formula (9.11) becomes a straightforward corollary of formulas for “SIC’} 3

and K.
Notice that calculating the power of -1 on the right-hand side of formula (9.11), we
use the identity

Ao+ Ap+--+ Appl = p+--+

q q q q

ap-1  ap-a “b+ll7—abpb:ab+117b+l—1

O
9.5 Decomposition of L(1) as a Sum of K™ ())
Define the set
M = {(mo.....mp11) € Z2% | b € Zzg, mo=k+1, 1 <my < ask
for s =1,...,b, 1 <mpy1 < apy1k}. (9.13)
For any m = (my, ..., mpy1) € M, define the n-vector of polynomials in A :

Ni(A) = (—1)(ab+1pb+l_1)/¢]+mb+1—1( Ap+1 )
mpy1 — 1

b
x (]_[ asfcms 1 (Ag’s,...,xf;’)> K™, h). (9.14)

s=1

Theorem 9.8 We have

L) = Z Ny (A) (mod p). (9.15)

meM

Moreover, if a monomial A? e )Lﬁ" enters one of the vector polynomials Ny, (A) with
a nonzero coefficient, then this monomial does not enter with nonzero coefficient any
other vector polynomial Ny ()).

Proof The theorem is a straightforward corollary of Theorem 5.6, Lemma 8.2, and
Theorem 9.7. O

For g = 2, this theorem is [17, Corollary 7.4].

9.6 Distinguished Solution over C and Solutions J™ (z) over I,

Consider the distinguished solution /(zy, ..., z,) of the KZ equations (2.2) over C,
see (9.1), and the IF ,-hypergeometric solutions J™ (z) of the same equations over I ,,
see (5.10).
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We have

Izi,.oz) = @ —z2) V4 L0, ), (9.16)
J"(2) = (z2 — Zl)(alp—l)/q+(m—1)l7—k K™, 9.17)
?(Z) = (z0 — Z])(U(a)P—a)/lH‘(h—l)P—(.f—l) _GIC];(A(Z))’ (9.18)

see (9.1), (5.15), and (8.8).
Expressing L(A3, ..., A,), K"™()\), IC’}(A(z)) in terms of I(zy,...,2z,), J™(2),

aq }’ (z) from these equations, and using the congruence

L) = Z Nz (A) (mod p) (9.19)

meM

of Theorem 9.8, we obtain a relation between the distinguished holomorphic solution
I(z) and the I ,-hypergeometric data J™ (z) and *J ;‘ (2).

This relation shows that knowing the distinguished holomorphic solution we may
recover the IF ,-hypergeometric solutions as well as the entries of the associated Hasse—
Witt matrix. Conversely, knowing the IF ,-hypergeometric solutions and the entries of
the associated Hasse—Witt matrix, we may recover the distinguished holomorphic
solution modulo p.

Remark Notice that summands on the right-hand side of (9.15) correspond to the
iterated IF ,-hypergeometric solutions defined in Sect. 6.6. We may interpret formula
(9.15) as a statement that the Taylor expansion of the distinguished holomorphic
solution reduced modulo p is the sum of all iterated I ,-hypergeometric solutions.
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