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Abstract 19 

Understanding and measuring parameters responsible for the pathogenesis of sepsis-induced 20 

AKI (SI-AKI) is critical in developing therapies.  Blood flow to the kidney is heterogeneous, partly 21 

due to the existence of dynamic networks of capillaries in various regions, responding 22 

differentially to oxygen demand in cortex vs medulla. High energy demand regions, especially 23 

the outer medulla, are susceptible to hypoxia and subject to damage during SI-AKI. Proximal 24 

tubule epithelial cells in the cortex and the outer medulla can also undergo metabolic 25 

reprogramming during SI-AKI to maintain basal physiological status and to avoid potential 26 

damage. Current data on the assessment of renal hemodynamics and oxygen metabolism 27 

during sepsis is limited. Preclinical and clinical studies show changes in renal hemodynamics 28 

associated with SI-AKI and in clinical settings, interventions to manage renal hemodynamics 29 

seem to help improve disease outcomes in some cases. Lack of proper tools to assess 30 

temporospatial changes in peritubular blood flow and tissue oxygen metabolism are barriers to 31 

our ability to understand microcirculatory dynamics and oxygen consumption and their role in 32 

the pathogenesis of  SI-AKI. Current tools to assess renal oxygenation are limited in their 33 

usability as these cannot perform continuous simultaneous measurement of renal 34 

hemodynamics and oxygen metabolism. Multi-parametric photo-acoustic microscopy (PAM) is 35 

a new tool that can measure real-time changes in microhemodynamics and oxygen metabolism. 36 

Use of multi-parametric PAM in combination with advanced intravital imaging techniques has 37 

the potential to understand the contribution of microhemodynamic and tissue oxygenation 38 

alterations to SI-AKI.  39 
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Pathophysiology of sepsis-induced acute kidney injury (SI-AKI) 43 

Sepsis is described as organ dysfunction resulting from aberrant host response to an infection 44 

[1]. Acute kidney injury (AKI) develops in nearly 65% of patient with sepsis and further 45 

complicates the therapeutic management of sepsis [2]. Moreover, patients with AKI can also 46 

develop sepsis as a consequence [3]. Pathophysiology of SI-AKI is complex and begins with 47 

activation of innate immune system mediated by binding of pathogen-associated molecular 48 

pattern (PAMPs) ( e.g. bacterial endotoxins) or damage-associated molecules (DAMPs) released 49 

by host cells (e.g. extracellular ATP, mitochondrial DNA, and other metabolites) to their 50 

receptors present in the host cell surface and subsequent release of inflammatory 51 

mediators[4].  This evoked immune response then leads to a wide array of pathophysiological 52 

changes including dysregulated homeostasis, immunosuppression, and cellular, tissue, and 53 

organ dysfunction [5]. Sepsis mediated microcirculatory dysfunction primarily occurs by direct 54 

damage to the glycocalyx lining the endothelium of microvessels or by inflammation-induced 55 

aberrant vasoreactivity due to release of vasoactive substances by the endothelium, tubule 56 

epithelial cells and vascular smooth muscle cells, leading to tissue hypoperfusion, reduced 57 

oxygen delivery, and organ dysfunction[6]. Moreover, endothelial activation due to 58 

inflammation further leads to leukocyte adhesion and rolling, capillary leakage, interstitial 59 

edema, leukostasis and tissue hypoperfusion. In the kidney, sepsis-mediated microcirculatory 60 

dysfunction result in local ischemia, tubular dysfunction and injury[7]. At cellular level, 61 

mitochondrial dysfunction and reactive oxygen species production during sepsis contribute to 62 

tubular cell death[8, 9].  63 

Renal oxygen delivery in normal health 64 



Three distinct types of vascular beds with different flow dynamics are important in the delivery 65 

of oxygen and other nutrients to the kidney. These include glomerular capillaries, cortical 66 

peritubular capillaries, and medullary vasa recta.  RBF in the medulla is significantly lower than 67 

the cortex.  RBF in the medulla contributes only 10% of the total kidney RBF [10]. Furthermore, 68 

different regions of the medulla are also heterogeneously perfused. Compared to the cortex, 69 

RBF in the outer medulla is about 40% while the inner medulla is only 10% [11].  Kidneys 70 

account for 20% of total oxygen consumption. The kidney cortex has a tissue oxygen tension 71 

(PO2) of ~50mmHg, and that of the medulla is only about 10-20mmHg [12]. This is primarily due 72 

to differential oxygen demand, dependent on tubular sodium reabsorption[13]. Mathematical 73 

models also suggest that luminal flow in the proximal tubule is an important determinant of 74 

tissue PO2 in the cortex[14].  75 

Tubule epithelial cells from S3 segment of the proximal tubule in the cortico-medullary junction 76 

perform ATP dependent active transport and utilize oxygen-dependent oxidative 77 

phosphorylation (OXPHOS) and beta-oxidation of fatty acids (FAO) for energy production, while 78 

other tubule components in the inner medulla rely on glycolysis for energy production[15]. 79 

Because of this disparity of blood flow, oxygen tension, and energy source in cortex and 80 

medulla, the kidney is susceptible to injury. However, there exists a strong renal adaptive 81 

mechanism to maintain constant PO2 and normal tubular function and prevent cellular damage 82 

during altered oxygen supply[16]. At the tissue level, an increase in RBF or oxygen delivery is 83 

largely compensated by elevated oxygen consumption and partly by arteriovenous 84 

shunting[17]. At the cellular level, hypoxia and hypoxia-inducible factor (HIF) signalling induce 85 



renal peritubular fibroblasts to increase synthesis erythropoietin (EPO) and increase oxygen-86 

carrying capacity[16]. 87 

Renal oxygen delivery in SI-AKI: 88 

Sepsis results in microcirculation dysfunction[18]. Preclinical and clinical studies show divergent 89 

renal hemodynamics during SI-AKI. Sepsis associated increase in cardiac output can potentially 90 

increase or preserve RBF [19].  In humans with sepsis, RBF declines[20, 21]. Though Prowle et 91 

al[20] did not find an association between reduced RBF and renal function in septic patients, 92 

the early decline in RBF and oxygen metabolism were associated with increased tubular injury 93 

in the study by Skytte Larsson et al[21]. However, Tran et al [22] using blood oxygen level-94 

dependent (BOLD) MRI did not observe overt changes in renal tissue oxygenation despite 95 

reduced oxygen delivery in mice during LPS-induced AKI.   Wang et al [23] using pimonidazole 96 

(PIM)-protein adducts to assess renal tubular hypoxia, observed cortical hypoxia in a cecal 97 

ligation puncture model as early as 4 hours after surgery.  The inconsistencies among these 98 

findings could largely be due to the complex pathogenesis of sepsis, as well as due to the 99 

variation in experimental approaches to assess renal oxygenation in different studies. 100 

Metabolic reprogramming in the kidney during SI-AKI: 101 

Another key event that contributes to SI-AKI is metabolic reprogramming. It was first identified 102 

in rapidly dividing cancer cells where a lack of oxygen supply switched their metabolism from 103 

aerobic respiration to anaerobic respiration, a phenomenon known as Warburg effect[24]. 104 

Warburg effect has been observed in many other cell types beside cancer cells. During sepsis, 105 

the metabolic reprogramming is biphasic, initial glucose-dependent anabolic phase followed by 106 



OXPHOS and FAO dependent catabolic phase[25]. Activation of the innate immune system and 107 

reduced oxygen delivery to the proximal tubule cells induces HIF1 signalling and switches cells 108 

towards less efficient anaerobic glycolysis for ATP production[26] followed by activation of the 109 

adenosine monophosphate kinase (AMPK) pathway[27]. This switch to anaerobic glycolysis 110 

could serve multiple purposes: 1) by undergoing less efficient pathway of energy production, 111 

cells can still maintain ATP production to maintain basal cellular activity and avoid potential cell 112 

death[24],  2) reduced OXPHOS activity leads to less mitochondrial reactive oxygen 113 

species(ROS) production and less cellular damage[28], and 3) activation of pentose phosphate 114 

pathway leads to increased production of nicotinamide adenine dinucleotide(NAD+)[29], a 115 

potent ROS inhibitor that exerts protection during SI-AKI[9]. Paradoxically, the metabolic switch 116 

could also contribute to AKI pathology. It has been shown that improving OXPHOS early on 117 

during SI-AKI in mice results in improved outcome[30], so do the late activation of AMPK and 118 

Sirtuin-1[25]. Understanding these temporal changes in metabolism during SI-AKI could serve as 119 

the key to identifying metabolic targets. 120 

Multi-parametric Photo-acoustic microscopy 121 

Current techniques available for assessment of renal oxygenation employ either oxygen 122 

microelectrodes[31] (polarographic electrodes), optical probes(optodes), magnetic resonance 123 

imaging (MRI) techniques including blood oxygenation level-dependent MRI (BOLD-MRI)[22] 124 

and dynamic nuclear polarization MRI (DNP-MRI) with an oxygen-sensitive paramagnetic agent 125 

(OX63)[32], and phosphorescence lifetime imaging microscopy (PLIM) using phosphorescence 126 

tracer element[33]. While classical oxygen microelectrode and optode based techniques can 127 



directly measure renal oxygenation in the precise location in the kidneys, these techniques 128 

cannot give a continuous measurement. MRI based techniques can provide continuous 129 

assessment of renal oxygenation but accurate quantification of the oxygenation is still a 130 

hindrance. PLIM can provide the status of hypoxia at molecular details, but the low penetration 131 

of intravital imaging allows measurement of changes only in the cortex. Besides, none of the 132 

currently existing techniques can provide simultaneous measurement of blood flow, oxygen 133 

saturation and oxygen extraction.  134 

Multi-parametric PAM is a novel technique that allows intra-vital high-resolution, quantitative, 135 

and comprehensive characterization of hemodynamics and oxygen metabolism and associated 136 

microvascular pathology in animal models[34]. PAM enables concurrent imaging of blood 137 

perfusion, oxygenation and flow without the use of any tracers of fluorophore molecules. These 138 

parameters can then be used to derive other parameters including oxygen extraction fraction 139 

and metabolic rate of oxygen. By distinguishing the spectra of oxy- and deoxy-haemoglobin, 140 

repetitive pulsed dual-wavelength excitation provides details on oxygen concentration and 141 

saturation of hemoglobin at capillary levels allowing for dynamic monitoring of the metabolic 142 

rate of oxygen. This technique has been established and validated for in-vivo imaging in the 143 

study of brain vasculature[35]. A penetration depth of 200 m allows measurement of 144 

hemodynamic changes in peritubular capillaries in the cortex of exteriorized kidneys of an 145 

anesthetized mouse. Repetitive measurements can be performed in the same animal over a 146 

prolonged period to accurately measure temporal changes after inducing AKI.  We are currently 147 

employing this method to determine tissue oxygen delivery in the kidney during sepsis.  PAM 148 

can also be used with other imaging techniques, for example, two-photon microscopy to 149 



simultaneously assess metabolic and microcirculatory changes during heath and disease. 150 

Identification of these vital parameters including tissue oxygenation during AKI will permit a 151 

better understanding of mechanisms of AKI that will inform therapeutic interventions to 152 

improve outcomes of patients with AKI. 153 

  154 



 155 

Figure Legend 156 

Figure. Photoacoutic Microscopy. Photoacoustic microscopy is a hybrid of optics and 157 

ultrasound. In photoacoustic microscopy, usually, a focused laser pulse is directed into 158 

biological tissue (kidney). The tissue absorbs light and induces transient heating. The 159 

thermoelastic expansion of the tissue converts the heat into acoustic emission. A transducer 160 

outside of the tissue, can detect the acoustic wave and form an image. The conversion from 161 

optical absorption to acoustic emission has a few unique advantages.  First, photoacoustic 162 

imaging is solely sensitive to optical absorption creating a very specific imaging contrast.  163 

Second, relying on focused acoustic detection photoacoustic microscopy can operate beyond 164 

the penetration of pure optical microscopy. 165 

Table 1. Applicability and limitation of current techniques to assess renal hemodynamics and 166 

oxygenation  167 
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