Econometrica, Vol. 88, No. 5 (September, 2020), 2203-2219

BOOTSTRAP-BASED INFERENCE FOR CUBE ROOT ASYMPTOTICS

MATIAS D. CATTANEO
Department of Operations Research and Financial Engineering, Princeton University

MICHAEL JANSSON
Department of Economics, University of California at Berkeley and CREATES

KENICHI NAGASAWA
Department of Economics, University of Warwick

This paper proposes a valid bootstrap-based distributional approximation for M-
estimators exhibiting a Chernoff (1964)-type limiting distribution. For estimators of
this kind, the standard nonparametric bootstrap is inconsistent. The method proposed
herein is based on the nonparametric bootstrap, but restores consistency by altering
the shape of the criterion function defining the estimator whose distribution we seek
to approximate. This modification leads to a generic and easy-to-implement resam-
pling method for inference that is conceptually distinct from other available distribu-
tional approximations. We illustrate the applicability of our results with four examples
in econometrics and machine learning.
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1. INTRODUCTION

IN A SEMINAL PAPER, Kim and Pollard (1990) studied estimators exhibiting “cube root
asymptotics.” These estimators not only have a non-standard rate of convergence, but
also have the property that, rather than being Gaussian, their limiting distributions are of
Chernoff (1964) type; that is, the non-Gaussian limiting distribution is that of the maxi-
mizer of a Gaussian process. Kim and Pollard’s results cover not only celebrated examples
such as the maximum score estimator of Manski (1975) and the isotonic density estimator
of Grenander (1956), but also more contemporary estimators arising in examples related
to classification problems in machine learning (Mohammadi and van de Geer (2005)),
nonparametric inference under shape restrictions (Groeneboom and Jongbloed (2018)),
massive data M-estimation framework (Shi, Lu, and Song (2018)), and maximum score
estimation in high-dimensional settings (Mukherjee, Banerjee, and Ritov (2019)). More-
over, Seo and Otsu (2018) recently generalized Kim and Pollard (1990) to allow for n-
varying objective functions (n denotes the sample size), further widening the applicability
of cube-root-type asymptotics. For example, their results cover the conditional maximum
score estimator of Honoré and Kyriazidou (2000).
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An important feature of Chernoff-type asymptotic distributional approximations is that
the covariance kernel of the Gaussian process characterizing the limiting distribution
often depends on an infinite-dimensional nuisance parameter. From the perspective of
inference, this feature of the limiting distribution represents a nontrivial complication
relative to the conventional asymptotically normal case, where the limiting distribution is
known up to the value of a finite-dimensional nuisance parameter (namely, the covariance
matrix of the limiting distribution). The dependence of the limiting distribution on an
infinite-dimensional nuisance parameter implies that resampling-based distributional ap-
proximations seem to offer the most attractive approach to inference in estimation prob-
lems exhibiting cube root asymptotics. Unfortunately, however, the standard nonpara-
metric bootstrap is well known to be invalid in this setting (Abrevaya and Huang (2005),
Léger and MacGibbon (2006), Kosorok (2008), Sen, Banerjee, and Woodroofe (2010)).
The purpose of this paper is to propose a generic and easy-to-implement bootstrap-based
distributional approximation applicable in the context of cube root asymptotics.

As does the familiar nonparametric bootstrap, the method proposed herein employs
bootstrap samples of size n from the empirical distribution function. But unlike the non-
parametric bootstrap, which is inconsistent, our method offers a consistent distributional
approximation for estimators exhibiting cube root asymptotics. Consistency is achieved by
altering the shape of the criterion function defining the estimator whose distribution we
seek to approximate. Heuristically, the method is designed to ensure that the bootstrap
version of a certain empirical process has a mean resembling the large sample version of
its population counterpart. The latter is quadratic in the problems we study, and known
up to the value of a certain matrix. As a consequence, the only ingredient needed to im-
plement the proposed “reshapement” of the objective function is a consistent estimator
of the unknown matrix entering the quadratic mean of the empirical process. Such esti-
mators turn out to be generically available and easy to compute.

This paper is not the first to propose a consistent resampling-based distributional ap-
proximation for cube-root-type estimators. For canonical cube root asymptotic problems,
the best known consistent alternative to the nonparametric bootstrap is probably sub-
sampling (Politis and Romano (1994)), whose applicability was pointed out by Delgado,
Rodriguez-Poo, and Wolf (2001). Related applicable methods are the m-out-of-n boot-
strap (Bickel, Gotze, and van Zwet (1997)), whose applicability was discussed and ex-
tended by Lee and Pun (2006) and Lee and Yang (2020), the rescaled bootstrap (Diimb-
gen (1993)), and the numerical bootstrap (Hong and Li (2020)). In addition, case-specific
(smooth or non-standard) bootstrap methods have been proposed for leading examples
such as monotone density estimation (Kosorok (2008), Sen, Banerjee, and Woodroofe
(2010)), maximum score estimation (Patra, Seijo, and Sen (2018)), and the current sta-
tus model (Groeneboom and Hendrickx (2018)). For the more generic cube-root-type
estimators analyzed in Seo and Otsu (2018), subsampling appears to be the only method
available, and indeed the authors discussed in their concluding remarks the need for (and
importance of) developing resampling methods based on the standard nonparametric
bootstrap. Our paper appears to be the first to provide one such method.

Like ours, each of the resampling methods mentioned above can be viewed as offering
a “robust” alternative to the standard nonparametric bootstrap but, unlike ours, existing
methods achieve consistency by modifying the distribution used to generate the boot-
strap sample. In contrast, our bootstrap-based method achieves consistency by means of
an analytic modification of the objective function used to construct the bootstrap-based
distributional approximation. As further discussed below, this approach results in a pro-
cedure that is conceptually related to the bootstrap methods developed by Andrews and
Soares (2010) and Fang and Santos (2019) in other econometrics contexts.
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Implementation of our procedure is not computationally demanding. Indeed, the only
ingredient needed to implement our modification on the objective function is a consistent
estimator of a certain Hessian matrix. We propose a generic estimator based on numerical
derivatives and present a consistency result as well as an approximate mean squared error
expansion for that estimator. In addition, we illustrate how example-specific features can
be sometimes exploited to construct alternative estimators.

The paper proceeds as follows. Section 2 is heuristic and outlines the main idea under-
lying our approach in the M -estimation setting of Kim and Pollard (1990). Section 3 then
makes that heuristic discussion rigorous in a more general setting similar to that of Seo
and Otsu (2018). Section 4 illustrates our bootstrap-based inference method with four ex-
amples: the maximum score estimator of Manski (1975, 1985), the conditional maximum
score panel data estimator of Manski (1987), the conditional maximum score dynamic
panel data estimator of Honoré and Kyriazidou (2000), and the classification estimator of
Mohammadi and van de Geer (2005). Section 5 reports simulation evidence for the case
of the maximum score estimator, and Section 6 concludes. Section 7 describes the proof
of our main result, while the Supplemental Material (Cattaneo, Jansson, and Nagasawa
(2020)) contains omitted proofs and details.

2. HEURISTICS

Suppose 6, € @ C R? is an estimand admitting the characterization

0, = argmax M,(0), My(0) =E[my(z, 0)], 1)

0cO

where my, is a known function, and where z is a random vector of which a random sample
1, ..., Z, is available. Studying estimation problems of this kind for non-smooth 1,, Kim
and Pollard (1990) gave conditions under which the M -estimator

é = a 1||axM ] M 0 = —1 En m 0
T .
n g n( )7 n( ) O(Zn )7

0cO i=1
exhibits cube root asymptotics:

Jn(0, — 0y) ~ argmax{Go(s) + Qu(s)}, )

seRd

where ~~ denotes weak convergence, G, is a non-degenerate zero-mean Gaussian process,
and Qy(s) = —s'Hys/2, where Hy = —d*M(0,)/3050' .

Whereas the matrix Hy governing the shape of Q, is finite-dimensional, the covariance
kernel of G, in (2) typically involves infinite-dimensional unknown quantities. As a con-
sequence, the limiting distribution of 0, tends to be more difficult to approximate than
Gaussian distributions, implying in turn that basing inference on @, is more challenging
under cube root asymptotics than in the more familiar case where 0, is «/n-consistent and
asymptotically normally distributed.

As a candidate method of approximating the distribution of @,, consider the nonpara-
metric bootstrap. To describe it, let z; , ..., z; , denote a random sample from the em-

> %n,

pirical distribution of z,, ...z, and let the natural bootstrap analogue of 6, be denoted
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by

0O

9:=argmax1\;[:(0), M:(0)= %Zmo(za,ﬂ)-
i=1

Then, the nonparametric bootstrap estimator of IP’[@),, — @, < -]is given by ]P’j[@): - @)n <-,
where P denotes a probability computed under the bootstrap distribution conditional
on the data. As is well documented, however, this estimator is inconsistent under cube
root asymptotics (Abrevaya and Huang (2005), Léger and MacGibbon (2006), Kosorok
(2008), Sen, Banerjee, and Woodroofe (2010)).

For the purpose of giving a heuristic, yet constructive, explanation of the inconsistency
of the nonparametric bootstrap, it is helpful to recall that a proof of (2) can be based on
the representation

In(B, — 0) = argmax{G,(s) + Q.(s)}, 3)

seR4
where, for s such that 8, + sn~'? € O,
G, (s) = n**[M,,(8y + sn™'%) — M, (80) — My(8o + sn~"7) + M(8y)] 4)
is a zero-mean random process, while
Q,.(s) = n**[Mo(6y + sn™'7) — My(6,)] Q)

is a non-random function that is correctly centered in the sense that argmax, s Q,(s) = 0.

In cases where 7, is non-smooth but M, is smooth, G, and Q,, are usually asymptotically
Gaussian and asymptotically quadratic, respectively, in the sense that

G(s) ~ Go(s) (6)
and

O,(s) = Qo(s). (7)

Under regularity conditions ensuring among other things that the convergence in (6) and
(7) is suitably uniform in s, (2) then follows from an application of a continuous mapping-
type theorem for the argmax functional to the representation in (3).

Similarly to (3), the bootstrap analogue of 0, admits a representation of the form

C/ﬁ(é: - 9,1) = argmax{éﬁ(s) + Q,,(s)},
seRd
where, for s such that 0, + sn'3 € @,
G (s) =n*P[M: (8, +sn™') — M*(8,) — M,(0, +sn"'?) + M,(8,)]
and
Ou(s) = n**[M, (8, +sn'?) — M,(8,)].

Under mild conditions, G: satisfies the following bootstrap counterpart of (6):

G(s) ~5 Go(s), (8)
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where ~»p denotes conditional weak convergence in probability (defined as in van der
Vaart and Wellner (1996), Section 2.9). On the other hand, although Q, is non-random
under the bootstrap distribution and satisfies argmax,_z« Q,(s) = 0, it turns out that

Qn(s) —p Qy(s) in general. In other words, the natural bootstrap counterpart of (7) typi-
cally fails and, as a partial consequence, so does the natural bootstrap counterpart of (2);

that is, méi —0,) > argmax, . {Go(s) + Qo(s)}.
To the extent that the inconsistency of the bootstrap can be attributed to the fact that

the shape of Q, fails to replicate that of Q,, it seems plausible that a consistent bootstrap-
based distributional approximation can be obtained by basing the approximation on

é: = argmax]\;l;"(ﬂ), M:(O) = %Zﬁ’ln(lzn, 0)’
i=1

0O

where m,, is a suitably “reshaped” version of m, satisfying two properties. First, Gjl should
be asymptotically equivalent to G, where G is the counterpart of G* associated with m1,,:

Gi(s) =n*[M:(0, +sn™') — M:(0,) — M, (8, +sn™'7) + M,(0,)],
~ 1 < B
M, () =- ;mn(zi, 0).

Second, and most importantly, Q, should be asymptotically quadratic, where Q, is the
counterpart of Q, associated with 71,

0,(s) = n**[M,(0, +sn~'7) — M,(8,)].
Accordingly, let

i,(z, 0) = my(z, ) — M,(0) — %(0 —6,)H,(0-0,),

where H,, is an estimator of Hy. Then,

Jn(0, —8,) =argmax{G;(s) + O.(s)},
seRd
where, by construction, G’;(s) = Gj;(s) and Qn(s) = —s/I:Ins/Z. Because é; = é’;,
G:(s) ~p Go(s) whenever (8) holds. In addition, we have Qn(s) —p Qy(s) provided

H, >p Hy. As a consequence, it seems plausible that if H, —p Hy, then our pro-
posed bootstrap-based distributional approximation will be valid in the sense that

(0, = 0,) ~p argmax, pa{Go(s) + Qu(s)}.
For the purposes of situating this paper in the literature, the following alternative
heuristic explanation of our approach may be useful. Restating the result in (2) as

In(0, — 0y) ~ Sy(Gy),  Sy(G) = argmax{G(s) + Qu(s)},

scRd

our procedure approximates the distribution of Sy(G,) by that of S,,(Gj), where the dis-
tribution of the bootstrap process G; approximates that of G, and where the statistic
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S,(G) = argmax,_p«{G(s) + 0,(s)} is an estimator of Sy(G). In other words, our proce-
dure replaces the functional Sy with a consistent estimator (namely, S,) and its random

argument G, with a bootstrap approximation (namely, G‘j;) The same type of generic
construction has appeared in the econometrics literature before, notably in Andrews and
Soares (2010) and Fang and Santos (2019).

Our bootstrap-based distributional approximation can be shown to be consistent also
in the more standard case where m,(z, 8) is sufficiently smooth in @ to ensure that an
approximate maximizer of M, is asymptotically normal and that the nonparametric boot-

strap is consistent. In fact, éz is (first-order) asymptotically equivalent to éz in that stan-
dard case, so our procedure can be interpreted as a modification of the nonparametric
bootstrap that is designed to be “robust” to the types of non-smoothness that give rise to
cube root asymptotics.

3. MAIN RESULT

When making the heuristics of Section 2 precise, we consider the more general situation
where the estimator 6, is an approximate maximizer (with respect to 6 € @ C R?) of

~ 1<
M) =~ m,(2;,0),
i=1

where m,, is a known function, and where z,,...,z, is a random sample of a random
vector z. This formulation of M,,, which reduces to that of Section 2 when m,, does not
depend on #, is adopted in order to cover certain estimation problems where, rather than
admitting a characterization of the form (1), the estimand 6, admits the characterization

0, =argmaxM,(0),  My(0) = lim M,(0),  M,(0)=E[m,(z,0)].

0O

In other words, in the setting considered in this section, 0, approximately maximizes
a function M, whose population counterpart M, can be interpreted as a regularization
(in the sense of Bickel and Li (2006)) of a function M, whose maximizer 6, is the object
of interest. This generalization is attractive because it allows us to formulate results that
cover local M-estimators such as the conditional maximum score estimator of Honoré
and Kyriazidou (2000). Studying this setting, Seo and Otsu (2018) gave conditions under

which 60, converges at a rate equal to the cube root of the “effective” sample size and
has a limiting distribution of Chernoff (1964) type. Analogous conclusions will be drawn
below, albeit under slightly different conditions.

For any » and any 6 > 0, define

m,(z) = sup \m(z)
meMy

. M,={m.(,0):0€0),

and

d®(z) = sup|d(z)

deD,‘?

0,={0c0:|0-0 <35}

, D= {m,(-,0) —m,(,0):0eO]},
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Condition CRA (Cube Root Asymptotics) For some g, > 0 with r,, = J/ng, — oo, the fol-
lowing are satisfied:

(i) The class {M, : n > 1} is uniformly manageable for the envelopes m, and
q.Elm,(2)*] = O(1). Also, sup,.e |M,(0) — My(0)| = o(1) and, for every § > 0,
SUPyco\03 My(0) < My(0y).

(ii) 6, is an interior point of @ and, for some 6 > 0, M, and M, are twice continu-
ously differentiable on @g and SUPy. 93 |0*[M,,(0) — My(0)]/9000'|| = o(1).
Also, r,||dM,(0y) /90| = o(1) and Hy = —3*M(0,) /300’ is positive definite.

(iii) For some & > 0, the class {D? : n > 1,0 < & < 8} is uniformly manageable for
the envelopes 52/ and g, sup,_s 5 E[a_lf,/(z)z/S/] =0(1).

(iv) For every 8, > 0 with 8, = O(r; "), qf,r,leE[ci;f" (z)*] = 0o(1) and, for all s, t € R¢
and for some C, with Cy(s, s) + Cy(t, t) — 2Cy(s, t) > 0 for s # t,

Sup &E[{mn(za 0 + (Sns) - mn(z’ 0)}{m,,(z, 0 + ant) - m’l(z’ 0)}] B CO(S’ t)

L n
00"

=o(1).
(v) For every 8, > 0 with 8, = O(r;, "),

lim limsup sup q,,]E[]l{q,,c?i(z) > C}a_lj(z)z/é] =0

C=00 s 0<8<by
and supo’ﬂ,e@gn El|m,(z, 0) — m,(z, 0)]1/]10 — 0| = O(1).

To interpret Condition CRA, consider first the benchmark case where m, = m, and
g, = 1. In this case, the condition is similar to assumptions (ii)—(vii) of the main theorem
of Kim and Pollard (1990), to which the reader is referred for a definition of the term
(uniformly) manageable. The differences between their assumptions and Condition CRA
are technical in nature, since we need to slightly strengthen their assumptions in order to
be able to analyze the bootstrap. For instance, the displayed part of Condition CRA(iv) is
a locally uniform (with respect to @ near 6,) version of its counterpart in Kim and Pollard
(1990). More generally, Condition CRA can be interpreted as an n-varying version of a
suitably (for the purpose of analyzing the bootstrap) strengthened version of the assump-
tions of Kim and Pollard (1990). The differences between Condition CRA and the i.i.d.
version of the conditions in Seo and Otsu (2018) are also technical in nature, but for com-
pleteness we highlight two here. First, they controlled the complexity of various function
classes using the concept of bracketing entropy, while we follow Kim and Pollard (1990)
and obtain maximal inequalities using bounds on uniform entropy numbers implied by
the concept of (uniform) manageability. Second, whereas Seo and Otsu (2018) controlled
the bias of 9,, through a locally uniform bound on M,, — M,, Condition CRA controls the
bias through the first and second derivatives of M,, — M,.

Under Condition CRA, the effective sample size is ng, = r? and if 0, is an approximate

maximizer of M,,, then r,,(@,, — 6)) has a limiting distribution of Chernoff (1964) type. The
heuristics of the previous section are rate-adaptive (i.e., ¢/ can be replaced by a generic
1), SO once again it stands to reason that if H, is a consistent estimator of Hy, then the
distribution of rn(an — 6,) can be consistently estimated by that of rn(é: — én), where é:
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is an approximate maximizer of
W) = - imn(zf 0), (s, 0) = m,(z, 0) ~ M,(0) — ~(8— 0,0 ,)
n n 4 in’ s > ’ 2 >

with zj ,...,z; , being a random sample from the empirical distribution of z,, ..., z,.
A precise statement is given in the following theorem.

THEOREM 1: Suppose Condition CRA holds. If H, —» H, and if

n

M, (0,) > sup M, (0) — op(r;?) and M;(@)Z) > sup M*(0) — op(r,?),

0cO 0cO
then
7.(0, — 8y) ~ argmax{Gy(s) + Qy(s)}, )
seRd
and
r,,(én — én) ~p argmax{QO(S) + Qo(s)}, (10)
seRd
where G is a zero-mean Gaussian process with covariance kernel Cy and Qy(s) = —s'Hys/2.

The algorithm for our bootstrap -based distributional approximation is as follows:
Step 1. Using the sample z4, ..., z,, compute 0, by approximately maximizing M, (0).
Step 2. Using @,, andz,...,Z7,, compute H,. (See Section 3.1 for a generlc estimator H,, J)
Step 3. Using 6,,, H,, and the bootstrap sample z; , ... compute 0 by approximately
maximizing 1\;[:(0). (9,1 and H,, are not recomputed at this step.)
Step 4. Repeat Step 3 to generate draws from the distribution of rn(éz - én).

2 nn’

3.1. Estimation of H,

A generic numerical derivative estimator of Hy is the matrix I:IED with element (k,[)
given by

~ 1 A A A~ A A A
H,I:IB([ = _P[Mn(on + €€, + elen) - Mn(an + €€, — elen) - Mn(on — €€, + elen)

n

+Mn(én — €€, — elen)]a

where e, is the kth unit vector in R? and where €, is a positive tuning parameter. Condi-
tions under which this estimator is consistent are given in the following lemma.

LEMMA 1: Suppose Condition CRA holds and that rn(@)n —0y) =0p(1). If e, > Oand if
r,€, —> 00, then I:II,fD —p H.

Plausibility of the high-level condition 7, (9,, —0,y) = Op(1) follows from (9). To facilitate
practical implementation, it is useful to go beyond consistency and develop a Nagar-type
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mean squared error (MSE) expansion that can be used to select €,. To state one such
result for H),, define

2 2

. J ..
M, . (0 —FM,(0), M, 0) =
x(0) = 76,30, (9) 0,k1(0) 76, 96,

MO(O)’

11 & 7
By = _6|: 02 Mo w(0y) + 7M0 kl(a())i|

and

1
Vi = g[co(ek +e, e +e€)+Coler — e, e —e) —2Co(e; + €, e —e)
— ZCO(ek + e, —e; + e])].

LEMMA 2: Suppose the conditions of Lemma 1 hold and that, for some 6 > 0, M
and Mn « are twice continuously differentiable on @ with SUPyeo3 |5? [Mn «(0) — M(, a1/
3090’ || = o(1). If Cy(s, —s) = 0 and Cy(s, t) = Cy(—s, —t) forall s, t € R?, then H}fﬁd admits
an approximation H ok Satisfying

o, = HN]?(Z + op(e +

1 1
=)o)
rie &
where the Op(1/r,) term does not depend on €, and where

- 2 1 1 .
E[(H)S, — Huu) | = €87, + EVM + 0<€2 + ,/3—3>, H, =—M, 1(6y).

n-n n-n

The conditions Cy(s, —s) = 0 and Cy(s, t) = Cy(—s, —t) are satisfied in all of the ex-
amples we have analyzed. Using the lemma, the approximate MSE (AMSE), €'B?, +
r.3€,°Vy, can be minimized by choosing €, proportional to r;*’, the optimal factor of
proportionality being a function of By, and V,,. To be specific, the optimal €, is given by
e’ = (3Viu/4B;)7r, 7, a feasible version of which can be constructed by replacing By,

and V,; with preliminary estimators thereof.

4. EXAMPLES
4.1. Maximum Score

To describe a version of the maximum score estimator of Manski (1975, 1985), suppose
1, ..., Z, is arandom sample of z = (y, X')’ generated by the binary response model

y=1(xBy+u=0), Median(u|x) =0

where B, € R™! is an unknown parameter of interest, x € R**! is a vector of covariates,
and u is an unobserved error term. Following Abrevaya and Huang (2005), we employ
the parameterization B, = (1, 0,)’, where 6, € R? is unknown. In other words, we assume
that the first element of B, is positive and then normalize the (unidentified) scale of 3, by
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setting its first element equal to unity. Partitioning x conformably with B, as x = (x, x})’,
. . . ~MS . S
a maximum score estimator of @, is any @, approximately maximizing M, for

m,(z, 0) =m"(z,0) = 2y — 1)1(x; +x,0 > 0).

Regarded as a member of the class of M-estimators exhibiting cube root asymptotics,
the maximum score estimator is representative in a couple of respects. First, under easy-
to-interpret primitive conditions, the estimator is covered by the results of Section 3.
Second, in addition to the generic estimator H'™> discussed above, the maximum score
estimator admits example-specific consistent estimators of the H,, associated with it.

Under standard regularity conditions (stated in Section A.2 of the Supplemental Ma-
terial), Condition CRA is satisfied with ¢, =1,

H)=H" = 2E[ﬁ4|x1,xz (0| - X/200, X2)fx1|x2 (—X/200|X2)X2X/2]
and

Co(s, t) =C"(s, t) = E[ fr,1x, (—X,09x;) min{ |x}s

x| }1(sgn(x;s) = sgn(xt))],

where f,, denotes the conditional Lebesgue density of a given b. As a consequence, The-

b

orem 1 is applicable to 9:5 and the consistency requirement H, — H"S is satisfied by the
numerical derivative estimator discussed in Section 3.1 if €, — 0 and ne2 — oco. Under the
additional regularity conditions of Lemma 2, MSE-optimal tuning parameter choices are
feasible. In addition, alternative consistent estimators of H"® can be constructed exploit-
ing the specific structure of this example. One option is to employ a “plug-in” estimator
of H"® based on nonparametric estimators of f,,, x, and fy, ,. An alternative, example-
specific estimator is

1%

~ 1 < . ~
Hl;llls = —; Z(Zy, — 1)Kn(x1i + Xlzl-ol\nqs)XZiX/zl-,

i=1

where, for a differentiable kernel function K and a positive bandwidth #4,, K,(u) =
dK,(u)/du and K, (u) = K(u/ h,)/ h,. In words, I:IL4S is constructed by “smoothing out”
the indicator function entering n"*(z, @) and then twice differentiating the corresponding
objective function (previously used by Horowitz (1992)).

4.2. Panel Maximum Score

Consider the panel data binary response model
Y, =1XBy+a+u>0), =12,

where B, € R**! is an unknown parameter of interest, « is an unobserved (time-invariant)
individual-specific effect, and u, is an unobserved error term. Analyzing this model, Man-
ski (1987) gave conditions under which B, is identified up to scale and demonstrated
consistency of a conditional maximum score estimator.

Suppose B, is identified up to scale and that its first element is positive, in which case we
can normalize that element to unity and employ the parameterization B, = (1, 6;)’, where
0, € R? is unknown. To describe a version of the estimator of Manski (1987), partition X,
conformably with B, as X, = (Xy,, X},)" and define z = (y, x;,x})’, where y =Y, — Y,
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x1 = X1, — X11, and x, = (Xy; — Xy1). Assuming z,, . . ., Z, is a random sample of z, a panel
. . . ~PMS . . . . ~
maximum score estimator of @, is any @, approximately maximizing M, for

m,(z, 0) =m™(z, 0) = yl(x; +x,0 > 0).

As one would expect, the properties of éZMS are qualitatively similar to those of éfs
To be specific, under regularity conditions (stated in Section A.3 of the Supplemental
Material), the panel maximum score estimator is covered by the results of Section 3 and
an example-specific alternative to the generic numerical derivative estimator is available,
namely,

~ PMS
PMS /
H: -n- E VK, (%1 + x,0 )X2iXs;,
where K, is as in the maximum score example.

4.3. Conditional Maximum Score

Consider the dynamic panel data binary response model
Y, =1X,By+ Y ivo+a+u >0), t=1,2,3,

where B, € R? and vy, € R are unknown parameters of interest, « is an unobserved (time-
invariant) individual-specific effect, and u, is an unobserved error term. Honoré and Kyr-
iazidou (2000) analyzed this model and gave conditions under which B, and vy, are iden-
tified up to a common scale factor. Assuming these conditions hold and that the first
element of B, is positive, we can normalize that element to unity and employ the param-
eterization (B, yo)' = (1, ,)’, where 6, € R? is unknown.

To describe a version of the conditional maximum score estimator of Honoré and
Kyriazidou (2000), partition X, after the first element as X, = (X, X),)’ and define
= (y, xl,X/Z,W/)/, where y= Y2 — Yl’ X1 = X]z — Xll’ X; = ((X22 — X21)/, Y3 — YU)/, and
w =X, — X;. Assuming zi, ..., z, is a random sample of z, a conditional maximum score

estimator of 6, is any éEMS approximately maximizing M, for
m,(z, 0) =m,"(z,0) = y1(x; +x,0 > 0)x,(W),

where k,(w) = k(w/b,)/b? for a kernel function k and a bandwidth b,,.

Through its dependence on b, the function m"® depends on 7 in a nonnegligible way.
In particular, the effective sample size is nb? (rather than n) in the current setting, so to
the extent that they exist, one would expect primitive sufficient conditions for Condition
CRA to include g, = b? in this example. Apart from this predictable change, the proper-

. ., . . . A CMS . . . .
ties of the conditional maximum score estimator #, turn out to be qualitatively similar

to those of @)fs To be specific, under regularity conditions (stated in Section A.4 of the
Supplemental Material), the conditional maximum score estimator is covered by the re-
sults of Section 3 and an example-specific alternative to the generic numerical derivative
estimator is available, namely,

HCMS OC /
—n- yz x11+X21 n )XZiXZiKn(wi)a

where K, is as in the maximum score example.
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4.4. Empirical Risk Minimization

Mohammadi and van de Geer (2005) considered two-category classification problems
in machine learning. Specifically, given a binary outcome y € {—1, 1} and a vector of fea-
tures x € X, the goal is to estimate the €, that minimizes the misclassification error (or
risk) P[hg(x) # y] with respect to @ € @ C RY, where {hy : @ € @} is a collection of clas-
sifiers. For simplicity, we consider the case where the feature is univariate with support
X =0, 1] and the classifiers are of the form

d+1

ho(X) =) (=1D)'1(B,1 <x<6,),  0=(01,0,,...,060),

=1

Where@:{(Ol, 92,...,04),6[0, 1]d10:90§ 91 <..-< Gdf (94+1:1}.

Assuming z,, ...,z, is a random sample of z, an empirical risk minimizer is any ?)iRM
approximately maximizing M,, for m,(z, 0) = m*™"(z, @) = —1(he(x) # y). Under regu-
larity conditions similar to those of Mohammadi and van de Geer (2005, Section 2.1), the
empirical risk minimizer is covered by Theorem 1 and the consistency requirement on H,
can be met in various ways; for details, see Section A.5 of the Supplemental Material.

5. SIMULATIONS

We illustrate the numerical performance of our proposed bootstrap-based inference
methods for the maximum score estimator. Given the setup in Section 4.1, we generate
data from that model with d =1, 8, = 1, x = (x1, x2) ~ N((0,1), L) with I, the (2 x
2) identity matrix, and u generated by three distinct distributions. Specifically, DGP 1
sets u ~ Logistic(0, 1)/1/272/3, DGP 2 sets u ~ T5/+/3, where 7T; denotes a Student’s z-
distribution with 3 degrees of freedom, and DGP 3 sets u ~ (1 + 2(x; + x3)? + (x; +
x2)")Logistic(0, 1) //72/48.

The Monte Carlo experiment employs a sample size n = 1000 with B = 2000 boot-
strap replications and S = 2000 simulations. For each of the three DGPs, we im-
plement the standard nonparametric bootstrap, the m-out-of-n bootstrap using m €
{[n'1, [n**1, [n*>1}, and our proposed method using the two estimators H”S and H'™
of Hy. We report empirical coverage for nominal 95% confidence intervals and their av-
erage interval length. For the case of our proposed procedures, we investigate their per-
formance using (i) infeasible (simulation-based) MSE-optimal choices of tuning parame-
ters (bandwidth/derivative step), denoted by hygx and eygg, and (ii) infeasible and feasible

AMSE-optimal choices of the tuning parameters, denoted by /aysz, szMSE, €amse, aNd Enygr;
for details, see Section A.2 of the Supplemental Material.

Table I presents the main results, which are consistent across all three simulation de-
signs. First, as expected, the standard nonparametric bootstrap (labeled “Standard”) does
not perform well, leading to confidence intervals with an average 64% empirical coverage
rate. Second, the m-out-of-n bootstrap (labeled “m-out-of-n”) performs somewhat better
for small subsamples, but leads to very large average interval length of the resulting confi-
dence intervals. Our proposed methods, on the other hand, exhibit good finite sample per-
formance in this Monte Carlo experiment. Results employing the example-specific plug-in
estimator H" are presented under the label “Plug-in” while results employing the generic
numerical derivative estimator '™ are reported under the label “Num Deriv.” Empirical
coverage appears stable across different values of the tuning parameters for each method,
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TABLE 1
SIMULATIONS, MAXIMUM SCORE ESTIMATOR, 95% CONFIDENCE INTERVALS?

DGP1 DGP2 DGP 3

h,e Coverage Length h,e Coverage Length h,e Coverage Length

Standard

0.625 0.472 0.647 0.475 0.654 0.243
m-out-of-n
m=[n'/?] 0.997 1.698 0.998 1.753 1.000 1.890
m = [n*/?] 0.978 1.185 0.983 1.221 0.989 0.724
m = [n*?] 0.899 0.820 0.897 0.837 0.930 0.447
Plug-in: S
hyse 0.620 0.954 0.511  0.580 0.957 0.523  0.150 0.962 0.277
Navse 1.108 0.972 0.590  0.480 0.951 0.518  0.123 0.942 0.263
Pass 0.443 0.940 0.508  0.409 0.946 0.518  0.155 0.957 0.278
Num Deriv: HP
€nse 1.400 0.936 0.483  1.360 0.938 0.485  0.290 0.939 0.249
€amsE 0.537 0.880 0.414 0573 0.894 0.426  0.224 0.902 0.227
€ause 0.518 0.876 0.413 0512 0.882 0.420  0.369 0.947 0.270

4(i) Panel Standard refers to standard nonparametric bootstrap, Panel m-out-of-n refers to m-out-of-n nonparametric bootstrap
with subsample size m, Panel Plug-in: HS refers to our proposed bootstrap-based method implemented using the example-specific
plug-in drift estimator, and Panel Num Deriv: HYP refers to our proposed bootstrap-based method implemented using the generic
numerical derivative drift estimator. (ii) Column “/, €” reports tuning parameter value used or average across simulations when es-
timated, and Columns “Coverage” and “Length” report empirical coverage and average length of bootstrap-based 95% percentile
confidence intervals, respectively. (iii) thE and emgg correspond to the simulation MSE-optimal choices, havsg and eamgg corre-
spond to the AMSE-optimal choices, and hAMsE and éavsg correspond to the ROT feasible implementation of hAMsE and éavse
described in the Supplemental Material.

with better performance in the case of HS. We conjecture that n = 1000 is too small for
the numerical derivative estimator H' to lead to as good inference performance as H'
(e.g., note that the MSE-optimal choice €5 is greater than 1). Nevertheless, empirical
coverage of confidence intervals constructed using our proposed bootstrap-based method
is close to 95% in all cases except when H® is used with either the infeasible asymp-
totic choice e,ygp OF its estimated counterpart €,ysz, and with an average interval length
of at most half that of any of the m-out-of-n competing confidence intervals. In partic-
ular, confidence intervals based on I:IL4S implemented with the feasible bandwidth /:lAMSE
perform quite well across the three DGPs considered.

6. CONCLUSION

We developed a valid resampling procedure for cube root asymptotics based on the
nonparametric bootstrap. Whereas the standard nonparametric bootstrap is known to be
invalid in the setting we study, we show that bootstrap validity can be restored by applying
a carefully tailored reshapement of the objective function defining the estimator. Such
reshapement is easy to implement both in general and in specific cases, as illustrated by
the distinct examples we considered.

Seo and Otsu (2018) gave conditions under which results of the form (9) can be ob-
tained also when the data exhibit weak dependence; see also Bagchi, Banerjee, and Stoev
(2016), and references therein. It seems plausible that a version of our procedure, im-
plemented with a resampling procedure suitable for dependent data, can be shown to be
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consistent under similar conditions, but it is beyond the scope of this paper to substantiate
that conjecture.

7. PROOF OF THEOREM 1

The proof proceeds by first showing (9) and then using that result to establish (10). In
both cases, we employ arguments similar to those used in the proof of the main theorem
of Kim and Pollard (1990). The remainder of this section outlines the main steps in the
proof; for technical details, see Lemmas A.1-A.10 in Section A.1 of the Supplemental
Material. )

Proof of (9). The estimator 0, is assumed to satisty

[G(8) + Qu(9) sy 6, -6, = SUP{Ga(5) + 0u(8)} + 0p(1),

seRd

where

A

G, (s) = r2[M,,(8y +s7;") — M,(8) — M, (0 + s7;") + M, (8,)]1(0, + s, ' € O)

and
Q.(8) =17 [M, (00 +sr,") — M, (6,)]1(8y + sr," € O).

By the argmax continuous mapping theorem (e.g., van der Vaart and Wellner (1996),
Theorem 3.2.2), it therefore suffices to show that r,,(@,, —60y) = Op(1) and that Gn +Q, ~
Go + Qy in the topology of uniform convergence on compacta. (The other conditions
required by the argmax continuous mapping theorem are easily verified.)

To obtain the rate of convergence of 0,,we begin by using a standard argument to show
that 9,1 — 60y = op(1) under Condition CRA(i) and then strengthen that conclusion to
r(0, — 8)) = Ox(1) by using Conditions CRA(ii)—(iii) and proceeding along the lines of
van der Vaart and Wellner (1996, Theorem 3.2.5). In both cases, we employ the maximal
inequality in Pollard (1989, Theorem 4.2); for details, see Lemmas A.1 and A.3 of the
Supplemental Material.

Next, because Q,, is non-random, G,, + 0O, ~ Gy + Qy in the topology of uniform con-
vergence on compacta if Q, converges compactly to Q, and if G, ~ G, in the topology of
uniform convergence on compacta. Compact convergence of Q, follows from Condition
CRA(ii); for details, see Lemma A.2 of the Supplemental Material. Also, to show that
G, ~ Gy in the topology of uniform convergence on compacta, it suffices to show that G,
converges to G, in the sense of weak convergence of finite-dimensional projections and
that {G,,(s) . |Is|l < K} is stochastically equicontinuous for every K > 0.

Under Conditions CRA(ii)—(iv), weak convergence of finite-dimensional projections
can be shown using the Cramér—Wold device and the fact that E[Gn(s)f}n(t))] converges
to Cy(s, t) for every s, t € RY; for details, see Lemma A.4 of the Supplemental Material.
Finally, under Conditions CRA(iii) and CRA(v) and employing the maximal inequality
in Pollard (1989, Theorem 4.2), stochastic equicontinuity can be shown by proceeding as
in the proof of Kim and Pollard (1990, Lemma 4.6); for details, see Lemma A.5 of the
Supplemental Material.
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Proof of ( 10). The proof of (10) is a natural bootstrap analog of the proof of (9). The
estimator 0 is assumed to satisfy

{G(8) + 0u() oy, ity = SUP{G(5) + Qu(9)} + 0p(1),

scRd

where
Gj(s):rﬁ[M;(én—l—sr;) M:(0,) — M, (8, +sr; )+M*(0n)]( +sr,' € @)

and
0,(s) = rﬁ[]\;ln(@),, +sr,') — ]\;In(an)]]l(@),, +sr,' €)= —%S’I:Insjl(an +sr,' € 09).

By the argmax continuous mappmg theorem, it therefore suffices to show that rn(0
,,) = Op(1) and that G* + Q,, ~p Gy + Qy in the topology of uniform convergence on
compacta.

Using H, —» Hy, to obtain the rate of convergence of éz we first show that ?): -0, =
op(1) under Condition CRA(i) and then strengthen that conclusion to 7, (éz - @)n) =0p(1)
by using r,(0, — 8;) = Op(1) and Condition CRAL(ii). As in the derivation of the conver-
gence rate of 0,, both steps employ the maximal inequality in Pollard (1989, Theorem
4.2); for details, see Lemmas A.6 and A.8 of the Supplemental Material.

Next, because Q, is non-random, G,’; + O, ~5 Gy + Qq in the topology of uniform con-
vergence on compacta if 0, = Q, in the topology of uniform convergence on compacta
and if G, ~ G, in the topology of uniform convergence on compacta. By construction,
Q is such that if H, —p H, and if 0 —p 0y € Int(@), then Qn —p Qp in the topology
of uniform convergence on compacta; for details, see Lemma A.7 of the Supplemental
Material. _

Also, to show that G ~~p G in the topology of uniform convergence on compacta, it
suffices to show that Gj; converges to G, in the sense of conditional weak convergence
in probability of finite-dimensional projections and that {G,’:(s) :|Isll < K} is stochasti-
cally equicontinuous for every K > 0. Conditional weak convergence in probability of
finite-dimensional projections can be shown using the Cramér—Wold device and the fact
that the maximal inequality in Pollard (1989, Theorem 4.2) can be used to show that
E;[G,’;(s)éz(t))] converges in probability to Cy(s, t) for every s, t € RY, where E* denotes
an expectation computed under the bootstrap distribution conditional on the data; for
details, see Lemma A.9 of the Supplemental Material. Finally, employing the maximal
inequality in Pollard (1989, Theorem 4.2), stochastic equicontinuity can be shown by pro-
ceeding as in the proof of Kim and Pollard (1990, Lemma 4.6); for details, see Lemma
A.10 of the Supplemental Material.
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APPENDIX
A.1. Proofs of Main Results
A.1.1. Proof of Theorem 1

AS EXPLAINED IN THE PAPER, Theorem 1 follows from ten technical lemmas. The remain-
der of this subsection presents those lemmas and their proofs.

The first lemma can be used to show that én is consistent.
LEMMA A.1: Suppose Condition CRA(i) holds. Then 0, — 0, = 0p(1) if

M,(8,) > sup M, (8) — op(1).

0O

PROOF OF LEMMA A.1: It suffices to show that every § > 0 admits a constant c; > 0
such that

IP’[M,,(OO) — sup M,(0) > cg] Sl (A1)

0<0\0}

By assumption, sup,_q |M,(0) — M,(0)| = o(1). Also, by Pollard (1989, Theorem 4.2),

sup\]\;l 0 —M, (0)| =OIF’< M) =OIF’<L) = op(1).
0cO " " n vV ngy
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As a consequence, for any é > 0,

M,(8y) — sup M,(0)=My(0,) — sup My(0) + op(1),

0<0\0] 0<0\0]

so (A.1) is satisfied with ¢; = [M,(60,) — SUPgc\07 My(0)]/2 > 0. O.E.D.

Assuming the derivatives exist, let M,(0) = IM,(0) /060 and M, (0) = 3*M,(0) 10000’
If M, is twice continuously differentiable on a neighborhood @, of 6,, then it follows
from Taylor’s theorem that

1 . 1.
M, (0) — M.,(6o) + (0 — 60)H, (0 — 6y)| < C,[|0 — 6ol + 7 Call0 - Oll’,  (A2)

for every 0 € ©,, where H,, = —MH(OO), C,, = ||Mn(00)||, and C',, = SUPycg, ||M,,(0) -

M, (60)]).
As an immediate consequence of (A.2), we have the following convergence result
about Q,.

LEMMA A.2: Suppose Condition CRA(ii) holds. Then Q, converges compactly to Qy; that
is,

sup |Q,(s) — Qy(s)| — 0

Isl<K

forany K > 0.

PROOF OF LEMMA A.2: Let K > 0 be given and suppose # is large enough that Kr, ! <
8, where 6 > 0 is as in Condition CRA(ii). Using (A.2) with @, = @} 1 , we have

1
‘Qn(s) - QO(S)‘ = ryzl[Mn(o(] + Srn_l) - MH(O())] + ES/HQS
1, . La :
E§|S(Hn_H0)S|+rnCn”S”+§Cn”S” :(K+K)0(1)

uniformly in s with ||s|| < K, where the last equality uses r.Cp = r,,||Mn(00)|| — 0 along
with the facts that

2

. .. .. J
H,—H,= _[Mn(o()) - Mo(oo)] — 0, M,(6,) = WMO(BL

and

Co="sup |[M,(0) - M,(0y)|

Kry

06(")0
<2 sup |M.(0)— My(0)||+ sup |My(8)—My(8,)| — O.
0cOL " bl Q.E.D.

The next lemma can be used to obtain the rate of convergence of 8.
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LEMMA A.3: Suppose Conditions CRA(ii)-(iii) hold. Then r,,(én —0y) =0p(1) if én -
0y = ox(1) and if
M,(0,) > sup M, (0) — op(r;?).

n
0O

PROOF OF LEMMA A.3: Forany 8 > 0 and any K € N, P[r,||0, — 8|l > 2¥] is no greater
than

P[supMn(O) — M0, > ar;Z] + P[0, — 00l > 5/2]

0O

+ > P sup M(0)- M0 = —8r,2)
jsK2i<or, YT <mll0-00l<2
By assumption, the probabilities on the first line go to zero for any 6 > 0. As a conse-
quence, it suffices to show that the sum on the last line can be made arbitrarily small (for
large n) by making 6 > 0 small and K large.
To do so, let 6 > 0 be small enough so that Conditions CRA(ii)—(iii) are satisfied and

c(8) = liminfl%[)\min(Hn) -G1>0,

where Cf = SUPy ||Mn(0) — M, (6,) | and where A, (-) denotes the minimal eigenvalue

of the argument. Then, for all n large enough and for any pair (j, K)' € N* with j > K, we
have

M,(6)—  sup  M,(0)—5r,>=2%c,x(8)r,>,
21 <y | 0—0y]| <2
where ¢, x(8) = [Amn(H,) — Cf] /8 — 2751, C, — 272§ and where the inequality uses the
following implication of (A.2): If Ayin(H,) — C2 > 0 and if @, is a subset of @,, then

1 .o .
M, (8y) — sup M, (8) > > [ Amin(H,) — C;] ollg, 160 — 61> — C, sup [|0 — 6]l

00, 2 0c0;,

Choosing n and K large enough, we may assume that c, x(8) > c¢(8), in which case

SB[ sup  N(0)— M0y = —or,7
2K 2i<or, 2P <mllo-8gl<2]

= Y [ sup (M(0) = M,(80) — My(8) + M,(80)) = e,k (9)r; ]
oK 2<or, 2 TI<mllo—6y<2

< > P sup HMn(m—ano)—Mn(oHMn(oo)uzszc@)rn—Z]

oK di<sr, Tnl0=80l<2
|

2
< rna) 3 Z—ZJE[ sup || M,(0) — M,(8,) — M,(0) + M,(6,)

c( =K. J<bm 7061 <2/

where the last inequality uses the Markov inequality.
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Under Condition CRAL(iii), g, Sup,_s s E[d? (z)*/8'] = O(1) and it follows from Pollard
(1989, Theorem 4.2) that the sum on the last line is bounded by a constant multiple of

d2//r,,
gy g Bl @] = fon sup B[ /3] 320,
0<6'<6

j>K 20 <éry =K

which can be made arbitrarily small by making K large. Q.E.D.

In combination, the next two lemmas can be used to show that G,, ~ G, in the topology
of uniform convergence on compacta.

LEMMA A.4: Suppose Conditions CRA(iii)~(iv) hold and suppose Q,(s) = o(s/n) for

every s € RY. Then G, converges to G, in the sense of weak convergence of finite-dimensional
projections.

PROOF OF LEMMA A.4: Because G, (s) = n~'/? Yo Wa(zi s), where
U (Z; 8) = /TG M, (2, 0 +s7,") —m, (2, 00) — M, (80 + sr;,') + M, (6,)]1(6, + sr, " € O)
the result follows from the Cramér—Wold device if
E[¢.(2: )i, (z; )] > Co(s, t) Vs, teRY,
and if the following Lyapunov condition is satisfied:

—E[¢u(2:8)'] >0 VseR"

Lets, t € R? be given and suppose without loss of generality that 8y +sr, ', 6y +tr,' € O.
Then, using Q,(s) = o(4/n) and the representation

1
0,(s),

Po(Z;S) = /TuGu[Ma(2, 00 + s7,") — M, (2, 00)] — 7

we have

E[ya(z; 8)ha(z; t)]
= r.q B[ {m.(z, 0+ sr,") — m.(z, 0) }{m,(z, 0+ tr, ") — m,(z, 6,)}]

1
- _Qn(s)Qn(t)
n
—> CQ(S, t)

and, using E[d% (2)*] = o(q;°r,)) (for 8, = O(r; 1)),
2
1
By )] = L5, o, 0+ 57,") — 2, 00 T + 50,0

r 1
=o|l =+ - )=o),
nq, n

as was to be shown. O.E.D.

16n
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LEMMA A.5: Suppose Conditions CRA(iii) and CRA(V) hold. Then (Gu(s) : |Isl <K} is
stochastically equicontinuous for every K > 0; that is,

sup |Gn(s) - G,,(t)| —50
T

forany K > 0 and for any A, > Owith A, = o(1).

PROOF OF LEMMA A.5: Let K > 0 be given. As in the proof of Kim and Pollard (1990,
Lemma 4.6) and using the fact that ¢,8, 'E[d’"(z)*] = O(1) (for 8, = O(r; ")), it suffices
to show that

r, sup I > dy(ziis, 1) >3 0,

lIs—tl<A, 7 5
sl It <K

where d,(z; s, t) = |m,(z, 0y + sr;') —m,(z, 0y + tr; )| /2.
For any C > 0 and any s, t € R? with ||s||, ||t]| < K,

0y ot < 30N K (02 (0,05 (2,
o gdn(zl,s, )" < . ;d,, (2:)*1(g,dy™ (z;) > C)
+ CE[d, 5, 0)]
1 n
+ C; ;{dn(zi, s,t) —E[d,(zs, )]},
and therefore

rnE|: sup 4~ Zdn(z; S, t)2:| < ann]E[c?ff’;l (z)zll(q,,c?,‘f""f1 (z) > C)]
s =
+Cr, sup E[d,(z;s,t)]
Is7 =k

+ CrnIE|: sup
ls—tl <Ay
lsl, el <K

% Z{dn(z,-; S, t) - E[dn(Z; S, t)]}‘:|

i=1

For large n, the first term on the majorant side can be made arbitrarily small by making
C large. Also, for any fixed C, the second term tends to zero because A, — 0. Finally,
Pollard (1989, Theorem 4.2) can be used to show that for fixed C and for large n, the last
term is bounded by a constant multiple of

E[d¥ @] VK 7t !
rﬂ@= . Ja.E[2E (z)z/(Krnl)]=0(;> =oM- HED

The analysis of 5; also relies on five lemmas, each of which is a natural bootstrap analog

of a lemma used to analyze 8,. The following lemma can be used to show that 6: is
consistent in the sense that é: - @,, = op(1).
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LEMMA A.6: Suppose Condition CRA(i) holds and suppose H,, — H, where H is sym-
metric and positive definite. Then, éz - @n =op(1) if

M;(8,) = sup M;(0) — o0z(1).

0O

PROOF OF LEMMA A.6: It suffices to show that every 6 > 0 admits a constant ¢} > 0
such that

P[M;(é,,) — sup M(0)> c;] 1, (A3)

~ 8
0O\,

where @i ={0cO:0—0,| <8} The process J\;I;‘ satisfies
~ N N 1 P N ~ 1 &
M;(0)=M,(6)—M,(0)—-(0—-06,H,(0-6,), M, (0)=— Zmn(lf,,, 0),
2 n“= ’

where it follows from Pollard (1989, Theorem 4.2) that

sup\M*(O) —Mn(0)| =O]p( M) =O]p< ) =op(1).
0cO " n an"

As a consequence, for any 6 > 0,

~ A ~ 1 P A
M;(on)_ sup M::(B)ZE infé(o_on),Hn(a_on)—i_o]P‘(l)?

Ge@\@i 00\,
so (A.3) is satisfied with ¢} = §*Apin(H) /4 > 0. Q.E.D.

Next, because

~ - 1< 1 A . R
M,(0) =E;[M(0)] = — > (2, 0) =—2(0 — 6,)H,(0 - B,),

i=1
we have the following convergence result about Q,.

LEMMA A.7: Suppose r, — oo, H, > H, and suppose @,, —p 0y, where 0, is an interior
point of O. Then, Q, —p Q in the topology of uniform convergence on compacta, where

Q(s) = —s'Hs/2; that is,
0,(s) — (—%S/HS)

PROOF OF LEMMA A.7: Uniformly in s with ||s|| < K, we have

‘Qn(S) - (—%S’HS)

where the last inequality uses H, —; H and IF’(@,I +sr,'¢ @) — 0. O.E.D.

sup —p0

lsl=K

forany K > 0.

s'(H, —H)s| + % s’Hs|]1(@)n +sr,' ¢ 0) < K*op(1),

1
2

=
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The next lemma can be used to obtain the rate of convergence of éz.

LEMMA A.8: Suppose Condition CRA(iii) holds and suppose H,, —p H, where H is sym-
metric and positive definite. Then, r,,(éz - é,,) = Op(1) ifrn(én —6y) = 0p(1), 6: - én =
op(1), and if

M;(0,) = sup M;(0) — 0s(r,?).

0O

PROOF OF LEMMA A.8: For any & > 0 and any K € N, IP’[r,l||l~92 — 0, > 25+ is no
greater than

P[sup N1;(0) — M;(8,) = &, | + P[IH, — I > 8] +P[ |8, - 8, > /4]

0cO

+P[r,118, — 6ol > 2¥]

+ S P sup M;(o)—M;(én)z—ar;Z].

oK 2t <pry 2T <ml0-0,11<2T 1 10,~09|<2K, |H,~H]| <5

By assumption, the probabilities on the first line go to zero for any é > 0 and the probabil-
ity on the second line can be made arbitrarily small by making K large. As a consequence,
it suffices to show that the sum on the last line can be made arbitrarily small (for large n)
by making 6 > 0 small and K large.

To do so, let § > 0 be small enough so that Condition CRAC(ii) holds and

1 _ _
— inf A, (H+H Amin (H).
2\Iﬁ11111\\§8 ( + )> (H)

Then, if || H, — H|| < 8, we have

M,(0,) — sup M, (0) — 8r, 2> 2%k (),

2=l <ry|0—0, <2

for any pair (j, K)' € N* with j > K, where ¢} (8) = Apin(H)/16 — 2723,
Choosing K large enough that ¢ (8) > ¢* = Amin(H)/32 and using the fact that

M (0) — M:(0,) — M,(0) + M,(8,) = M:(0) — M:(8,) — M,(0) + M,(8,),
we therefore have

S op sup M;(0) — M;(B,) = —5r,]

oK 2t <ar, 2T <rall0—0,]1<2.r 10,00 <2K | H,~H] <5

< > P sup [M:(0) — M:(8,) — M,(0) + M,(,))

oK 2t <ary U <mll0=0n]1<2 00— (12K
> 22fc*r,,‘2]

< > P sup | M;(0) — M;(8,) — M,(0) + M,(8,)| > 22jC*”;2]

oK 2t <pr,  nll0=8n]1<2] 1|6y —6g ] <2K



8 M. D. CATTANEO, M. JANSSON, AND K. NAGASAWA

=

Y 2R sup |¥1;:(0) — M; (0) — M,(0) + M, (0)

ll0—00 (<2741, 1y |16/ — 09| <2K

|

('5* | :‘l\)

j=K, 2 <éry

where the last inequality uses the Markov inequality.

Under Condition CRAL(Iii), g, sup,_s_;E[d? (z)?/8'] = O(1) and Pollard (1989, The-
orem 4.2) can be used to show that the sum on the last line is bounded by a constant
multiple of

d2/+1/,n z
r ‘/ @] \/an sup E[d? (z)?/5'] 22 iz
0<6'<8

=K, 2/+1<3r,, j=K

which can be made arbitrarily small by making K large. Q.E.D.

Finally, the next two lemmas can be combined to show that G* ~»; G, in the topology
of uniform convergence on compacta.

LEMMA A.9: Suppose Conditions CRA(iii)~(iv) hold, r, (0, — 8,) = Ox(1), and that, for

every K > 0, sup,_x |G (s) + Q,(s)| = op(/n). Then G* converges to Gy in the sense of
conditional weak convergence in probability of finite- dimensional projections.

PROOF OF LEMMA A.9: Because Gi(s) =n""2Y""_ ,(z;,: s), where

Dn(z;s) = STl Ma(2, l),,—ksrn’) m,(z, 0,)— M( +sr; )+Mn(én)]]l(@n+sr;1 €0),

the result follows from the Cramér—Wold device if
E: [, (2" 8) a2 t)] Z Ua(2i; )P,(zi 1) =5 Co(s, 1) Vs, teRY,

and if the following Lyapunov condition is satisfied:
lE"[wn(z s) Zt/n.(z,, s)' >p0 VseRY
T

i=1

Let s, t € R be given and suppose without loss of generality that 0, + srit, 0, + tr !
0. Because r,,(0,, —0y) = Op(1), we have

0,.(s) = r,zl[l\;[n(én +sr,') — M, (0,,)] ( +sr,' € 9)
={G,[r.(8, — 0)) +5] + O.[ru(8, — 0) +5]}
—{Gu[ru(8, = 00)] + Q.[1.(8, — 0]}
= op(x/n)
and, using E[csz"(z)“] =o0(q,’r,) (for 8, = O(r;")) and Pollard (1989, Theorem 4.2),

rg B [{m,(z, 0, + sr=") — m, (z*, 0,)\{m,(z", 0, + tr-") — m,(z*,0,)}] = C, (s, t)
any [ {m( L) —ma(z, 0,) Hm( p
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- rnnﬁ Z{mn(zh 0.+ st ) — my(2i, 9n)}{mn(zi, 0, + tr;!) —m,(z;, ?)n)} —C(s,t)

i=1

[ Tn
:0]P<rnQn n_q_o,> ZOIF’(I)a

where
Co(s, ) =1, E[{m, (2, 0+ s7,") = mo(z, 0)} {m, (2,0 + tr,") — m, (2, 0)}]lys,
= Co(s, t) +op(1).
Using these facts and the representation

1

(zn(Z; S) = rnqn[mn(z’ én + 57;1) - mn(z’ én)] - \/ﬁ

Ou(s),
we have
A ARG
= r,,q,,E:[{m,,(z*, @)n + srn_l) — m,,(z*, én)}{m,,(z*, @)n + trn_l) — m,,(z*, @)n)}]
1 A ~
- _Qn(S)Qn(t)
n
=Co(s, t) + op(1)

and, using E[d®(2)*] = o(q;°r,) (for 6, = O(r; ")),

1 N
[ (259)']

1 - 7 rrZzQi . P _ N 4 1 A
:@;lpn(zi;s)“f72’}71"(1”0”4-5;*"1)_mn(zi’on)| +;Qn(s)4

i=1

r n 1 1)
=0 — =0 .
’ ng, n ’ QE.D.

LEMMA A.10: Suppose Conditions CRA(iil) and CRA(v) hold and suppose r(0, — 0,) =
Op(1). Then {G(s) : |Is|l < K} is stochastically equicontinuous for every K > 0; that is,

sup |Gi(s) — G5(t)| =50
Ie7 i<k

forany K > 0 and forany A, > Qwith A, = o(1).

PROOF OF LEMMA A.10: Let K > 0 be given. Proceeding as in the proof of Kim and
Pollard (1990, Lemma 4.6) and using ¢,8,'E[d’"(z)*] = O(1) (for 8, = O(r;')) along
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with the fact that rn(én — 6y) = Op(1), it suffices to show that, for every finite k > 0,

Iy (I’n”0 _00||<k) sup q"Zd ln’ ’t)2

ls—tl<d,
lsl, <K

qn 2
<r, sup —E d,(z:,:8,t) =30,
ls—tlI<A,
Isll, It <K+k

where
d,(z; s,t)=%|mn(z, én-i—sr;) m,(z, 0, +tr,")| = du(z; (8, — 0y) +s, 7.(0, —6)) +t).

Let k > 0 be given. For any C > 0 and any s, t € R? with ||s]|, ||t| < K + k,

4 e b < I N gk (g 2 J(K+or !
n ;d”(zi,n’s’ t) < " ;dn (z:,) 1(q.d, (z,) > C)
+ CE[d,(z; s, 1)]

+ C% g{dm,«,,,; s, ) ~Eld,(z:5,0)]}

e z s~ Ed, (5. 0)]).

and therefore,

r,,]E[ sup q"Zd z,:s, }

Is—t <A, Y
sl It <K+k

qn = - L w2 7 bk
ns] A 0 ) - )

+Cr, sup E[d,(zs,t)]
Is—tl=As
ISl 2K

+Crn]E Sup %Z{dn(zi,n; S,t) _]E[dn(Z; S7t)]}‘}
i=1

[s—tl<An
sl it <K+k

+Cr,E[ sup —Z Zin>Ss E*[dn(Z*?s7t)]}‘:|'

[s—tl<An
sl it <K+k

For large n, the first term on the majorant side can be made arbitrarily small by making
C large. Also, for any fixed C, the second term tends to zero because A, — 0. Finally,



BOOTSTRAP-BASED INFERENCE FOR CUBE ROOT ASYMPTOTICS 11

Pollard (1989, Theorem 4.2) can be used to show that for fixed C and for large n, each of
the last two terms is bounded by a constant multiple of

2)?/{(K+k)r,'}]

Iy

Ha @] JRTR
| - N

n

1
ZO(Z) =o(1). O.E.D.

A.1.2. Proof of Lemma 1
Without loss of generality, suppose r, 16 — 8, < K for some fixed constant K. Defining

v 1 N ~ ~
Hrlil?cl = _E[Mn(ao + €€ + e_nel) - Mn(o() — €€, + e_nel) - Mn(a() + €€ — e_nel)

n

+ Mn(o() — €,€; — Enel)]

and

- 1
H,Ijﬁ([(o) = _4_62[Mn(0 + €,€x + 6nel) - Mn(0 — €,€ + e‘nel) - Mn(o + €,€ — Enel)

n

+ M, (0 — €&, — €,€)],
we obtain the decomposition
I:Iﬁ, = I:I,Ijrllz + RE,Dkl + SS,Dkz’

where

Rou= I:IrI;H?cl - I:Iﬁ/ - I:Irlji[(én) + 1:1213(1(00)’

S}ﬁl = ﬁﬂz(i’n) - ﬁﬁz("o)-

The proof will be completed by showing that I:I,Ifi, —p Ho i, R = 0p(1), and §i7, =

op(1).

First, using (A.2) and the fact that C,= o(r;') and C, = o(1) under Condition CRA(II),
we have

1 €,
M,(0) + €,e; +€,¢) — M, (0y) = —Giz(ek +e)H, (e, +e)+ 0<r_ + fi),

implying in particular that

- 1
H,5(00) = H, 1 + O(r c + 1)7

where, using H,, — Hj,

/ /
Hn,kl = eanel d engel = H(),k[.
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Moreover, H okl ~ 1:153{,(00) is op(1) because it has mean zero and its variance is bounded
by a constant multiple of

E[d*" (z)* 1 1
[, EZ) ] =0( 3> =0<@) =o(1).

ne, ng,e,

As a consequence, ﬁﬁl —p Ho i
Next, to show that R}, = op(1), it suffices to show that

1
2

sup | M,(0) — M,(8y) — M, (0) + M,(8))| = 0s(1).

\0—00|§Krn_1+26,,

m

The displayed result holds because it follows from Pollard (1989, Theorem 4.2) that

1 . . E[&fr,TlJrZen (Z)z]
E[—z sup |Mn<0)—Mn(oo>—Mn<0)+Mn(oo>|]=0< —4)

€, |0700|§Kr,71+26n ne,

1
= O<—> = 0(1).
Jrie
Finally, making repeated use of (A.2) and the fact that r, 16 — 6] < K, we have
S — 1 1) =o0p(1
nkl — Op r2€2 + = OIP’( )

A.1.3. Proof of Lemma 2

Letting I:I,Iff,’{,, R» and 87, be defined as in the proof of Lemma 1, we have R, =

op(1/,/r}€3) because Pollard (1989, Theorem 4.2) can be used to show that for any K > 0
and for any A, > 0 with A, = o(1),

1 N .
= sup |M,(0y+€,8) — M, (0, + €,t) — M, (0y + €,5) + M,(0y + €,1)|
€, lIs—tl<A,

lIsll, It <K

1 <./rnen) ( 1 )
= —20]1» — | = Op .
“© o\ Jre

Also, Taylor’s theorem can be used to show that

Jd - A
Skt = _{%Mn,kl(oo)} (0, — 60)) + op(€2).
As a consequence, I:Iﬁz — FI,TI}(, = op(€2+1/\/r}e3) + Op(1/r,), where the Op(1/r,) term
7 it 00 (B, — 0
29 Lnki (G0 , — 0

does not depend on €,.
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Next, we approximate the moments of I:If,'i, First, using Taylor’s theorem, it can be
shown that

E[Flﬁz] —H,u=—€B,u+o0(e),
where
2

B 1[’921\2 O0) + i1 (0)} 1[’921\'1 (0)+(92M (0)] B
n = 7| 5 n ) n - ——| T T2 = °
,kl 6 (70% NIARYI) [?012 ,kINY0 6 &Gi 0,kI\Y0 (9012 0,kI\Y0 kl
Finally, to obtain an expression for the variance of H o let my  (z) denote

mu(z, O + €, + €,€) —m,(z, Oy + €&, — €,€))

- mn(za 00 — €,€ + enel) + m,,(z, 00 — €,€; — e-nel)-

Because
. 1 &
Hﬁl = _m ; mikl(zi)’
we have
V[H®,] = LV[mA (2)]= ! E[m ,(z)*] + O !
e T 16net "t M n)
Also, by condition CRA(iv),
?E[{mn(z’ 00 + Sé'n) - mn(zy 00)}{mn(za 00 + ten) - mn(za 00)}] - CO(Sa t)

Therefore,

v 1 1 1 1
V[H,Ti;] = @[Vn,kl + 0(1)] + O<Z) = ,/3_3Vkl + 0(@)

where, using Cy(s, —s) = 0 and Cy(s, t) = Cy(—s, —t),

qn

16e, E[mikl(Z)z]

V=

1
- g[Co(ek + e, ec+e)+Cole, —e, e —e) —2Co (e, +e, e —e)

—2Co(e + e, —€; + el)]
= V.

A.1.4. The Benchmark Case

The remainder of the Supplemental Material verifies Condition CRA for the four ex-
amples in the paper. In three of those examples (namely, maximum score, panel maximum
score, and empirical risk minimization), the function m, does not depend on n. To state
a simplified version of Condition CRA applicable in such cases, let the function m, be
denoted by m, and for any & > 0, define

my(z) = sup , Mo={my(-,0):0¢06},

meM,

m(z)
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and

di(z) = sup|d(z)

8
deDO

. Di={m(-,0) —my(-,0):0€c 0O}

Condition CRA, (Cube Root Asymptotics, Benchmark Case) The following are satis-
fied:
(i) The class M, is manageable for the envelope 1, and E[(z)*] < oo. Also, for
every 6 > 0, SUPye\67 My(0) < My(6y).
(ii) @y is an interior point of @ and, for some & > 0, M, is twice continuously differ-
entiable on @3. Also, Hy = —3*M,(0,)/3078' is positive definite.
(iii) For some & > 0, the class {D{ : 0 < & < §} is uniformly manageable for the
envelopes d and sup,__, E[d} (z)*/8'] < o0.
(iv) For every 6, > 0 with 8, = O(n~'7?), n’1/3E[&g" (z)*] = o(1) and, for all s, t € R?
and for some C, with Cy(s, s) + Cy(t, t) — 2Cy(s, t) > 0 for s # t,

sup iE[{mo(z, 0+ 8,5) — mo(z, 0)}{my(z, 0 + 8,t) — my(z,0)}] — Co(s, t)

PN n
0600

=o(1).
(v) For every §, > 0 with §, = O(n~1?),

lim limsup sup E[1(d}(z) > C)d;(2)*/8]=0

Cooo 0o 0<8<8,

and supo,o,eé,g,, El|mo(z, 0) — mo(z, 0)]1/110 — 0| = O(1).

LEMMA A.11: If Condition CRA, is satisfied, then Condition CRA is satisfied with q, = 1.

A.2. Example: Maximum Score

To state sufficient conditions for Condition CRA, in this example, let F,; denote the
conditional distribution function of a given b.

Condition MS For some é > 0, Sr > 1, and Sy > 2, the following are satisfied:
(i) 0 <P(y =1|x) < 1 almost surely and F,, x,(1|x1,X,) is S times continuously
differentiable in u and x; with bounded derivatives.

(ii) The support of x is not contained in any proper linear subspace of R¢*!
E[|Ix;]*] < oo, and conditional on x,, x; has everywhere positive Lebesgue den-
sity. Also, F,, x, (x1|X,) is Sr times continuously differentiable in x; with bounded
derivatives.

(iii) @ is compact and 6, is an interior point of @.

(iv) M"$(0) =E[m"(z, 0)] is S, times continuously differentiable in 6 on @3 and

1%

H" = ZE[fulxl,xz (Ol - X/200a XZ)fxl X3 (_X,200|X2)X2X,2]

is positive definite.
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COROLLARY MS: Suppose Condition MS is satisfied. Then Condition CRA is satisfied
with g, =1, Hy=H"S, and Cy = C", where

C"(s, t) = E[ fr, 1, (—X,00/%2) min{|x;s

x,t|}1(sgn(x}s) = sgn(x)t))].

2

Alternative representations of H"® and C"® are available. In particular, defining

Jd
7" (%) = {EE(ZY —1xq, XZ)}fxlxz(xl|X2)|x1—x’200
1

= qulxl,xz (OI - X/2003 XZ)fx1|x2(_X/200|X2)

and
‘PMS(Xz) = E[(ZY - 1)2|)Cl’ XZ]fxllxg(xl|X2)|x1:—x’200
= frm (—%:001%2),
we have
H" =E[7" (x2)%:X, ]
and

C"(s, t) = E[¢" (x,) min{

}1(sgn(x}s) = sgn(x,t))].
Similar representations will be obtained for the other two maximum score examples.

As an estimator of H"S, the generic numerical derivative estimator can be used directly.
Another option is to employ a “plug-in” estimator, where the conditional densities are re-
placed by nonparametric estimators thereof. As a third alternative, consider the example-
specific construction H”® discussed in the paper. To obtain results for that estimator, we
impose some standard conditions on the (derivative of the) kernel function.

/ /
X,S|, X5t

2

Condition K The following are satisfied:
() o K@)?du+ [,(1+|u)K )| du < oo.
(ii) fRK(u) du=0, [, uK(u)du=—1, and Jz WK (u) du =0.
(iii) [, K(u)*du < oo, where K (u) = sup,.,, K (v) — K(u)|/|v — ul.
Under Condition K, H" admits counterparts of Lemmas 1 and 2 in the paper. To state
these, we let H ffskl and H}} denote element (k, /) of I:Iffs and H™, respectively, and define

Bkl = E[{Fél’S)(Xz) + FéZ,Z)(Xz) + Fé3’l)(X2)/3}X2’kX2,[] / u3K(u) du

R

and
Vi = 2E[Fy"" (x0)x3 (22 ] / K(u)?du,
R

where x, , = €,x, and

i & d
(&,])
F() ! (XZ) = O,)uiFu\xl,xz(_ulxl + u, XZ) (?le Fxl\xz(x1|X2)

u=0,x1=-x,09
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LEMMA MS: Suppose Conditions MS and K hold.
(i) If h, — 0, nh? — oo, and if E[||x,]|°] < oo, then H!® — H"S.
(ii) If also Sr > 3 and Sy > 4, then I:Ifskl admits an approximation PVIffskl satisfying

~ . 1 1
HMS :HMS + 0 (hZ + ) + 0 <_>’
n,kl n,kl P n nh?: P %

where the Op(1/3/n) term does not depend on h,,, and where

v 1 1
E[(H}% — Hif)] = mBh+ s VW’(”“ ' 7)

A.2.1. Proof of Corollary MS

By Lemma A.11, it suffices to verify that Condition CRA,, is satisfied.

Condition CRA(i). The manageability assumption can be verified using the same argu-
ment as in Kim and Pollard (1990). Note that the function |m"*(z, )| is bounded by unity
in this example, and thus finite second moment condition holds. It is easy to show that
0, uniquely maximizes M,(0) over the parameter set. Well-separatedness follows from
unique maximum, compactness of the parameter space, and continuity of the function
M, (0).

Condition CRA(ii). Conditions MS(iii)—(iv) imply this condition with Hy = H".

Condition CRA,(iii). Uniform manageability can be verified using the same argument as
in Kim and Pollard (1990). Note d(z) = SUP|g_gy<s 11(X1 +X,0 > 0) —1(x; +x50, > 0)].
The condition sup,_; _s E[d{ (2)]/8" < oo is verified in Abrevaya and Huang (2005).

Condition CRA,(iv). Since d3(z)* = di(z), E[d)"(z)*] = O(8,,), which implies the first
condition. Also,

C"(s,t) =E[fi, 1 (—X,00/%:) ot }1(sgn(x;s) = sgn(x)t))]

satisfies C"5(s, s) + C"(t, t) — 2C™S(s, t) > 0 for s # t. Finally, C" admits the representa-
tion

C*(s, ) ==[B"() + B*(t) = B®(s — )],  B"(8) = E[fo 0 (—X,00/%:)|%,s|]-

N =

Using this representation and the fact that 2xy = x* + y* — (x — y)?, the displayed part of
Condition CRA(iv) can be verified with Cy = C** by showing that for §, = O(n~'7?3),

1
sup | —E|m"(z, 0+ 8,8) — m™(z, 0 + 8,0)|" — B*(s — t)| = o(1).

0e(~)g” n
Defining 6, , = 0 + 6,s and 0, = 6 + 5,t, we have, uniformly in 0 € @3",

1
6—EimMS(Z, Os,n) - mMS(Za 0[,H)|2

1
= S—E[]l(xl + %50, > 0> x; +X,0,,)]

n
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1
+ B—E[]l(xl +x,0, > 0> x; +x,0,,)]

n

1 —x’ZOt,n , ,
iy [/ Foumo (X11%2) dx1 1 (x5t < xzs):|

5” xéﬂs,n
1 —x, 05,
+ 5_E|:/ Feim (X11%2) dx, 1(x58 < x/zt)}
n —X/29[,,,
=E[frym (—%,01%2)X) (s — )1 (x5t < X)s) ]
+E[fo 1 (-X01%)%,(t — $)1(x;s < X3t) | + 0(1)

ZE[fx]\xz(_X,200|X2) ] + 0(1)a

/ /
X,S — X,t

from which the desired result follows. B
Condition CRA,(v). The first part easily follows from d{(z) < 1, while the second part
follows from the verification of Condition CRA(iv).

A.2.2. Proof of Lemma MS
A.2.2.1. Part (i) [Consistency]. Defining

. 1 < . _ .
H'S = - > @y = DK, (x4 +%5,00)x0:%,,, H'S(0) = —E[(2y — DK, (x1 +x,0)x:x,],
i=1
we obtain the decomposition
ﬁMS — I‘_’IMS + RYS + Sus

where

AMS AMS

RE=H"-H°-H6,)+H50,), S°=H50,)—H(0).

The proof will be completed by showing that ItlfS —p H",R® = 0p(1),and S}° = 0p(1).
First, using the dominated convergence theorem and fR uK(u)du= -1, we have
I:Ib:s(oo) = —E[(Zy — 1)Kn (.X'] + X/200)X2X/2:|

E / 1-— 2}’1”)51’,(2 (—uhn|uhn — X/ZO(), Xz)
B R hn

X fxllxz (uhn - X/200|X2)K(U) duxzx/z:|

—>2E[Fél")(x2)x2x/2]/uf((u)du
R

= ZE[fulxl,Xz (Ol — X/200, Xz)fxlb‘2 (—X/za()le)XzX/z] = HMS.
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Moreover, I:IfS - 1:125(00) = op(1) because each element has mean zero and a variance
that is bounded by a constant multiple of

: s \2
E[K, (v +%00)] _ 0(%) = o(1).
n nhn

As a consequence, flﬁs —p H"S.
Next, R® = op(1/,/nh3) = op(1) follows from Pollard (1989, Theorem 4.2) if it can be
shown that, for every C > 0,

BE[  sup  [Ky(x+x,0) — Ky (xn+x.00) )] = o().

10—-6yll<Cn—1/3

Defining K,(u)=K(u/h,)/ h,, we have, by Condition K(iii),

sup |K,,(x1 +x,0) — K,,(xl +x,0,)| <

Tthn (xl + X’2‘90) 1,
10—09 ]| <Cn=173 n—n,

and therefore, using nh> — oo,

BE[ sup |K,(xi+x,0) Ko+ %00) ]

10—-6yll<Cn—1/3

c > ' p 2 1
= n2/3hnE[K"(x1 +X200) ||X2||6] = O(w) = 0(1).

Finally, defining

1 —2F,\, 5, (—uh, + x,8|uh, — x,00 — X,8,%,)

En(u, 6,%)) = 7 Feuo (t6hy — X300 — X, 8x,)
1 —=2F s, x, (—uhy,|uh, —x,0,, x ,
- SR (a0,
we have
sup ”I:Iffs(ﬂ) — HZS(OO)H = sup IE|:/ &.(u, 8, XZ)K(u)duxzx/z:|
6—6gll<Cn~1/3 I8l <Cn=1/3 R
EEH/ sup | &1, 8, %) K (w)] du}uxzuz}
R ||8]<Cn=173
-0

for any C > 0, where the last line uses the dominated convergence theorem.

A2.2.2. Part (ii) [Approximate MSE]. 1t was shown in the proof of part (i) that R}, =
op(1//nh3). Also, Taylor’s theorem and Condition K(ii) can be used to show that for any
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C > 0, we have, uniformly in ||8,| < C/¥/n,

HYS,(00+8,) = HF + RE[{Fy"” (%) + Fy*? (x0) + F3V (x2) /3 } x0,1%2,1] / WK (u)du
R

+ {4E[F(§1’2)(Xz)xz,kxz,lxz] + ZE[Féz’l)(Xz)xz,kxz,lxz] },511 + O(hi)y
implying in particular that
Skt = {4E[F(§1’2)(Xz)xz,kxz,zxz] + ZE[Féz’l)(Xz)xz,kxz,lxz]}/(én — 60,) + 0:(h).

As a consequence, ﬁ}ﬁ, — I:I,’f?d = op(h2 + 1/\/nh) + Op(1//n), where the Op(1/J/n)
term
[4E[F3"? (xo)xok%2,% ] + ZE[Féz’l)(Xz)xz,kxz,zxz]}/(an —0)

does not depend on 4,,.
Next, we approximate the moments of H}'3,. By the previous paragraph,

E[H)5] - Hif = H)5,(00) — HF = h;Bu + o(e}),

where
Bu =E[{F}"” (%) + Fy"? (%) + Fy" (%2) /3 )} x40, /R WK (u)du.
Also,
V[ﬁfiz] = %V[(z)’ ~ DK, (X1 +X,00)x24 X2, ] = %V[Kn(x1 + X,00) X252,/
1 .. 2 1
= B[R +x00) 50 ]+ 0(%)
= iVkl + o(i),
it it
where

Vi, = lim B2E[K, (x; +X/200)2x§,kx§,,] =E[fr,m (—X3001%2) x5 X3 ] / K(u)*du
n—00 R
:2]E[Féo’1)(x2)x§7kx§7,]/K(u)2du.
R

A.2.3. Rule-of-Thumb Bandwidth Selection

We provide details on the rule-of-thumb (ROT) bandwidth selection rules used in the
simulations. To construct ROT bandwidths, we choose a reference model involving finite-
dimensional parameters and calculate/approximate the corresponding leading constants
entering the approximate MSE of H"® and H'P.

Specifically, we assume u[x ~ N (0, o(x)) and x;|xy ~ N (w1, o?), where we will spec-

ify some parametric specification on o2(x) = ¢2(x, X,). Then, in this reference model,
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Fi? (%) =0,

Fé]’3)(X2)=— $(0) ¢(X,200—|—:U~1>|:<X,200+P«1)2_1]7

o-u(—x’200, xz) (713 (51 (o)1

and

Fy (%) =

¢ (0) d)(X/zoo +

O'S(X)O'] (0]

)[1 — §,(0) (%) + 26, ()]l 00>

where ¢ is the standard normal density and where ¢,(x) = do,(x)/dx; and 7,(x) =
*a,(x)/dx3.

A.2.3.1. Plug-in Estimator A".  Given our reference model, natural estimators of the
bias constants

B =E[{F51’3)(Xz) +F(§3’U(X2)/3}x2,kxz,l] f WK (u) du

R

are

1 " A A .
|:_ Z{F,(llj)(xﬁ) + F’53>1)(le-)/3}e;{X2ie;X2i:| / u3K(u) dbl,
n R

i=1

where F(1¥ and F® are constructed using maximum likelihood for the parametric refer-
ence model (i.e., heteroscedastic Probit) together with a flexible parametric specification
o?(x) = y'p(x) for o2(x), with p(x) denoting a polynomial expansion.

Similarly, natural estimators of the variance constants

V=2E[F}"" (x:)x3 (X3 ] / K(u)*du,
R

are given by
U, = 2[% > ﬁ,i“”(xﬂ)(ezxﬁ)z(e;xm-)z} / K(u)*du.
i=1 R

A.2.3.2. Numerical Differentiation Estimator . In our reference model, the bias
constants are of the form

Bu = —E[{F;"” (%) + Fy" (%) /33 o0 + X233, 1],
natural estimators of which are given by
1 n -
A0 + B0/ () ) + () (e
i=1
Similarly, natural estimators of the variance constants

Ve = {2By(ex) + 2By (e)) — By(ex +€) — By(ex —e))}/16, By(s) = 2E[Fy"" (x,)

IE

/
X,
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are given by

n

1 .
3 Z{Zlezxzﬂ + Z‘CEX&" - |(ek + el)/XZi‘ - ‘(ek - el)/XZiHF,(LO’l)(XZi)-
i=1

A.3. Example: Panel Maximum Score

To state sufficient conditions for Condition CRA, in this example, define

J
N7 (%) = {ﬁ_xlE(ylxl’ X5) }fxllxz(xl |%2) [, =—x, 0 -
Condition PMS For some 6 > 0, the following are satisfied:

(i) For every u e R, 0 < Fy x, x,,0 (U11X1, Xo, @) = Fx, x50 (12| X1, X5, @) < 1 al-
most surely. Also, E[y|x;, X,] is continuously differentiable in x; with bounded
derivative, and E[y?|x,, X,] is continuous in x;.

(ii) The support of x is not contained in any proper linear subspace of R+l
E[]x;]*] < oo, and conditional on x,, x; has everywhere positive Lebesgue den-
sity. Also, Fy,«x, (x1]x) is continuously differentiable in x; with bounded deriva-
tive.

(iii) @ is compact and 6, is an interior point of @.

(iv) M™s(0) =E[m™9(z, 0)] is twice continuously differentiable in 6 on @3 and

HPMS — E[T]PMS (XZ)XZX,Z]
is positive definite.
Letting

P (%) = B(Y*1X1, X2) fry ey (X11%2) [, =30
and proceeding as in the proof of Corollary MS, the following result is obtained.

COROLLARY PMS: Suppose Condition PMS is satisfied. Then Condition CRA is satisfied
with g, =1, Hy = H™S, and Cy = C™¢, where

C™(s, t) = E[y™°(x,) min{

X8|, [%,t]}1(sgn(x;s) = sgn(x5t))].

2

The case-specific estimator H™S of H™® admits a counterpart of Lemma MS, but for
brevity we omit a precise statement.

A.4. Example: Conditional Maximum Score
To state sufficient conditions for Condition CRA in this example, let X denote the
support of x = (x, x,)" and for & > 0, let W? = {w €R? : | w]|| < 8}. Also, define

p(w; 0) =E[yL(x; +x,0 > 0)|w] fi(W),

. d
[.LCMS(W; 0) = %,‘LCMS(W; 0) = E[{E(y|x1, X2, w)fxllxz,w(x1|x27 w)}lxlz—x/zﬂx2|w]fw(w)7

2

30560’

L (w; 0) = we(w; 9),
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and

J
”fICMS(Xz) = JE(NM , X, W) fxl\xz,w(xl x5, W)|x1:7x’200,w:0-
1
Condition CMS For some 6 > 0 and P > 1, the following are satisfied:
(i) For some strictly increasing F,

II:-D(Yt = 1|X17X23 X33 a, YOa tee thl) = F[Xll + (X,2[, thl)ao + a], = 17 23 3.

Also, on X' x W?, E(y|x1, x,,w) is differentiable in x;, dE(y|x;, X2, W)/dx; is
bounded and continuous in (x;,w), and E(y?|x;, X,, W) is positive and continu-
ous in (X1, w).

(ii) E[|x;|*|w] is bounded on W? and for every w € WW?, the support of x given
w is not contained in any proper linear subspace of R**!. Also, on X x W?,
fryx.w(X1]X2, W) is positive, bounded, and continuous in (x;, w) and f,, (W) is pos-
itive and continuous in w.

(iii) @ is compact and 6, is an interior point of @.

(iv) us(w; @) is twice continuously differentiable in @ on @] with bounded deriva-
tives, u*(w; @) is uniformly (in @ € @) continuous in w at 0, &S (w; 0,) is P
times continuously differentiable in w on W?, ji®"s (w; ) is uniformly (in 0 € @)
continuous in w at 0, and

HOMS — E[”ICMS (X2)X2X) |w] Jo(W) =0

is positive definite.
(v) « is bounded, of order P, and supported on [—1,1]¢. Also, nb? — oo and
nb®3f — 0.

Let

2
l//CMS(Xz) = E(Y |x1, X, w)fxl\xz,w(xl X2, W)|x1:—x’200,w:0-

COROLLARY CMS: Suppose Condition CMS is satisfied. Then Condition CRA is satisfied
with q, = b®, Hy = H™®, and Cy = C™, where

C™(s, t) = E[™"*(x,) min{|x,s

2

x| }1{sgn (x,5) = sgn(x,£) } W] fu (W) o - /

k(v)*dv.
R4

The case-specific estimator H™S of H™® admits a counterpart of Lemma MS, but for
brevity we omit a precise statement.

A.4.1. Proof of Corollary CMS

Condition CRA(i). Because «, does not depend on 6, uniform manageability can be
established by proceeding as in the maximum score example.

Also, m,(z) = |k,(w)| satisfies ¢,E[m,(2)*]=b'O(1/b%) = O(1).

Next, using the representations

Mn(ﬂ)z/ w(vb,; @)k(v)dv and Mo(0)=/ w(0; 0)k(v) dyv,
R4 R4
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we have

Sup|Mn(0)—Mo(0)|§{ sup |M(W;0)—M(0;0)}}/ k()] dv=o(1),
R4

0cO 00, ||w||<by

where the equality uses uniform (in 0 € @) continuity of u(w; 6) at w=0.

Finally, well-separatedness follows from compactness of @, continuity of M,(0) =
1(0; @) in 0, and the fact (shown by Honoré and Kyriazidou (2000, Lemmas 6 and 7))
that 6, is the unique maximizer of M,(0).

Condition CRA(ii). We have

J
%Mn(ﬂ) = /Rd f(vh,; 0)k(v) dv, %Mo(ﬂ) /d 1(0; 0)k(v) dv,
and
7 . 7 ;
070070M (0)—/du(vbn;0)K(V) dv, 2090 Mo(0)—fd iL(0; 0)k(v) dyv,

where, using uniform (in 8 € @;) continuity of ji(w; 0) at w =0,
2

s J
u
Pl 5000

00

[ M,(8) — My(0)]

=| s |,ii,(w;0)—;'i,(0;0)|}/|K(V)|dv=0(1).
R4

003, || <by

Also, by a standard bias calculation for kernel estimators,
J . .
%Mn(OO) = /d [2(vby; 00) K (V) dv = 1(0; 6) + O(by,),
R

where it follows from Honoré and Kyriazidou (2000) that 1(0; 0y) = IM(0,)/90 = 0. As
a consequence, ,||dM,(0,)/30| = O(/nbi+3¥F) = o(1).

Finally, Hy = —i(0; 8,) = H® is positive definite by assumption.

Condition CRA(iii). Because k, does not depend on 6, uniform manageability can be
established by proceeding as in the maximum score example. For this example,

(ZS(Z) = [ sup ]l(x’zﬂo <—x < X’ZO) + sup ]l(x’20 <—x < X’200)]|K,,(w)|.

10—0y1<5 100yl <5

By change of variables and using boundedness of fx, w(¥1[X., W), we have, uniformly in §,
bE[d(2)/8] = b O(E[ %]k, (W)*]) = O(1).

As a consequence, g, SUp,_s_, E[&S'(z)z/é/] =0(1).

Condition CRA(iv). Using d?(z)* < 8d?(z)|k,(w)*, it follows from calculations similar
to those above that ¢’r; 'E[d” (z)*] = O(r;'8,) = o(1).

As in the maximum score example, C™(s, s) + C™S(t, t) — 2C™(s, t) > 0.

Finally, the representation

{mﬁMS(z, 0+ 5,8) —m"(z, 0)}{mCMs(z, 0+ 5,t) —m"(z, 0)}
= y*[1{8, min(x}s, X,t) > —x; —x,0 > 0}
+ 1{8, max(x,s, x,t) < — x; — x; 0 < 0} ]k, (W)’
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on

can be used to show that, uniformly in 8 € @;",

?E[{mﬁ”‘s(z, 0+8,5) —m"(z,0)}{m"(z, 0 + 5,t) — m"*(z,0)}] =C™(s, t) + o(1).

n

Condition CRA(V). The first condition follows from g, c?,‘f (z) < sup, g« |k(V)|. The second
condition follows from the calculation similar to the covariance kernel calculation.

A.5. Example: Empirical Risk Minimization

In this example, we follow Mohammadi and van de Geer (2005, Theorem 1) when
stating primitive conditions. Let F denote the distribution function of x and let P(x) =
Ply =1]x].

Condition ERM The following are satisfied:
(i) P(0) < 1/2 and P admits a continuous derivative p in a neighborhood of each

element of 6,.

(ii) F is absolutely continuous and its Lebesgue density f is continuously differen-
tiable in a neighborhood of each element of 6,.

(iii) @ is an interior point of 6.

(iv) 69 = (601, 002, - .., 00.4) is the unique minimizer of P[hy(x) # y] and p(6y,) x
f(6o)#Oforeefl,...,d}.

COROLLARY ERM: Suppose Condition ERM is satisfied. Then Condition CRA is satisfied
with g, =1, Hy = H™" and Cy = C*™™", where

P(eo,l)f(eo,l) 0 0
e It !
0 0 e (=D p(60.0) f(00.4)

and, fors = (sy,...,84) and t=(t1,...,t;),

d
C*(s, t) = Y _ f(Bo..) min{|s,|, ||} 1{sgn(s,) = sgn(t,)}.

(=1

A case-specific (plug-in) estimator of H®" is given by the diagonal matrix H=" with
diagonal elements

Hyi = D™ 2p (080, t=1,000d,

where p, and f, are some nonparametric estimators of p and f. This estimator is consis-
tent whenever its ingredients p, and f, are.

A.5.1. Proof of Corollary ERM

By Lemma A.11, it suffices to verify that Condition CRA,, is satisfied.
Condition CRA(i). Manageability of M, follows from {1(4e(x) # y) : @ € @} forming a
VC subgraph class. Also, the envelope is bounded by 1. Finally, SUPy.o\07 My(0) < My(6y)
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for every 6 > 0 because @ is compact, M, is continuous, and 6, is the unique maximizer
of My(0).

Condition CRA(ii). By assumption, 6, belongs to the interior of ®,. Mohammadi and
van de Geer (2005) showed that, for odd ¢,

2

J d
pr P(ho(x) #y) =2p(0)f(0:) + (2P(6,) — 1)%]?(0[),

and that a similar formula holds for even ¢ as well. In particular, M, is twice continu-
ously differentiable on @3. Finally, positive definiteness of H, = H*™" was established in
Mohammadi and van de Geer (2005).

Condition CRA(iii). This condition corresponds to the first part of (vii) in Theorem 7
of Mohammadi and van de Geer (2005).

Condition CRA,(iv). Since d2(z)* = d’(z), E[d)"(z)*] = O(8,,), which implies the first
condition. For the second part, Mohammadi and van de Geer (2005) showed that

d
C()(S, t) = Zf(eo’()[min{sh t@}:ﬂ_(Sg > 0, t@ > O) — maX{Sg, tg}]]_(Sg < 0, t( < 0)]

=1

Using the representations

1d/2] L(d+1)/2]
mo(L,x,0) ==Y 1(x €02, 1)), mo(=1,x,0) == Y 1(x €01, 0x)),
=0 =1

it can be shown that, for @ in the interior of @ and for 8, small enough,

{mo(z, 0+ 8,8) — mo(z, 0)}{mo(z, 0+ 8,t) — my(z, 0)}

:ﬂ_(x € [0(/ + 8,1 maX{Sg, tg}, 0@))]].(.% < 0, tg < 0)

I
&~
I

+ ]]_(x € [95, 0@ + 8,1 min{S[, t(}))]]_(SZ > 0, t, > 0)

As a consequence,

—E[{mo(z, 0+ 6,s) —my(z, 0)}{m0(z, 0+ 5,t) — my(z, 0)}]

n

— Zf(ez) —max{s,, £,}1(s, <0, t, < 0) +min{s,, £,}1(s, > 0, 2, > 0)] + o(1)

= Zf(eo,z)[— max{s,, t}1(s, <0, t, < 0) + min{s;, #,}1(s, > 0, 1, > 0)] + o(1)

uniformly in 6 € @]".

Condition CRA((v). The condition in display is identical to the second part of (vii) in
Theorem 7 of Mohammadi and van de Geer (2005). The second assumption corresponds
to (vi) in Theorem 7 of Mohammadi and van de Geer (2005).
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