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Abstract

For any affine hypersurface defined by a complete symmetric polyno-
mial in k ≥ 3 variables of degree m over the finite field Fq of q elements, a
special case of our theorem says that this hypersurface has many, at least
6qk−3, rational points over Fq if 1 ≤ m ≤ q−3 and q is odd. This result is
proved using Segre’s classical theorem on ovals in finite projective planes.

1 Introdution

Let Fq denote the finite field of q elements with characteristic p. The study of
Fq-rational points on a hypersurface defined by a symmetric polynomial over
Fq has many important applications. The classical three classes of symmet-
ric polynomials introduced by Newton are power sum symmetric polynomials
(Fermat hypersurfaces), elementary symmetric polynomials and complete sym-
metric polynomials. In this paper, motivated by applications in coding theory,
we investigate the class of complete symmetric polynomials as defined below.

Definition 1.1. The homogeneous complete symmetric polynomial of degree m
in the k-variables {x1, x2, · · · , xk} is defined by

hm(x1, x2, · · · , xk) =
∑

1≤i1≤i2≤···≤im≤k

xi1xi2 · · ·xim =
∑

j1+···+jk=m,ji≥0

xj1
1 · · ·xjk

k .

By definition, we have h0(x1, x2, · · · , xk) = 1,

h1(x1, x2, · · · , xk) = x1 + x2 + · · ·+ xk,

h2(x1, x2, · · · , xk) =

k
∑

i=1

x2
i +

∑

1≤i<j≤k

xixj ,
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etc. Just like the elementary symmetric polynomials, the complete symmet-
ric polynomials hm(x1, ..., xk) (0 ≤ m ≤ k) generate the ring of all symmetric
polynomials in k variables over Z. In characteristic zero, the projective hyper-
surface defined by hm(x1, ..., xk) = 0 is smooth for all k ≥ 2. In characteristic
p > 0, the singular locus (even its size) of the projective hypersurface defined
by hm(x1, ..., xk) = 0 is unknown.

Definition 1.2. A general complete symmetric polynomial of degree m over Fq

in the k-variables {x1, x2, · · · , xk} is defined as

h(x1, ..., xk) :=

m
∑

e=0

aehe(x1, x2, · · · , xk) =

m
∑

e=0

ae
∑

j1+j2+···+jk=e,ji≥0

xj1
1 xj2

2 · · ·xjk
k ,

where ae ∈ Fq and am 6= 0. Thus, a complete symmetric polynomial in k
variables is simply a linear combination of the homogeneous complete symmetric
polynomials in k-variables.

Thus, a complete symmetric polynomial h(x1, ..., xk) is simply a polynomial
in k variables where all terms of the same total degree have the same coeffi-
cients. We stress that such polynomials are not homogenous in general. We
are interested in the number of Fq-rational points on the affine hypersurface
defined by a complete symmetric polynomial h(x1, ..., xk) over Fq. As noted
above, the singular locus (even its size) of the affine hypersurface defined by
h(x1, ..., xn) = 0 can be quite complicated, especially in characteristic p.

Definition 1.3. Let h(x1, ..., xk) be a complete symmetric polynomial of degree
m in k-variables over Fq. Let

Nq(h) := #{(x1, ..., xk) ∈ Fk
q |h(x1, ..., xk) = 0},

denote the number of Fq-rational points on the affine hypersurface defined by
h(x1, ..., xk) = 0.

Our basic problem is to study when Nq(h) > 0 and to give a good lower
bound when it is positive. The problem is trivial if m = 0 and thus h is a
constant. We shall assume thatm > 0 and so h is not a constant. A consequence
of our main result is the following

Theorem 1.4. Let h(x1, ..., xk) be a complete symmetric polynomial in k ≥ 3
variables over Fq of degree m with 1 ≤ m ≤ q − 3. If q is odd, then

Nq(h) ≥ 6qk−3.

Remarks. A classical result of Warning [11] implies that if Nq(h) > 0, then
Nq(h) ≥ qk−m, which is apparently weaker than 6qk−3 if m ≥ 3, and trivial if
k ≤ m. The condition Nq(h) > 0 itself is highly non-trivial to check unless h has
no constant term. If one applies Deligne’s theorem on the Weil conjecture, even
in the sufficiently smooth case (the size of singular locus is already unknown),
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one would need to assume that the degree m is small compared to q in order to
prove a non-trivial lower bound for Nq(h). One would at least need something

like m = O(q
1

2
−εk), where εk is a positive constant depending on k. If k > m,

the classical Chevally-Warning-Ax-Katz type theorem implies Nq(h) is divisible

by qd
k−m
m

e, see [10] for simple proofs of various such divisibility results. Again,
one needs to assume Nq(h) > 0 and k > m in order to derive a non-trivial
lower bound for Nq(h). The above theorem has several new features. It does
not assume that the degree m is small compared to q. It does not assume that
Nq(h) > 0. The lower bound 6qk−3 works for all degree 1 ≤ m ≤ q − 3. When
m ≥ q− 2, the problem becomes more complicated as m grows. But as we shall
see, a stronger version of the problem (with distinct coordinate rational points)
in the large degree m case can be reduced to the smaller degree m < q case.

We note that the condition k ≥ 3 in the theorem cannot be dropped. For
instance, if k = 2, one checks that

hm(x1, x2) =
xm+1
1 − xm+1

2

x1 − x2
.

If (m + 1, p(q − 1)) = 1, then the only Fq-rational point of hm(x1, x2) = 0 is
the origin and so Nq(hm) = 1. Taking k = 2, q = 5,m = 2, one finds that
Nq(h2(x1, x2)) = 1 < 6/5 = 6q2−3.

For even q, the problem is more subtle and we only have the following con-
jecture giving a slightly weaker bound.

Conjecture 1.5. Let h(x1, ..., xk) be a complete symmetric polynomial in k ≥ 4
variables over Fq of degree m with 1 ≤ m ≤ q − 4. If q is even, then

Nq(h) ≥ 24qk−4.

For even q, unconditionally, we only have the following significantly weaker
result.

Theorem 1.6. Let h(x1, ..., xk) be a complete symmetric polynomial in k vari-
ables over Fq of degree m with 1 ≤ m ≤ q/2. If q ≥ 8 is even and k ≥ q/2,
then

Nq(h) ≥ (
q

2
)! · qk−

q

2 .

To prove Theorem 1.4, we will consider the stronger question on the number
of Fq-rational points with distinct coordinates. After relating the complete sym-
metric polynomial h(x1, ..., xk) to the determinant of certain generalized Van-
dermonde determinant, we show that the existence of Fq-rational points with
distinct coordinates is related to the vanishing of certain generalized Vander-
monde determinant. The latter is then related to the classification of deep holes
for Reed-Solomon codes, equivalently possible MDS extension of Reed-Solomon
codes. One can then conclude the proof by applying the classical result (k = 3,
p odd) of Segre [8] on ovals in finite projective planes.
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Segre’s old result is now a special case of the Cheng-Murray conjecture [3]
which classifies deep holes for Reed-Solomon codes, which in turn is a conse-
quence of the normal rational curve conjecture in finite geometry. The Cheng-
Murray conjecture remains open in general, but has been proved by Zhuang-
Cheng-Li [13] in the case k ≤ p and later by Kaipa [5] in the case k ≥ [(q+1)/2].
These recent works will give us additional results on the number of rational
points with distinct coordinates as discussed in next section.

2 Rational points with distinct coordinates

In coding theory, one often requires the additional condition that the coordinates
of the rational point are distinct.

Definition 2.1. Let h(x1, ..., xk) be a complete symmetric polynomial of degree
m in k-variables over Fq. Let

N∗
q (h) := #{(x1, ..., xk) ∈ Fk

q , xi 6= xj (i 6= j)|h(x1, ..., xk) = 0}

denote the number of Fq-rational points on the affine hypersurface defined by
h(x1, ..., xk) = 0 with the additional condition that the coordinates are distinct.

We are interested in when N∗
q (h) ≥ 1. Since T is symmetric, N∗

q (h) ≥ 1 is
equivalent to N∗

q (h) ≥ k! by permutations of the solutions. We have

Conjecture 2.2. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). Let

h(x1, ..., xk) =

m
∑

e=0

aehe(x1, ..., xn) ∈ Fq[x1, ..., xk]

be a complete symmetric polynomial of positive degree m. Then N∗
q (h) ≥ 1 if

and only if the reduction xk−1(
∑m

e=0 aex
e) modulo (xq − x) is not a polynomial

of degree equal to k − 1. If this last condition holds, then Nq(h) ≥ N∗
q (h) ≥ k!.

Remarks. We shall see that the reduction condition modulo (xq − x) is
necessary in order for N∗

q (h) ≥ 1. The difficulty lies in the sufficient part of the
condition. The reduction condition is also simple to check. For 0 ≤ j ≤ q − 2,
let

bj =
∑

e≡j mod (q−1)

ae.

Then,

xk−1(

m
∑

e=0

aex
e) ≡

q−k
∑

j=0

bjx
j+k−1 +

q−2
∑

j=q−k+1

bjx
j+k−q mod (xq − x)

where the second sum on the right is a polynomial of degree at most k − 2.
Thus, the reduction is not a polynomial of degree equal to k − 1 if and only if
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either b0 = 0 or that bj is not zero for some 1 ≤ j ≤ q − k. As an example, if
1 ≤ m ≤ q− k, then g(x) = xk−1(

∑m

e=0 aex
e) is a polynomial of positive degree

m+ k − 1 ≤ q − 1, and so its reduction modulo (xq − x) has the same positive
degree m+ k − 1 which is not equal to k − 1. As a consequence, we obtain

Conjecture 2.3. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). Let

h(x1, ..., xk) =

m
∑

e=0

aehe(x1, ..., xn) ∈ Fq[x1, ..., xk]

be a complete symmetric polynomial of positive degree m. If 1 ≤ m ≤ q − k,
then Nq(h) ≥ N∗

q (h) ≥ k!.

Remarks: The simple condition 3 ≤ k ≤ q − 2 cannot be improved. Since
for k = 1, h(x) can be an arbitrary uni-variate polynomial of degree m ≥ 2
and one can easily find one such h(x) (any irreducible h(x) will do) such that

N∗
q (h) = 0. If k = 2, take f(x) =

∑m+1
e=1 aex

e to be a permutation polynomial of
degree m+1 over Fq, then h(x1, x2) := (f(x1)− f(x2))/(x1 − x2) is a complete
symmetric polynomial of degree m with no Fq-rational points off the diagonal
x1 = x2. The condition k ≤ q− 2 is optimal too. For instance, if k = q, there is
only one possibility (up to permutation) for solutions with distinct coordinates.
One can easily modify the constant term of h so that N∗

q (h) = 0. If k = q − 1
(q > 3 odd), a solution set {α1, · · · , αq−1} is equal to Fq −{α} for some α ∈ Fq,
one then checks that

q−1
∑

i=1

αi = −α,

q−1
∑

i=1

α2
i = −α2.

Then,

2h2(α1, · · · , αq−1) = (

q−1
∑

i=1

αi)
2 +

q−1
∑

i=1

α2
i = α2 − α2 = 0

for all distinct α1, · · · , αq−1 in Fq. As a consequence, the complete symmetric
polynomial 2h2(x1, ..., xq−1)+ c (c ∈ F∗

q) has no Fq-rational points with distinct
coordinates.

The main result of this paper is to prove that the above conjecture is true
if either k ≤ p (this is always satisfied if q = p is a prime) or if k ≥ b(q + 1)/2c.
Namely,

Theorem 2.4. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). Let

h(x1, ..., xk) =
m
∑

e=0

aehe(x1, ..., xn) ∈ Fq[x1, ..., xk]

be a complete symmetric polynomial of positive degree m. Assume either k ≤ p
or k ≥ b(q+1)/2c. Then N∗

q (h) ≥ 1 if and only if the reduction xk−1(
∑m

e=0 aex
e)

modulo (xq − x) is not a polynomial of degree equal to k − 1.
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Taking k = 3 and q odd ( so k = 3 ≤ p), we obtain Theorem 1.4 which is
the result stated in the abstract. The reason is that we have

hm(x1, ..., xk) =
m
∑

e=0

he(x1, x2, x3)hm−e(x4, · · · , xk).

It follows that if h(x1, ..., xk) is a complete symmetric polynomial in k variables
of degree m, then for every choice of (a4, · · · , ak) ∈ Fk−3

q , the specialization
h(x1, x2, x3, a4, · · · , ak) is a complete symmetric polynomial of the same degree
m in the 3 variable {x1, x2, x3} and so we can apply the case k = 3 of the above
theorem which is true when q is odd and 1 ≤ m ≤ q − 3. This proves that

Nq(h) ≥
∑

a4,··· ,ak∈Fq

N∗
q (T (x1, x2, x3, a4, · · · , ak)) ≥ 6qk−3.

For q even, the case k = 4 of the above conjecture implies that Nq(h) ≥ 24qk−4

if k ≥ 4 and 1 ≤ m ≤ q−4. But the case k = 4 (q even) of the above conjecture
is still open. For q even, we can use the case k = [(q+ 1)/2] = q/2 of the above
theorem to deduce the weaker Theorem 1.6.

3 Generalized Vandermonde determinant

In this section, we show that Conjecture 2.2 is equivalent to a vanishing con-
jecture on certain generalized Vandermonde determinant. We shall work in a
slightly more general framework.

Let 2 ≤ k ≤ n ≤ q be integers. Let S ⊂ Fq be a subset of cardinality n.
For any polynomial f(x) ∈ Fq[x] and α1, · · · , αk ∈ S, let Mf denote the k × k
matrix

Mf (α1, · · · , αk) =















1 1 · · · 1
α1 α2 · · · αk

...
...

. . .
...

αk−2
1 αk−2

2 · · · αk−2
k

f(α1) f(α2) · · · f(αk)















.

Let
Df (α1, · · · , αk) = detMf (α1, · · · , αk)

denote its determinant. An interesting problem is to decide when the determi-
nant is non-zero. Since αq = α for all α ∈ Fq, reducing f(x) modulo (xq − x) if
necessary, we can assume that deg(f) ≤ q − 1. Remark that

1. Mxk−1(α1, · · · , αk) is the standard Vandermonde matrix.

2. If there are αi = αj for some 1 ≤ i < j ≤ k, then Df (α1, · · · , αk) = 0. So
we are only interested in pairwise distinct α1, · · · , αk ∈ S.
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If 0 ≤ deg(f) ≤ k−2, then the last row of Mf (α1, · · · , αk) can be written as
a linear combination of the first k − 1 rows of Mf (α1, · · · , αk). So in this case,
Df (α1, · · · , αk) = 0. If deg(f) = k − 1, saying f(x) = axk−1 + g(x) with a 6= 0
and 0 ≤ deg(g) ≤ k − 2, then

Df (α1, · · · , αk) = aMxk−1(α1, · · · , αk) = a
∏

1≤i<j≤k

(αj − αi) 6= 0,

for any pairwise distinct α1, · · · , αk ∈ S. If S ( Fq is a proper subset, then for
any α ∈ Fq \ S, we have (αi − α)q−2 = (αi − α)−1 and thus

D(x−α)q−2(α1, · · · , αk) =
1

∏k

i=1(αi − α)

∏

1≤i<j≤k

(αj − αi) 6= 0,

for any pairwise distinct α1, · · · , αk ∈ S.

Problem 3.1. For a given subset S ⊂ Fq and polynomial f(x) ∈ Fq[x] with
deg(f) ≤ q − 1, is there some efficient way (e.g. polynomial time in log q,
|S| and deg(f)) to determine if Df (α1, · · · , αk) 6= 0 for all pairwise distinct
α1, · · · , αk ∈ S.

This problem is difficult in such a generality. In fact, we will soon see
that this problem is NP-hard for general S. For even q, k = 3 and S = Fq,
the problem is the classification of hyperovals in finite projective plane P2(Fq),
which is still open (see [2, Section 14.1] for the collection of known families of
hyperovals).

The brute-force algorithm takes time
(

|S|

k

)

× time of computing the determinant of k × k matrix,

which is exponential in |S| when k = c|S| for any 0 < c < 1.
Theoretically, there is an explicit formula for the determinant Df in terms

of complete symmetric polynomials.

Proposition 3.2 ([4]). For any polynomial f(x) =
∑d

i=0 aix
i ∈ Fq[x] with

ad 6= 0, define

Cf (x1, · · · , xk) :=
d

∑

i=k−1

aihi−(k−1)(x1, · · · , xk).

This is a complete symmetric polynomial of degree d−k+1, which depends only
on the degree at least k − 1 part of f(x). Then, we have

Df (x1, · · · , xk) = Cf (x1, · · · , xk)
∏

1≤i<j≤k

(xj − xi).

Corollary 3.3. For any polynomial f(x) =
∑d

i=0 aix
i ∈ Fq[x] with ad 6= 0, and

any pairwise distinct α1, · · · , αk ∈ Fq, we have

Df (α1, · · · , αk) = 0 if and only if Cf (α1, · · · , αk) = 0.
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Let N∗
q (Cf ) denote the number of Fq-rational points of Cf with distinct

coordinates, and let N∗
q (Df ) denote the number of Fq-rational points of Df

with distinct coordinates. The above corollary says that

N∗
q (Cf ) = N∗

q (Df )

for all polynomial f(x) ∈ Fq[x]. As noted before, N∗
q (Cf ) = N∗

q (Df ) depends
only the residue class of f(x) mod (xq − x). Conversely, given a complete
symmetric polynomial

h(x1, ..., xk) =

m
∑

e=0

aehe(x1, ..., xn) ∈ Fq[x1, ..., xk],

our construction shows that

h(x1, ...xk) = Cg(x1, ..., xk), g(x) = xk−1(
m
∑

e=0

aex
e).

If the reduction of g(x) modulo (xq−x) is a polynomial of degree equal to k−1,
by the above Vandermonde determinant discussion, we have N∗

q (h) = 0. This
proves one direction of Conjecture 2.2. In the rest of the paper, we will focus
on the other direction of the conjecture.

Here are some examples of low degrees:

1. In the case d = k − 1, f(x) =
∑k−1

i=0 aix
i (ak−1 6= 0), so

Cf (x1, · · · , xk) = ak−1 and Df (x1, · · · , xk) = ak−1

∏

1≤i<j≤k

(xi − xj).

Hence, Df (α1, · · · , αk) 6= 0 for any pairwise distinct α1, · · · , αk ∈ S.

2. In the case d = k, f(x) =
∑k

i=0 aix
i (ak 6= 0), so

Cf (x1, · · · , xk) = ak−1 + ak(x1 + · · ·+ xk)

is linear and

Df (x1, · · · , xk) = (ak−1 + ak(x1 + · · ·+ xk))
∏

1≤i<j≤k

(xi − xj).

Hence, for any pairwise distinct α1, · · · , αk ∈ S, we haveDf (α1, · · · , αk) =
0 if and only if ak−1 + ak(α1 + · · ·+ αk) = 0. This is exactly the k-subset
sum problem (k-SSP) over S which is known to be NP-complete for
general S. For special S, e.g. S = Fq or F∗

q , there is an explicit formula
for N∗

q (Cf ), see [6], which implies that N∗
q (Cf ) > 0 for 3 ≤ k ≤ q − 2.

3. In the case d = k + 1, f(x) =
∑k+1

i=0 aix
i (ak+1 6= 0), so

Cf (x1, · · · , xk) = ak−1 + ak

k
∑

i=1

xi + ak+1





k
∑

i=1

x2
i +

∑

1≤i<j≤k

xixj



 .
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is quadratic. It was shown in [12, Theorem 4.2] that N∗
q (Cf ) > 0 for

3 ≤ k ≤ q − 2 (k 6= q − 2 if q is even).

These examples and the above discussion show that Conjecture 2.2 is equiv-
alent to the following conjecture.

Conjecture 3.4. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). For any
polynomial f(x) ∈ Fq[x] of degree k ≤ deg(f) ≤ q − 1, there exist pairwise
distinct α1, · · · , αk ∈ Fq such that

Df (α1, · · · , αk) = 0.

This conjecture answers Problem 3.1 when S = Fq: Df (α1, · · · , αk) 6= 0 for
all pairwise distinct α1, · · · , αk ∈ Fq if and only if deg(f) = k − 1.

Note that the conjecture is false if we restrict α1, · · · , αk in a proper subset S
of Fq. Suppose α ∈ Fq\S, taking f(x) = (x−α)q−2, we haveDf (α1, · · · , αk) 6= 0
for all pairwise distinct α1, · · · , αk ∈ S. If |S| = q − 1, by a translation we can
assume that S = F∗

q . In this case, we have the following similar conjecture.

Conjecture 3.5. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). For any
polynomial f(x) ∈ Fq[x] with k ≤ deg(f) ≤ q − 2, except those of the form
axq−2 + g(x) for some a 6= 0 and polynomial g(x) ∈ Fq[x] of degree deg(g) ≤
k − 2, there exist pairwise distinct α1, · · · , αk ∈ F∗

q such that

Df (α1, · · · , αk) = 0.

We shall prove that these two conjectures are true if k ≥ (q + 1)/2.

4 Reed-Solomon codes and MDS codes

In this section, we further relate the conjectures in the previous section to the
classification of deep holes for Reed-Solomon codes, equivalently MDS extension
of Reed-Solomon codes.

We shall work with a general subset S = {α1, α2, · · · , αn} ⊂ Fq of the finite
field Fq. For any integer 2 ≤ k ≤ n, define the (k− 1)×n Vandermonde matrix

M(S, k) =











1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αk−2
1 αk−2

2 · · · αk−2
n











.

The row vectors of M(S, k) generate the [n, k − 1]q Reed-Solomon code with
evaluation set S. It is an MDS code, which is equivalent to saying that every
(k − 1)× (k − 1) submatrix of M(S, k) has non-zero determinant.

By Lagrange interpolation, any word β = (β1, · · · , βn) ∈ Fn
q can be written

uniquely as
β = βf := (f(α1), · · · , f(αn)),
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where f(x) ∈ Fq[x] is a polynomial with deg(f) ≤ n − 1. The word βf is a
deep hole of the above Reed-Solomon code if and only if the row vectors of the
following generalized k × n Vandermonde matrix

Mf (S, k) =















1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αk−2
1 αk−2

2 · · · αk−2
n

f(α1) f(α2) · · · f(αn)















generate an MDS code, that is, every k × k submatrix of Mf (S, k) has non-
zero determinant. Equivalently, the determinant Df (αi1 , · · · , αik) 6= 0 for all
1 ≤ i1 < · · · < ik ≤ n. As noted before, the classification of deep holes is
NP-hard for general S, even in the case when deg(f) = k (this reduces to the
k-subset sum problem).

In the case S = Fq with 3 ≤ k ≤ q − 3 ( 4 ≤ k ≤ q − 4 for even q), Cheng-
Murray [3] conjectured that βf is a deep hole if and only if deg(f) = k−1. This
conjecture immediately implies (and in fact equivalent) to Conjecture 3.4. This
conjecture was already proven in the case k = 3 ≤ p for odd q > 5 by Segre in
his classical paper [8]. This special case is all we need to prove Theorem 1.4.

The Cheng-Murray conjecture remains open in general, but has been proved
by Zhuang-Cheng-Li [13] in the case k ≤ p and later by Kaipa [5] in the case
k ≥ [(q + 1)/2]. As a consequence, Conjecture 3.4 is true if either k ≤ p or
k ≥ [(q + 1)/2].

The results in [13] and [5] depend crucially on results from finite geometry.
To be self-contained, in the rest of this section, we include a simpler and more
direct proof of these results motivated by the approach from [5].

Let vi =
1∏

j 6=i
(αi−αj)

for 1 ≤ i ≤ n, which are non-zero in Fq. Define the

dual (n− k + 1)× n-matrix

M(S, k)⊥ =











v1 v2 · · · vn
v1α1 v2α2 · · · vnαn

...
...

. . .
...

v1α
n−k
1 v2α

n−k
2 · · · vnα

n−k
n











=











1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−k
1 αn−k

2 · · · αn−k
n





















v1 0 · · · 0
0 v2 · · · 0
...

...
. . .

...
0 0 · · · vn











.

Then

M(S, k)(M(S, k)⊥)T = 0. (1)

Equation (1) is the well-known relationship between generalized Reed-Solomon
codes and their dual codes. We present a proof to make it self-contained. For
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any polynomial a(x) ∈ Fq[x] of degree ≤ k− 2 and any polynomial b(x) ∈ Fq[x]
of degree ≤ n − k, the product a(x)b(x) has degree ≤ n − 2. By the Lagrange
interpolation, we have

a(x)b(x) =

n
∑

i=1

∏

j 6=i(x− αj)
∏

j 6=i(αi − αj)
a(αi)b(αi).

Comparing the terms of degree n− 1 of both sides, we get

0 =

n
∑

i=1

1
∏

j 6=i(αi − αj)
a(αi)b(αi) =

n
∑

i=1

a(αi)(vib(αi)). (2)

Taking a(x) = xk1 with 0 ≤ k1 ≤ k− 2 and b(x) = xk2 with 0 ≤ k2 ≤ n− k, we
deduce the orthogonality relation in Equation (1).

Define the extended k × (n+ 1) matrix of Mf (S, k) to be

ME
f (S, k) =















1 1 · · · 1 0
α1 α2 · · · αn 0
...

...
. . .

...
...

αk−2
1 αk−2

2 · · · αk−2
n 0

f(α1) f(α2) · · · f(αn) 1















.

Lemma 4.1. Let wi = −
∑n

j=1 vjα
i
jf(αj) for i = 0, 1, · · · , n− k, and let

M
E
f (S, k)⊥ =











v1 v2 · · · vn w0

v1α1 v2α2 · · · vnαn w1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

v1α
n−k
1

v2α
n−k
2

· · · vnα
n−k
n wn−k











=











1 1 · · · 1 w0

α1 α2 · · · αn w1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

αn−k
1

αn−k
2

· · · αn−k
n wn−k

























v1 0 · · · 0 0
0 v2 · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · vn 0
0 0 · · · 0 1















.

Then we have

ME
f (S, k)(ME

f (S, k)⊥)T = 0. (3)

Proof. It follows from Equation (1) that the rows of ME
f (S, k)⊥ are orthogonal

to the first k − 1 rows of ME
f (S, k). From the definition of wi, we deduce that

the rows of ME
f (S, k)⊥ are also orthogonal to the last row of ME

f (S, k). So we

have ME
f (S, k)(ME

f (S, k)⊥)T = 0.

The following lemma is well-known as the property of MDS codes: the dual
code of an MDS code is still an MDS code (see [7, Chapter 11]).
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Lemma 4.2. Let A ∈ Fk×n
q (1 ≤ k < n) be of rank k and B ∈ F

(n−k)×n
q be

of rank n − k such that A · BT = 0. Then the following two statements are
equivalent:

1. every k columns of A are linearly independent,

2. every n− k columns of B are linearly independent.

Remark that if the matrix A satisfies the above condition, the n columns of
A are literately called an n-arc in the projective space Pk−1(Fq).

Definition 4.3. A set of points in the (k − 1)-dimensional projective space
Pk−1(Fq) is called an arc if any k points in the set form a basis for the affine
space Fk

q .

An important example for arcs is the following normal rational curve.

Definition 4.4. For any integer 1 ≤ k ≤ q+1 and α ∈ Fq∪∞, we define vectors
(also considered as points in the corresponding projective space Pk−1(Fq))

ck(α) =

{

(1, α, α2, · · · , αk−1)T if α ∈ Fq,

(0, 0, · · · , 0, 1)T if α = ∞.

For any subset S ⊂ Fq ∪∞, the set

NRCk(S) = {ck(α) : α ∈ S}

is called a normal rational curve (NRC).

Note that the length of any NRC cannot exceed q + 1. There are famous
conjectures on arcs and NRC.

Conjecture 4.5 (MDS conjecture). For 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 2 if q is
even), the length of any arc in Pk−1(Fq) cannot exceed q + 1.

This conjecture is true for prime fields Fq (see [1]). A much weaker conjecture
is the following.

Conjecture 4.6 (Normal Rational Curve Conjecture). For 3 ≤ k ≤ q − 2
(4 ≤ k ≤ q − 3 if q is even), NRCk(Fq ∪∞) cannot be extended to any strictly
longer arc in Pk−1(Fq).

See [1, 2] for the extremal structure of (q + 1)-arcs.

Theorem 4.7 ([1, Theorem 1.10]). For 3 ≤ q−p+1 ≤ k ≤ q−2, any (q+1)-arc
is equivalent to NRCk(Fq ∪∞).

We also need the following old result on the extension of NRCs.

Theorem 4.8 ([9, Theorem 1]). For 3 ≤ k ≤ q− 2 (4 ≤ k ≤ q− 3 if q is even),
let NRCk(S) ⊂ Pk−1(Fq) be any NRC with length |S| ≥ k+b(q−1)/2c. For any
v ∈ Pk−1(Fq), if S∪{v} forms an arc, then v = ck(β) for some β ∈ (Fq∪∞)\S.

12



Note that if f1(x) ≡ f2(x) mod
∏

α∈S(x − α), then f1(α) = f2(α) for all
α ∈ S, and it follows that

Df1(α1, · · · , αk) = Df2(α1, · · · , αk)

for all pairwise distinct α1, · · · , αk ∈ S. Reducing f(x) modulo
∏

α∈S(x − α)
(which is a polynomial of degree n), we can assume that k ≤ deg(f) ≤ n− 1.

The main technical result we need is the following theorem, which was first
proved by Zhuang-Cheng-Li [13] in the case k ≤ p and later by Kaipa [5] in the
case k ≥ [(q + 1)/2].

Theorem 4.9. Let S ⊂ Fq be a subset of size n and let k be any integer such that
max(3, n−q+3) ≤ k ≤ n−2 ( max(4, n−q+4) ≤ k ≤ n−3 for q even). Assume
either k ≤ p (and n = q) or k ≥ b q+1

2 c. Then, for any polynomial f(x) ∈ Fq[x]
of degree k ≤ deg(f) ≤ n − 1, except those of the form a(x − α)q−2 + g(x) (
mod

∏

β∈S(x − α)) for some a 6= 0, α ∈ Fq \ S and polynomial g(x) ∈ Fq[x]
of degree deg(g) ≤ k − 2, there exist pairwise distinct α1, · · · , αk ∈ S such that
Df (α1, · · · , αk) = 0.

Proof. We consider the opposite side and prove by contradiction. Assume for
any pairwise distinct α1, · · · , αk ∈ S, we have

Df (α1, · · · , αk) 6= 0.

This condition is equivalent to that any k columns of Mf (S, k) are linearly
independent, which is also equivalent to that any k columns of ME

f (S, k) are
linearly independent. By Lemma 4.2, it is equivalent to that any n + 1 − k
columns of ME

f (S, k)⊥ are linearly independent. That is,

NRCn+1−k(S) ∪ {w = (w0, w1, · · · , wn−k)
T }

forms an n+1 arc in Pn−k(Fq), which contains at least n points of NRCk(Fq∪∞).
In order to apply Theorem 4.8, we need to have the inequality 3 ≤ n+1−k ≤ q−2
(and also 4 ≤ n+ 1− k ≤ q − 3 for q even) . This translates into the condition
max(3, n − q + 3) ≤ k ≤ n − 2 (and also max(4, n − q + 4) ≤ k ≤ n − 3 for q
even), which is satisfied by our assumption. If the condition k ≥ b(q + 1)/2c
holds, then

n+ 1− k + b
q − 1

2
c ≤ n,

and we can apply Theorem 4.8 to conclude that the point w must be contained in
NRCk(Fq ∪∞) as well. That is, as points in Pn−k(Fq), either w = (0, 0, · · · , 1)T

or w = cn+1−k(α) for some α ∈ Fq \ S. In the case |S| = q and k ≤ p by
Theorem 4.7, w = (0, 0, · · · , 1)T .

• If w = (0, 0, · · · , 1)T in Pn−k(Fq), we get a system of linear equations on
variables f(α1), f(α2), · · · , f(αn):

{

∑n

j=1 vjα
i
jf(αj) = 0, for i = 0, 1, · · · , n− k − 1,

∑n

j=1 vjα
n−k
j f(αj) = a.
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for some a ∈ F∗
q . That is,















v1 v2 · · · vn
v1α1 v2α2 · · · vnαn

...
...

. . .
...

v1α
n−k−1
1 v2α

n−k−1
2 · · · vnα

n−k−1
n

v1α
n−k
1 v2α

n−k
2 · · · vnα

n−k
n

























f(α1)
f(α2)

...
f(αn)











=















0
0
...
0
a















.

(4)

Note that

– by Equality (1), to satisfy the first n− k equations, the vector

(f(α1), f(α2), · · · , f(αn))

must belong to the Fq-linear vector space generated by rows of

M(S, k + 1) =











1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
n











.

– This means that there is a polynomial g(x) ∈ Fq[x] of degree at most
k−1 such that f(αi) = g(αi) for all 1 ≤ i ≤ n. Since deg(f) ≤ n−1, it
forces that f(x) = g(x), which has degree at most k−1, contradicting
to our assumption deg(f) ≥ k.

• If w = cn+1−k(α) for α ∈ Fq \ S, we get a system of linear equations on
variables f(α1), f(α2), · · · , f(αn):











v1 v2 · · · vn
v1α1 v2α2 · · · vnαn

...
...

. . .
...

v1α
n−k
1 v2α

n−k
2 · · · vnα

n−k
n





















f(α1)
f(α2)

...
f(αn)











= b











1
α
...

αn−k











for some b ∈ F∗
q .

Operating rows transformations, it is easy to get











v1 v2 · · · vn
v1(α1 − α) v2(α2 − α) · · · vn(αn − α)

...
...

. . .
...

v1α
n−k−1

1
(α1 − α) v2α

n−k−1

2
(α2 − α) · · · vnα

n−k−1

n (αn − α)





















f(α1)
f(α2)

...
f(αn)











=











b

0
...
0











.

Similar as above, the last n− k equations show that the vector

(f(α1)(α1 − α), · · · , f(αn)(αn − α))
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is a linear combination of the rows of M(S, k+1). That is, there is a polynomial
g(x) ∈ Fq[x] of degree at most k − 1 such that f(αi)(αi − α) = g(αi) for all
1 ≤ i ≤ n. This implies that

f(x)(x− α) ≡ g(x) (mod
∏

β∈S

(x− β)),

where deg(g) ≤ k − 1. Write g(x) = a + (x − α)g1(x) where a = g(α) and
deg(g1) ≤ k − 2. Then,

f(x) ≡
a

x− α
+ g1(x) ≡ a(x− α)q−2 + g1(x) (mod

∏

β∈S

(x− β)).

By our assumption that k ≤ deg(f) ≤ n− 1, we must have a 6= 0. The proof is
complete.

Taking S = Fq in the above theorem, we get

Corollary 4.10. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). For any
polynomial f(x) ∈ Fq[x] with k ≤ deg(f) ≤ q − 1, there exist pairwise distinct
α1, · · · , αk ∈ Fq such that

Df (α1, · · · , αk) = 0

if either k ≤ p or b(q + 1)/2c ≤ k.

Remark 4.11. By Conjecture 22 in [2], saying that for 6 ≤ k ≤ q − 5 any
(q + 1)-arc in Pk−1(Fq) is equivalent to NRCk(Fq ∪ ∞), and the proof above,
Conjecture 3.4 is true, and hence Conjecture 2.2 is true.

Taking S = F∗
q in Theorem 4.9, we get

Corollary 4.12. Let 3 ≤ k ≤ q − 2 (4 ≤ k ≤ q − 3 if q is even). Assume that
b(q+1)/2c ≤ k. For any polynomial f(x) ∈ Fq[x] with k ≤ deg(f) ≤ q−2, except
those of the form axq−2 + g(x) for some a 6= 0 and polynomial g(x) ∈ Fq[x] of
degree deg(g) ≤ k − 2, there exist pairwise distinct non-zero α1, · · · , αk ∈ F∗

q

such that
Df (α1, · · · , αk) = 0.

References

[1] Simeon Ball. On large subsets of a finite vector space in which every subset
of basis size is a basis. Journal of the European Mathematical Society,
3(1-2):733–748, 2011.

[2] Simeon Ball and Michel Lavrauw. Arcs in finite projective spaces. e-prints
arXiv:1908.10772, Aug 2019.

15



[3] Qi Cheng and Elizabeth Murray. On deciding deep holes of Reed-Solomon
codes. Lecture Notes in Computer Science, 4484:296–305, 2007.

[4] A.M. Fink. Certain determinants related to the Vandermonde. Proceedings
of the American Mathematical Society, 38(3):483–488, 1973.

[5] Krishna Kaipa. Deep holes and MDS extensions of Reed-Solomon codes.
IEEE Trans. Inform. Theory, 63(8):4940–4948, 2017.

[6] Jiyou Li and Daqing Wan. On the subset sum problem over finite fields.
Finite Fields and Their Applications, 14(4):911–929, 2008.

[7] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting
Codes. North-holland Publishing Company, 2nd edition, 1978.

[8] Beniamino Segre. Ovals in a finite projective plane. Canad. J. Math.,
7:414–416, 1955.

[9] G. Seroussi and R. M. Roth. On MDS extensions of generalized Reed-
Solomon codes. IEEE Transactions on Information Theory, 32(3):349–354,
May 1986.

[10] Daqing Wan. A Chevalley-Warning approach to p-adic estimates of charac-
ter sums. Proceedings of the American Mathematical Society, 123(1):45–54,
1995.

[11] Ewald Warning. Bemerkung zur vorstehenden Arbeit von Herrn Chevalley.
Abh. Math. Sem. Univ. Hamburg, 11(1):76–83, 1935.

[12] Jun Zhang, Fang-Wei Fu, and Qunying Liao. New deep holes of generalized
Reed-Solomon codes. Scientia Sinica, 43(7):727–740, 2013.

[13] J. Zhuang, Q. Cheng, and J. Li. On determining deep holes of gener-
alized Reed-Solomon codes. IEEE Transactions on Information Theory,
62(1):199–207, Jan 2016.

16


