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Abstract—Effective defense against cyber-physical attacks in
power grid requires the capability of accurate damage assess-
ment within the attacked area. While some solutions have been
proposed to recover the phase angles and the breaker status of
lines within the attacked area, existing solutions made the limiting
assumption that the grid stays connected after the attack. To fill
this gap, we study the problem of recovering the phase angles
and the breaker status under a general cyber-physical attack that
may partition the grid into islands. To this end, we (i) show that
the existing solutions and recovery conditions still hold if the post-
attack power injections in the attacked area are known, and (ii)
propose a linear programming-based algorithm that can perfectly
recover the breaker status under certain conditions even if the
post-attack power injections are unknown. Our numerical evalu-
ations based on the Polish power grid demonstrate that the pro-
posed algorithm is highly accurate in localizing failed lines even
though the conditions for perfect recovery can be hard to satisfy.

Index Terms—Power grid state estimation, cyber-physical at-
tack, failure localization.

I. INTRODUCTION

Modern power grids are interdependent cyber-physical
systems consisting of a power transmission system (power lines,
substations, etc) and an associated control system (Supervisory
Control and Data Acquisition - SCADA and Wide-Area
Monitoring Protection and Control - WAMPAC) that monitors
and controls the status of the power grid. This interdependency
raises a legitimate concern: what happens if an attacker attacks
both the physical grid and its control system simultaneously?
The resulting attack, known as a joint cyber-physical attack,
can cause devastating damage and large-scale blackouts, as
the cyber attack can blindfold the control system and thus
make the physical attack on the power grid more effective. For
example, one such attack on Ukraine’s power grid left 225,000
people without power for days [1].

The potential severity of cyber-physical attacks has attracted
efforts in countering these attacks [2], [3]. One of the challenges
in dealing with such attacks is that as the cyber attack blocks
measurements (e.g., phase angles, breaker status, and so on)
from the attacked area, the control center is unable to accurately
identify the damage caused by the physical attack (e.g., which
lines are disconnected) and hence unable to make accurate
mitigation decisions. To address this challenge, solutions have
been proposed to estimate the state of the power grid inside
the attacked area using power flow models. Specifically, [2]

This work was supported by the National Science Foundation under award ECCS-
1836827.

developed methods to estimate the grid state under cyber-
physical attacks using the direct-current (DC) power flow
model, and [3] developed similar methods using the alternating-
current (AC) power flow model. Both works made the limiting
assumption that either (i) the grid remains connected after the
attack, or (ii) the control center is aware of the supply/demand
in each island formed after the attack, both leading to known
post-attack active power injection at each bus.

In practice, however, disconnecting lines within the attacked
area may cause partitioning of the grid and changes in the
active power injections, and such changes within the attacked
area will not be directly observable to the control center due
to the cyber attack. Our goal is thus to estimate the power grid
state, especially the breaker status of lines, under cyber-physical
attacks without the above assumption.

A. Related Work
Power grid state estimation, as a key functionality for super-

visory control, has been extensively studied in the literature [4].
Among them, secure state estimation under attack is of partic-
ular interest [5]. Specifically, the attackers can distort sensor
data with noise [6] or inject stealthy data [7] so that the control
center cannot correctly estimate the phase angles [8] or the
topology [9] of the power grid. Recently, joint cyber-physical
attack has gained attention, as the physical effect of such attack
is harder to detect due to the cyber attack [2], [10], [11].

In particular, several approaches have been proposed for
detecting failed links. In [12], [13], the problem was formulated
as a mixed integer program, which becomes computationally
inefficient when multiple links fail. Then, the problem was
formulated as a sparse recovery problem over an overcomplete
representation in [14], [15], where the combinatorial sparse
recovery problem was relaxed to a linear programming (LP)
problem. Based on this approach, the work in [2] further
established graph-theoretic conditions for accurately recovering
the failed links. All the algorithms in [2], [14], [15] aimed to
find the sparsest solution among the feasible solutions under the
assumption that the power grid remains connected after failure.

B. Summary of Contributions
We aim at estimating the power grid state within the attacked

area, focusing on the phase angles and the breaker status of
lines, with the following contributions:

1) We show that an existing rank-based condition for
recovering the phase angles, previously established when



the grid remains connected after the attack, still holds
without this limiting assumption.

2) We show that existing graph-theoretical conditions for
localizing the failed lines, previously established under
the same limiting assumption, still hold without this
assumption if the post-attack power injections are known.

3) When the post-attack power injections are unknown, we
develop an LP-based algorithm that can localize all the
failed lines under certain conditions.

4) Our evaluations on a real grid topology show that while
the conditions for perfect state estimation can be hard
to satisfy, our proposed algorithm can localize the failed
lines with a high accuracy.

Roadmap. Section II formulates our overall problem, which
is divided into three subproblems addressed in Sections III–
V. Then Section VI evaluates our solutions, and Section VII
concludes the paper. All the proofs are in [16].

II. PROBLEM FORMULATION

A. Power Grid Model
We adopt the DC power flow model, which is a relaxation of

the AC power flow model that is commonly used in analyzing
large power grids [14]. In this model, the power grid is modeled
as a connected undirected graph G = (V,E), where V is the
set of nodes (buses) and E the set of links (transmission
lines). Each link e = (s, t) is associated with a reactance rst
(rst = rts). Each node v is associated with a phase angle θv and
an active power injection pv . The phase angles θ := (θv)v∈V
and the active powers p := (pv)v∈V are related by

Bθ = p, (1)

where B := (buv)u,v∈V ∈ R|V |×|V | is the admittance matrix,
defined as:

buv =


0 if u 6= v, (u, v) 6∈ E,
−1/ruv if u 6= v, (u, v) ∈ E,
−
∑
w∈V \{u} buw if u = v.

(2)

Given an arbitrary orientation of the links, the topology of
G can also be represented by the incidence matrix D ∈
{−1, 0, 1}|V |×|E|, whose (i, j)-th entry is defined as

dij =

 1 if link ej comes out of node vi,
−1 if link ej goes into node vi,
0 otherwise.

(3)

We assume that each node is deployed with a phasor
measurement unit (PMU) measuring the phase angle and remote
terminal units (RTUs) measuring the breaker status along with
the active power injection at this node and the power flows in
its incident links. These reports are sent to the control center
via a SCADA or WAMPAC system. The PMU data is assumed
to be communicated over a relatively secure dedicated link
and the RTU measurements over a more vulnerable SCADA
network to the control center.

B. Attack Model
As illustrated in Fig. 1, an adversary attacks an area H of

the power grid by: (i) blocking reports from the nodes within
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Figure 1. A cyber-physical attack that blocks information from the attacked
area H while disconnecting certain lines within H .

Table I
NOTATIONS

Notation Description

G = (V,E) power grid

H , H̄ attacked/unattacked area

F set of failed links

B admittance matrix

D incidence matrix

θ vector of phase angles

p vector of active power injections

∆ vector of changes in active power injections

H (cyber attack on both SCADA and WAMPAC), and (ii)
disconnecting a set F (|F | > 0) of links within H (physical
attack). Formally, H = (VH , EH) is a subgraph induced by a
set of nodes VH , where EH is the set of links for which both
endpoints are in VH . Note that H does not have to be connected.

C. State Estimation Problem

Notation. The main notations are summarized in Table I.
Moreover, given a subgraph X of G, VX and EX denote the
subsets of nodes/links in X , and xX denotes the subvector of
a vector x containing elements corresponding to X . Similarly,
given two subgraphs X and Y of G, AX|Y denotes the
submatrix of a matrix A containing rows corresponding
to X and columns corresponding to Y . We use DH ∈
{−1, 0, 1}|VH |×|EH | to denote the incidence matrix of the
attacked area H . For each quantity x, we use x′ to denote its
value after the attack.

Goal. Our goal is to recover the post-attack phase angles θ′H
and localize the failed links F within the attacked area, based
on the state variables before the attack and the measurements
from the unattacked area H̄ after the attack.

In contrast to the previous works, we consider cases where
the attack may partition the grid into multiple islands, which
can cause changes in active power injections to maintain the
supply/demand balance in each island. Let ∆ = (∆v)v∈V :=
p − p′ denote the change in active power injections, where
∆v > 0 if v is a generator bus and ∆v < 0 if v is a load bus.

III. RECOVERY OF PHASE ANGLES

Under the assumption that G remains connected after the
attack and thus ∆ = 0, [2] showed that the post-attack phase
angles in the attacked area θ′H can be recovered if the submatrix
BH̄|H of the admittance matrix has a full column rank. Below,



we will show that the same condition actually holds without
this limiting assumption.

Specifically, we have the following lemma (see proof in
[16]) that extends [2, Lemma 1] to the case of arbitrary ∆.
Here “supp” returns the indices of the non-zero entries.

Lemma III.1. supp(B(θ − θ′)−∆) ⊆ VH .

Using Lemma III.1, we can prove that the recovery condition
in [2, Theorem 1] remains sufficient even if the assumption of
∆ = 0 may not hold (see proof in [16]).

Theorem III.1. The phase angles θ′H within the attacked area
can be recovered correctly if BH̄|H has a full column rank.

IV. LOCALIZING FAILED LINKS WITH KNOWN ACTIVE
POWERS

Now assume that the post-attack phase angles θ′ have been
recovered. They can be inferred when BH̄|H has a full column
rank, or directly reported to the control center by PMUs if only
SCADA has been compromised1. We will show that as long as
the change in active powers ∆ is known, the failed links can be
uniquely localized under the same conditions as specified in [2].

First, we note that under practical assumptions, the con-
ditions presented in Section III for recovering the phase
angles greatly simplify the recovery of the active powers.
To this end, we assume that the adjustment of active power
injections at generator/load buses follows the proportional
load shedding/generation reduction policy, where (i) either the
load or the generation (but not both) will be reduced upon
formation of an island, and (ii) if nodes u and v are in the
same island and of the same type (both load or generator),
then p′u/pu = p′v/pv . This policy models the common practice
in adjusting load/generation in the case of islanding [18], [19],
and can help recovering the active powers in the following
cases (see proof in [16]).

Lemma IV.1. Let N(v; H̄) denote the set of all the nodes in
H̄ that are connected to node v via links in E \ EH . Then
under the proportional load shedding policy, ∆v for v ∈ VH
can be recovered unless N(v; H̄) = ∅ or every u ∈ N(v; H̄)
is of a different type from v with ∆u = 0.

Remark: Under the condition of Theorem III.1, i.e., BH̄|H
has a full column rank, each v ∈ VH must be the neighbor of
at least one node in H̄ (otherwise its corresponding column in
BH̄|H will be 0), and thus N(v; H̄) 6= ∅. Moreover, majority
of the nodes in practice are load buses, and thus each node in
H is likely to be a load bus neighboring to another load bus in
H̄ . Thus, we can usually recover ∆H under the proportional
load shedding policy if the condition for recovering θ′H holds.

Next, we will establish the conditions for localizing the
failed links F with known θ′ and ∆. The basic observation is
the following property of the set F , proved in [16].

1This can occur in hybrid control systems where the PMU measurements
are reported via a modern WAMPAC system with stronger defenses and the
other sensor measurements are reported via a legacy SCADA system that is
more vulnerable to cyber attacks [17].

Lemma IV.2. There exists a vector x ∈ R|EH | that satisfies
supp(x) = F , and

DHx = BH|G(θ − θ′)−∆H . (4)

This lemma, which replaces [2, Lemma 2], implies that if
one can find the conditions under which the solution to (4) is
unique, then the links corresponding to non-zero elements of
this solution must be the failed links. To this end, [2] gave a
set of graph-theoretic conditions. As these conditions are only
about the solution space of DHx = y, they remain valid in our
setting as long as the righthand side is known. We summarize
these conditions below (see proof in [16]).

Theorem IV.1. The failed links F within the attacked area
can be localized correctly if:

1) H is acyclic (i.e., a tree or a set of trees), in which case
(4) has a unique solution x for which supp(x) = F , or

2) H is a planar graph satisfying (i) for any cycle C in
H , |C ∩ F | < |C \ F |, and (ii) F ∗ is H∗-separable2,
in which case the optimization min ‖x‖1 s.t. (4) has a
unique solution x for which supp(x) = F .

Special cases satisfying the second condition in Theorem IV.1
include that (i) H is a cycle in which majority of the links
have not failed, and (ii) H is a planar bipartite graph in which
each cycle contains fewer failed links than non-failed links [2].

V. LOCALIZING FAILED LINKS WITH UNKNOWN ACTIVE
POWERS

Although providing strong theoretical guarantees, the solu-
tions for localizing failed links given in Section IV are only
applicable to small attacked areas with simple topologies (e.g.,
trees or cycles in which every node is connected to another
node outside the attacked area). To deal with larger attacked
areas, we investigate alternative solutions and their accuracy in
localizing the failed links. In this section, we tackle the joint
estimation of the failed links F and the change in active power
injections within the attacked area ∆H . As in Section IV, we
assume that the post-attack phase angles θ′ are known, which
can be either inferred or directly measured.

A. Solution
Our approach is to formulate the joint estimation problem

as an optimization as follows.
Constraints: Let x ∈ {0, 1}|E| be an indicator vector such

that xe = 1 if and only if e ∈ F . Due to B = DΓDT (where
Γ := diag{ 1

re
}e∈E), we can write the post-attack admittance

matrix as B′ = B −DΓdiag{x}DT , which implies

∆H = BH|G(θ − θ′) +DHΓHdiag{DT
G|Hθ

′}xH , (5)

where DG|H ∈ {−1, 0, 1}|V |×|EH | is the submatrix of the
incidence matrix D only containing the columns corresponding
to links in H . For simplicity, we define

D̃ := DΓdiag{DTθ′}. (6)

2Here H∗ is the dual graph of H , and F ∗ is the set of edges in H∗ such
that each edge in F ∗ connects a pair of vertices that correspond to adjacent
faces in H separated by a failed link.



Let each link be oriented in the same direction as the
post-attack power flow. Then, for link ek = (i, j) where
post-attack power flows from i to j, (D̃)i,k =

θ′
i−θ′

j

rij
and

(D̃)j,k = − θ′
i−θ′

j

rij
, where

θ′
i−θ′

j

rij
is the post-attack power flow

on link ek if it has not failed.
Besides (5), ∆H is also constrained as

pv ≥ ∆v ≥ 0, ∀v ∈ {u |u ∈ VH , pu > 0} , (7a)
pv ≤ ∆v ≤ 0, ∀v ∈ {u |u ∈ VH , pu ≤ 0} , (7b)

1T∆ = 0, (7c)

which ensures that a generator/load bus will remain of the
same type after the attack, and the total power is balanced. It
is worth noting that (7c) is ensured by (5), which implies that
1T∆H−1TBH|G(θ−θ′) = (1T D̃H)xH = 0 since 1T D̃H =
0 by definition (6). This implies that any ∆H satisfying (5)
will satisfy 1T∆H = 1TBH|G(θ − θ′) = 1T∆∗

H (∆∗
H : the

ground-truth load shedding values in H), and thus satisfy (7c).
Hence, we will omit (7c) in the sequel.

Objective: The problem of failure localization aims at finding
a set F̂ that is as close as possible to the set F of failed links,
while satisfying all the constraints. The solution is generally
not unique, e.g., if both endpoints of a link l ∈ EH are
disconnected from H̄ after the attack, then the status of l will
have no impact on any observable variable, and hence cannot
be determined. To resolve this ambiguity, we set our objective
as using the fewest failed links to satisfy all the constraints,
which is consistent with the previous approaches [2], [14],
[15]. Mathematically, the problem is formulated as

(P0) min
xH ,∆H

1TxH (8a)

s.t. (5), (7a) − (7b), (8b)
xe ∈ {0, 1}, ∀e ∈ EH , (8c)

where the decision variables are xH and ∆H .
Via a reduction from the subset sum problem, we characterize

the complexity of (P0) (see proof in [16]).

Lemma V.1. The optimization (P0) is NP-hard.

To develop an efficient solution, we relax the integer
constraint (8c), which turns (P0) into

(P1) min
xH ,∆H

1TxH (9a)

s.t. (5), (7a) − (7b), (9b)
0 ≤ xH ≤ 1. (9c)

where 0 ≤ xH ≤ 1 denotes element-wise inequality. The
problem (P1) is a linear program (LP) which can be solved
in polynomial time. Based on (P1), we propose an algorithm
for localizing the failed links, given in Algorithm 1, where
the input parameter η ∈ (0, 1) is a threshold for rounding the
factional solution (η = 0.5 in our experiments).

B. Analysis

We now analyze when the proposed algorithm can correctly
localize the failed links. In the sequel, ∆∗ denotes the ground-

Algorithm 1: Failed Link Detection
input :B,p,∆H̄ ,θ,θ′,D, η
Output: F

1 Solve the problem (P1) to obtain xH ;
2 Return F = {e : xe ≥ η}.

G

H

G2

G1

E1 Ec E2
Figure 2. Decomposition of the attacked area H .

truth value of ∆ and x∗ denotes the ground-truth value of x
(x∗

e = 1 if e ∈ F and x∗
e = 0 otherwise).

As illustrated in Fig. 2, we denote by G1 the subgraph of
H induced by nodes in VH that stay connected to H̄ after
the attack, and the remaining part of H (if any) by G2. Let
Vi (i = 1, 2) denote the set of nodes in Gi. Furthermore, we
decompose each Vi into Vi,L for nodes with pv ≤ 0 and Vi,G

for the rest. Define Ei ⊆ E (i = 1, 2) as the set of links with
both endpoints in Gi, and Ec ⊆ E as the remaining links that
form a cut between G1 and G2, i.e., ∀(s, t) ∈ Ec has s ∈ G1

and t ∈ G2 or vice versa.

Assumption 1. We make the following assumptions:
1) ∀ec = (s, t) ∈ Ec, where t ∈ V2, p′t = 0. This condition

holds if node t is a load bus with zero load (i.e., pt = 0),
or lies in an island containing either no generator bus
or no load bus after the attack.

2) As in [2], we assume that for each link (s, t) ∈ EH ,
θ′s �= θ′t, as otherwise the link will carry no power flow
and hence its existence is not detectable.

First, we simplify (P1) into an equivalent but simpler
optimization problem. To this end, we combine the
decision variables ∆H and xH of (P1) into a single vector
yH = [∆T

H ,xT
H ]T ∈ R(|EH |+|VH |) (where [A,B] denotes

horizontal concatenation), and explicitly represent the solution
to yH that satisfies (5). Notice that (5) can be written as
[I,−D̃H ]yH = BH|G(θ − θ′) (I: the |VH | × |VH | identity
matrix). The ground-truth solution y∗

H = [(∆∗
H)T , (x∗

H)T ]T

certainly satisfies (5). Next, consider the null space of
[I,−D̃H ], whose dimension is |EH |. It is easy to verify that
[d̃T

e ,u
T
e ]

T (e ∈ EH ) are |EH | independent vectors spanning
the null space of [I,−D̃H ], where d̃e is the column vector of
D̃H corresponding to link e, and ue is a unit vector in R|EH |

with the e-th element being 1 and the other elements being
0. Therefore, any yH satisfying (5) can be expressed as

yH =

[
∆∗

H

x∗
H

]
+

∑
e∈EH

ce

[
d̃e

ue

]
. (10)

Let c := (ce)e∈EH
∈ R|EH |. Let ΛL ∈ {0, 1}|VH | be a

diagonal matrix such that (ΛL)i,i = 1 if pi ≤ 0 and 0



otherwise, and ΛG be defined similarly except that (ΛG)i,i = 1
if pi ≥ 0. We can write (P1) into the following equivalent
optimization of c to eliminate the equality constraint (5). For
notation simplicity, we omit the subscript H of D̃H , ∆H and
xH in the following unless it causes confusion.

min
c

1T c (11a)

s.t. −ΛLD̃c ≥ ΛL∆∗, (11b)

ΛLD̃c ≥ ΛLp−ΛL∆∗, (11c)

ΛGD̃c ≥ −ΛG∆∗, (11d)

−ΛGD̃c ≥ −(ΛGp−ΛG∆∗), (11e)
c ≥ −x∗, (11f)
− c ≥ x∗ − 1, (11g)

For Algorithm 1 to correctly localize the failed links, it suffices
to have x∗e+ce ≥ η for all e ∈ F and x∗e+ce < η for all e /∈ F .
Equivalently, it suffices to ensure that the optimal solution c∗ to
(11) satisfies c∗e ≥ η−1 for all e ∈ F and c∗e < η for all e /∈ F .

Next, we use (11) to analyze the accuracy of Algorithm 1.
Based on the decomposition of H , D̃ can be written as

D̃ =

E1 Ec E2


V1,L D̃11,L D̃1c,L D̃12,L

V1,G D̃11,G D̃1c,G D̃12,G

V2,L D̃21,L D̃2c,L D̃22,L

V2,G D̃21,G D̃2c,G D̃22,G

. (12)

Let D̃ij denote (D̃T
ij,L, D̃

T
ij,G)T . It is easy to see that D̃12 = 0

and D̃21 = 0. Below, we will establish sufficient conditions
under which Algorithm 1 can correctly identify the cut between
G1 and G2, the proof of which can be found in [16].

Theorem V.1. Under Assumption 1 and F = Ec, the ground-
truth solution is the unique optimal solution to (P1), i.e.,
Algorithm 1 can correctly detect F , if the following two
conditions hold:

1) D̃2c,L ≥ 0 and D̃2c,G ≤ 0, i.e., all the elements in
D̃2c,L are nonnegative and all the elements in D̃2c,G

are nonpositive, and
2) for each non-zero entry (D̃2c)v,j in row v of D̃2c, we

have |(D̃2c)v,j | ≥ (D̃22)v,k for all k, i.e., the absolute
value of each non-zero entry in D̃2c is no less than the
entries of D̃22 in the same row.

Corollary V.1.1. Assume Assumption 1 and F = Ec. If H
contains no generator bus and D̃2c,L ≥ 0, or H contains no
load bus and D̃2c,G ≤ 0, then the ground-truth solution is the
unique optimal solution to (P1) and Algorithm 1 can correctly
identify the cut between G1 and G2.

VI. PERFORMANCE EVALUATION

We test our solutions on the Polish power grid (“Polish
system - winter 1999-2000 peak”) [20] with 2383 nodes and
2886 links, where parallel links are combined into one link.
We generate the attacked area H by randomly choosing one
node as a starting point and performing a breadth first search
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to obtain H with a predetermined |VH |. We then randomly
choose |F | links within H to fail. The phase angles of each
island without any generator or load are set to 0, and the
rest are computed according to (1). We vary |VH | and |F | to
explore different settings, and for each setting, we generate 70
different H’s and 300 different F ’s per H .

We evaluate two types of metrics: (1) how often the theo-
retical recovery conditions are satisfied, and (2) how accurate
Algorithm 1 is when its recovery conditions are not satisfied.

First, we evaluate the fraction of randomly generated cases
satisfying the conditions in Theorem III.1 for recovering the
phase angles, Theorem IV.1.(1)3 for localizing the failed links
with known phase angles and active powers, and Theorem V.1
for localizing the failed links with known phase angles and un-
known active powers. We observe that (i) the condition in The-
orem III.1 is almost never satisfied, (ii) the condition in Theo-
rem IV.1.(1) is only satisfied with a limited probability as shown
Fig. 3, which decreases with |VH | (note that Theorem IV.1.(1)
does not depend on F ), and (iii) the conditions in Theorem V.1
are only satisfied with a small probability due to the small proba-
bility of F = Ec, as shown in Fig. 4, which also decreases with
|VH |. However, Fig. 5 shows that the remaining conditions4 of
Theorem V.1 hold with high probability once F = Ec, indicat-
ing that Algorithm 1 can accurately detect the cut within H .

These results show that although it is possible to infer phase
angles and failed links with perfect accuracy, guaranteeing
perfect accuracy will require stringent conditions that are hard
to satisfy, highlighting the need of protecting measurements.

For the second type of metrics, we focus on the accuracy of
Algorithm 1 in comparison with benchmarks in localizing the
failed links, assuming that PMU measurements are available
due to their better protection against cyber attacks [17]. We

3We only tested condition (1) in Theorem IV.1, as the other condition relies
on complicated graph properties that are difficult to test.

4Note that |VH | does not matter, as the conditions are only related to G2.
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Figure 7. Performance comparison on miss rate (|VH | = 40).
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Figure 8. Performance comparison on false alarm rate (|VH | = 40).

consider two benchmarks: (i) the solution given in Theorem IV.1
(extended from [2]), i.e., estimating F by supp(x) for the
solution to min ‖x‖1 s.t. (4), assuming the true ∆H to be
known, and (ii) min ‖x‖1 s.t. ‖BH|G(θ − θ′) −DHx‖2 ≤
‖pH‖2, which is extended from the solution in [14], [15]. We
note that the original solution in [2] (which assumes ∆ = 0)
is often infeasible for our problem, as shown in Fig. 6, and
thus not used as a benchmark. Note that benchmark (i) is
meant to be a “performance upper bound”, as it assumes more
knowledge (i.e., ∆H ) than our proposed algorithm.

As shown in Fig. 7, benchmark (i) performs the best in
miss rate, while Algorithm 1 performs much better than
benchmark (ii). This confirms the importance of knowing or
estimating load shedding values in failure localization. Fig. 8
shows that in terms of false alarm rate, Algorithm 1 performs
even better than benchmark (i). This is because the decision
variable x in benchmark (i) combines the information of both
the failed links and the phase angles θ′H , and thus does not
fully exploit the knowledge of θ′H .

VII. CONCLUSION

Observing that existing solutions for power grid state
estimation under cyber-physical attacks relied on the limiting
assumption that the grid stays connected after the attack, we
revisited the problem without this limiting assumption, and
showed that the existing solutions and conditions for recovering
phase angles and breaker status remain valid as long as the
post-attack power injections are known. We then focused on
recovering the breaker status within the attacked area under
unknown post-attack power injections, and proposed an LP-
based algorithm that achieves perfect recovery under certain
conditions. Our evaluations on Polish power grid showed that
although the conditions for perfect recovery are hard to satisfy,
our algorithm can always localize the failed lines with a high

accuracy, which suggests that it admits a more general recovery
condition. We leave the study of such conditions to future work.
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