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ABSTRACT: Tire-pavement interaction noise (TPIN) is one of the main sources of exterior

noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is

typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN

mechanisms. In this work, the structure of the tire is modeled and a new wave propagation

solution to find its response is proposed. Multiple physical effects are accounted for in the

formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell

model are presented. Orthotropic and nonuniform structural properties along the tire’s transversal

direction are included to account for differences between its sidewalls and belt. Finally, the

effects of rotation and inflation pressure are also included in the formulation. Modeled frequency

response functions are analyzed and validated. In addition, a new frequency-domain formulation

is presented for the computation of input tread pattern contact forces. Finally, the rolling tire’s

normal surface velocity response is coupled with a boundary element model to demonstrate the

radiated noise at the leading and trailing edge locations. These results are then compared with

experimental data measured with an on-board sound intensity system.

KEYWORDS: tire vibrations, tire-pavement interaction noise, tread-pattern noise, infinite flat

plate tire model, cylindrical shell tire model, wave propagation

Introduction

Tire-pavement interaction noise (TPIN) is the largest source of noise
produced by vehicles traveling at speeds between 50 and 150 kph. It is dominant
over power train noise and aerodynamic noise. Power train noise is typically
produced by the engine, transmission, intake, and exhaust; therefore, it is
significant only at low speeds. On the other hand, aerodynamic noise becomes
important only at very high speeds, at greater than 150 kph [1]. The TPIN
dominant spectral content is between 500 and 1500 Hz. For example, Fig. 1a
shows the noise produced by different tires rolling on the same pavement. These
results were obtained after performing a large experimental campaign using an
onboard sound intensity system (OBSI), as shown in Fig. 1b. Further details on
how these measurements were collected can be found in [2–4].
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Modeling the mechanisms that produce TPIN behavior is an active research
topic. Since the 1970s, the existence of multiple TPIN mechanisms has been
speculated without any conclusive proof. Nevertheless, the noise produced by
the vibratory response of the tire is a well-established mechanism and is
addressed in this work.

In an effort to observe how noise behaves around a rolling tire, Donavan
and Oswald [5] measured the sound intensity levels around a tire mounted on
a vehicle while rolling. In this case, the highest noise levels were produced
near the contact region and decayed along the circumferential direction of the
tire. These results suggested that the tire is excited in the contact patch
region, where waves that travel along its circumferential direction are excited
and in turn generate the noise measured by the sound intensity probes.
Additional insight on a tire’s structural response was provided by Bernhard
[6]. In this work, the response of the tire was measured with a laser Doppler
vibrometer over a surface grid on the belt surface of the tire. The tire was
excited using a dynamic shaker at a single point located at the center of the
belt. These results showed that modes are observed along both directions of
the tire for low frequencies. However, for higher frequencies (greater than
500 Hz), resonant behavior was no longer observed along the circumferential
direction of the tire. In this case, propagating and decaying waves were
observed.

Most approaches intended to model vibration-induced TPIN within the
mid-frequency range are based on the modal expansion of the tire’s response.

Still, many researchers acknowledge the existence of waves along the

circumferential direction of the tire, and many efforts have been directed

toward such formulation without significant success (see, for example, the work

presented by Kropp [7], O’Boy and Dowling [8], and Hoever [9]). Thus,

innovative developments are still necessary to predict tire vibrations and noise

FIG. 1 — (a) Measured TPIN for different tires. (b) Onboard sound intensity system used for testing.
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for higher frequencies with improved accuracy. In this work, the development of

a structural model and a new approach to computing the response of a tire is

presented. The main goal is to provide a physically based model suitable for

predicting the vibratory response of the tire in the dominant mid-frequency

range (500–1500 Hz). This is then coupled with the noise produced by

implementing a boundary element method (BEM) code. Finally, measured and

modeled tread pattern noise results are compared.

Modeling the Structure of a Tire

To model the tire’s structural dynamic behavior, two approaches are

explored. First, the tire is modeled as a flat plate that is infinite along the

circumferential direction. Second, the tire is modeled as a cylindrical shell. The

latter was developed in an effort to include curvature effects. Additional

physical effects included in both approaches are the following:

1. Orthotropic material properties
2. Nonuniform properties along the transversal direction of the tire that

account for structural differences between the tire’s belt and sidewalls
3. Additional membrane tension terms that account for inflation pressure
4. Effects of rotation in the tire’s structural dynamic behavior

This section presents the equations of motion for the infinite flat plate and

the cylindrical shell models, including all the added terms that account for the

physical effects listed above.

Infinite Flat Plate
The initial approach consists of modeling the tire as a simply supported

plate that is infinite along its circumferential direction, as shown in Fig. 2. A

smear representation of the actual tread pattern of the tire is implemented in this

model. This allows assigning different masses and stiffnesses associated with

the belt (including the smeared tread pattern) and the sidewalls.

Assuming that the plate is excited at the coordinate’s system origin, waves

traveling in the positive and negative x-direction do not interact with each other.

Therefore, standing waves (i.e., modes) are not formed. This is the expected

response of a tire in the mid-frequency range.
The equation of motion of the plate is defined as follows
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In this case, w is the normal surface displacement of the plate and f(t)d(x� xf)

d(y � yf) defines a time-dependent input point force located at (xf, yf).

Orthotropic structural properties are also assumed. Thus, different bending

stiffnesses along the transversal, circumferential, and cross directions are

assigned. These are defined as By(y), Bx, and Bxy, respectively. Note that these

account for nonuniformities along the transversal direction of the tire, given

that both the bending stiffness By(y) and the plate’s mass per unit area m(y)

depend on y (the transversal direction coordinates of the tire). The latter

includes the added mass of the tread band with a smear representation of the

tread pattern. This approach is similar to that implemented in the work by

Pinnington [10,11].

In an effort to include the effects of rotation, the plate is assumed to be

moving along the circumferential direction (positive x axis) with a velocity

Vp. This translational velocity can be calculated as Vp¼X3a, where X is the

tire’s rotational velocity in [rad/s] and a is the tire’s outer circumference

radius. The last two terms on the left-hand side of Eq. (1) account for this

velocity, as proposed by Lee [12]. Finally, inflation pressure can be

accounted for with membrane tensions along both the transversal and

circumferential directions. These can be calculated as T0x¼ pa and T0y¼ pa/

2, respectively, and are included in the first two terms on the left-hand side of

Eq. (1).

FIG. 2 — Infinite flat plate model of the structure of a tire with smear tread pattern representation.
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Cylindrical Shell Model
In an effort to include the effects of curvature in the structural model, the

tire is modeled with the cylindrical shell shown in Fig. 3. It is assumed that it
is simply supported at its two transversal boundaries. This simulates real
working conditions, in which the tire is mounted on a wheel. The dynamic
response of the shell is defined in terms of three mid-surface displacement
components, in accordance with Kirchhoff’s hypothesis [13]. Thus, u
corresponds to the transversal displacements along the y axis, v corresponds
to the displacements tangential to the shell’s curvature defined by the angle h,
and w corresponds to the radial displacements along the z axis. In addition,
the shell’s radius is defined by a, its thickness by h, and its transversal length
LT.

The shell is assumed to follow the Donnell-Mushtari-Vlaslov theory. In
such a case, the mid-surface displacements on the shell’s tangent plane and
their derivatives have negligible effects in its curvature and twist. In
addition, further simplifications are proposed for vibration-induced noise
applications. These assume that the motion of the tire is dominated by radial
vibrations, thus rendering the inertia effects on its tangent plane negligible.
Finally, it is also assumed that the shell’s radius is much larger than its
thickness.

A shell that follows the simplifications defined above is typically referred to
as a shallow shell. In the work by Soedel [14], it was demonstrated that these
simplifications provide very good modal approximations if compared with
classic Love theory for isotropic shells defined in [13]. Still, slight inaccuracies
are expected only at low frequencies, well below the range of interest in this
study.

FIG. 3 — Cylindrical shell model of the structure of a tire.
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The resulting equation of motion of the cylindrical shell is defined solely in

terms of the normal surface displacement of the shell w(h, y) and is defined as

follows

a1
]6

]y2]h4
D11ðyÞ]

2w

]y2

� �
þ a2

]6

]y6
D11ðyÞ]

2w

]y2

� �

þ a3
]6

]y4]h2
D11ðyÞ]

2w

]y2

� �
þ
�
v2 � D11ðyÞa3

�
]8w

]y6]h2

þ
�
v3 � D11ðyÞa1

�
]8w

]y4]h4
þ v4

]8w

]y2]h6
þ v5

]8w

]h8
þ 1

a2

]4w

]y4

� x2 a1mðyÞ
]4w

]h4
þ a2

]4mðyÞw
]y4

þ a3
]4mðyÞw
]y2]h2

� �

� 1

a2
a1N

r
hðyÞ

]6w

]h6
þ a2

]6Nr
hðyÞw

]y4]h2
þ a3

]6Nr
hðyÞw

]y2]h4

� �

� Nr
y a1

]6w

]y2]h4
þ a2

]6w

]y6
þ a3

]6w

]y4]h2

� �

þ 2ixX a1mðyÞ
]3w

]h3
þ a3

]3mðyÞw
]y2]h

þ a4
]3mðyÞw
]y2]h

� �

� X2 a1mðyÞ
]4w

]h4
þ a2

]4mðyÞw
]y4

þ a3
]4mðyÞw
]y2]h2

� �

¼ a1
]4Fr

]h4
þ a2

]4Fr

]y4
þ a3

]4Fr

]y2]h2

� �
ð2Þ

The multiplying constants in Eq. (2) are defined as
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In this case, all the stiffness terms defined with K and D are calculated as
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ð5Þ

where Ey is the elastic modulus along the transversal direction, Eh along the

circumferential direction, and Eyh along the cross direction. In addition, G is the

shear modulus of the tire’s composite material. Further details on how Eq. (2)

was derived can be found in [15].

The nonuniformities along the transversal direction are accounted for in

Eq. (2) with D11(y) and m(y). The rotational velocity is accounted for in

terms that include X [rad/s]. Finally, inflation pressure is accounted for as it

was done for the infinite plate. That is, with membrane tensions. In this case,

these are included in the term Nr
h(y) ¼ pa þ m(y)aX2 along the

circumferential direction and Nr
y ¼ pa/2 along the transversal direction of

the tire.

Full-Wave Propagation Response

In this section, the formulation to find the structural response of a tire using

a full-wave propagation response is presented. The response consists of modes

in the transverse direction and waves in the circumferential direction, defined in

a generic form as follows:

wðn; y; tÞ ¼
XN
n

qn/nðyÞXnðnÞeixt

:::n corresponds to x for the flat plate model

n corresponds to h for the cylindrical shell model ð6Þ

where the generic coordinate n corresponds to x for the plate models and h
for the cylindrical shell model.?1 Along this direction, a full-wave propagation

is assumed of the form Xn(n) ¼ e�iknn. On the other hand, y is the coordinate

along the transversal direction. Along this direction, a total of N transversal

modes are defined with a modal amplitude qn and a function /n(y). The

latter is computed in terms of admissible functions that satisfy the essential

boundary conditions. In this case, sine functions have been selected as

follows:
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/nðyÞ ¼
XM
m

AmnwmðyÞ ¼
XM
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2

� �
ð7Þ

where Amn are the corresponding admissible function amplitudes associated
with the mth function and nth transversal mode. These admissible amplitudes are
found by defining an eigenvalue problem using the homogeneous equation of
motion of the tire. For the flat plate model, this is
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On the other hand, for the cylindrical shell model, it is defined as
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Eq. (7) is substituted in the appropriate homogeneous equation. The
resulting expression is then premultiplied by a vector of admissible functions
and integrated over the transversal direction y. The outcome is an eigenvalue
problem, and its solution defines the transversal modes of the tire. This is an
approximation; however, an exact solution is possible if all the terms on the
equations of motion are used to construct the homogeneous equations and the
eigenvalues solved for all wave numbers kn. This would be a very
computationally intensive approach.

Once the transversal modes are known, the full-wave propagation solution
to the equations of motion (1) and (2) is then applied as follows:

1. Substitute Eq. (6) (the assumed solution) into the desired structural
equation of motion.

2. Premultiply by /n(y), integrate over y, and perform wavenumber transform.
After this process, the following generic system is obtained

XM
m

Cm½ �kmn þ kn½ � � x2 I½ �
" #

qnXnðknÞ
� 	

¼ FnðknÞ
� 	

ð10Þ

where kmn corresponds to the wavenumber along the circumferential
direction elevated to the mth power. In this case, m is associated with the mth

derivative with respect to n in the equation of motion. Each of the mth

expressions is associated to a stiffness matrix defined as [Cm]. On the other
hand, [kn] is a diagonal matrix containing the eigenvalues (squared
transversal natural frequencies of the tire), [I] is the identity matrix, and
finally {Fn(kn)} is a vector containing all modal forces.
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3. Decouple the system in Eq. (10) by only accounting the diagonal terms of

matrices [Cm], and then perform an inverse wavenumber transform as

follows:

qnXnðnÞ ¼
1

2p

Z‘
�‘

FnðknÞe�iknnP
Cm;nk

m
n þ kn � x2

dkn ð11Þ

where Cm,n correspond to the nth diagonal value of the matrix [Cm]

associated with the nth transversal mode. Finally, now that qnXn(n) is

known, it can be substituted back into the assumed solution in Eq. (6) to

find the response of the tire.

The mobility FRF?2 of the tire can also be computed. This is performed by

multiplying the normal surface displacement defined in Eq. (6) by ix and

dividing by the input harmonic force with amplitude F0.

The resulting mobility FRF for the infinite flat plate model computed at a

location (xt, yt) due to excitation at a point (xf, yf) then becomes
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for n ¼ 1, 2, 3, . . . N transversal modes and circumferential wave numbers kx
from �‘ to þ‘.

In this case, CIP;nðkx;xÞ ¼
�
Cxx;nk

4
x þ Cxy;nk

2
x þ CV;nxkx þ x2

nð1 þ ignÞ
�x2

�
, where Cxx,n, Cxy,n, and CV,n correspond to correspond to the nth diagonal

values of the associated stiffness matrices. On the other hand, the mobility FRF

and for the cylindrical shell computed at a location (ht, yt) due to excitation at a

point (hf, yf) becomes
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from �‘ to þ‘.

In this case,
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where N1,n, N2,n, and C1,n through C6,n correspond to the nth diagonal values of
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the associated stiffness matrices. Further details about this formulation can be

found in [15].

In addition, it can be observed that for both mobility functions, additional

modal damping has been added with the modal loss factor n. Finally, the forcing

term in Eq. (12) is the following

FnðkxÞ ¼ F0e
ikxxf/nðyf Þ ð14Þ

while the forcing term in Eq. (13) is

FnðkhÞ ¼ F0e
ikhhf a1/nðyf Þk4

h þ a2
]4/nðyf Þ

]y4
� a3

]2/nðyf Þ
]y2

k2
h

� �
ð15Þ

Structural Response Validation

To validate modeled structural responses of a tire for the frequency range of

interest, an experiment was performed. A slick tire of size 225/45R17 was used.

The tire was inflated to 32 psi and hanged horizontally with elastic chords, as

shown in Fig. 4. A Bruel & Kjaer permanent magnetic vibration exciter type

4808 was used to excite the tire. A stinger was connected between the shaker

and a point located at the center of the tire’s belt. In addition, an ICP force

sensor PCB208C02 was fitted to the tip of the stinger and glued to the tire’s

FIG. 4 — (a) Tire hanged in experimental rig and shaker. (b) Laser vibrometer head pointing toward
the tire belt.
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surface, as shown in Fig. 4a. This allowed for measuring the actual input force

that excites the tire at the input location.

A total of 199 points were marked on the tire surface with retroreflective

tape. The response of the tire at these points was measured with a Polytec PSV-

400 scanning laser vibrometer, as shown in Fig. 4b. Seventy-one of the marked

points were located along the mid-belt circumferential line of the tire.

Therefore, its dynamic response was measured at every 58 along the belt’s

circumference. It should be noted that it was not possible to measure the

response at the point of excitation. Another 72 points were marked at the top

sidewall of the tire. Finally, the response of the tire was also measured at 14

points along its transversal direction, including the belt and sidewalls. This was

done at 08, 908, 1808, and 2708 from the excitation location.

Only the measured input mobility FRFs are analyzed here. However,

because the response could not be measured at the exact point of excitation,

approximated results for a point at 1 cm above the excitation location will be

used for the comparisons. Figure 5 shows the simulated input mobility of

FRFs using the structural modeling approaches presented in the previous

sections. These are compared with the measured mobility FRF at the same

location.

FIG. 5 — Measured and simulated mobility FRFs measured at a point located at 1 cm above the
excitation location for a tire of size 225/45R17 (approximated input mobility FRF).
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The results presented in Fig. 5 are shown for a frequency range of up to
1500 Hz for completeness. However, simulated results are only comparable
with measurements within 500 Hz to 1500 Hz. The reason for this is that the
structural models were constructed to be accurate exclusively for this range.
Finally, all of the structural properties of the tire for this validation case are
shown in Table 1 for a transversally uniform and nonuniform tire structure.
These were defined as follows. First, an initial baseline for the parameters
was used according to those reported by Pinnington and Briscoe [16] and
Kim et al. [17]. These were then modified until a reasonable fit was attained
between the measurements and the modeled mobility functions. For
example, based on experiments, Pinnington and Briscoe [16] reported an
average mass per unit area of a typical passenger car tire to be 16 kg/m2.
This was used as m in Table 1. The masses for the belt and sidewalls were
then defined so that (mb þ ms)/2 » m. A similar process was followed to
define the stiffnesses, using as baseline the parameters defined by Kim et al.
[17]. Finally, as specified in [15], the membrane tensions were approximated
using the tire’s inflation pressure and outer radius, as T0y ¼ pa/2 and T0x,h¼
pa, respectively.

For comparison purposes, Fig. 5 shows the response of the tire
predicted with a full-modal approach presented in the work by Kropp [7]
and a modified version proposed by Perisse et al. [18]. For the first case, a
cross-stiffness Bxy ¼

ffiffiffiffiffiffiffiffiffiffi
BxBy

p
¼ 4.93 Nm was used, and for the second case,

a much higher cross-stiffness of Bxy ¼ 130 Nm was implemented, as
proposed by [18]. When compared with measurements, it can be observed
that both approaches overpredict the response, especially for frequencies
greater than 750 Hz. Further details about these modal approaches can be
found in [19].

Figure 5 also shows the response computed using the full-wave propagation
approach of the infinite flat plate model. If uniform properties along the tire’s

TABLE 1 — Uniform and nonuniform tire parameters used for FRF simulations.

Parameter Notation Tire part, direction Value [units]

Nonuniform case

Mass per unit area mb Belt 17.4 [kg/m2]

Mass per unit area ms Sidewalls 12.3 [kg/m2]

Bending stiffness Byb Belt, y-direction 6.9 [Nm]

Bending stiffness Bys Sidewalls, y-direction 1.2 [Nm]

Uniform case

Mass per unit area m Belt and sidewalls 16 [kg/m2]

Bending stiffness Bx,h Belt and sidewalls, x or h 6 [Nm]

Bending stiffness By Belt and sidewalls, y-direction 4.05 [Nm]

Membrane tension T0x,h Belt and sidewalls x or h (32 psi) 3.49 3 104 [N/m]

Membrane tension T0y Belt and sidewalls, y-direction (32 psi) 6.99 3 104 [N/m]
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transverse direction are used, improved accuracy over the high-frequency range
is observed when compared with the modal approaches. Still, the most accurate
results are obtained when nonuniformities are introduced. Very good agreement
with the experimental data is shown between 800 Hz and 1300 Hz (i.e., most of
the frequency range of interest). This shows that including nonuniformities
across the tire’s transversal direction is important to model the tire’s response
with improved accuracy.

On the other hand, Fig. 5 also shows that the response predicted with the
nonuniform infinite plate is better than that obtained with the cylindrical shell
model, especially between 500 Hz and 800 Hz. Still, the cylindrical shell model
is more accurate between 300 Hz and 500 Hz, even though this is out of the
frequency range of interest. This is probably because this model includes
curvature effects, which are important below the tire’s ring frequency (usually
located around 500 Hz).7 However, it should be noted that the accuracy of the
cylindrical shell depends on how well the input structural parameters are
selected. This is a challenging task, and future work should be directed to
address this. A proposed alternative is to combine the cylindrical shell model for
frequencies between 300 and 500 Hz and the nonuniform flat plate model for
frequencies greater than 500 Hz. This should result in predictions with
improved accuracy for a wider frequency range.

Tread Pattern Excitation Forces

To properly model tread pattern excitation forces between the tire and the
pavement during rolling conditions, a new frequency domain formulation is
proposed in this section. These are then coupled to the desired structural tire
model presented above. The first step is to calculate the contact forces in the
time domain for a single block, as it passes through the contact patch. To do
this, the model for rectangular nonskewed blocks proposed by Liu [20,21] was
implemented. Thus, tread pattern blocks need to be approximated with a
rectangular shape, as shown in the unwrapped tread pattern view in Fig. 6b.

The tread pattern block enters the contact patch leading edge (LE) and exits
later at the trailing edge (TE). Figure 6b shows the approximated contact patch
region. Each block develops a force normal to the tire surface as it enters the
LE, then increases and stabilizes for a brief period of time. Finally, it decreases
to zero when leaving the contact patch at the TE. During the block-pavement
contact, other forces will also be present (i.e., tangential forces due to
longitudinal friction). An example of such forces for a single rectangular block
is shown in Fig. 7.

The modeling approach initially developed by Liu [20,21] and implement-
ed here discretizes each block into a set of normal and tangential spring
elements. The forces are computed as follows:
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FIG. 7 — Normal (black) and tangential (red) forces applied on a single block as it passes through
the contact patch.

FIG. 6 — Approximated block distribution in tread pattern using a rectangular block assumption.
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fB

�
xbðtÞ; yb; t

�
¼

Zt

�‘

Eðt � sÞdbxdby
nht

dd
ds

ds

fT

�
xbðtÞ; yb; t

�
¼

Zt

�‘

Eðt � sÞdbxdby
2ð1 þ mÞhtn

dv
ds

ds ð16Þ

where EðtÞ ¼ E0 þ
�

1 �
PN

i¼1 pi

�
1 � e�ðt=siÞ

��
; N ¼ 1; 2; 3:::: is the block’s

time-dependent elastic modulus defined in terms of a Prony series coefficients
pi and si, whereas d and v are the spring normal and tangential time-dependent
deflections, respectively, as it enters and exits the contact patch.

To account for the slip of the block, the following friction law is solved to
find the tangential block deflections:

dv
dt

¼ nV0 jfT
�
xbðtÞ; yb; t

�
j � lsfB

�
xbðtÞ; yb; t

�
r
ðno slip conditionÞ

�m
d2v
dt2

þ fT

�
xbðtÞ; yb; t

�
¼ sign nV0 �

dv
dt

� �

lkfB
�
xbðtÞ; yb; t

�
jfT

�
xbðtÞ; yb; t

�
j.lsfB

�
xbðtÞ; yb; t

�
ðslip conditionÞ ð17Þ

In this case, �m¼M/n, where M is the total mass of the block. On the other
hand, the kinetic friction coefficient between the road and the rubber block is

defined as lkðp; nV0Þ ¼ ajpjg�1þb

aþbjnV0j�
1
jþcjnV0j�

2
j
. Further details about this model can

be found in [20,21]. All of the modeling parameters for the simulated forces
shown in Fig. 7 are summarized in Table 2. In this case, the Prony series
constants, kinetic friction law parameters, and others were obtained from the
literature [22,23]. Further details about this model can be found in [20,21].

Even though tangential and normal forces are excited for every single block
as it enters and exits the contact patch, only the normal component is coupled
with the structural model. The reason is that during steady-state rolling
conditions, tangential forces will produce small out-of-plane motion. Thus, the
tangential forces are small if compared with the normal ones, as shown in the
work by Liu et al. [21]. Furthermore, it is thought that, since the structural
vibrations of the tire are dominated by its bending components, the effects of
tangential input forces may be neglected.

The normal force is moving relative to a stationary structural coordinate
system and is changing its amplitude as it travels through the contact patch (see
Fig. 6b). An observer moving with the block will see a time-dependent moving
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force. This force is defined as fB(xb(t), yb, t), in terms of the block time-

dependent circumferential location xb(t), transversal location yb, and time t. This
force is then approximated in discrete time and space as an impulse train with

time-changing amplitudes, as shown in Fig. 8.

The modeled normal force is discretized in a set of time intervals Dt
between the time at which the block enters the contact patch ti and the time at
which it exits te. The force is evaluated at the discrete times tk, defined at the

center of each interval as tk ¼ ðxLE�xbÞ
VT

þ ðk � 1=2ÞDt for k¼ 1, 2, � � �, Nk. In this

case, xLE is the location along the x axis of the LE of the contact patch, and VT is
the velocity of the traveling block. Thus, the impulse train is defined by

fb

�
xbðtÞ; yb; t

�
»
XNk

k¼1

fBðxk; yb; tkÞDtdðt � tkÞdðx� xkÞdðy� ybÞ ð18Þ

where xk ¼ xLE þ VT(tk � ti) ¼ xLE þ VT(k – 1/2)Dt. The impulses fB(xk, yb, tk)

Dtd(t – tk) are defined at fixed locations (xk, yb) within the contact patch. These

locations are referred to as the contact patch excitation points defined as the
block enters, passes through, and finally leaves the contact patch.

TABLE 2 — Input parameters for the block contact model.a

Parameter Sign Value [units]

Maximum block compression D 0.2[mm]

Belt velocity Vr 60[mph]

Creep ratio n 0.3%

Block density qb 1000 [kg/m3]

Block material Poisson’s ratio V 0.47

Block surface area Ab ¼ dbx 3 dby 5 [cm2]

Block height ht 0.8 [cm]

Kinetic friction law parameters (rubber

on concrete surface)

a 0.1399

b 0.4091

g 0.8680
1
j

� �
0.1672

a 0.9203

b �1.1188

c 0.9677

Elastic modulus Prony series coefficients E0 3.3 3 106 [Pa]

p1 0.487

p2 0.137

s1 9.96 3 10�5 [s]

s2 1.20 3 10�3[s]

Tire radius at contact patch edges Rd 0.5 [m]

Contact patch length ‘ 0.17 [m]

Block contact pressure P 0.4 [N/mm2]

Number of springs per block n 100

aProny series coefficients obtained from the work by Lopez Arteaga [22]. Friction law parameters

obtained from the work by Hofstetter et al. [23].

//titan/Production/t/tist/live_jobs/tist-48/tist-48-04/tist-48-04-01/layouts/tist-48-04-01.3d � 6 October 2020 � 7:51 am � Allen Press, Inc. �

Customer: TST-19-222R Page 16

16 TIRE SCIENCE AND TECHNOLOGY



Using the discrete Fourier transform (DFT) pair for the special case of an

impulsive time function, the block force in the time domain then becomes

fb

�
xbðtÞ; yb; t

�
»
XNk

k¼1

Xn¼N

n¼�N

xT

2p
fBðxk; yb; tkÞDte�inxT tk einxT t

( )
dðx� xkÞdðy� ybÞ

ð19Þ

where the rotational frequency of the tire is defined as xT¼ 2pVT

lT
(‘T is the outer

circumference of the tire). The complex amplitude (DFT coefficient) for each

impulse is

Fkn
b

�
xbðtÞ; yb; nxT

�
¼ xT

2p
fBðxk; yb; tkÞDte�inxT tkn ¼ –1;–2; ; � � � ;–N ð20Þ

The next step is to extend the formulation shown above from a single block

to the full tread pattern (i.e., multiple blocks). The most important consideration

in modeling a tread pattern is to properly account for the relative time delay of

the block forces. Certain guidelines are defined for a tread pattern. It consists of

Nr circumferential arrays of blocks (ribs) at different y transversal positions, for

example, yr for r¼1, 2, . . ., Nr ribs. Each array has Nbr number of blocks, which

can be evenly or irregularly distributed. The x-position of the blocks in the array

will be defined by setting the coordinate of one block xr1 and then defining the

relative position of the other blocks. Thus, the coordinate of the mth block in the

rth rib becomes xrm ¼ xr1 þ Dxrm. To account for the time delay between arrays,

FIG. 8 — (a) The modeled behavior of time moving force applied to a single block. (b)
Approximation of force behavior using an impulse train and associated contact patch excitation
points.
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the coordinate of the first block in each array is defined relative to the first block

of the first array.

Using the guidelines above, the DFT pair for the time domain forces acting

on the kth contact patch excitation point of the rth rib due to the mth block is

approximated as

f rm

�
xrmðtÞ; yr; t

�
»
XNk

k¼1

Xn¼N

n¼�N

xT

2p
f r
�
xk; yr; ðtrmÞk

�
Dte�inxT ðtrmÞk einxT t

( )

3 dðx� xkÞdðy� yrÞ ð21Þ

where fr(xk, yr, ðtrmÞk) is the modeled block force at discrete k times ðtrmÞk for the

rth rib. In this case, the complex amplitudes (DFT coefficients) are defined as

follows:

Fkn
rm

�
xrmðtÞ; yr; nxT

�
¼ xT

2p
f r
�
xk; yr; ðtrmÞk

�
Dte�inxT ðtrmÞk n ¼ –1;–2; ; � � � ;–N

ð22Þ

Finally, the tread pattern forcing function in the frequency domain in Eq.

(22) is coupled with the structural response of the tire. The complex amplitude

response at any arbitrary location (xa, ya) on the tire surface is computed using

the product of the mobility function of the tire structure (either Eq. (12) or (13)

for the plate and shell models) and the forcing function in Eq. (22). This

coupling process is shown in Fig. 9 and mathematically defined as follows:

vTotalðxa; ya; nxTÞ »
XNr

r¼1

XNbr

m¼1

XNk

k¼1

xT

2p
f r
�
xk; yr; ðtrmÞk

�
Dte�inxT ðtrmÞk

3Ms

�
ðxa; yaÞj

�
ðxk; yrÞ

�
; nxT

�
ð23Þ

where vTotal(xa, ya, nxT) corresponds to the normal surface velocity of the tire

surface at a location (xa, ya) and a frequency nxT.

FIG. 9 — Method used to couple the input excitation forces and the response of the tire (i.e., normal
surface velocities at any arbitrary location on the tire surface).
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Finally, it should be noted that the total force time history over the contact
patch is then the contribution of all the ribs. Thus, the total load applied in the
contact patch is the following:

fcpðtÞ ¼
XNk

k¼1

XNr

r¼1

XNbr

m¼1

f r
�
xk; yr; ðtrmÞk

�
Dtd

�
t � ðtrmÞk

�
ð24Þ

This must be constant at all times during steady-state rolling conditions and
equal to the load applied to the tire by the vehicle.

Tread Pattern Noise Demonstration

A BEM code, initially developed by Wu [24], was implemented to compute
noise. Noise was predicted at two locations, as marked in Fig. 10 in red. These
correspond to two trailing and LE locations relative, the same as those used for
OBSI and specified in the standard AASHTO [25]. Thus, predicted noise can be
compared with measurements made with OBSI.

Structural simulations were performed using the nonuniform infinite plate
structural model (i.e., the most accurate approach within the mid-frequency
range). The structural parameters used are those provided in Table 1. A tire size
of 215/60R16 and an inflation pressure of 32 psi was used with a total contact
patch load of 2940 N (obtained from the test vehicle weight). The contact forces
were computed using the parameters summarized in Table 2 (except for the
maximum block compression and velocity, which were defined according to the
test vehicle load and the set test velocities).

FIG. 10 — Field points at the leading and trailing edge locations in front of the tire sidewall (same
locations as OBSI).
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A real tread pattern was approximated by using rectangular blocks of

similar size to the real tread pattern and randomizing their distribution within

each rib. Both the real and the approximated tread patterns are shown in Fig. 11.

Figure 12 shows the predicted and the measured A-weighted noise levels at

the leading and TE locations for a velocity of 70 mph. In this case, only the

tread pattern component of the measured noise was used for comparisons

(further information about the separation of tread-pattern and non–tread-pattern

noise components from OBSI measurements can be found in [2,3]). The results

show that in both the leading and TE cases, the predicted noise levels are higher

than those measured for most frequencies. This could be because of the

approximations made for the tread pattern and rectangular contact patch. Still,

FIG. 11 — (a) Real and (b) approximated tread patterns for a tire of size 215/60R16.

FIG. 12 — Predicted and measured tread pattern noise for (a) leading edge and (b) trailing edge
noise for a tire of size 215/60R16 (frequency resolution 13.92 Hz).
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the results in Fig. 12a and Fig. 12b show that the measured and predicted noise

levels agree very well between 900 and 1100 Hz. Finally, both measurements

and predictions show similar spectral shapes. Their dominant frequency content

is located between 800 and 1100 Hz. In addition, their initial slope toward the

maximum noise levels is less significant than the negative slope toward high

frequencies.

In an effort to analyze the behavior of tread pattern noise for different

vehicle speeds, additional simulations were performed. The same inputs

implemented to obtain the results in Fig. 12 were used. Tread pattern noise was

predicted at the leading-edge microphone location for 50 mph, 60 mph, and 70

mph, as shown in Fig. 13a. It can be observed that noise amplitudes depend on

the rotating speed of the tire. In general, higher speeds produce higher noise

levels. The same behavior was observed on the measured tread pattern noise, as

specified in [2]. In this case, measurements showed that the amplitude of tread

pattern noise scales with speed with a scaling factor of 4. Therefore, if the noise

levels at a reference velocity vref in mph are known, then the levels at any other

speed m in mph can be calculated as follows:

LpðvÞ ¼ LpðvrefÞ þ n3 10log10

v

vref

� �
ð25Þ

where n corresponds to the scaling factor. The performed simulation

successfully captures the experimental scaling behavior. Figure 13b shows the

frequency spectra at different speeds, transformed to order spectra. In addition,

the simulated spectra for the three speeds have been scaled to 60 mph. It can be

observed that all the amplitudes collapse, after applying Eq. (25) with the

experimentally obtained scaling coefficient n ¼ 4.

FIG. 13 — (a) Tread pattern noise simulation spectra at three different speeds (50, 60, 70 mph). (b)
Order spectra for the three speeds scaled to 60 mph.
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Conclusions

This study provides new modeling approaches for the prediction of
vibration-induced tire noise. First, a wave propagation approach along the
circumferential direction of the tire was implemented, in contrasts to assuming a
full modal behavior. This formulation is new and has not been proposed in the
available literature. Second, a tread pattern excitation model was presented. Its
efficient frequency domain formulation is unlike classical approaches defined in
the discrete time domain. Finally, results were compared with tire vibratory and
noise measurements. This is the first time that the tread-pattern noise
component from OBSI measurements has been compared with a full-wave
propagation tire noise model.

The wave propagation method developed to determine the response of the
tire within the frequency range of interest is the first of its kind. Circumferential
traveling waves for all possible wave numbers between�‘ and ‘ are accounted
for in the model. Other modeling approaches simply select wave numbers for
which an integer set of wavelengths can fit over the tire’s circumference. This
results in modes along the circumferential direction of the tire, thus ignoring the
observed wave propagation behavior in typical responses of the tire. The tire
responses modeled using this approach show that by accounting for structural
nonuniformities along the transversal direction of the tire, a more accurate
response can be obtained, especially within 800 to 1300 Hz. However, it was
also shown that the additional effort to include a curvature with a cylindrical
shell model did not render better results, except for a narrow frequency range
between 300 and 500 Hz. Therefore, it can be concluded that the
implementation of such a model it not justified because it is computationally
demanding.

A new contact model that accounts for the proper tread pattern input to the
tire’s structure during rolling conditions was also presented. This is the first of
its kind, as it is defined in the frequency domain. Common methods presented in
the available literature are formulated in the time domain. These are less
efficient when periodic inputs are used, such as a full tread pattern. The reason
for this is that the response needs to be solved for multiple revolutions before
the steady-state condition is reached. In addition, formulating the excitation of
the tire in the frequency domain allows for the analysis of the excitation
provided by different tread patterns. A tread pattern example was implemented.
This was coupled with the structural model to determine the tire’s response.
Tread pattern noise was then predicted by implementing a boundary element
algorithm. A comparison of predicted mid-frequency tread pattern noise and
OBSI measurements was performed. The spectra showed very good agreement,
especially between 900 and 1100 Hz at 70 mph. Furthermore, simulated noise
scales with a velocity scaling factor of 4. This is the same behavior as seen in
experimental tread pattern noise measurements.

//titan/Production/t/tist/live_jobs/tist-48/tist-48-04/tist-48-04-01/layouts/tist-48-04-01.3d � 6 October 2020 � 7:51 am � Allen Press, Inc. �

Customer: TST-19-222R Page 22

22 TIRE SCIENCE AND TECHNOLOGY



Future research efforts should address the following. Measurements of the
tire’s structural response for rotating tires could allow for further exploration of
the effects of rotation in the tire’s response. In addition, transversal geometric
effects in the tire’s response should also be explored, for example, by
implementing finite element models or using experimental data to find the
transversal vibratory modes of the tire structure. Finally, additional methods to
experimentally extract structural parameters should also be investigated.
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