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Network modeling and Internet of things for smart and connected health
systems—a case study for smart heart health monitoring and management

Hui Yanga, Chen Kana, Alexander Kralla, and Daniel Finkeb

aHarold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA,
USA; bApplied Research Lab, The Pennsylvania State University, University Park, PA, USA

ABSTRACT
Heart disease is a leading cause of death in the US. Recent advances in the Internet of Things
(IoT) provide a great opportunity to realize smart and connected health systems through IoT mon-
itoring and sensor-based data analytics of cardiac disorders. However, big data arising from the
large-scale IoT system pose a significant challenge for efficient and effective sensory information
processing and decision making. Very little has been done to glean pertinent information about
the disease-altered cardiac activity in the context of large-scale IoT network. In this study, we pro-
pose a parallel computing framework for multi-level network modeling and monitoring of cardiac
dynamics to realize the potential of IoT-enabled smart health management. Specifically, dissimilar-
ities among cardiac signals are firstly characterized among heartbeats for an individual patient, as
well as among representative heartbeats for different patients. Then, a stochastic learning
approach is developed to optimize the embedding of cardiac signals into a beat-to-beat network
model, as well as a patient-to-patient network model. Further, we develop a parallel computing
algorithm to improve the computational efficiency. Finally, a statistical process monitoring scheme
is designed to harness network features for real-time monitoring and anomaly detection of cardiac
activities. Experimental results show the proposed methodology has strong potential to realize a
smart and interconnected system for cardiac health management in the context of large-scale
IoT network.
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1. Introduction

Heart disease is the No. 1 cause of death in the US (Benjamin
et al., 2019). It is estimated that approximately 610,000 deaths
each year are attributed to heart disease. Considering the costs
of medications, services, and lost productivity, the economic
burden amounts to over $200 billion (Mozaffarian et al.,
2017) per year. Smart and connected health hinges on real-
time monitoring of physiological signals and timely identifica-
tion of the onset of disease patterns. For example, the effects
of ischemia on heart muscle cells are reversible if the incident
is detected and treated early (De Luca et al., 2004). When the
episode of ischemia is prolonged, cardiac cells will be dam-
aged and become infarcted, thereby triggering heart attacks. It
is estimated that a 30-minute delay will increase the risk of
one-year mortality by 7.5% (De Luca et al., 2004). There is an
urgent need to develop new sensor-based analytical methods
and tools for real-time cardiac monitoring and disease pattern
recognition, thereby promoting smart health management.

Recent advances in the Internet of Things (IoT) herald a
new era of cardiac health management. The IoT connects a
multitude of “things” in an Internet-like infrastructure,
including wearable sensors, computing units, medical devi-
ces, people (e.g., patients, nurses, and cardiologists), and

digital infrastructures such as databases and fog and cloud
computing paradigms (Kan et al., 2015). Examples include
Bluesky from IBM/Pfizer, ApexPro from GE healthcare, and
eIAC from Philips, to name a few. There are also more than
325,000 mobile health applications available in Android and
iOS platforms, exceeding 3.7 billion downloads in 2017 (Rao
et al., 2018).

As opposed to traditional hospital-centered care, the IoT
infrastructure and sensing systems provide a great opportun-
ity to realize patient-centered and interconnected health
management. As shown in Figure 1, both inpatients and
outpatients are continuously monitored and data are trans-
mitted to the cloud server via wireless networks. Analytical
algorithms are running on the server to analyze the collected
data and identify abnormal cardiac patterns. Cardiologists
are able to access patients’ data, review analytical results,
and communicate with patients and other cardiologists any-
time and anywhere. If a patient’s condition is identified as
high risk, medical intervention can be delivered in a
timely manner.

Advanced sensing in the large-scale IoT network leads to
the proliferation of large amounts of data, which provides a
wealth of opportunity to improve the “smartness” of cardiac
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health management on the level of an individual patient
and/or population. First, IoT-enabled sensors can collect
long-term monitoring data of ECG signals from an individ-
ual patient, which contain rich information about the
patient’s cardiac condition over time. As opposed to epi-
sodic care, characterizing the longitudinal cardiac variations
of a patient enables the delivery of customized treatment
plans and personalized medicine (Verma & Sood, 2018).
Second, it is the nature of IoT to embody tens of thousands
of patients, which empowers the cross-sectional study on the
patient population, rather than focusing on the individual or
a small group of patients.

As the IoT system can easily expand by adding new
patients or incorporating small-scale sensor networks, the
physical network can be quickly scaled up with a variety of
one-to-one and one-to-many communications. When a large
number of patients are included, the physical network will
generate hundreds of thousands of ECG signals as well as
other heterogeneous types of health information. This vol-
ume of data poses a significant challenge on network model-
ing and analytics in the cyberspace to support decisions
and/or insights that are fed back to the physical world due
to the large data volume and high-level network complexity
and population heterogeneity.

Also, big data generated in the IoT pose significant chal-
lenges for information processing and decision making. As
the IoT is relatively new, existing methodologies fall short of
addressing the Internet-like structures to extract pertinent
information from big data about the disease dynamics in the
beat-to-beat (B2B) network for an individual patient, as well
as in the patient-to-patient (P2P) network, also called
“digital twin.” Realizing the full potential of IoT-enabled
smart health management calls for the development of new
analytical methods for sensor information extraction, large-

scale network modeling, and data-driven decision making in
the context of large-scale IoT networks.

In this study, we propose a parallel computing framework
for multi-level network modeling and monitoring of the
B2B and P2P variations of cardiac activities, which leverages
big data in the IoT to realize the full potential of IoT-
enabled smart health management. Specifically, we first
characterize and measure the dissimilarities of cardiac sig-
nals among heartbeats for an individual patient, as well as
among representative heartbeats for different patients. This,
in turn, helps to characterize (1) temporal B2B variations of
an individual patient, or (2) cross-sectional variations among
a large population of patients. Then, cardiac signals are opti-
mally embedded as nodes in a high-dimensional network,
where node-to-node distances preserve the dissimilarity
measures between cardiac signals. The distance between net-
work nodes preserves the dissimilarity of cardiac signals.
The network structure and topology contain pertinent infor-
mation about patients’ cardiac conditions and thereby pro-
vide a new means of cardiac monitoring. Finally, a statistical
process monitoring approach is developed based on the
attributes of network nodes to monitor disease-altered car-
diac dynamics. However, the computation time will be pro-
hibitive for network modeling when a large number of
patients are involved. Hence, a parallel computing scheme is
further developed to scale up the algorithm and efficiently
harness the computing power of multiple processors simul-
taneously. In the present investigation, our specific contribu-
tions are summarized as follows:

(1) We develop a large-scale network model to handle the
big data generated in IoT-enabled cardiac monitoring.
As opposed to traditional small-scale episodic analysis,
this article focuses on the characterization and

Figure 1. An illustration of the IoT-enabled cardiac health management. Data from patients enter the cloud and are accessible by health institutions. These institu-
tions can then make decisions, which are transmitted back to the patient.
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modeling of the variations of cardiac signals among a
large population of patients, as well as B2B variations
over time for an individual patient.

(2) Because large-scale network modeling is computation-
ally expensive due to the population size and long
sampling periods, we further develop parallel-comput-
ing algorithms of stochastic learning for efficient sen-
sor-based modeling and optimization of large-scale
B2B and P2P networks.

(3) In addition, we leverage the optimized network struc-
ture and node attributes as a new way to develop a
statistical process monitoring scheme for real-time
monitoring and change detection of diseased-altered
cardiac dynamics in IoT-enabled B2B and
P2P networks.

The remainder of this article is organized as follows:
Section 2 reviews related works in the literature. Section 3
provides methodological details about the proposed large-
scale network model. Section 4 includes materials and
experimental design used in this investigation. Section 5
presents the experimental results from both simulation and
real-world studies. Section 6 provides discussion and conclu-
sions drawn from this study.

2. Research background

2.1. IoT health monitoring and management

First coined by Ashton in 1999, the IoT has become a game-
changer technology with widespread applications in industries
(Yang et al., 2019). In particular, the IoT is driving the para-
digm shift toward the next generation of smart and intercon-
nected healthcare systems by deploying a large number of
networked sensors and computing devices for data collection,
information processing, communication, and decision mak-
ing. This provides a great opportunity to improve the quality
of healthcare delivery, increase the availability and accessibil-
ity to health care, optimize the management of medical
resources, and reduce the costs of healthcare systems. Note
that patients are of greater importance vis-�a-vis other net-
worked components in the IoT system. Therefore, smart and
interconnected IoT health management is the first priority.
IoT-enabled solutions are increasingly developed for patient-
centered health monitoring.

For example, Al-Taee et al. (Al-Taee et al., 2017) pro-
posed a mobile health platform that used humanoid robots
for the treatment of diabetes in children. The robots were
linked to a web-centric disease management hub via the IoT
to analyze patients’ data and provide reminders, warning
messages, and health advice to patients and caregivers. Yang
et al. (Yang et al., 2014) developed IoT devices (e.g., wear-
able sensors and medicine packaging) to improve home-
based health monitoring. Alerts would be triggered if
abnormities of vital signs as well as medication noncompli-
ance were identified. In addition, Verma and Sood (Verma
& Sood, 2018) designed a fog computing layer to improve
the efficiency of IoT-based health monitoring. Patients’

condition could be quickly determined as safe or unsafe in
the fog layer; data were only sent to the cloud for further
analysis if an unsafe state was identified.

The IoT also fuels increasing interests to integrate low-
power wearable devices and edge/cloud computing to
improve the efficiency and effectiveness of cardiac monitor-
ing. For example, a low-power and secure IoT platform was
developed to collect electrocardiogram (ECG) signals for the
prediction of ventricular arrhythmia (Yasin et al., 2017).
Algorithmic enhancement was incorporated in the hardware
design to reduce memory and clock speed for energy effi-
ciency. Also, a logic locking technique was implemented to
protect the security-critical components in the hardware. An
onboard algorithm was designed to assess the quality of col-
lected ECG signals via IoT devices (Satija et al., 2017). Only
those signals with acceptable quality were transmitted to the
cloud to reduce the consumption of battery power and
improve the efficiency of resource utilization. Majumder
et al. (Majumder et al., 2019) developed a wearable IoT
device to collect ECG signals from the patient. Features such
as heart rate and RR intervals were extracted from the ECG
to detect abnormal cardiac patterns. Islam et al. offer a
review of IoT-enabled applications in healthcare domains
(Islam et al., 2015).

Won et al. proposed a method to enhance the predictive
performance of network-based machine learning models
(Won et al., 2019). A convex semi-infinite programming
(SIP) approach is used to support vector machines to deal
with the complex requirement of l0 norm regularization.
The SIP is solved by iteratively finding solutions to a
restricted master problem. At each subsequent step, new
constraints are added to the master problem, which guaran-
tees convergence to optimality. Tran et al. utilized the spec-
tral graph theory to detect transient changes in complex
neurological systems (Tran et al., 2019). They formulated a
new ck statistic based on the spectral content of the inferred
graph. When applied to seizure detection methods based on
EEG data, the method was able to achieve a true positive
rate of 40%. Tucker et al. proposed to use low-cost, nonin-
vasive, off-the-shelf hardware sensors (e.g., Microsoft
Kinect) to capture human gait data, and then develop data
mining methods to enable remote patient-physician assess-
ment and predict the Parkinson’s disease conditions (Tucker
et al., 2015). Zou et al. developed an empirical Bayes trans-
fer learning (ebTL) model that incorporated transfer learn-
ing and sparse learning to estimate the parameter posterior
distribution and quantify the prediction uncertainty.
Further, the ebTL model is evaluated by using features
extracted from speech signals to predict the severity level of
Parkinson’s disease (Zou & Huang, 2018). Cheng et al. used
the wearable accelerometer sensors to monitor the daily
activities and movements of elderly patients in assisted living
facilities, and then developed multi-scale network models to
characterize the dementia conditions (Cheng & Yang, 2019).
In addition, Hill et al. studied real-time, remote physio-
logical monitoring of astronauts during field science tasks in
the NASA’s BASALT Mars Analog field (Hill et al., 2018).
This research work is critical to promoting health and safety
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of workers in an extreme and harsh environment. However,
the sampling frequency is about 1Hz for physiological mon-
itoring, which is lower than cardiac monitoring that typically
requires >250Hz for better delineation of minute details in
the ECG waveforms.

Although these prior works demonstrated the promise to
integrate wearable sensors and data mining with health
monitoring, most of them focus on the physiological moni-
toring of vital signs in the low frequency (e.g., 1 Hz) or the
prediction of neurological conditions with sensor data such
as EEG signals, Kinect movement data, speech signals, and
accelerometer data. Most previous works are less concerned
about efficient and effective data analytics for real-time car-
diac monitoring in the large-scale IoT context. Note that
our prior studies also proposed a new framework of Internet
of Hearts (IoH) and discussed the potential to develop the
IoT technology for smart cardiac monitoring and manage-
ment (Kan et al., 2016; Kan & Yang, 2017b). First, we devel-
oped a new Mobile and E-Network Smart Health (MESH)
technology specific to the heart to advance the cardiac
mHealth with IoT sensing, stochastic modeling, and network
analytics (Kan & Yang, 2017b). The MESH development
includes wearable ECG sensors, cloud database design, and
four analytical models as follows: (1) real-time visualization
of ECG time series and feature analysis (Bukkapatnam et al.,
2008; Chen & Yang, 2012b); (2) real-time visualization of
3D VCG trajectory and recurrence analysis (Chen & Yang,
2012a; Yang, 2011; Yang et al., 2012); (3) optimal model-
based representation of ECG signals (Liu et al., 2014; Liu &
Yang, 2013); (4) spatiotemporal signal processing for disease
pattern recognition (Yang et al., 2012; 2013). A mobile
application named MESH CARE is also developed in the
world’s most widely used IOS mobile operating system (i.e.,
compatible with iPhone, iPad, and iTouch devices). Further,
we proposed to develop the MESH into a new generation of
IoH system but found that large volumes of data are gener-
ated from continuous monitoring of patients (Kan et al.,
2016). There is an urgent need to improve the computa-
tional efficiency of the IoH for data processing and analytics.
Hence, we proposed a map-reduce scheme to implement the

parallel computing for ECG analytics, and benchmarked the
computational speeds with simulation data (Kan et al.,
2016). These preliminary studies laid strong foundations for
the present investigation, but did not specifically consider
the development of statistical monitoring methods for the
IoH systems. In addition, very little has been done to lever-
age sensing data for network modeling and analysis of dis-
ease-altered P2P and B2B cardiac dynamics. Realizing the
full potential of IoT-enabled smart health management calls
for the development of new methodologies for statistical
monitoring of P2P and B2B network dynamics in the large-
scale IoT context.

2.2. Disease pattern recognition in cardiac activities

The key in cardiac monitoring is to detect the changes in
cardiac activities and identify disease patterns in the early
stage. In the literature, a variety of algorithms were designed
to extract useful features and patterns from ECG signals for
the detection of cardiac diseases. For example, Elmberg
et al. (Elmberg et al., 2016) measured QRS prolongation in
12-lead ECGs to quantify the severity of ischemia. Meo
et al. (Meo et al., 2013) characterized the variability of f-
wave amplitude from 12-lead ECGs to predict the catheter
ablation outcome of atrial fibrillation. Perlman et al.
(Perlman et al., 2016) extracted features from QRS complex
in 12-lead ECGs and developed a classification tree scheme
for the identification of supraventricular tachycardia. Our
previous works have also investigated nonlinear dynamics
algorithms to recognize disease-altered ECG patterns for the
detection and identification of myocardial infarction, atrial
fibrillation, bundle branch block, and other cardiac diseases
(Chen & Yang, 2013; Yang, 2011; Yang et al., 2012). For
example, customized wavelet functions were designed to
extract fiducial patterns of ECG signals for the detection of
atrial fibrillations (Yang et al., 2007). Also, heterogeneous
recurrence analysis was proposed to characterize heart rate
variability from ECG signals for the identification of
dynamic transitions and obstructive sleep apnea (Cheng
et al., 2016; Chen & Yang, 2014, 2015). A self-organizing
network was developed to characterize pattern dissimilarities
among QRS complexes in the ECGs and then recognize
abnormal patterns induced by the left bundle branch block
(LBBB) (Yang & Leonelli, 2016).

However, most of the existing algorithms are limited in
their capacity to scale up and handle large-scale IoH sensing
data. When large amounts of data are collected from the
IoH system, algorithmic complexity increases due to the
inclusion of a large number of individuals, and algorithmic
performance is likely to be hampered by the increasing vol-
ume of data. This, in turn, will limit the ability of traditional
algorithms for cross-sectional study of a large patient popu-
lation or detect temporal B2B variations in the long-term
cardiac monitoring. Realizing the full potential of IoT sens-
ing data calls for the development of new analytical method-
ologies to efficiently and effectively handle large amounts of
patient data and extract pertinent information from the data
about patients’ cardiac abnormalities.

Figure 2. The physical IoT network feeds data to build the network models,
and network analytics feed decisions and/or insights back to the physical world.
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3. Network modeling and analytics

3.1. Network modeling

In this article, we propose to leverage the Internet-like con-
nection of patients in the physical network to build network
models in the cyberspace for data-driven modeling and
information processing. As shown in Figure 2, patients in
the physical network are represented by nodes in the virtual
network and node attributes are patients’ ECG signals. As
such, variations of patients’ conditions can be reflected by
the structure and topology of the network model in cyber-
space. Notably, the virtual network overcomes practical limi-
tations in the physical network and facilitates the handling
of IoT sensing data for information processing and decision
making. Analytics in the virtual network (or “digital twin”)
feed insights or decisions back to the physical world for the
timely delivery of medical interventions.

Moreover, there exist two types of stochastic variations in
cardiac activities: (1) B2B variations among heartbeats of an
individual patient: ECG signals for the same human subject
show temporal dynamics, which are reflected as morpho-
logical variability of ECG heartbeats over time; (2) P2P var-
iations among different patients: ECG signals vary from one
human subject to another in the population. There are ran-
dom variations even if the subject condition remains
unchanged or does not experience cardiac disorders. Cardiac
disorders bring more significant changes in the ECG signals.
Thus, characterizing and modeling B2B and P2P variations
of ECG signals provide a great opportunity for the early
detection of cardiac events as well as the differentiation of
cardiac disorders.

Therefore, two types of network models are constructed
in the IoH systems—a P2P network and a B2B network (see
Figure 3). In the P2P network, an ensemble of ECG cycles
from a patient is embedded as a network node, which repre-
sents the aggregated information of this patient. Nodes in
the B2B network represent successive ECG cycles for a spe-
cific patient. However, it is not uncommon for the IoT sys-
tem to include a large population of patients, as well as
collect long-term B2B data from an individual patient. The
number of patients and data volume pose significant chal-
lenges for the construction and optimization of the network
model. Realizing the potential of IoT-enabled cardiac health
management depends, to a great extent, on network model-
ing and efficient information-processing capabilities.
Existing ECG pattern recognition approaches are limited in
their ability to scale up and handle large amounts of data.
To address this challenge, parallel computing algorithms and

new network modeling schemes in the IoT context
are presented.

As shown in Figure 4, pattern matching is first performed
among the ECG signals (detailed in Section 3.2). For a B2B
network, the ECGs are successive cycles collected from an
individual patient. Further, an ensemble cycle can be gener-
ated for one patient that represents the typical cardiac pat-
tern for this specific patient. Many ensemble cycles will be
collected from different patients and be used to construct a
P2P network. After matching the ECG wave patterns, a dis-
similarity matrix is obtained and used to build the network
model. Each patient is represented as a network node and
the distance between nodes will preserve the dissimilarity of
corresponding ECGs (Section 3.3). The network structure
reveals important information pertinent to patients’ cardiac
dynamics. To this end, network attributes can be used for
the monitoring of patients’ conditions and the detection of
abnormal cardiac patterns (Section 3.4).

3.2. Pattern matching of sensor signals

As previously mentioned, characterizing and quantifying the
morphological variability among ECG signals provide a great
opportunity for the identification of disease-altered cardiac
electrical activities. It is worth noting that there are various
ways to measure the pattern dissimilarity, such as Euclidean
distance, correlation, mutual information, and/or wavelet
transformation (Liu & Yang, 2017; Chen and Yang, 2016;
Zhou et al., 2006). Furthermore, these measures can be com-
puted in the time, frequency, state space, and wavelet
domains. Note that the correlation coefficient quantifies lin-
ear interdependence between two signals and is limited to
effectively capture nonlinear relationships. Mutual informa-
tion is utilized to determine the similarity of the joint distri-
bution of two signals with respect to the product of
marginal distributions. Given two ECG signals ~v1 and ~v2 ,
the mutual information is computed as:

MI ~v1 , ~v2ð Þ ¼
X
~v1

X
~v2

Pr ~v1 , ~v2ð Þlog Pr ~v1 , ~v2ð Þ
Pr ~v1ð ÞPr ~v2ð Þ

� �
(1)

Table 1 summarizes the mathematical notations used in this
section. In addition, Euclidean distances can be measured
from two signals to quantify their morphological dissimilar-
ity. However, signals can be misaligned. Measuring distances
without the alignment of signals will produce misleading
results. In our previous study, a spatiotemporal warping

Figure 3. The proposed network modeling: a B2B network (left) and a P2P
network (right). Figure 4. The flowchart for IoH network modeling and analytics. For a P2P

network, ECG 1, ECG 2, … , ECG N are ensemble beats from different patients.
For a B2B network, these are successive beats of an individual patient.
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approach was developed to optimally align the signals (Yang

et al., 2013), minW
P

ðti, tjÞ2W ~v1 tið Þ � ~v2 tjð Þ
�� ���� ��h i

, where W

is the warping path. To find W, a distance matrix D is com-
puted with each element D i, jð Þ ¼ ~v1 ið Þ � ~v2 jð Þ

�� ���� ��, i ¼
1, 2, :::, V1 and j ¼ 1, 2, :::, V2: The warping path W is
recursively computed using a dynamic programing
approach:

G i, jð Þ ¼ D i, jð Þ þmin

Gði, j–1Þ
Gði� 1, j� 1Þ
Gði� 1, jÞ

8><
>: (2)

The warping path W is a sequence of index pairs that ccon-
nect the ð1, 1Þ and ðV1,V2Þ indices of the G search matrix.
The dissimilarity between ~v1 and ~v2 can then be calculated
as the normalized distance: d1, 2 ¼ G V1,V2ð Þ

V1þV2
: The spatiotem-

poral warping approach not only enables the measure of
pattern dissimilarity among 1-lead ECG, but also multi-lead
ECGs such as the gold-standard 12-lead ECGs and 3-lead
Frank VCGs (Yang et al., 2013).

3.3. Network modeling and optimization

After the dissimilarity measure, a N � N matrix D is
obtained, where N is the number of cardiac signals. Each
element dij represents the dissimilarity between ECG signals
of two patients i and j: However, the dissimilarity matrix
itself is difficult to use in terms of predictor variables or fea-
tures for predictive modeling and health monitoring. Hence,
we propose to exploit the dissimilarity matrix by the net-
work modeling, which optimally represents the signals as
network nodes based on the dissimilarities among them.
Note that a widely used approach for network embedding
and modeling is the classic multidimensional scaling (MDS)
(Cheung and So, 2005; Yang, 2008). Let xi and xj denote the
location of ith and jth nodes in the network; the objective
function can be defined as:

f ¼
X
i, j

ð xi � xj
�� ���� ��� dijÞ2 (3)

The MDS minimizes Eq. (3) by decomposing a matrix B ¼
� 1

2HD 2ð ÞH, where H ¼ I � N�111T is a centering matrix.
This is done by the singular value decomposition: B ¼
VKVT ¼ V

ffiffiffiffi
K

p ffiffiffiffi
K

p
VT , where optimal locations xi’s can be

obtained as: X ¼ V
ffiffiffiffi
K

p
: Here, V is a matrix of eigenvectors

and K is a diagonal matrix of eigenvalues. Note that the

distance between nodes xi and xj after network optimization
preserves the dissimilarity dij between ECG signals of two
patients i and j:

However, most network modeling approaches are subject
to high levels of computational complexity for the embed-
ding of a large volume of data (Kan et al., 2018). To address
this issue, we propose a stochastic network embedding
approach in this research. The cost function of Eq. (3) is
reformulated as:

f ¼ 1
2

X
i

X
j 6¼i

xti � xtj

��� ������ ���� dij

� �2

þ #t xtj � xt�1
j

��� ������ ���2
2

2
4

3
5

�W xti � xtj

��� ������ ���, k

� �

(4)

where Wð�Þ is a step function:

W xti � xtj

��� ������ ���, k

� �
¼

1 if xti � xtj

��� ������ ��� � k

0 if xti � xtj

��� ������ ��� > k

8><
>: (5)

and k is the neighborhood radius. Notably, the cost function
(Eq. (4)) consists of two regularization terms: a spatial term

(fSP ¼ P
i

P
j 6¼i xti � xtj

��� ������ ���� dij

� �2

Þ to preserve the dissimi-

larity and a temporal term (fTP ¼ #t xtj � xt�1
j

��� ������ ���2
2
) to regu-

larize the update of xj in successive iterations.
As opposed to learning the network of ECG signals in

one batch, the minimization of Eq. (4) can be stochastically
updated (Demartines and Herault, 1997). At each iteration
t, a node i is randomly picked and its location xi is fixed.
Then, locations of all other nodes xj(j 6¼ iÞ are updated
according to the following rules:

xtþ1
j ¼ xtj � gt rfSP þ #t xtj � xt�1

j

� �� �
if xti � xtj

��� ������ ��� � kt

xtþ1
j ¼ xtj if xti � xtj

��� ������ ��� > kt

8><
>:

(6)

where

rfSP ¼
xti � xtj

��� ������ ���� dij

xti � xtj

��� ������ ��� xtj � xti
� �

: (7)

The learning rate gt , the radius of neighborhood kt , and
the regularization parameter #t can be modeled as mono-
tonically decreasing functions (e.g., gt ¼ g0

gT
g0

� �t
, where g0

and gT specify the initial and terminal values of the learning
rate and their ratio controls the decaying speed). This
approach iteratively optimizes the locations xj to minimize
Eq. (4) until the maximum number of learning epoch
is reached.

Because only one node is considered at each iteration,
the computational complexity of stochastic learning is much
lower compared to MDS. However, it is still expensive when

Table 1. Mathematical notations used in this section.

Symbol Meaning

~vk ECG signal k
D The distance matrix
G The search matrix for dynamic programming
Vk The length of signal k
W A warping path, a sequence of index pairs
dk,m Normalized distance (dissimilarity) between signals k and m
D The dissimilarity matrix
N The dimensionality of D
B Matrix decomposition of D
H Centering matrix

164 H. YANG ET AL.



a large number of nodes are included in the network. As
opposed to serial-computing algorithms like the MDS, we
have further developed a parallel computing scheme to har-
ness multiple computing resources collaboratively and
improve computational efficiency. At each iteration, we con-
sider not only one ECG signal, but multiple signals as a
mini-batch H. Sub-gradients with respect to signals in H are
accumulated and the average gradient is computed as:

rfH xtj
� �

¼ 1

Hj j
X
i2H

rfi xtj
� �

(8)

Here, rfi xtj
� �

represents fixing xtj and calculating the
gradient of f with respect to xtj and Hj j is the size of the
mini-batch H: As such, we can update xtj (if xti � xtj

��� ������ ��� �
ktÞ as:

xtj ¼ xtj � gt rfH xtj
� �

þ #t xtj � xt�1
j

� �� �
(9)

To facilitate the parallel computing, we divide H into
multiple subsets; i.e., H ¼ H1 [H2 [ , :::, [HS: Thus, Eq.
(7) becomes:

rfH xtj
� �

¼ 1

Hj j
X

i2H1
rfiðxtjÞ þ

X
i2H2

rfiðxtjÞ
h

þ:::þ
X

i2HS
rfiðxtjÞ

i (10)

In this way, parallel computing can be readily imple-
mented: each subset Hs is assigned to an individual proces-
sor and results from many processors are then combined
using Eq. (10) to return the average gradient. Notably, the

temporal penalty #t xtj � xt�1
j

��� ������ ���2
2
in Eq. (4) is similar to the

conservative penalty. It was shown that adding such a pen-
alty on mini-batch learning significantly benefits the compu-
tational efficiency and performance (Li et al., 2014). The
algorithm is summarized as follows.

Algorithm 1 Parallel computing for stochastic net-
work modeling

Input: dissimilarity matrix D ðdijÞ obtained from warping
Output: coordinates of nodes xi, i 2 f1, 2, :::, Ng in the

high-dimensional network
1: initialize xi, learning rate gtf gTt¼1

, neighborhood
radius ktf gTt¼1, and regularization parameter #tf gTt¼1, T –
number of epoch

2: randomly partition data into M mini-batches
3: start a parallel computing pool with S processors
4: for t ¼1, 2, … , T do

5: randomly choose a mini-batch Ht

6: partition Ht into subsets: Ht, 1, Ht, 2, … , Ht, S

7: for n ¼ 1 to S do fin parallelg
8: processor n gets partition Ht, n

9: solve the sub-problem rfi2Ht, n xtj
� �

on Ht, n

10: end for
11: average over the batch size Htj j and update xtj
12: end for
13: close the parallel computing pool

3.4. Network monitoring of health conditions

Once the network is optimized to use the distance between
nodes xi and xj to preserve the dissimilarity dij between ECG
signals of two patients i and j, the next step is to exploit the
network structure and node attributes (e.g., coordinates) for
health monitoring and change detection of the onset of car-
diac disorders. In the literature, various modeling approaches
(such as particle filtering and neural networks) are available to
quantitatively associate network features to patients’ cardiac
conditions. Practitioners can select the most suitable approach
based on the complexity of data and the requirements of proc-
essing speed. In this study, we introduce a computationally
efficient method—statistical control charts. The most widely
used chart is the Shewhart chart, which is designed to monitor
the mean or variance of process data. However, the Shewhart
chart tends to be limited in the ability to handle multivariate
data. In this study, we design and develop the network-based
Hotelling T2 chart to monitor the variations in multivariate
data of network features:

T2ðiÞ ¼ ðxi � xÞT S�1ðxi � xÞ (11)

Here, x is the averaged coordinates of network nodes and S
is the covariance matrix. However, S may be singular if the
dimensionality of network coordinates is high and if there
are redundance and interdependence in the system. As such,
the inverse of S cannot be calculated. This issue can be
addressed by eigen transformation (see more details in Kan
and Yang (2017a)) and the statistic of the network- T2 chart
can be calculated as:

T2 ið Þ ¼ xi � xð ÞT S�1 xi � xð Þ ¼
XQ
r¼1

Zði, rÞ2
k2r

(12)

The upper control limit of the network-T2 control chart is
estimated as:

UCLT2 ¼ qðN þ 1ÞðN � 1Þ
N2 � Nq

Fa, q,M�q (13)

where q is the dimensionality of xi, Fa, q,M�q is the upper
100a% of critical points of the F distribution with q and
N � q degrees of freedoms. The significance level a is set
as 0.05.

4. Materials and experimental design

In this article, both simulation experiments and real-world
case studies are used to evaluate and validate the developed

Figure 5. Experimental design for the simulation study.
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methodology. In the simulation study, the design of experi-
ments consists of four factor groups, as shown in the cause
and effect diagram in Figure 5.

(1) ECG segments: Note that cardiac diseases alter the pat-
terns of ECG signals and cause the morphology varia-
tions that are reflected in various ECG segments; e.g.,
P, QRS, T waves (Elmberg et al., 2016; Meo et al.,
2013; Perlman et al., 2016). For example, pulmonary
hypertension will result in the right atrial enlargement,
which is reflected as enlarged P waves. Abnormities in
ventricular conductions (e.g., myocardial infarctions)
will mainly lead to morphological variations in QRS
and T waves. The lengths of P, QRS, T segments are
often variable, and the period of ventricular contrac-
tion is the longest for most cases. Those segments
with smaller lengths pose bigger challenges for change
detection. Hence, we will test the proposed network
monitoring methods for various ECG segments.

(2) Shift magnitudes within an ECG segment:
Morphological variability also reveals the disease
severity. The onset of heart disease often induces a
small shift in ECG morphology, whereas the shift
magnitude is larger when the disease has lasted for a
longer time and progressed to a late stage (Elmberg
et al., 2016; Meo et al., 2013; Perlman et al., 2016).
Small magnitude shifts pose greater challenges for the
change detection. Hence, there is an urgent need to
implement and test the proposed monitoring method
on different levels of magnitude shifts in ECG seg-
ments, which is conducive to early detection of heart
diseases before the progression to a late stage.

(3) Dissimilarity measures: Characterizing the dissimilar-
ities among ECG signals is a prerequisite to build the
network model and increase the detection power. The
signal dissimilarity can be characterized and quantified
from various perspectives, such as morphological dis-
similarity, signal correlation, and the mutual depend-
ence of the amount of information held in both
signals. In the experiments of this study, we will also
evaluate and compare the impacts of different dissimi-
larity measures, namely signal warping, correlation,
and mutual information, on the performance of
change detection.

(4) Statistical control charts: Early detection of the onset
of cardiac disorders depends to a great extent on the

measure of signal dissimilarities, as well as an effective
monitoring scheme. Therefore, we implement the net-
work-T2 chart and benchmark charts (i.e., direct T2

chart and Shewhart chart) under different experimen-
tal scenarios (e.g., various ECG segments, different
levels of magnitude shifts, and three dissimilarity
measures) to evaluate the performance of proposed
analytical methods and algorithms.

In the real-world case study, ECG signals collected from
continuous monitoring (the PhysioNet Sudden Cardiac
Death and long-term ST databases (Goldberger et al., 2000;
Jager et al., 2003; Moody et al., 2001)) are used to evaluate
the performance of the B2B network. The ECGs were digi-
tized at 250Hz sampling rate with a 12-bit resolution over a
range of 610mV. Also, beat-by-beat annotations are pro-
vided by cardiologists, labelling each cycle as normal or pre-
mature ventricular contraction. We first preprocess the ECG
with a Fast Fourier Transform band-pass filter (1� 120Hz),
which removes the artifact, baseline wandering, as well as
high-frequency noises. ECG cycles (i.e., the P-QRS-T wave
for each heartbeat) are then extracted for the next steps to
measure the pattern dissimilarity and network modeling.

5. Experimental results

5.1. Simulation experiments

We first evaluate the computational efficiency of the pro-
posed parallel computing scheme over the traditional serial
computing algorithm for handling a large volume of ECG
cycles from a population of patients. Second, the proposed
network monitoring is implemented for the detection of dis-
ease-altered cardiac activities. Following the experimental
design in Section 5, the performance of the proposed large-
scale network model is evaluated by varying the levels of
four factors: (1) ECG segments; (2) shift magnitudes within
an ECG segment; (3) dissimilarity measures; and (4) con-
trol charts.

As shown in Figure 6, the parallel computing algorithm
compartmentalizes the updating rules of Eqs. (8–10) to mul-
tiple processors with mini-batches, but the serial-computing
algorithm only applies the update rule of Eq. (6) using a sin-
gle processor without the consideration of the mini-batch.
When the number of patients increases from 36,000 to
180,000, the computational time of serial algorithms
increases much more significantly than the parallel algo-
rithms. The gap between the blue bar (serial) and yellow bar
(parallel) becomes significantly larger with the increase of
the number of patients in the network. When 36,000
patients are included, the gap is very small. When the size
of the network reaches 180,000, the difference between the
two approaches increases to >2500 s. Therefore, the parallel
computing scheme shows much greater efficiency than the
serial scheme and is well suited for use in the large-scale
IoT context.

Further, we follow the experimental design in Section 5
to evaluate the performance of the proposed network
method for change detection of signal variations in cardiac

Figure 6. Computational time using parallel and serial computing for stochastic
network embedding and modeling.
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dynamics. First, we simulate disease-induced morphological
variability by shifting three segments of ECG signals (i.e.,
ST, P, and QRS). Here, an elevated ST segment is used to
simulate the acute myocardial infarction. Also, a larger P
wave corresponds to the potential atrial enlargement. When
the patient is associated with massive pericardial effusion,
the voltage of QRS will be lower, which is reflected as a
reduced QRS complex. The disease severity is controlled by
the level of shift magnitude. In other words, a small shift
indicates that the disease is in the early stage, whereas a
larger shift is associated with late-stage disease conditions
and calls for immediate medical interventions.

For each scenario, we simulate 150 ECG cycles based on
real-world ECG signals from healthy and diseased subjects. The
first 50 cycles are normal (i.e., in-control) signals, whereas the
remaining 100 cycles contain the mean shifts with different
magnitudes of ST, QRS, and P segments that simulate various
disease-altered signals (i.e., out-of-control). The dissimilarities
among ECG cycles are measured by the spatiotemporal warp-
ing method introduced in Section 4.1. Here, the proposed net-
work-T2 control chart is implemented on the 150 ECG cycles
in each scenario. The detection power is calculated as the pro-
portion of out-of-controls detected in the 100 ECG cycles with
disease-induced morphological variability. Furthermore, we

evaluate the performance of the proposed network-T2 chart
with two benchmark charts: (1) a T2 chart based on the original
ECG signals (denoted as “Direct T2” in Figure 7); and (2) a
Shewhart chart monitoring the mean change of ECG signals
(denoted as “Shewhart” in Figure 7).

The proposed network-T2 chart performs better than the
Shewhart chart and the direct T2 chart in all of the experimen-
tal scenarios. As shown in Figure 7, the detection power of the
network-T2 chart (blue triangles) quickly reaches 100% at
very small shift magnitude (0.03mV) for shifted ST segments
(see Figure 7a). When shifted segments are shorter, the net-
work-T2 chart is also sensitive to small changes and the detec-
tion power reaches 100% at a shift magnitude of 0.08mV and
0.12mV for the P (Figure 7b) and QRS segments (Figure 7c),
respectively. The detection power of the direct T2 chart
(orange squares) increases slower with the increase of shift
magnitude. When the length of the shifted segment is short
(shifted QRS segments in Figure 7c), the detection power of
the direct T2 chart is only 40% when the mean shift magni-
tude is 0.15mV and it reaches 100% when the shift magnitude
is over 0.22mV. Notably, the detection power of the Shewhart
chart is comparable to the direct T2 chart when the shift mag-
nitude is large (e.g., ST segments in Figure 7a). However, few
out-of-controls can be detected by the Shewhart chart when
shift magnitudes are small (see Figure 7b and c).

In addition, as shown in Figure 8, we have also compared
the use of three dissimilarity measures for the matching of ECG
patterns. Here, we used the experimental scenario of disease-
induced changes in ST segments, and then the dissimilarity
matrices obtained from three measures are used to construct
the network-T2 chart and compute the detection power.
Notably, the dissimilarity measure with signal warping per-
forms better than the mutual information. The network-T2

chart with signal warping reaches the detection power of 100%
when the shift magnitude is only 0.04. However, the detection
power reaches 100% for the dissimilarity measure with mutual
information when the shift magnitude is over 0.07. The control
chart based on the correlation cannot yield a good performance
when the shift magnitude is small from 0.01 to 0.15.

5.2. Real-world case study

In addition to the simulation study, we have collected real
ECG signals from a population of 2000 atrial fibrillation

Figure 7. Performance comparison between three types of control charts under
different shift magnitudes for (a) shifted ST segments, (b) shifted P segments,
and (c) shifted QRS segments.

Figure 8. Performance comparison of three dissimilarity measures (warping,
correlation, and mutual information) under different shift magnitudes.
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(AF), 1000 atrial tachycardia (AT), 500 ventricular hyper-
tropy (HT), 1500 myocardial infarction (MI), and 1000 left
bundle branch block (LBBB) patients from the PhysioNet.
Figure 9a shows the representative ECG signals from each
group of patients. Then, we built the P2P network model by
representing each patient as a network node, and node
attributes are patients’ ECG signals. Figure 9b shows that
variations of patients’ conditions are reflected by the net-
work structure and topology. It is worth noting that the var-
iations of AF are significantly higher than other groups,
thus forming a cluster of widespread nodes in the network.
However, ventricular hypertension has smaller variations in
signal patterns and hence forms a small cluster of nodes in
the network. The proposed network representation provides
an effective approach for the physicians to visualize a variety
of patient groups and pinpoint the location of a new patient
for clinical decision support. For example, if ECG signals
from a new patient are embedded as a node in the cluster of
myocardial infarctions, then clinicians can retrieve those
patients with similar symptoms in the cluster, make the
diagnosis of cardiac conditions for this new patient, and
take proactive treatment plans such as Holter monitoring
and medications to prevent the events of life-threatening
heart attacks.

In addition, we collected 24-hour monitoring data of
ECG signals from the long-term ST database, available in
PhysioNet (Goldberger et al., 2000; Jager et al., 2003; Moody

et al., 2001). As shown in Figure 10, the morphology of
ECG cycles varies from time to time for a specific patient:
(1) normal cycles (with annotation N) show similar patterns
but there are variations among them; and (2) the premature
ventricular contraction cycle (with annotation V) appears
once in a while with a different morphology from the nor-
mal cycle. The premature ventricular contraction is caused
by extra heartbeats that begin in one ventricle. As a result,
such extra beats will cause disruptions to the normal heart
rhythm, making people feel a fluttering heart beat (or a
skipped one). The premature ventricular contraction can
further lead to heart attack, congestive heart failure, and dis-
eases of heart valves. It is important to detect the onset of
the premature ventricular contraction and monitor its tem-
poral variations for the early detection of cardiac disorders.

Hence, we evaluate the proposed methodology to build the
beat-to-beat (B2B) network to represent the variations of B2B
ECG cycles for a specific patient. As shown in Figure 11, blue
nodes represent normal beats and red nodes correspond to
beats with premature ventricular contractions. Note that the
network structure is dynamically changing when more and
more beats are increasingly available over time and embedded
in the network. For example, the first 15 beats contain three
premature ventricular contractions, which are located apart
from the main group of normal beats (see the red dots in
Figure 11a). Figure 11b shows the embedded network with 25
beats. Note that five beats associated with premature ventricu-
lar contraction are located closer, and their cluster is away
from the normal cluster (blue nodes). When there are a total
of 50 beats (see Figure 11c), 13 abnormal beats form a distinct
group located away from the cluster of normal beats.

The network topology of 1000 successive ECG beats is
shown in Figure 11d. The network structure and spatial
locations of network nodes provide an effective means for
human experts to visualize and compare the ECG cycles
over time for a specific patient and then personalize the
intervention plan. When a large number of heartbeats are
located closer to the disease cluster (red nodes), this indi-
cates that the patient has a high level of risk and needs
immediate medical attention. More importantly, the network
topology provides a great opportunity for cardiologists to
visualize the temporal change of a patient’s cardiac condi-
tion. For example, if the network visualization shows 1� 2
red nodes occasionally, this may be due to random effects in
the function of the patient’s ventricle. However, immediate

Figure 9. (a) Real-world ECG signals from a population of 2000 atrial fibrillation
(AF), 1000 atrial tachycardia (AT), 500 ventricular hypertropy (HT), 1500 myocar-
dial infarction (MI), and 1000 left bundle branch block (LBBB) patients collected
from the PhysioNet. (b) The spatial distribution of nodes in the constructed
P2P network.

Figure 10. Real-world ECG signals containing normal beats (N) and premature
ventricular contraction beats (V).
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medical attention is needed when the number of red nodes
is increased rapidly and more frequently. This may be due
to a significant deterioration in the ventricle function, which
is often associated with fatal cardiac disorders.

6. Discussion and conclusions

With rapid advances of IoT technologies, there are increas-
ingly new opportunities available to implement IoT-enabled
information processing and decision support for smart and
interconnected health management. In this article, we pre-
sent parallel computing algorithms for multi-level network
modeling and analytics of P2P and B2B variations of ECG
signals in big data generated from the IoT system. We boost
the computational efficiency by developing new parallel
computing approaches that distribute the computing efforts
of network modeling and optimization into multiple pro-
cessors, instead of traditional serial-computing approaches
executed in a single processor. Finally, a new statistical pro-
cess monitoring scheme is developed to realize the full
potentials of network models (including the features of net-
work topology, clustering structures, and node attributes)
for cardiac monitoring and anomaly detection.

Network modeling and visualization provide an effective
means for physicians and cardiologists to identify commun-
ities (i.e., node clusters) of disease groups, investigate disease
mechanisms in each community, and pinpoint the health
condition of a new patient in the communities of the net-
work. The P2P network reveals the cross-sectional informa-
tion of the patient population. The structure of the network

community helps to visualize and differentiate various types
of cardiac conditions. The nodes in each community are
corresponding to the patients associated with each cardiac
condition. The distribution of nodes in each community
shows the level of variations that exist among patients in
that community. The spatial location of a node facilitates
the comparison of the signal patterns of this patient with
many other patients in the network and then characterizes
the health condition. On the other hand, the personalized
B2B network reveals progressive variations of cardiac condi-
tions for a specific patient over time. If nodes in the B2B
network are departing away from the cluster or community
of normal heartbeats, more attention should be paid to this
patient. Our simulation and real-world experiments show
that the proposed network modeling and analysis framework
has strong potential to help leverage the newly available IoT
infrastructure to build the new generation of cardiac moni-
toring systems for smart health management, as well as gain
a better understanding of disease mechanisms in various
populations and identify high-risk patients.
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Figure 11. The constructed B2B networks for (a) 15 beats, (b) 25 beats, (c) 50 beats, and (d) 1000 beats from the real-world ECG signals.
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