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1. Introduction

Given a set V' and an integer r > 0, let (‘7{) = {W CV:|W|=r}. An r-uniform
hypergraph (henceforth r-graph) H with vertex set X is a subset of (%), and we denote
X by V(H). Let v(H) = |V(H)|. The shadow of an r-graph H is

oH = {AE (V(’H1)> : dB € H such that ACB}.
r—

The classical Kruskal-Katona theorem gives a tight upper bound for |H| as a function
of [0H|. The following technically simpler version of the Kruskal-Katona theorem serves
as a good starting point for the work in this paper.

Theorem 1.1 (see Lovdsz [14]). Let H be an r-graph, and suppose that |0H| = (,*)) for
some real number z > r. Then |H| < (7).

Let F be a family of r-graphs. Then H is F-free if it does not contain any member
of F as a (not necessarily induced) subgraph. The Turdn number ex(n,F) of F is the
maximum number of edges in an F-free r-graph on n vertices. The Turan density of F
is m(F) = limy, o0 ex(n, F) /(7). Determining 7(F) for r > 3 is known to be notoriously
hard in general, and we refer the reader to a survey by Keevash [8] for results before
2011.

In this paper, we combine the Kruskal-Katona theorem and the hypergraph Turan
problem by considering the following more general question.

If H is F-free, what are the possible values of |H| for fixed |0H|? (%)

In particular, if we let F = (), then the upper bound for |H| in (x) follows from the
Kruskal-Katona theorem. If F # (), then (x) is closely related to the hypergraph Turén
problem. In fact, ex(n, F) gives a universal upper bound for || no matter what |0H] is,
and it is tight for some (at least one) values of |0H|. However, the upper bound given by
ex(n, F) gives us a rather limited picture of the relationship between the shadow and size
of an F-free hypergraph. Our objective in this work is to provide a much more detailed
view of this relationship.

An analogous question has been studied extensively in extremal graph theory. Given
two graphs H and G, let n(H;G) denote the number of copies of H in G. The density
of Hin Gis p(H;G) = n(H,G)/(;’gg))) For fixed graphs H; and Hy and (large) graph
G, the following problem is a cornerstone of extremal graph theory:

What are the possible values of p(Ha; G) if p(Hy; G) is fixed? (%)

Even for (Hy, Hs) = (K2, K;) with ¢t > 3, question (%) is known to be highly nontrivial
and was asymptotically solved for ¢ = 3 by Razborov [22], t = 4 by Nikiforov [18], and
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for all ¢ only recently by Reiher [23]. We refer the reader to [16,3,21] for the history of
(%)-

The main difficulty in (x) is to determine the lower bound for p(Hs; G). However, it
will be shown later that the main difficulty in (x) is to determine the upper bound for
|#]. In order to state our results formally we need some definitions.

Definition 1.2 (Feasible region). Fix r > 3.

(a) Given an r-graph H, its edge density is d(H) = |H|/ (U(Z{)) and its shadow density
is d(OH) = |0H|/(°1Y).

(b) An r-graph sequence (Hj)y—, is good if v(Hy) — oo as k — oo and both
limg 00 d(Hg) and limy_ oo d(OHy) exist.

(c) Let (Hi)pe; be a good sequence of F-free r-graphs, and (z,
(M) pey realizes (z,y) if limy_yoo d(OHk) = z and limy_,o d(Hy

(d) The feasible region Q(F) of F is the collection of all points (z,
be realized by a good sequence of F-free r-graphs.

[0,1]%. Then

y) € [0 1)? that can

As mentioned earlier, the upper bound given by ex(n,F) gives us a rather limited
picture of Q(F), since it only determines

sup{y : 3z € [0, 1] such that (z,y) € Q(F)}.
As indicated by (%), in this paper we study Q(F). Our results are of two flavors.

o We prove some general results about the shape of Q(F). Our main results here
are Theorems 1.11 and 1.12 which state that the boundary of Q(F) is completely
determined by a left-continuous almost everywhere differentiable function g(F) with
at most countably many jump discontinuities, and give examples showing that g(F)
can indeed be discontinuous.

o We study Q(F) for some specific choices of F for which ex(n, F) has been investigated
by many researchers. We focus on two specific families: cancellative hypergraphs and
hypergraphs without expansions of cliques. Our results, which go beyond determining
just the Turdn density, are summarized in Corollaries 1.16 and 1.18 (see Figs. 6
and 7).

Regarding our results on the shape of Q(F), there are (at least) two previous works of
a similar flavor: Razborov [22] determined the closure of the set of points defined by the
homomorphism density of the edge and the triangle in finite graphs (and showed that
the boundary is almost everywhere differentiable) and Hatami-Norine [7] constructed
examples which show that the restrictions of the boundary to certain hyperplanes of the
region defined by the homomorphism densities of a list of given graphs can have nowhere
differentiable parts.



26 X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 25-59

Our work can be viewed as a continuation of a long line of research in asymptotic ex-
tremal combinatorics perhaps beginning with the seminal work of Erd&s-Lovasz-Spencer
[4] and continuing today in different guises such as the graph limits paradigm of Lovész
[15] or the method of Flag algebras of Razborov [21].

1.1. General results about Q(F)

In this section we state some general results about feasible regions.

Proposition 1.3. The region QU(F) is closed for allr > 3 and all (possibly infinite) families
F of r-graphs.

Definition 1.4 (Projection of the feasible region). The projection of Q(F) on the z-axis
is

projQU(F) = {x : Jy € [0, 1] such that (z,y) € Q(F)}.
Note that it is not necessarily true that projQ2(F) = [0,1] in general. Later we will
present an example of F, which shows projQ2(F) = [0, (£),—1/¢"71] for £ > 3. On the
other hand, by removing edges one by one from A one can reduce the edge density of

OH continuously (in the limit sense) to 0. This yields the following observation.

Observation 1.5. For every family F of r-graphs with r > 3 there exists ¢ € [0, 1] such
that projQ(F) = [0, ¢].

Proposition 1.3 enables us to define the following function.

Definition 1.6 (Boundary of the feasible region). Given a family F of r-graphs with r > 3,
let g(F) : projQ(F) — [0,1] be defined by

9(F)(x) = max{y : (z,y) € AF)},
for all x € projQ2(F).

Here we abuse notation by writing g(F,z) for g(F)(x). Our next result shows that
Q(F) is determined by projQ(F) and g(F).

Proposition 1.7. Let r > 3 and let F be a family of r-graphs. If (xo,yo0) € Q(F), then
(.’Eo,y) € Q(‘F) fO’f‘ all Yy e [Ovy()]

Combining the Kruskal-Katona theorem with some further observations yields the
following universal upper bound for g(F,x).
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Fig. 1. Upper bounds for g(F,z) when r = 3,4,5 given by Proposition 1.8.

Proposition 1.8. Let r > 3 and F be a family of r-graphs. Then g(F,z) < 2"/~ for
all z € projQ(F). In particular, projQ2(0) = [0,1] and g(0,z) = 2™/ "=V for all x € [0,1].
(See Fig. 1.)

In [7], Hatami and Norin considered the region defined by the homomorphism densities
of a list of given graphs, which is a more general version of (x) (that generalizes (x) from
two graphs Hi, Hy to more graphs). They constructed examples which show that the
restrictions of the boundary to certain hyperplanes can have nowhere differential parts.
However, we will show in the next result that g(F) is well-behaved.

Definition 1.9 (Left/right continuity). Let f : R — R. Then f is left-continuous (resp.
right-continuous) at x if for any € > 0 there exists § > 0 such that | f(z")— f(z)| < € for all
' € (x—6,x) (resp. |f(z')— f(x)| < eforall 2’ € (x,z+70)). If f is left-continuous (resp.
right-continuous) at all z € R, then we say f is left-continuous (resp. right-continuous).

Definition 1.10 (Types of discontinuities). Let f : R — R and x € R be a discontinuity of
f-Ulim, .- f(x) and lim,_,,+ f(z) exist, then f is said to have the discontinuity of the
first kind at . Otherwise, the discontinuity is said to be of the second kind. Furthermore,
suppose that x is a discontinuity of the first kind of f. Then x is a removable discontinuity
if lim,_,,— f(x) = lim,_,,+ f(x). Otherwise, x is a jump discontinuity.

Theorem 1.11. For any r > 3 and any family F of r-graphs, g(F) is left-continuous, has
at most countably many jump discontinuities, and is almost everywhere differentiable.

Furthermore, the next result shows that g(F) can indeed be discontinuous.
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Fig. 2. The function g(D) is discontinuous at z = 2/3.

Theorem 1.12. There exists a family D of 3-graphs with projQQ(D) = [0,1] and
9(D,2/3) = 2/9, but there exists an absolute constant 6o > 0 such that g(D,2/3 +¢€) <
2/9 — 8o for all € € (0,1078).

Actually, Theorem 1.12 can be extended to r > 4, and the condition that e < 1078 is
not necessary (for all > 3). The proof for these extensions can be found in [12]. (See
Fig. 2.)

1.2. Cancellative hypergraphs

In this section we consider the feasible region of cancellative hypergraphs, which is
perhaps the first example of an extremal hypergraph problem that was well understood.
Our results are summarized in Corollary 1.16 stated at the end of this section.

Definition 1.13. Let 7, be the collection of all r-graphs on at most 2r — 1 vertices with
3 edges A, B, C such that AAB C C. An r-graph is cancellative iff it is 7,-free.

For r = 2 the family 73 comprises only one graph Kj. For r = 3 the family T3
comprises two hypergraphs KZ’_ and Fy, where K;f_ is the 3-graph on 4 vertices with
exactly 3 edges, and Fj is the 3-graph on 5 vertices with edge set {123,124, 345}.

Let [n] ={1,2,...,n}. Fix £ > r > 2. Let V1 U--- UV} be a partition of [n] with each
part of size either |n/¢] or [n/f]. The generalized Turdn graph T..(n, ¢) is the collection
of all r-sets that intersect each V; on at most one vertex. Notice that T5(n,¢) is just the
ordinary Turan graph. Let

) = 1)~ (1) (5)

In [2], Bollobés proved that ex(n,T3) < tsz(n,3) and T5(n,3) is the unique T3-free
3-graph on n vertices with exactly t3(n,3) edges. Therefore, g(73,2) < 2/9 for all = €



X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 25-59 29

y
1/2

YL IR SRS

0

Colhy @eesmeeasiais

1 x

Fig. 3. Q(73) is contained in the dark area above according to (1).

proj(7s). Later, Keevash and the second author [9] proved a stability theorem for 7s-
free hypergraphs. The first author [10] gave a new proof to both the exact and the
stability result for T3-free hypergraphs. Moreover, [10] proves that a T3-free 3-graph H
on n-vertices satisfies the inequality

( 3[#|/|0H]

2
— ) [OH| < n? - 2|0
o) 1< =20

which implies (see Fig. 3)

o(Towy < Y2A-w) +a? —w

< ry—] , for all = € projQ(7s). (1)

Our next result concerns cancellative r-graphs for r > 3, and improves the bound in
Proposition 1.8 as well as that in (1) for z € [0,2/3].

Theorem 1.14. Let r > 3 and = € projQ)(7;). Then

9(Tr,z) < (%) .

Moreover, equality holds for all x € [0, (r — 1)!/r"~2]. (See Fig. .)

For r = 3, the bound given by Theorem 1.14 is not tight for any z € (2/3, 1] according
to Bollobas’ theorem [2]. Our next result will present an improved bound for g(73,«) for
x e (2/3,1].

Theorem 1.15. The inequality g(Tz,z) < x(1 — x) holds for all x € [0,1]. Moreover,
(T3, (k—1)/k) = (k —1)/k* when k =1 or 3 (mod 6). (See Fig. 5.)

Christian Reiher observed that the function (1 — ) in Theorem 1.15 can be replaced
by a piecewise linear function that always lies below z(1 — ) (see Section 6 for details).
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Fig. 4. Upper bounds for g(7,,z) when r = 3,4 given by Theorem 1.14.
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Fig. 5. Q(73) is contained in the dark area above by Theorem 1.15.

The lower bound for g(73, (k—1)/k) when k = 1 or 3 (mod 6) comes from the balanced
blow up of Steiner triple systems on k vertices, this will be explained in more detail in
Section 4.

Combining Theorems 1.14 and 1.15 yields the following result for g(73,z), which
provides a rather comprehensive picture of Q(73).

Corollary 1.16. We have (T3, ) = x3/2/\/6 for all x € [0,2/3], and g(T3,2) < 2(1 —z)
for all x € (2/3,1]. Moreover, g(T3,(k —1)/k) = (k — 1)/k? for all integers k =1 or 3
(mod 6). (See Fig. 6.)

1.8. Hypergraphs without an expansion of a large clique

In this section we consider the feasible region of hypergraphs without expansion of
cliques. These hypergraphs were introduced by the second author in [17] as a way to
generalize Turan’s theorem to hypergraphs. Another reason for their importance is that
they provide the first (and still the only) explicitly defined examples which yield an
infinite family of numbers realizable as Turan densities for hypergraphs.
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Fig. 6. (73) is contained in the dark area above according to Corollary 1.16.

Let Ky, be the collection of all r-graphs F' with at most (“}') edges such that for
some (¢ +1)-set S, which will be called the core of F, every pair {u,v} C S is covered by
an edge in F'. Let the r-graph Hy, , be obtained from the complete graph K, by adding
r — 2 new vertices into each edge. The graph Hj_ , is called the expansion of K. It is an
easy observation that Hj, , € Ky, ;.

It was shown by the second author [17] that ex(n,Kj,,) = t.(n,£) and T.(n,f) is
the unique Ky |-free r-graph on n vertices with exactly t,(n, £) edges. In [19], Pikhurko
improved the result in [17] and proved that if n is sufficiently large then ex(n, Hy, ) =
tr(n,£) and T,(n,£) is the unique Hj,  -free r-graph on n vertices with exactly ¢,(n, ¢)
edges.

In order to state our result, we need to extend the definition of shadows. Let ‘H be an
r-graph and S C V(#H). Then #H[S] is the induced subgraph of H on S. For 1 <i <r—1

the i-th shadow of H is

OiH = {A S (V(H)> : 3B € H such that A C B} .
For i < 0 we extend the definition of the i-th shadow 9;H as follows.

OH = {A € <V<H_>) . H[A] is a complete r—graph} . 2)

r—1

In particular, 9;H = OH and dyH = H. By definition, 9;11H = 9 (9;H) for all 0 < i <
r—2,and 9 (0;H) C 0;41H for all s < —1.

Our first result here relates the sizes of different shadows of a K, ,-free r-graph H.
This generalizes an important result of Fisher and Ryan [6] from graphs to hypergraphs.

Theorem 1.17. Let £ > r > 2 and H be a K -free r-graph. Then

<|8,«4H>; o <|61H|>T1+1 - (iy B (&HI)TL << <|ar1H>i.
© /) T\ “\Q/ T\ T U )

Using Theorem 1.17 we are able to determine g(kCj, +1) completely via the following
result. We will use (¢),- to denote £(£ —1)--- (£ —r +1).
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Fig. 8. The region Q2(Hy, ;) is contained in the dark areas according to Theorem 1.19 and results in [17] and
[20].

Corollary 1.18. Let £ > r > 3. Then projQ(Ky, ;) = [0, (€)r—1/¢""'] and

9(Kip,2) = (E—r+1) ( 5 >ﬁ
for all w € [0, (£)r—1 /"] (See Fig. 7.)

Determining Q(Hy, ) is much more difficult than determining Q(Kj, ;) because the
shadow density of an Hj_ ,-free r-graph can be greater than (£),_1/¢"~'. An r-graph S
is called a star if all edges in S contain a fixed vertex, which is called the centre of S. It
is easy to see that a star does not contain Hy, , as a subgraph, and the shadow density
of a star can be arbitrarily close to 1. Still, we are able to determine g(Hj, |, ) for all
S [O, (é)r_l/gril].

Theorem 1.19. Let £ > r > 3. Then projQ(Hj ;) = [0,1] and

olttpn) = =r+0) ()7

for all z € [0, (£),—1/€"71]. (See Fig. 8.)
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The remainder of this paper is organized as follows. In Section 2 we will prove
Propositions 1.3, 1.7, and 1.8, and Theorem 1.11. Section 3 will be devoted to prove
Theorem 1.12. Then we will prove Theorems 1.14 and 1.15 in Section 4. In Section 5 we
will prove Theorem 1.17, Corollary 1.18, and Theorem 1.19. In Section 6 we will include
some remarks and open problems. We will omit the floor and ceiling signs when they are
not crucial in the proofs.

2. General theory

In this section we will prove several general results about the feasible region. First let
us present a simple but useful idea that will be used in our proofs.

Fact 2.1. Let r > 2. Suppose that H is an r-graph on n vertices, and every edge in H
contains an (r — 1)-subset that is not covered by any other edge in H. Then [H| < (,")).

Indeed, if every edge in H contains a unique (r — 1)-subset, then we can map every
edge F € H to an (r — 1)-subset of E that is not covered by any other edge in H. This
map is an injection from H to (T[f]l) and it implies the upper bound in Fact 2.1. Actually,
it was shown by Bollobas [1] that [H| < ("Z}).

Algorithm 1. Remove edges with the edge density threshold d.

Input: An r-graph H and the density threshold d € [0, 1].

Operation: If d(#) < d or |H| < (,",), then do nothing and let # be the output.
Otherwise, by Fact 2.1, there exists E € H such that every (r — 1)-subset of E is covered
by another edge in H. Remove F from the edge set of H, and let H denote the resulting
r-graph. Repeat this operation until d — 1/(") < d(H) < d.

Output: Either the original r-graph # or a subgraph H' C H with d—1/(") < d(H') < d,
and [OH'| = [OH].

Notice that the Operation above does not change |0H| since all (r — 1)-subsets of
the removed edge F are covered by some edge in H. Therefore, the output r-graph H’
satisfies |O0H'| = |0H|. On the other hand, since each step of the operation reduces |H|
by exactly one, d(H) can be reduced to some real number d’ with d —1/(7) < d’ < d.

2.1. Basic properties

In this section we will prove Propositions 1.3, 1.7, and 1.8, and Theorem 1.11. First
we prove Proposition 1.3.

Proof of Proposition 1.3. Let (z,y) be a limit point of Q(F). For every positive integer
k we will specify a hypergraph Hj, with v(Hy) > k, |d(OHk) — x| < 1/k and |d(Hy) —
y| < 1/k. The resulting sequence (Hj),—, will be good and realize (z,y), so it will
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establish (x,y) € Q(F). For the construction of H;, we first take a point (xy,yr) € QF)
such that |z — x| < 1/(2k) and |y — yx| < 1/(2k). Every good sequence (Hym), o_,

realizing (zy,yx) contains a hypergraph Hy with v(Hy) > k, |d(0Hk) — x| < 1/k and
|d(Hi) — yi| < 1/(2k). By the triangle inequality, Hj, has the desired properties. W

Next we prove Proposition 1.7. Its proof uses Algorithm 1.

Proof of Proposition 1.7. Since (xg,yo) € Q(F), there exists a good sequence of F-free
r-graphs (Hg)pe, for which limy_,oo d(0Hy) = z¢ and limy_ d(Hi) = yo. Now fix
y € [0,y0). For every k > 1 apply Algorithm 1 to Hj with edge density threshold y and
let H denote the r-graph that Algorithm 1 outputs. We claim that (7—[;);021 is a good
sequence of F-free r-graphs that realizes (xg,y). Indeed, choose € = (yo — y)/2 > 0, by
the assumption that limy_, o, d(Hr) = yo, there exists ko such that d(Hy) € (yo—¢, yo+e€)
for all k > k. Therefore, by Algorithm 1, y — 1/("**%)) < d(H},) < y for all k > ko,
and hence limy_,o d(H},) = y. On the other hand, since |0H}| = |0Hy| for all k > 1,
limy,—y00 d(OH},) = x. Therefore, (H},),—, is a good sequence of F-free r-graphs that
realizes (xg,y), and hence (xg,y) € Q(F). W

Recall that ex(n,F1) < ex(n,F2) whenever Fo C Fi. By the definition of g(F), a
similar inequality also holds for g(F).

Observation 2.2. Let r > 3. Suppose that F1 and Fo are two families of r-graphs with
F1 C Fa. Then Q(F2) C Q(F1). In particular, g(Fa,x) < g(F1,x) for all x € projQ(Fa).

Now we are ready to prove Proposition 1.8.

Proof of Proposition 1.8. By Observation 2.2, it suffices to show that projQ(@) = [0, 1]
and g(0,z) = 2"/~ for all z € [0,1]. The first part is easy, since the complete 7-
graph on n vertices has shadow density 1, and it follows from Observation 1.5 that
projQ(0) = [0, 1].

Now we consider the second part. First we show that g(},z) < 2™/~ for all €
[0,1]. Let (Hi)re; be a good sequence of r-graph that realizes (z,y). For every k > 1
let o, denote the real number that satisfies [OHy| = (akfi?’“)). By the Kruskal-Katona
theorem, |Hy| < (a’“”?‘k)) for all k> 1. By assumption and limg_, o v(Hy) = oo,

g 0P V) e
R e (U(Hk)) vl (U(Hk-)) o kl,néo Ok ’
r—1 r—1

which implies that limy_,o a = /("= Therefore, by assumption,

_ el o ) e
VTR Py Sy T
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and this proves that g(0, z) < 2™/ ("=Y for all € [0, 1].

Next we show that g(@),z) > 2™/"=1 for all z € [0,1]. Choose an arbitrary z € [0, 1]
and let a = /("1 Let H,,(a) denote the vertex disjoint union of a complete r-graph
on an vertices and a set of (1 — a)n isolated vertices. Then we claim that (Hg(a))pe; is
a good sequence of r-graphs that realizes (z, xr/(T*U). Indeed,

lim |6H’]Z(a)| — lim (T;l) :a’r'—l — fI/',
k=00 (7’71) k=00 (rfl)

and
o )] )
k—o0 (7) k—o0 (Z)

and it follows from the definition that g(,z) > /"1 for all z € [0,1]. W
2.2. Continuity and differentiability

In this section we will prove Theorem 1.11 and some other related corollaries. We will
use the following theorem in our proofs.

Theorem 2.3 (see Section 3 of Chapter 3, [2/]). Let f : R — R be a monotone function.
Then f has at most countably many discontinuities of the first kind and no discontinuity
of the second kind. Moreover, f is almost everywhere differentiable.

The following lemma is the main tool in our proofs.

Lemma 2.4. Let r > 3 and F be a family of r-graphs. Then

(9(F,z+ 1) < (g(F,a)) 7 + WD) T

for all x € projQ(F) \ {0} and all h > 0 with © + h € projQ(F).

Proof. Suppose that x + h € projQ(F). Choose

1
h r—1
a:(x—'_ > — 1.
X

Let (Hi)z—, be a good sequence of F-free r-graphs that realizes (z + h, g(F,z + h)).
For every k > 1 let ny = v(Hy) and let H) be obtained from Hj, by adding a set of any,

isolated vertices and let nj, = (1 4+ a)ng. Then,

lim _|5’H;€\ = lim 0% = z+h — 7
k—»o0 ( nj ) k—o0 ((1ti‘)1nk) (l + Oé)r_1 ’

r—1
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and

O Ml g(Fa+h) (@ TR
Oy TS @y = (ray  \oxh) IR

Therefore, (H},),—, a good sequence of F-free r-graphs that realizes

(x, (mih)rrlg(}",erh)) .

Consequently,
z \70
sz () aFe e, "
which gives
r=1 r—1 F N
(9(F.x+h) ™ <(9(F.x) " +Mh. -

T

Corollary 2.5. Let v > 3 and F be a family of r-graphs. Then for any x € projQ2(F)\ {0}
and any 6 > 0, there exists € > 0 such that g(F,z') > g(F,z) — 0 for all 2’ € (x — ¢, x).

Proof. We may assume that § < 1. Choose € = dx/3 and let 2’ € (x — €, 2). Then (3)
gives

T

) " (F )

!

g(F,a') = <

=Q—x‘fygwﬁm

T

2g(F,x)e

z@—%)%ﬂw=¢£m— > g(F2)— 6,

where the second inequality follows from the fact that (1 —2)® > 1 —axz for all = € [0, 1]
andalla>1. N

Proposition 1.3 together with Corollary 2.5 will show that g(F) does not contain
removable discontinuities.

Corollary 2.6. Let r > 3 and F be a family of r-graphs. Then g(F) does not contain
removable discontinuities.
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Proof. Suppose that o € projQ2(F) is a removable discontinuity of g(F). Then xg >
0 and lim,_, - g(F,x) = lim,_, +g(F,x) # g(F,x0). Let yo = lim,_, - g(F,z). By
Proposition 1.3, (xg,yo) € Q(F), and by the definition of g(F), g(F,zo) > yo. Letting
§ = (g(F,z0) — yo0)/2 in Corollary 2.5, we obtain

f
yo = lim g(F,z) > g(F,z9) —0 = 9(F,z0) + 9o > %o,

T—Tq 2

a contradiction. W
Now we are ready to prove Theorem 1.11.

Proof of Theorem 1.11. First we show that g(F) is almost everywhere differentiable. Let

r—1

f(z)=(9(F,x)) ™ — . It follows from Lemma 2.4 and Theorem 1.8 that
G(Fx 1) 7 < (oFa)T + WD,

< (g(F.a) T + LT

r—1

= (9(F,2)) ™ +h,

which implies that f is decreasing on projQ(F). By Theorem 2.3, f is almost everywhere
differentiable, and so is g(F).

Next, we show that g(F) has at most countably many jump discontinuities. By Theo-
rem 2.3, f has at most countably many discontinuities of the first kind, and so does g(F)
since g(F,z) = (f(z) +2)"/ "™ for all # € projQ(F). Corollary 2.5 shows that g(F)
does not have a removable discontinuity, therefore, g(F) has at most countably many
jump discontinuities.

Finally, we show that g(F) is left-continuous. Let o € projQ(F) be a discon-
tinuity of ¢g(F). By the previous result, zp can only be a jump discontinuity. Let
vn (F,x). By Proposition 1.3, (xq,y, ) € Q(F)
and (o, yg) € Q(F). So, it suffices to show that y; > yg . Indeed, suppose that yj > y; .
Then, by the definition of g(F) we would have g(F,z¢) = yg . Letting § = (y§ — v )/2
in Corollary 2.5, we obtain

- +
Yo = lim g(]:, l‘) and Y = hmxaa:a' g

Yo +ud

yo = lim g(F,x) > g(F,zp) — 6 = >y,

a contradiction, and this completes the proof. W

The proof of Theorem 1.11 also gives the following corollary.
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Corollary 2.7. Let » > 3 and F be a family of r-graphs. Suppose that xg € projQ(F)

is a discontinuity of g(F). Then both lim
s>z g(F,x) > lim,_, .+ g(F,x). In particular, if g(F) is increasing on [c1,ca] for

some cg > c1 > 0, then g(F) is continuous on [c1, ca).

oo 9(F,x) and lim,_, + g(F, ) exist and

lim

3. A point of discontinuity

In this section we will prove Theorem 1.12 by defining a family D of 3-graphs, and
showing that g(D) is discontinuous at x = 2/3. (See Fig. 9.)
First we define a 3-graph S, on [n] as follows. Fix u € [n], let

8 = {uwwsvwe (ML ]

and note that S, is a star with |S,| = (ngl)

Definition 3.1. Let D be the collection of all 3-graphs F' € K3 such that F ¢ S, for all
n > 4.

Note that D # () as H; € D. Since S, is D-free and lim,, |88n|/(g) =1, by
Observation 1.5, projQ2(D) = [0, 1].

Since T3(n, 3) is K3-free, ex(n, D) > t3(n, 3). On the other hand, ex(n, D) < ex(n, H}),
which, by [20], is at most t3(n,3) when n is sufficiently large. Therefore, we obtain the
following result.

Theorem 3.2. Let n be sufficiently large. Then ex(n,D) = t3(n,3) and T3(n,3) is the
unique D-free 3-graph with n vertices and t3(n,3) edges.

Theorem 3.2 implies that g(D, z) < 2/9 for all z € [0, 1] and equality holds for x = 2/3.
Therefore, in order to prove Theorem 1.12 it suffices to prove the following result.

Theorem 3.3. There exists an absolute constant §g > 0 such that the following is true
for all € € (0,1078) and sufficiently large n. Suppose that H is a D-free 3-graph on n
vertices with |OH| = (1/3 4+ €)n?. Then |H| < (1/27 — §o)n>.

The proof of Theorem 3.3 uses a stability result for D-free 3-graphs, which can be
easily obtained from a stability theorem for Hj_ -free r-graphs proved by Pikhurko [20].

Theorem 3.4 (Stability). For every & > 0 there exists 6 > 0 (we may assume that § <)
and ng = no(€) such that the following holds for all n > ng. Suppose that H is a D-free
3-graph on n vertices with |H| > (1/27 — §)n®. Then V(H) has a partition V; U Va U V3
such that all but at most én? edges in H have exactly one vertex in each V;.
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1/2

2/9 Qeersersnns e e

o
Wl
=

Fig. 9. The function g(D) is discontinuous at z = 2/3.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. We prove Theorem 3.3 by contradiction. Suppose that for all
constant § > 0 and all integers ng there exists € = €(§) € (0,107%) such that there exists
a 3-graph H on n > ng vertices for some n with |0H| = (1/3+¢€)n? and |H| > (1/27—8)n3.

Choose £ > 0 to be sufficiently small, and let 6 > 0 and ng = no(§) be given by
Theorem 3.4 and note that we may assume that § < £. By assumption, there exists
€ € (0,1078) and a D-free 3-graphs H on n > ng vertices with |0H| = (1/3 + ¢)n? and
|H| > (1/27—)n. Apply Theorem 3.4 to H. We obtain a partition V(H) = V; UVaU V3
such that all but at most ¢n® edges in H have exactly one vertex in each V;. Let H’
denote the induced 3-partite 3-graph of H on V; U V5 U V3, that is,

H ={EeH:|ENnV;|=1forallice[3]}.

Note that

’ n® 3 3
\’H\>§—5n —&n”. (4)

Claim 3.5. ||V;| — 2| < 4(6 + &)Y/?n for all i € [3].
Proof. Fix 1 <i < 3 and let a = |V;|. Then [H'| < a(n — «)?/4 and (4) gives

an—a)? _n? 3 3
1 > o7 on’ —&n?,

which implies n/3 —4(6 +&)Y?n <a < n/3+4(5 +£6)Y?n. N
Let G = OH and G’ = OH'. Note that H' € H, G’ C G, and G’ is 3-partite. Let K
be a 3-partite subgraph of G with the maximum number of edges among all 3-partite

subgraphs of G, and let X, X5, X3 denote the three parts of K.

Claim 3.6. |K| > |G'| > %2 _5(5 4 €)Y/22,
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Proof. Counting the number of edges in H’ we obtain

Claim 3.5 (4) n3
|G'|( A6 +6Y2n) T | > B -3+’

which implies |G'| > n?/3 — 5(8 +&)*/?n2. Since G is also a 3-partite subgraph of G, by
the maximality of K, we obtain |K| > |G'|. R

Claim 3.7. ||X;| — 2| <4 (5 +6)"*n for all i € [3).
Proof. Fix ¢ € [3] and let o/ = |X;|. By Claim 3.6,

_ 2 2
O K| 216> - 506+,

o'(n—a)+
. . . 1/4 ’ 1/4
which implies n/3 —4(6+ &) "n<a' <n/3+4([6+&)""n. A

For uv € K the degree of wv in H is d(uwv) := |[{F € H : {u,v} C E}|. Our next claim
shows that most edges in K have a large degree.

Claim 3.8. The number of edges in K that have degree at most 10 in H is at most
n?/40000.

Proof. Suppose not. Then the assumption that |G| = |0H| = (1/3 + €)n? together with
Claims 3.6 and 3.7 imply

Cldlm 3. 71 n 10n2
| 1/4 K
< 40000) <3 HAG+En) + 10000 UG~ 1EDn

Clalm.’s() n n 2
o w 4(8 1/4 e 5 1/4 3
3 40000)( +4(0+¢) )+ +end +5(6 + &)
n3

3 4000

o n?
7 500000

which contradicts the assumption that |H| > (1/27 — §)n3. Here we used the fact that
9, ¢ are sufficiently small, n is sufficiently large, and € < 107%. W

The next claim shows that if G has a large complete 4-partite subgraph, then it
contains many edges that have degree at most 10 in H. This is the only place where we
use the definition of D.

Claim 3.9. Let vive € G and Uy, Uy C V(H) \ {v1,v2}. Let

L= {{Ul,UQ} cuyp € Up,ug € Ug and d(U1U2) > 10}
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Suppose that v1 and ve are adjacent to all vertices in Uy UUs. Then L is an intersecting
family, and hence |L| < n.

Proof. Let ujus € L and
Evjvs ={E € H : {v1,02} C E}.

We claim that every set E € &,,,, satisfies £ N {uj,us} # 0. Indeed, suppose that
there exists Ey v, € Epjv, With Eyy, N {ug,uz} = 0. Since d(ujus) > 10, there exists
Eyyu, € H such that {uy,us} € Eyju, and Ey uy N By, = 0. Let Eyiugs Eojugy Boguy s
and E,,,, be edges in H that cover viu;, viug, vaus, vausg, respectively, and let F; denote
the 3-graph with edge set

{EU11)27 Ev1u1 b E’Uluz bl Ev2u1 b) Evgug b Euluz}-

Note that Fy C H and Fy € K3. However, since Ey,y, N Eyv, = 0, F1 ¢ S, for any
n, and hence F} € D, which is a contradiction. Therefore, every set E € &,,,, satisfies
En{ui,uz} #0.

Suppose that L contains another edge wyws that is disjoint from wjus. Then, the same
argument as above implies that every set E € &,,,, satisfies EN{wy,wa} # (. Therefore,
every set E € &,,,, satisfies E N {uy,uz} # 0 and E N {wq,ws} # 0, which is impossible
since E is a 3-set. Therefore, L is intersecting and it follows from the Erdés-Ko-Rado
theorem [5] that [L| <n. W

Our goal in the rest of the proof is to find vivg € G and Uy,Us C V(H) \ {v1,v2}
with |U;||Us| large, such that v; and ve are adjacent to all vertices in Uy U Us. Then, by
Claim 3.9, many edges in the induced subgraph of K on U; U Uz would have degree at

most 10, which contradicts Claim 3.8.
Let

B = {uv e G:{u,v} C X; for some i € [3]},

and

M = {{u,v} € <V(2H)> \K :ue€ X;,ve X, for some i, € [3] andi;ﬁj}.

Sets in B are called bad edges of K and sets in M are called missing edges of K. For
v € V(H) let dps(v) denote the number of missing edges that contain v. By Claim 3.6,

|M| < 5(5+€)Y2n? (5)

On the other hand, the assumption |G| = n?/3 + en? implies
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|B| > |M| + en?. (6)

Let B; be the collection of bad edges in G that are completely contained in X; for
i € [3]. Without loss of generality, we may assume that |B;| > |B|/3. Let A denote the
maximum degree of Bj.

Case 1: A < n/100.

Then there exists a set M’ of at least |By|/(2A) > 15|B|/n pairwise disjoint edges in
B;. Fix uv € By. Let U;(uv) = Ng(u) N N (v) N X for i € {2,3} and let K, denote
the induced subgraph of K on Us(uv) U Us(uv). By Claim 3.9, all but at most n edges
in K, have degree at most 10 in H. It follows that

- U Claig 3.8 p2 n? 505 12,2 n2
|U2(uw0)||Us(uv)| < 20000 T +|M \_ 20000 " 0 +¢) < 30000
Therefore, by Claim 3.7,
n n? /30000
Ni(u)NN — 45+ OV <D ar e D
Nic(u) AN ()] < 3 +40 8 n+ TG T gy, < 3 TA0TO) "+ To000°
and it follows from Inclusion-Exclusion and Claim 3.7 that
di (u) + dik (v) = [Nk (u) U Nk (v)] + [Nk (u) N N (0)]
n
<o (™ 1/4 A8 1/4 n
72(3 Y45+ €) ) 5 4G+t 10000
101n
] 7
< 100 @
Note that
di (u) +dun(u) +dx (v) + du(v) = 2 (| Xa| + [X3])
which implies
15| B|
(M| > > (dar(w) + dar(v)) > (2 (| X2| + | X3]) — di (u) — dx (v))
uveM’ n
Claim 3.7 and (7) 15‘B| 4n, 102n (6)
= - = 4|B M
~ " <3 100>>|>||’

a contradiction.

Case 2: A > n/100.

Then choose a vertex v; € X7 with degree A. Let N; = Ni(v1) N X; for 1 <4 < 3. The
maximality of K implies that |No| > A and |N3| > A, since otherwise we could move vy
into V5 or V3 to get a larger 3-partite subgraph of G. Choose vy € Ny and let U;(v1v2) =
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Nx (v2) N N; for i € {2,3}. Similar to Case 1, we have |Us(v1v2)||Us(v1v2)| < n?/30000.
Therefore, v is not adjacent (in K) to at least n/200 vertices in Ny U N3, which implies

n n n? (5)
MI> S dyw)> 4 x = "S54V > M,
| |*u€ZN wm(u) 2 756 % 500 = 0000 = 20 +&) T = (M|
1

a contradiction. W

Christian Reiher pointed out that the conclusion in Theorem 3.3 still holds even if we
replace the assumption |0H| = (1/3 + €)n?, e € (0,1078) by |0H| > t2(n,3) + 1. In fact
he proved the following stronger stability theorem for D, which immediately implies the
stronger version of Theorem 3.3.

Lemma 3.10 (Reiher). For every € > 0 there are 6 > 0 and ng such that every D-free
3-graph H on n > ng vertices with |H| > (1/27 — §)n3 admits a partition V(H) =
U, Uy UUsUU, such that

o cvery edge E € H not incident with Uy has exactly one vertez in each of Uy, Us, Us,

e the sets Uy, Us, Us are independent in OH,

o cvery vertex in Uy is incident with at most (1/18 + €)n? edges in H and at most
(1/2+ €)n edges in OH,

o and |Uy| < en.

4. Cancellative hypergraphs

In this section we will prove Theorems 1.14 and 1.15. First let us present some useful
lemmas.
Let H be an r-graph. The link Ly (v) of v in H is an (r — 1)-graph on V() and

Ly (v) = {A € (Z(_/HD {viude H}

Let dy(v) = |Ly(v)|. For a subset S C V(H) let 03,(S) = 3, cg d2(v). When it is clear
from context we will omit the subscript H.

Lemma 4.1. Let r > 3 and let H be a cancellative r-graph. Then, for any v € V(H) the
link L(v) is a cancellative (r — 1)-graph.

Proof. Suppose that there exist A, B,C € L(v) such that AAB C C. Let A’ = AU {v},
B’ = BU{v} and C' = CU{v}, and note that A’, B’,C" € H. Then, A’/AB’ C C’, which
is a contradiction. W

Lemma 4.2. Let r > 3 and let H be a cancellative r-graph. Suppose that {u,v} C V(H)
is covered by an edge in H. Then L(u) N L(v) = 0.
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Proof. Suppose that there exists E € L(u)NL(v). Let A = EU{u} and B = EU{v}, and
note that A, B € H. Then AAB = {u,v}, which by assumption is covered by another
edge C' in H, a contradiction. W

Lemma 4.2 gives the following corollary.

Corollary 4.3. Let r > 3 and H be a cancellative r-graph. Let S C V(H) and suppose
that (Or—2H)[S] is a complete graph. Then,

veES

Proof. Suppose that S = {vy,...,vs}. Lemma 4.2 implies that the links L(v1), ..., L(vs)
are pairwise edge disjoint. Since |J;_; L(v;) C 9H, we have Y o dy(v) < |[0H]. W

4.1. Proof of Theorem 1.1/

In this section we will prove Theorem 1.14, but instead of proving it directly we will
prove the following stronger statement.

Theorem 4.4. Let r > 2 and let H be a cancellative r-graph. Then

< (120)
— 7"‘ .

First we show that Theorem 4.4 implies Theorem 1.14.

Proof of Theorem 1.14. Let us consider the lower bound first. Let o € [0,1] and let
Hn(a) be the vertex disjoint union of T.(an,r) and a set of (1 — a)n isolated vertices.
It is clear that 7, ¢ H,(«). Let

r—1 r—1 _ |
oty )y o a0y
oo (r—l) nreo (7’—1) r
and
_ oy @l (an/r)" (= 1)
I ) n—oe (1) rr—1

Then, y = (mr/r!)l/(r_l). Letting « vary from 0 to 1, we obtain g(7,,x) > (xr/r!)l/(r_l)
for all z € [0, (r — 1)!/r"2].

Next we prove the upper bound. Suppose that (Hy)y—, is a good sequence of
cancellative r-graphs that realizes (z,y). Let zx = (r — DOH|/ (v(Hz)) ™" and
yr = r!|Hy|/ (v(Hy))" for all k > 1. Then Theorem 4.4 gives
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v (0(HR))” _ (:ck <v<m>>“1>
7! - r(r—1)! ’

which implies

Yk < <($:!)T) o :

1/r—1

Letting k — oo, we obtain y < (z"/r!) , and this completes the proof. W

Now we prove Theorem 4.4. We will use the following fact.

Fact 4.5. Let X be a collection of non-negative real numbers and a € [0,1]. Then

> ot <X (%)azlﬁfl““ (Zw) ®)

reX zeX

and

<2x>2 <X 3 2 9)

zeX zeX

Proof of Theorem 4.4. We proceed by induction on 7. When r = 2, this is just Mantel’s
theorem, so we may assume that r > 3.

By Lemma 4.1, L(v) is a cancellative (r — 1)-graph for all v € V(#). Therefore, by
the induction hypothesis,

r—1

d(v) < <%> o (10)

It follows that

M= Y dw) = Y (@) @)

r
VeV (H) veV (H)

Notice that

Yo @)L= Y Y (dw)

veEV(H) veEV (H) SUEEOSH

SN ()T

SedH veS
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1

< ((r = nlorp (Z > dw ) )

ScoH veS

— ((r — )Jom)) = ( ) o—<s>> o (12)

SeoH

Define 6 = max {c(H): H € H} and suppose that E € H satisfies ) _pd(v) = 6.
Then,

Yoo = > a9+ > o(S)

SeoH S€U,ep L(v) S€dH\U,cp L(v)
Lemma422 Z Z U(S)
veEE SeL(v) SE@H\UUGE L(v)

<3 d() W) + (|0H| — 6) &

veEE
9)

(Zd ) ( Zecs )+ (o) - 0

veE

:0(0—%> + (|oH| — &)
= (|6”H| - %) 5. (13)

Note that Corollary 4.3 gives 6 < |0H|. On the other hand, since (|OH|—6/r)6 is
increasing in 6 when & < r|0H|/2, it follows from (13) and r > 3 that

3 o(9) < (|8H|_§)57< r

SeoH

(14)

Plugging (12) and (14) into (11), we obtain

s (r
—1

((r = 1)|oH|) 7

T—il_ OH| =
= (= 7

1
<

and this completes the proof. W

4.2. Proof of Theorem 1.15

In this section we will prove Theorem 1.15. As before, we will prove a stronger state-
ment which implies Theorem 1.15.



X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 25-59 47

Theorem 4.6. Suppose that H is a cancellative 3-graph on n vertices. Then

2_9
(n |OH|) [OH] ot

<
[l < 3n

First we show that Theorem 4.6 implies Theorem 1.15.

Proof of Theorem 1.15. Let us consider the lower bound first.

A k-vertex Steiner triple system (ST'S for short) is a 3-graph on k vertices such that
every pair of vertices is covered by exactly one edge. It is known that a k-vertex STS
exists iff k =1 or 3 (mod 6) (e.g. see [26]). Let ST'S(k) denote the family of all Steiner
triple systems on k vertices. Let S(n, k) denote the collection of all 3-graphs on n vertices
that can be obtained from a 3-graph H € ST'S(k) by blowing up every vertex in H into
a set of size either |n/k| or [n/k]. It is easy to see that every 3-graph in S(n,k) is
cancellative.

Fix an integer k with k =1 or 3 (mod 6). Let H,, € S(n,k) and in order to keep the
calculations simple let us assume that & divides n. Then

0H,| (k- Dn2/(2k) k-1

hm poy = ™ — 9
nee (3) (5) k
and
| Hal  (B—=1)n3/(6K?) k-1
llm n = n =
oo (3) (3) k?

Therefore, the sequence (M), ; realizes ((k —1)/k, (k —1)/k?). So, g(Ts, (k —1)/k) >
(k —1)/k? for all integers k with k = 1 or 3 (mod 6).

Next we prove the upper bound. Let (Hk)zozl be a good sequence of cancellative 3-
graphs that realizes (z, ). Let 2 = 2|0Hx|/ (v(H))? and y, = 6|Hy|/ (v(H))? for k > 1.
Then, it follows from Theorem 4.6 that

()" _ ((w) = 2k (W) ) i (1)) /2

6 SU(H]C) +3(U(Hk)) P

which implies

18
v(Hy)

yr < zp(1 — k) +

Letting k — oo, we obtain y < z(1 — z), and this completes the proof. W

The idea of the proof of Theorem 4.6 is to first choose S C V(#H) such that (OH) [S]
is a clique. Then we apply the induction hypothesis to V(#) \ S. However, in order to
do the induction we need to prove a stronger statement which implies Theorem 4.6.
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We will use G to denote the graph OH. Let U C V(H) and let Gy = G[U] and
Hy = H[U].

Theorem 4.7. Let H be a cancellative 3-graph on n vertices. Let U C V(H) be a set of
size m. Suppose that |Gy| = xm?/2 for some real number x with 0 < z < (m — 1)/m.
Then,

m? + 3m?2.

1—
|/HU|S%

In particular, letting U = V(H) in Theorem 4.7 we obtain

22
(n? —200M)) |oH] .,

<
< ,

which is exactly Theorem 4.6.
The proof of Theorem 4.7 is by induction on m. Note that Theorem 4.7 holds trivially
for all m < 20 since (?) < 3m? for all m < 20. Also, by Theorem 4.4,

0 (Hy) |32 < Gu*? 2’2

3V3 33 6v6

which is less than z(1 — 2)m3/6 + 3m? when = < 2/3. Therefore, Theorem 4.7 is true
for all x < 2/3, and hence we may assume that = > 2/3 in the rest of the proof.

Hyl| <

In the proof of Theorem 4.7 we need the following version of Turdn’s theorem. The
clique number w(G) of a graph G is the largest integer w such that there is a copy of
K, in G. Turan’s theorem implies that any n-vertex graph with no K,; has at most
(w—1)n?/(2w) edges.

Theorem 4.8 (/25]). Let G be an n-vertex graph with at least zn?/2 edges for some real
number x > 0. Then w(G) > [1/(1 — z)].

Proof. Let w = w(G). By Turdn’s theorem, zn?/2 < (w — 1)n?/(2w). Simplifying this
inequality we obtain w > 1/(1 — z). Since w is an integer, w > [1/(1 —z)]. W

The idea in the proof of Theorem 4.7 is to first apply Turan’s theorem on Gy to find
a large clique, say on S, and then apply the induction hypothesis to T'= U \ S to get an
upper bound for [H7|. In order to get an upper bound for |Hy| we just need to apply
Corollary 4.3 to Hy to get an upper bound for |[Hy \ Hr|.

Proof of Theorem 4.7. Suppose that Gy contains a clique on w vertices. We may assume
that w < m since otherwise by Corollary 4.3, we are done. Choose S C U of size w so
that Gg = K. Let T = U \ S. Let e, denote the number of edges in Gy that have

xzm? —2es

nonempty intersection with S. Let 2’ = =M
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First, notice a simple but crucial fact is that every vertex in T is adjacent to at
most w — 1 vertices in 9, since otherwise there would be a copy of K11 in Gy, which
contradicts the definition of w. Therefore,

es < (w—1)(m—w) + <‘;> (15)
Applying the induction hypothesis to T we obtain

(1-)

[l < == (m = w)® + 3(m — w)".

On the other hand, Corollary 4.3 gives

Ho \ Hr| <> dv) < |Gyl = %mz

veS

Therefore,

(1-)
6

Ml = [Hor| + Mo \ He| < & (m—w)*+3(m—w)?+ Sm’  (16)

Claim 4.9. For 2/3 <z <1 and 0 < 2’ <1 we have

_ 11 o
x(1 m)m3+3m22x(1 a’)

— W) —w2+ L
5 5 (m—w)>+3(m w)+2m.

Proof of Claim 4.9. Notice that

15

(m—w)?(z—2') =2 ((m—w)®—m?) +2e < zw(w—2m)+ (w—1)2m —w)
=02m—-w)(w(l—-z)—-1).

Consequently,

(m—-w)?@'1—2")—z(1—-2)=(m-w)(z—2)z+z —1)
<@2m-w)(wl-2z)—1)=. (17)

Indeed, if x > 2’ this follows from the previous estimate and z + 2’ — 1 < z. If z < 2/,
then x + 2’ —1 > 1/3 and the left side of (17) is negative, while the right side of (17)
is nonnegative. Multiplying (17) by m — w and taking the identity w(m —w)(2m — w) =

3 2

m3 — (n — w)?® — m?w into account we obtain

(m—w)?(@'(1—2) —z(1—2))

< (m® = (m—w)?) z(1 — 2) — M*wz(l — 2) — z(m — w)(2m — w),
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which due to w(1 — z) > 1 implies
(m—w)’2’(1—2") <mPz(1—z) — 2 (m? + (m —w)(2m —w)).
Adding 3zm? on both sides and using
2m® — (m — w)(2m — w) = 3mw — w*> < 18 (M* — (M — w)?)
we reach
(m —w)3z’ (1 — 2') + 3zm® < mPz(1 — 2) + 18z (m? — (m —w)?).
Due to x < 1 this implies the claim. W

Finally, [Hy| < (1 — 2)m3/6 + 3m? is an immediate consequence of Claim 4.9 and
(16) and this completes the proof of the theorem. W

5. Hypergraphs without expansion of cliques
In this section we consider the feasible region of hypergraphs without expansion of

cliques. First we will prove the following result, from which Theorem 1.17 can be easily
obtained.

Theorem 5.1. Let £ > r > 2. Let H be a Ky ,-free r-graph. Then

(ﬁ)UT < < OH| )1/(7”—1)'
S

In order to derive Theorem 1.17 from Theorem 5.1 we need an easy observation. Recall
from (2) that for ¢ < —1,

OH = {A € <V(H)> : H[A] is a complete r—graph} .

rTr—1

Observation 5.2. Let r > 3 and H be an r-graph. If 0 < i <r—2, then H is Kj | -free iff
OiH is KZ_:f—free, In particular, H is Ky -free iff Op_oH is Koi1-free. If i < —1, then
H is Kj | -free implies that O;H is IC;_:; -free.

Now we show how to prove Theorem 1.17 using Theorem 5.1.

Proof of Theorem 1.17. Fix r—¢ < i < r—2. Then by Observation 5.2, 9;H is ICZH—free.
Since 0 (0;H) C 0;+1H, it follows from Theorem 5.1 that
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1/(r—i) 1/(r—i—1) 1/(r—i—1)
|0iH| |0(0iH|) 10 11 H|
(T—i) (r—i—l) (r—i—l)

and this completes the proof. W

To show that all inequalities in Theorem 1.17 are tight, consider the following con-
struction. Fix a € [0,1] and let H,,(c) be the vertex disjoint union of T, (an,f) and a
set of (1 — a)n isolated vertices. It is clear that H,(«a) is Ky, ;-free. In order to keep the
calculations simple, let us assume that an is an integer that is a multiple of ¢. For fixed
L—r<i<r-1,

ooi=(,) ()

and hence

1

<|amn<a>|>” _on

Therefore, all inequalities in Theorem 1.17 are tight.

Notice that the construction above also proves the lower bound in Corollary 1.18 and
we omit the calculations here.

The proof of Theorem 5.1 uses some ideas in Fisher and Ryan’s proof [6]. However
we need to translate their proof into the language of hypergraphs, since an edge in 0;H
might not be equivalent to a copy of K,_; in 0,_oH for —¢ < i < r — 3. Define the clique
set Ky of H as

For every E € 0H let N(E) = {v € V(H) : {v} UE € H}. Recall from Section 4 that
o(S) = ,cqd(v). We first prove a lemma that will be used in the proof of Theorem 5.1.

Lemma 5.3. 3 ;o 0(E) < %W?—”Q.

Proof. Let S C V(H). For every v € V(H) we have d(v) = > ey IN(E) N {v}]. So,

$)=dw)=3" 3 INE)N{} = 3 INE) S, (18)

veS veES E€COH EcOH

On the other hand,

_<Zd(v)>2(%) ISIY_ (@) =181Y. > dw

veS vES veS BEeL(v)
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=181y > dw)y=1s1 ). Y dw)

vES E€OH E€OH veSNN(E)
vEN(E)

=[5 Y o(N(E)NS),

EcoH

which implies

2
S o (N(E)NS) > (U|(§|)) . (19)

EcoH

Now suppose that S € Kq;. Since H is K}, -free, |[E| +|[N(E)N S| < £ for all E € OH.
It follows from (18) that

a(S)= > INT)NS| < (£—r+1)|oH| (20)
TeoH

Let z be the largest real number such that o(R) < (¢ —r + 1)|0H| — (£ — |R|)z for all
R € Ky. Let Ry € Ky such that

o(Ro) = (€ — r+ DIOH| — (£ — |Rol)=. (21)

For every E € OH, EU (N(E) N Ry) € Ky, therefore,

EcOH EcoH
< 3" (=7 +D)|OH| - (¢~ |EU(N(E) N Ro)|)z — o(N(E) N Ro))
EcOH
< Y ((U=r+1)(|0H] = 2) + [N (E) N Ro|z — o(N(E) N Ry))
EcOoH
=(l—r+1)(|0H|—2)|0H|+2 > IN(E)NRo|— Y o(N(E)NRy)
EcOH EcoH
19),(20 o 2
( )g( )(f—r+1)(87-l|—z)|87-l+za(R0)—(|(%))
ol
CD (¢ _ 4 1)(0H] — 22)|0H] + 220 — =T F |11i2|j%| — 24" (22)

Since |Ry| < ¢, we may plug |Rg| = ¢ into (22) and z will be cancelled in the calculation
and hence

(C—r+1)(r—1)
> o(B)< ; oK. m
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Now we are ready to prove Theorem 5.1.
Proof of Theorem 5.1. We proceed by induction on r. The case r = 2 is just Turdn’s

theorem, so we may assume that r > 3.
For every v € V(#) the link L(v) is a K, '-free (r — 1)-graph, therefore, by the

induction hypothesis,
-1\ (|0L(v)| "
d<v>§(T_1)<'(e_(1))'> - (23
r—2

It follows that

M= Y A=t Y ()T ()
vEV(H) veEV(H)
b (61 =2 )
D) S gy o)) (24)

- T(f:;) VeV (H)

Similar to (12) in Section 4, we have

> @) L) = > Y (d

veEV(H) EcOH veE
(8) r—2 =1
< (r=vloH) = (D > d(v)
EcOH vEE
= ((r—1)[oH[)— < > U(E)>
EcOH
Lemma 5.3 — 1 Tiil .
=) (fif ) oM. (25)

It follows from (24) and (25) that

s () (E5) .

Now we show how to prove Corollary 1.18 using Theorem 1.17.

Proof of Corollary 1.18. Let (Hj),—, be a good sequence of Ky, ,-free r-graphs that
realizes (z,y). Let zj, = (r — 1)1|0H4|/ (v(He))" ™" and yp = r!|Hel/ (0(Hg))". First, we
show that projQ(Kj, ) = [0, (£),—1/¢""].
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It follows from Theorem 1.17 that

e (0(H) ™ _ (0 ()T

(r—1)!" —\r-1 14 ’
which implies z3, < (¢),_1/¢"!. Letting k — oo, we obtain z < (¢),_1/¢"~!. There-
fore, projQ(Ky,,) < [0,(¢),—1/¢""']. On the other hand, (T}(k,/)),~, shows that
(0)r—1/€"1 € projQUKj, ) and it follows from Observation 1.5 that projQ(Kj,,) =

[0, ()r—1/€771].
Next, we show the upper bound for g(Kj, ;,z). It follows from Theorem 1.17 that

1 1
(yk <v<m>>r>? - (x <v<ﬂrzk>>”>m
() “le-nty )
which implies g < (€ — 7 + 1) («7/(€),)"/" V. Letting k — oo, we obtain y < (£ —
r+ 1) (27 /(0),)"" Y Therefore, g(Kpq,2) < (0 —741) (27 /(0))Y Y for all 2 €
proj(Ky, ).

The construction for the lower bound is exactly the same as the construction for
Theorem 1.17, and it shows that g(Kj ,,z) > (£ —r + 1) (xr/(ﬁ)r)l/(rfl) for all
r € projQKy, ). Therefore, g(Kj, ,,2) = ({ —r + 1) (x’"/(f)r)l/(r_l) for all x €
projQQ(Ky, ;). W

Let us present a lemma before proving Theorem 1.19.

Lemma 5.4. Let r > 3 and F1, F2 be two families of r-graphs with F1 C Fa. Suppose that
every n-vertex JFi-free r-graph can be made Fa-free by removing at most o(n”) edges,
and g(Fa,x) is increasing on [0, c] for some ¢ > 0. Then g(F1,x) = g(Fa,x) on [0,c|.

Proof. Since F; C F3, it follows from Observation 2.2 that g(Fo,z) < g(Fi,z) for
all z € projQd(Fz). So it suffices to show that g(Fa,z) > g(F1,) for all = € [0,c]|. Let
(0, Y0) € Q(F1) with zg € [0, ] and yo = g(F1, xo). By definition, there exists a sequence
of Fi-free r-graphs (Hy)pe; with limy_, d(0Hi) = ¢ and limg_,o0 d(Hi) = yo.

For every k > 1 let H}, be a subgraph of Hy, that is Fo-free and of maximum size, and
let 2}, = d(0H},) and y;, = d(H},). By the Bolzano-Weierstrass theorem, (x},,}) =, con-

tains a convergent subsequence (a7, , ygk)zil Let o = limy, o0 23, and yg = limy_o0 ygék,
k=1
is a good sequence of Fa-free r-graphs that realizes (xf, y}), we obtain (z(, y() € Q(Fa).

and it is easy to see from the definition of H}, that z{, < z¢ and y{ < yo. Since (H}, )

By assumption, for every ¢ > 0 there exists n(€) such that Hy can be made Fa-free by
removing at most € (v(Hy))" edges whenever v(Hy) > n(e). Since limyg o0 v(Hy) = o0,
there exists k(e) such that v(Hy) > n(e) for all k& > k(e), and hence |H},| > |[Hi| —
€ (v(Hy))" for all k > k(e). Therefore, yf > yo—rle. Letting € — 0, we obtain g, > 3o, and
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hence y{, = yo. Therefore, (z(,yo) € Q(F2). By the assumption that g(F2) is increasing
on [0, ¢], we obtain

9(F2,w0) > g(Fa,x4) > yo = g(F1, To).

Since zp was chosen arbitrarily from [0, ¢|, g(Fa,x) > g(F1, ) for all z € [0,¢], and this
completes the proof. W

Now we prove Theorem 1.19 using Corollary 1.18.

Proof of Theorem 1.19. It was shown by Pikhurko (see the proof of Lemma 3 in [20])
that every Hy, -free r-graph on n-vertices can be made Ky ,-free by removing at most
o(n") edges. On the other hand, Corollary 1.18 shows that g(Kj, ) is increasing on
[0, (€)—1/¢""1]. So, it follows from Lemma 5.4 that

T T x/r Tt
I s,0) = g0 00) = (=) ()
for all z € [0, (€),—1/¢"71]. W
6. Concluding remarks

In this paper we proved that for any r > 3 and any family F of r-graphs the function
g(F) has at most countably many discontinuities. We also constructed a family D of 3-
graphs such that ¢g(D) is discontinuous at & = 2/3. It seems natural to ask the following
question.

Problem 6.1. Can g(F) have infinitely many discontinuities?

In Section 4 we proved several results about ¢(7;) for r > 3. Even for r = 3 the
function ¢(73) is already shown to have many intersecting properties, and is closely
related to Steiner triple systems. The following question seems difficult for x not of the
form (k —1)/k with k =1 or 3 (mod 6).

Problem 6.2. Determine ¢(73, ) for all € (2/3,1].

Reiher observed that the function x(1 — z) in Theorem 4.7 can be replaced by the
piecewise linear function p(xz) = % — %x for all k € Nt and % <z< kiﬂ,
which implies that g(73,z) < p(x) for all % < x < 1. This can be shown by redoing the
proof of Theorem 4.7 and taking into account that instead of w > ﬁ one can directly
use w >k + 1, unless z = %, but this case is already understood.

Now let us show a lower bound for ¢g(73,z) for = € (2/3,6/7]. Let F denote the Fano

Plane, i.e., F is a 3-graph on 7 vertices with edge set
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2/9

6/49

Fig. 10. The lower bound for g(73, x) given by (28).

{123,345, 561, 174, 275, 376, 246 .

Let o € [1/7,1/3] and 8 = (1—3a)/4. Let H,, () be obtained from F by blowing up each
vertex in {1,2,3} into a set of size of an and blowing up each vertex in {4,5,6, 7} into
a set of size of fn (note that these weights for blowing up the Fano plane are optimal).
Let

z= lim m{#)@ =6a% +128% + 24af = %(1 + 20 — 70?), (26)
and
y= lim |H&()O‘)| = 603 + 3603% = %a(S — 18a + 350%). (27)
Then, (26) and (27) give
y = % (—70\/m + 63z + 60v/18 — 21z — 36) , (28)

which implies

1
9(Toa) > 7= (—70\/1&@2 ~ 2123 + 63z + 60v/18 — 21z — 36)
for all x € [2/3,6/7]. (See Fig. 10.)

The construction above gives an algebraic curve connecting (2/3,2/9) and (6/7,6/49).
Using a similar method, one can construct an algebraic curve defined by

2v/3(k k—1—kx)2 kx — 2k + 2
y = V3(k + 3)( T)?2 N 3kzx 2k+ (29)
3k2vk — 3 k

to connect (2/3,2/9) and ((k — 1)/k, (k — 1)/k?) for all k = 1 or 3 (mod 6). However,
we do not know how to construct curves to connect ((k —1)/k, (k —1)/k?) and ((k' —
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1)/K', (k' —1)/k'?) for consecutive k, k' > 7 and k, k' = 1 or 3 (mod 6). Also, there is an
interesting phenomenon that

{((k=1)/k,(k—1)/k*) : k> T and k=1 or 3 (mod 6)}
are local maxima of the function given by (29). Therefore, we pose the following question.

Problem 6.3. For every k > 7 with k = 1 or 3 (mod 6), is the point ((k—1)/k, (k—1)/k?)
a local maximum of ¢(73)?

In [11], the first author proved the following stability theorem about the points ((k —
1)/k, (k —1)/k?) in Q(T3), which we think might be helpful for Problems 6.2 and 6.3.

Theorem 6.4 (Stability, [11]). Let k be an integer with k =1 or 3 (mod 6) and H be a
cancellative 3-graph on n vertices. For every 6 > 0 there exists an € > 0 and ng such
that the following holds for all n > ng. Suppose that |0H| > (1 — €)(k — 1)n?/(2k) and
|H| > (1 —€)(k — 1)n3/(6k?). Then H can be transformed into a subgraph of a 3-graph
in S(n, k) by removing at most dn> edges.

There is also an exact result for the points ((k — 1)/k, (k — 1)/k?). Let s(n, k) =
max{|H|: H € S(n, k)}.

Theorem 6.5 ([11]). Let k be an integer that satisfies k = 1 or 3 (mod 6) and H be a
cancellative 3-graph on n vertices with n sufficiently large. Suppose that |OH| = ta(n, k).
Then |H| < s(n, k), and equality holds only if H € S(n, k).

For r > 4 there is very little known about upper and lower bounds for ¢(7,,z) for
x> (r—1)!/r"=2. We pose the following question.

Problem 6.6. Let 7 > 4 and = > (r — 1)!/r"~2. Improve the upper bound for g(7,z),
and construct cancellative r-graphs to give good lower bounds for ¢g(7;, x).

Given our poor understanding of hypergraph Turan problems, determining the feasible
region of other families of hypergraphs would also be of interest. In particular, we pose
the following two questions.

Problem 6.7. Determine the feasible region of Hy | for r > 3 and £ > r.

Problem 6.8. Determine the feasible region of the Fano Plane.

In [13], we give an example of a (finite) family F, for which g(F) has two global
maxima. In particular, our example shows that g(F) can be non-unimodal.
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Y
1/2

/7 T RO ——— _— ]

2 1 5 8 *
(3, 4) 6 o 1

Fig. 11. g(M) has two global maxima by Theorem 6.9.

0 z1 2y T2 T, Tt

Fig. 12. Can g(F) has many global maxima?

Theorem 6.9 (/13]). There exists a (finite) family M of 3-graphs such that g(M,x) < 4/9
for all x € projQ(M), and equality holds iff x € {5/6,8/9}. (See Fig. 11.)

Theorem 6.9 suggests the following natural problem which we hope to address in the
future.

Problem 6.10. Fix r > 3 and ¢ > 0. Do there exist a (finite) family F of r-graphs and
reals 0 < x1 < @) < ®2 < --- < x}_; < x4 such that g(F,z;) = n(F) for all ¢ € [¢] and
g(F,z;) < m(F) for all i € [t — 1]. (See Fig. 12.)
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