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Let F be a family of r-uniform hypergraphs. The feasible 
region Ω(F) of F is the set of points (x, y) in the unit 
square such that there exists a sequence of F-free r-uniform 
hypergraphs whose shadow density approaches x and whose 
edge density approaches y. The feasible region provides a lot 
of combinatorial information, for example, the supremum of 
y over all (x, y) ∈ Ω(F) is the Turán density π(F), and Ω(∅)
gives the Kruskal-Katona theorem.
We undertake a systematic study of Ω(F), and prove that 
Ω(F) is completely determined by a left-continuous almost 
everywhere differentiable function; and moreover, there exists 
an F for which this function is not continuous. We also 
extend some old related theorems. For example, we generalize 
a result of Fisher and Ryan to hypergraphs and extend a 
classical result of Bollobás by almost completely determining 
the feasible region for cancellative triple systems.
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 Introduction

Given a set V and an integer r > 0, let 
(

V
r

)
= {W ⊂ V : |W | = r}. An r-uniform 

ypergraph (henceforth r-graph) H with vertex set X is a subset of 
(

X
r

)
, and we denote 

by V (H). Let v(H) = |V (H)|. The shadow of an r-graph H is

∂H =
{

A ∈
(

V (H)
r − 1

)
: ∃B ∈ H such that A ⊂ B

}
.

he classical Kruskal-Katona theorem gives a tight upper bound for |H| as a function 
 |∂H|. The following technically simpler version of the Kruskal-Katona theorem serves 
 a good starting point for the work in this paper.

heorem 1.1 (see Lovász [14]). Let H be an r-graph, and suppose that |∂H| =
(

z
r−1

)
for 

me real number z ≥ r. Then |H| ≤
(

z
r

)
.

Let F be a family of r-graphs. Then H is F-free if it does not contain any member 
 F as a (not necessarily induced) subgraph. The Turán number ex(n, F) of F is the 
aximum number of edges in an F-free r-graph on n vertices. The Turán density of F
 π(F) = limn→∞ ex(n, F)/

(
n
r

)
. Determining π(F) for r ≥ 3 is known to be notoriously 

ard in general, and we refer the reader to a survey by Keevash [8] for results before 
11.
In this paper, we combine the Kruskal-Katona theorem and the hypergraph Turán 

roblem by considering the following more general question.

If H is F-free, what are the possible values of |H| for fixed |∂H|? (∗)

 particular, if we let F = ∅, then the upper bound for |H| in (∗) follows from the 
ruskal-Katona theorem. If F 	= ∅, then (∗) is closely related to the hypergraph Turán 
roblem. In fact, ex(n, F) gives a universal upper bound for |H| no matter what |∂H| is, 
d it is tight for some (at least one) values of |∂H|. However, the upper bound given by 
(n, F) gives us a rather limited picture of the relationship between the shadow and size 
 an F-free hypergraph. Our objective in this work is to provide a much more detailed 
iew of this relationship.

An analogous question has been studied extensively in extremal graph theory. Given 
o graphs H and G, let n(H; G) denote the number of copies of H in G. The density 
 H in G is ρ(H; G) = n(H; G)/

(
v(G)
v(H)

)
. For fixed graphs H1 and H2 and (large) graph 

, the following problem is a cornerstone of extremal graph theory:

What are the possible values of ρ(H2; G) if ρ(H1; G) is fixed? (�)

ven for (H1, H2) = (K2, Kt) with t ≥ 3, question (�) is known to be highly nontrivial 

d was asymptotically solved for t = 3 by Razborov [22], t = 4 by Nikiforov [18], and 
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The main difficulty in (�) is to determine the lower bound for ρ(H2; G). However, it 

ill be shown later that the main difficulty in (∗) is to determine the upper bound for 
|. In order to state our results formally we need some definitions.

efinition 1.2 (Feasible region). Fix r ≥ 3.

) Given an r-graph H, its edge density is d(H) = |H|/
(

v(H)
r

)
and its shadow density 

is d(∂H) = |∂H|/
(

v(H)
r−1

)
.

) An r-graph sequence (Hk)∞
k=1 is good if v(Hk) → ∞ as k → ∞ and both 

limk→∞ d(Hk) and limk→∞ d(∂Hk) exist.
) Let (Hk)∞

k=1 be a good sequence of F-free r-graphs, and (x, y) ∈ [0, 1]2. Then 
(Hk)∞

k=1 realizes (x, y) if limk→∞ d(∂Hk) = x and limk→∞ d(Hk) = y.
) The feasible region Ω(F) of F is the collection of all points (x, y) ∈ [0, 1]2 that can 

be realized by a good sequence of F-free r-graphs.

As mentioned earlier, the upper bound given by ex(n, F) gives us a rather limited 
cture of Ω(F), since it only determines

sup{y : ∃x ∈ [0, 1] such that (x, y) ∈ Ω(F)}.

s indicated by (∗), in this paper we study Ω(F). Our results are of two flavors.

We prove some general results about the shape of Ω(F). Our main results here 
are Theorems 1.11 and 1.12 which state that the boundary of Ω(F) is completely 
determined by a left-continuous almost everywhere differentiable function g(F) with 
at most countably many jump discontinuities, and give examples showing that g(F)
can indeed be discontinuous.
We study Ω(F) for some specific choices of F for which ex(n, F) has been investigated 
by many researchers. We focus on two specific families: cancellative hypergraphs and 
hypergraphs without expansions of cliques. Our results, which go beyond determining 
just the Turán density, are summarized in Corollaries 1.16 and 1.18 (see Figs. 6
and 7).

egarding our results on the shape of Ω(F), there are (at least) two previous works of 
similar flavor: Razborov [22] determined the closure of the set of points defined by the 
momorphism density of the edge and the triangle in finite graphs (and showed that 
e boundary is almost everywhere differentiable) and Hatami-Norine [7] constructed 
amples which show that the restrictions of the boundary to certain hyperplanes of the 
gion defined by the homomorphism densities of a list of given graphs can have nowhere 

fferentiable parts.
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Our work can be viewed as a continuation of a long line of research in asymptotic ex-
emal combinatorics perhaps beginning with the seminal work of Erdős-Lovász-Spencer 
] and continuing today in different guises such as the graph limits paradigm of Lovász 
5] or the method of Flag algebras of Razborov [21].

1. General results about Ω(F)

In this section we state some general results about feasible regions.

roposition 1.3. The region Ω(F) is closed for all r ≥ 3 and all (possibly infinite) families 
of r-graphs.

efinition 1.4 (Projection of the feasible region). The projection of Ω(F) on the x-axis 

projΩ(F) = {x : ∃y ∈ [0, 1] such that (x, y) ∈ Ω(F)} .

Note that it is not necessarily true that projΩ(F) = [0, 1] in general. Later we will 
resent an example of F , which shows projΩ(F) = [0, (�)r−1/�r−1] for � ≥ 3. On the 
her hand, by removing edges one by one from H one can reduce the edge density of 

H continuously (in the limit sense) to 0. This yields the following observation.

bservation 1.5. For every family F of r-graphs with r ≥ 3 there exists ĉ ∈ [0, 1] such 
at projΩ(F) = [0, ̂c].

Proposition 1.3 enables us to define the following function.

efinition 1.6 (Boundary of the feasible region). Given a family F of r-graphs with r ≥ 3, 
t g(F) : projΩ(F) → [0, 1] be defined by

g(F)(x) = max {y : (x, y) ∈ Ω(F)} ,

r all x ∈ projΩ(F).

Here we abuse notation by writing g(F , x) for g(F)(x). Our next result shows that 
(F) is determined by projΩ(F) and g(F).

roposition 1.7. Let r ≥ 3 and let F be a family of r-graphs. If (x0, y0) ∈ Ω(F), then 

0, y) ∈ Ω(F) for all y ∈ [0, y0].

Combining the Kruskal-Katona theorem with some further observations yields the 

llowing universal upper bound for g(F , x).
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Fig. 1. Upper bounds for g(F, x) when r = 3, 4, 5 given by Proposition 1.8.

roposition 1.8. Let r ≥ 3 and F be a family of r-graphs. Then g(F , x) ≤ xr/(r−1) for 
l x ∈ projΩ(F). In particular, projΩ(∅) = [0, 1] and g(∅, x) = xr/(r−1) for all x ∈ [0, 1]. 
ee Fig. 1.)

In [7], Hatami and Norin considered the region defined by the homomorphism densities 
 a list of given graphs, which is a more general version of (�) (that generalizes (�) from 
o graphs H1, H2 to more graphs). They constructed examples which show that the 
strictions of the boundary to certain hyperplanes can have nowhere differential parts. 
owever, we will show in the next result that g(F) is well-behaved.

efinition 1.9 (Left/right continuity). Let f : R → R. Then f is left-continuous (resp. 
ght-continuous) at x if for any ε > 0 there exists δ > 0 such that |f(x′) −f(x)| < ε for all 
′ ∈ (x −δ, x) (resp. |f(x′) −f(x)| < ε for all x′ ∈ (x, x +δ)). If f is left-continuous (resp. 
ght-continuous) at all x ∈ R, then we say f is left-continuous (resp. right-continuous).

efinition 1.10 (Types of discontinuities). Let f : R → R and x ∈ R be a discontinuity of 
. If limx→x− f(x) and limx→x+ f(x) exist, then f is said to have the discontinuity of the 
st kind at x. Otherwise, the discontinuity is said to be of the second kind. Furthermore, 
ppose that x is a discontinuity of the first kind of f . Then x is a removable discontinuity 

 limx→x− f(x) = limx→x+ f(x). Otherwise, x is a jump discontinuity.

heorem 1.11. For any r ≥ 3 and any family F of r-graphs, g(F) is left-continuous, has 
 most countably many jump discontinuities, and is almost everywhere differentiable.
Furthermore, the next result shows that g(F) can indeed be discontinuous.
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Fig. 2. The function g(D) is discontinuous at x = 2/3.

heorem 1.12. There exists a family D of 3-graphs with projΩ(D) = [0, 1] and 
D, 2/3) = 2/9, but there exists an absolute constant δ0 > 0 such that g(D, 2/3 + ε) <
9 − δ0 for all ε ∈ (0, 10−8).

Actually, Theorem 1.12 can be extended to r ≥ 4, and the condition that ε < 10−8 is 
ot necessary (for all r ≥ 3). The proof for these extensions can be found in [12]. (See 
ig. 2.)

2. Cancellative hypergraphs

In this section we consider the feasible region of cancellative hypergraphs, which is 
erhaps the first example of an extremal hypergraph problem that was well understood. 
ur results are summarized in Corollary 1.16 stated at the end of this section.

efinition 1.13. Let Tr be the collection of all r-graphs on at most 2r − 1 vertices with 
edges A, B, C such that A�B ⊂ C. An r-graph is cancellative iff it is Tr-free.

For r = 2 the family T2 comprises only one graph K3. For r = 3 the family T3

mprises two hypergraphs K3−
4 and F5, where K3−

4 is the 3-graph on 4 vertices with 
actly 3 edges, and F5 is the 3-graph on 5 vertices with edge set {123, 124, 345}.
Let [n] = {1, 2, ..., n}. Fix � ≥ r ≥ 2. Let V1 ∪ · · · ∪ V� be a partition of [n] with each 

art of size either �n/�� or �n/��. The generalized Turán graph Tr(n, �) is the collection 
 all r-sets that intersect each Vi on at most one vertex. Notice that T2(n, �) is just the 
dinary Turán graph. Let

tr(n, �) = |Tr(n, �)| ≈
(

�

r

) (n

�

)r

.

In [2], Bollobás proved that ex(n, T3) ≤ t3(n, 3) and T3(n, 3) is the unique T3-free 

graph on n vertices with exactly t3(n, 3) edges. Therefore, g(T3, x) ≤ 2/9 for all x ∈
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Fig. 3. Ω(T3) is contained in the dark area above according to (1).

ojΩ(T3). Later, Keevash and the second author [9] proved a stability theorem for T3-
ee hypergraphs. The first author [10] gave a new proof to both the exact and the 
ability result for T3-free hypergraphs. Moreover, [10] proves that a T3-free 3-graph H
 n-vertices satisfies the inequality

4
(

3|H|/|∂H|
n − 3|H|/|∂H|

)2

|∂H| ≤ n2 − 2|∂H|,

hich implies (see Fig. 3)

g(T3, x) ≤
√

2(1 − x)x3 + x2 − x

3x − 1 , for all x ∈ projΩ(T3). (1)

Our next result concerns cancellative r-graphs for r ≥ 3, and improves the bound in 
roposition 1.8 as well as that in (1) for x ∈ [0, 2/3].

heorem 1.14. Let r ≥ 3 and x ∈ projΩ(Tr). Then

g(Tr, x) ≤
(

xr

r!

) 1
r−1

.

oreover, equality holds for all x ∈ [0, (r − 1)!/rr−2]. (See Fig. 4.)

For r = 3, the bound given by Theorem 1.14 is not tight for any x ∈ (2/3, 1] according 
 Bollobás’ theorem [2]. Our next result will present an improved bound for g(T3, x) for 

 ∈ (2/3, 1].

heorem 1.15. The inequality g(T3, x) ≤ x(1 − x) holds for all x ∈ [0, 1]. Moreover, 
T3, (k − 1)/k) = (k − 1)/k2 when k ≡ 1 or 3 (mod 6). (See Fig. 5.)

Christian Reiher observed that the function x(1 −x) in Theorem 1.15 can be replaced 

 a piecewise linear function that always lies below x(1 − x) (see Section 6 for details).
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Fig. 4. Upper bounds for g(Tr, x) when r = 3, 4 given by Theorem 1.14.

Fig. 5. Ω(T3) is contained in the dark area above by Theorem 1.15.

The lower bound for g(T3, (k−1)/k) when k ≡ 1 or 3 (mod 6) comes from the balanced 
low up of Steiner triple systems on k vertices, this will be explained in more detail in 
ection 4.

Combining Theorems 1.14 and 1.15 yields the following result for g(T3, x), which 
rovides a rather comprehensive picture of Ω(T3).

orollary 1.16. We have g(T3, x) = x3/2/
√

6 for all x ∈ [0, 2/3], and g(T3, x) ≤ x(1 − x)
r all x ∈ (2/3, 1]. Moreover, g(T3, (k − 1)/k) = (k − 1)/k2 for all integers k ≡ 1 or 3
od 6). (See Fig. 6.)

3. Hypergraphs without an expansion of a large clique

In this section we consider the feasible region of hypergraphs without expansion of 
iques. These hypergraphs were introduced by the second author in [17] as a way to 
neralize Turán’s theorem to hypergraphs. Another reason for their importance is that 
ey provide the first (and still the only) explicitly defined examples which yield an 

finite family of numbers realizable as Turán densities for hypergraphs.
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Fig. 6. Ω(T3) is contained in the dark area above according to Corollary 1.16.

Let Kr
�+1 be the collection of all r-graphs F with at most 

(
�+1

2
)

edges such that for 
me (� +1)-set S, which will be called the core of F , every pair {u, v} ⊂ S is covered by 
 edge in F . Let the r-graph Hr

�+1 be obtained from the complete graph K� by adding 
− 2 new vertices into each edge. The graph Hr

�+1 is called the expansion of K�. It is an 
sy observation that Hr

�+1 ∈ Kr
�+1.

It was shown by the second author [17] that ex(n, Kr
�+1) = tr(n, �) and Tr(n, �) is 

e unique Kr
�+1-free r-graph on n vertices with exactly tr(n, �) edges. In [19], Pikhurko 

proved the result in [17] and proved that if n is sufficiently large then ex(n, Hr
�+1) =

(n, �) and Tr(n, �) is the unique Hr
�+1-free r-graph on n vertices with exactly tr(n, �)

ges.
In order to state our result, we need to extend the definition of shadows. Let H be an 

graph and S ⊂ V (H). Then H[S] is the induced subgraph of H on S. For 1 ≤ i ≤ r − 1
e i-th shadow of H is

∂iH =
{

A ∈
(

V (H)
r − i

)
: ∃B ∈ H such that A ⊂ B

}
.

or i ≤ 0 we extend the definition of the i-th shadow ∂iH as follows.

∂iH =
{

A ∈
(

V (H)
r − i

)
: H[A] is a complete r-graph

}
. (2)

 particular, ∂1H = ∂H and ∂0H = H. By definition, ∂i+1H = ∂ (∂iH) for all 0 ≤ i ≤
− 2, and ∂ (∂iH) ⊂ ∂i+1H for all i ≤ −1.
Our first result here relates the sizes of different shadows of a Kr

�+1-free r-graph H. 
his generalizes an important result of Fisher and Ryan [6] from graphs to hypergraphs.

heorem 1.17. Let � ≥ r ≥ 2 and H be a Kr
�+1-free r-graph. Then

|∂r−�H|(
�
�

)
) 1

�

≤ · · · ≤
(

|∂−1H|(
�

r+1
)

) 1
r+1

≤
(

|H|(
�
r

)
) 1

r

≤
(

|∂1H|(
�

r−1
)

) 1
r−1

≤ · · · ≤
(

|∂r−1H|(
�
1
)

) 1
1

.

Using Theorem 1.17 we are able to determine g(Kr
�+1) completely via the following 
sult. We will use (�)r to denote �(� − 1) · · · (� − r + 1).



32 X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59

Fi
[2

C

fo

sh
is
is
of
x

T

fo
Fig. 7. The region Ω(Kr
�+1) determined by Corollary 1.18.

g. 8. The region Ω(Hr
�+1) is contained in the dark areas according to Theorem 1.19 and results in [17] and 

0].

orollary 1.18. Let � ≥ r ≥ 3. Then projΩ(Kr
�+1) = [0, (�)r−1/�r−1] and

g(Kr
�+1, x) = (� − r + 1)

(
xr

(�)r

) 1
r−1

r all x ∈ [0, (�)r−1/�r−1]. (See Fig. 7.)

Determining Ω(Hr
�+1) is much more difficult than determining Ω(Kr

�+1) because the 
adow density of an Hr

�+1-free r-graph can be greater than (�)r−1/�r−1. An r-graph S
 called a star if all edges in S contain a fixed vertex, which is called the centre of S. It 
 easy to see that a star does not contain Hr

�+1 as a subgraph, and the shadow density 
 a star can be arbitrarily close to 1. Still, we are able to determine g(Hr

�+1, x) for all 
 ∈ [0, (�)r−1/�r−1].

heorem 1.19. Let � ≥ r ≥ 3. Then projΩ(Hr
�+1) = [0, 1] and

g(Hr
�+1, x) = (� − r + 1)

(
xr

(�)r

) 1
r−1
r all x ∈ [0, (�)r−1/�r−1]. (See Fig. 8.)
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The remainder of this paper is organized as follows. In Section 2 we will prove 
ropositions 1.3, 1.7, and 1.8, and Theorem 1.11. Section 3 will be devoted to prove 
heorem 1.12. Then we will prove Theorems 1.14 and 1.15 in Section 4. In Section 5 we 
ill prove Theorem 1.17, Corollary 1.18, and Theorem 1.19. In Section 6 we will include 
me remarks and open problems. We will omit the floor and ceiling signs when they are 
t crucial in the proofs.

 General theory

In this section we will prove several general results about the feasible region. First let 
 present a simple but useful idea that will be used in our proofs.

ct 2.1. Let r ≥ 2. Suppose that H is an r-graph on n vertices, and every edge in H
ntains an (r − 1)-subset that is not covered by any other edge in H. Then |H| ≤

(
n

r−1
)
.

Indeed, if every edge in H contains a unique (r − 1)-subset, then we can map every 
ge E ∈ H to an (r − 1)-subset of E that is not covered by any other edge in H. This 
ap is an injection from H to 

( [n]
r−1

)
and it implies the upper bound in Fact 2.1. Actually, 

 was shown by Bollobás [1] that |H| ≤
(

n−1
r−1

)
.

lgorithm 1. Remove edges with the edge density threshold d.
put: An r-graph H and the density threshold d ∈ [0, 1].
peration: If d(H) ≤ d or |H| ≤

(
n

r−1
)
, then do nothing and let H be the output. 

therwise, by Fact 2.1, there exists E ∈ H such that every (r −1)-subset of E is covered 
 another edge in H. Remove E from the edge set of H, and let H denote the resulting 
graph. Repeat this operation until d − 1/

(
n
r

)
< d(H) ≤ d.

utput: Either the original r-graph H or a subgraph H′ ⊂ H with d −1/
(

n
r

)
< d(H′) ≤ d, 

d |∂H′| = |∂H|.

Notice that the Operation above does not change |∂H| since all (r − 1)-subsets of 
e removed edge E are covered by some edge in H. Therefore, the output r-graph H′

tisfies |∂H′| = |∂H|. On the other hand, since each step of the operation reduces |H|
 exactly one, d(H) can be reduced to some real number d′ with d − 1/

(
n
r

)
< d′ ≤ d.

1. Basic properties

In this section we will prove Propositions 1.3, 1.7, and 1.8, and Theorem 1.11. First 
e prove Proposition 1.3.

roof of Proposition 1.3. Let (x, y) be a limit point of Ω(F). For every positive integer 
we will specify a hypergraph Hk with v(Hk) ≥ k, |d(∂Hk) − x| ≤ 1/k and |d(Hk) −

 ≤ 1/k. The resulting sequence (Hk)∞

k=1 will be good and realize (x, y), so it will 



34 X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59

es
su
re
|d

P
r-
y

le
se
th
fo
an
li
re

si

O
F

P
an
gr
p

[0
le
th

w

tablish (x, y) ∈ Ω(F). For the construction of Hk we first take a point (xk, yk) ∈ Ω(F)
ch that |x − xk| ≤ 1/(2k) and |y − yk| ≤ 1/(2k). Every good sequence (Hk,m)∞

m=1
alizing (xk, yk) contains a hypergraph Hk with v(Hk) ≥ k, |d(∂Hk) − xk| ≤ 1/k and 
(Hk) − yk| ≤ 1/(2k). By the triangle inequality, Hk has the desired properties. �

Next we prove Proposition 1.7. Its proof uses Algorithm 1.

roof of Proposition 1.7. Since (x0, y0) ∈ Ω(F), there exists a good sequence of F-free 
graphs (Hk)∞

k=1 for which limk→∞ d(∂Hk) = x0 and limk→∞ d(Hk) = y0. Now fix 
∈ [0, y0). For every k ≥ 1 apply Algorithm 1 to Hk with edge density threshold y and 
t H′

k denote the r-graph that Algorithm 1 outputs. We claim that (H′
k)∞

k=1 is a good 
quence of F-free r-graphs that realizes (x0, y). Indeed, choose ε = (y0 − y)/2 > 0, by 
e assumption that limk→∞ d(Hk) = y0, there exists k0 such that d(Hk) ∈ (y0−ε, y0+ε)
r all k ≥ k0. Therefore, by Algorithm 1, y − 1/

(
v(Hk)

r

)
< d(H′

k) ≤ y for all k ≥ k0, 
d hence limk→∞ d(H′

k) = y. On the other hand, since |∂H′
k| = |∂Hk| for all k ≥ 1, 

mk→∞ d(∂H′
k) = x. Therefore, (H′

k)∞
k=1 is a good sequence of F-free r-graphs that 

alizes (x0, y), and hence (x0, y) ∈ Ω(F). �

Recall that ex(n, F1) ≤ ex(n, F2) whenever F2 ⊂ F1. By the definition of g(F), a 
milar inequality also holds for g(F).

bservation 2.2. Let r ≥ 3. Suppose that F1 and F2 are two families of r-graphs with 

1 ⊂ F2. Then Ω(F2) ⊂ Ω(F1). In particular, g(F2, x) ≤ g(F1, x) for all x ∈ projΩ(F2).

Now we are ready to prove Proposition 1.8.

roof of Proposition 1.8. By Observation 2.2, it suffices to show that projΩ(∅) = [0, 1]
d g(∅, x) = xr/(r−1) for all x ∈ [0, 1]. The first part is easy, since the complete r-
aph on n vertices has shadow density 1, and it follows from Observation 1.5 that 

rojΩ(∅) = [0, 1].
Now we consider the second part. First we show that g(∅, x) ≤ xr/(r−1) for all x ∈

, 1]. Let (Hk)∞
k=1 be a good sequence of r-graph that realizes (x, y). For every k ≥ 1

t αk denote the real number that satisfies |∂Hk| =
(

αkv(Hk)
r−1

)
. By the Kruskal-Katona 

eorem, |Hk| ≤
(

αkv(Hk)
r

)
for all k ≥ 1. By assumption and limk→∞ v(Hk) = ∞,

x = lim
k→∞

|∂Hk|(
v(Hk)
r−1

) = lim
k→∞

(
αkv(Hk)

r−1
)

(
v(Hk)
r−1

) = lim
k→∞

(αk)r−1,

hich implies that limk→∞ αk = x1/(r−1). Therefore, by assumption,

y = lim |Hk|( ) ≤ lim
(

αkv(Hk)
r

)
( ) = lim (α )r = x

r
r−1 ,
k→∞ v(Hk)
r−1

k→∞ v(Hk)
r

k→∞ k
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d this proves that g(∅, x) ≤ xr/(r−1) for all x ∈ [0, 1].
Next we show that g(∅, x) ≥ xr/(r−1) for all x ∈ [0, 1]. Choose an arbitrary x ∈ [0, 1]
d let α = x1/(r−1). Let Hn(α) denote the vertex disjoint union of a complete r-graph 
 αn vertices and a set of (1 − α)n isolated vertices. Then we claim that (Hk(α))∞

k=1 is 
good sequence of r-graphs that realizes (x, xr/(r−1)). Indeed,

lim
k→∞

|∂Hk(α)|(
n

r−1
) = lim

k→∞

(
αn

r−1
)

(
n

r−1
) = αr−1 = x,

d

lim
k→∞

|Hk(α)|(
n
r

) = lim
k→∞

(
αn
r

)(
n
r

) = αr = x
r

r−1 ,

d it follows from the definition that g(∅, x) ≥ xr/(r−1) for all x ∈ [0, 1]. �

2. Continuity and differentiability

In this section we will prove Theorem 1.11 and some other related corollaries. We will 
e the following theorem in our proofs.

heorem 2.3 (see Section 3 of Chapter 3, [24]). Let f : R → R be a monotone function. 
hen f has at most countably many discontinuities of the first kind and no discontinuity 
 the second kind. Moreover, f is almost everywhere differentiable.

The following lemma is the main tool in our proofs.

emma 2.4. Let r ≥ 3 and F be a family of r-graphs. Then

(g(F , x + h))
r−1

r ≤ (g(F , x))
r−1

r + (g(F , x))
r−1

r

x
h

r all x ∈ projΩ(F) \ {0} and all h ≥ 0 with x + h ∈ projΩ(F).

roof. Suppose that x + h ∈ projΩ(F). Choose

α =
(

x + h

x

) 1
r−1

− 1.

et (Hk)∞
k=1 be a good sequence of F-free r-graphs that realizes (x + h, g(F , x + h)). 

or every k ≥ 1 let nk = v(Hk) and let H′
k be obtained from Hk by adding a set of αnk

olated vertices and let n′
k = (1 + α)nk. Then,

lim |∂H′
k|( ) = lim |∂Hk|( ) = x + h = x,
k→∞ n′
k

r−1
k→∞ (1+α)nk

r−1
(1 + α)r−1
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lim
k→∞

|H′
k|(

n′
k

r

) = lim
k→∞

|Hk|((1+α)nk

r

) = g(F , x + h)
(1 + α)r

=
(

x

x + h

) r
r−1

g(F , x + h).

herefore, (H′
k)∞

k=1 a good sequence of F-free r-graphs that realizes

(
x,

(
x

x + h

) r
r−1

g(F , x + h)
)

.

onsequently,

g(F , x) ≥
(

x

x + h

) r
r−1

g(F , x + h), (3)

hich gives

(g(F , x + h))
r−1

r ≤ (g(F , x))
r−1

r + (g(F , x))
r−1

r

x
h. �

orollary 2.5. Let r ≥ 3 and F be a family of r-graphs. Then for any x ∈ projΩ(F) \{0}
d any δ > 0, there exists ε > 0 such that g(F , x′) > g(F , x) − δ for all x′ ∈ (x − ε, x).

roof. We may assume that δ < 1. Choose ε = δx/3 and let x′ ∈ (x − ε, x). Then (3)
ves

g(F , x′) ≥
(

x′

x

) r
r−1

g(F , x)

=
(

1 − x − x′

x

) r
r−1

g(F , x)

≥
(

1 − 2ε

x

)
g(F , x) = g(F , x) − 2g(F , x)ε

x
> g(F , x) − δ,

here the second inequality follows from the fact that (1 − x)a ≥ 1 − ax for all x ∈ [0, 1]
d all a ≥ 1. �

Proposition 1.3 together with Corollary 2.5 will show that g(F) does not contain 
movable discontinuities.

orollary 2.6. Let r ≥ 3 and F be a family of r-graphs. Then g(F) does not contain 

movable discontinuities.
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roof. Suppose that x0 ∈ projΩ(F) is a removable discontinuity of g(F). Then x0 >

and limx→x−
0

g(F , x) = limx→x+
0

g(F , x) 	= g(F , x0). Let y0 = limx→x−
0

g(F , x). By 
roposition 1.3, (x0, y0) ∈ Ω(F), and by the definition of g(F), g(F , x0) > y0. Letting 
= (g(F , x0) − y0)/2 in Corollary 2.5, we obtain

y0 = lim
x→x−

0

g(F , x) > g(F , x0) − δ = g(F , x0) + y0

2 > y0,

contradiction. �

Now we are ready to prove Theorem 1.11.

roof of Theorem 1.11. First we show that g(F) is almost everywhere differentiable. Let 
(x) = (g(F , x))

r−1
r − x. It follows from Lemma 2.4 and Theorem 1.8 that

(g(F , x + h))
r−1

r ≤ (g(F , x))
r−1

r + (g(F , x))
r−1

r

x
h

≤ (g(F , x))
r−1

r +
(
x

r
r−1

) r−1
r

x
h

= (g(F , x))
r−1

r + h,

hich implies that f is decreasing on projΩ(F). By Theorem 2.3, f is almost everywhere 
fferentiable, and so is g(F).
Next, we show that g(F) has at most countably many jump discontinuities. By Theo-

m 2.3, f has at most countably many discontinuities of the first kind, and so does g(F)
nce g(F , x) = (f(x) + x)r/(r−1) for all x ∈ projΩ(F). Corollary 2.5 shows that g(F)
es not have a removable discontinuity, therefore, g(F) has at most countably many 
mp discontinuities.
Finally, we show that g(F) is left-continuous. Let x0 ∈ projΩ(F) be a discon-

nuity of g(F). By the previous result, x0 can only be a jump discontinuity. Let 
= limx→x−

0
g(F , x) and y+

0 = limx→x+
0

g(F , x). By Proposition 1.3, (x0, y−
0 ) ∈ Ω(F)

d (x0, y+
0 ) ∈ Ω(F). So, it suffices to show that y−

0 > y+
0 . Indeed, suppose that y+

0 > y−
0 . 

hen, by the definition of g(F) we would have g(F , x0) = y+
0 . Letting δ = (y+

0 − y−
0 )/2

 Corollary 2.5, we obtain

y−
0 = lim

x→x−
0

g(F , x) > g(F , x0) − δ = y−
0 + y+

0
2 > y−

0 ,

contradiction, and this completes the proof. �
The proof of Theorem 1.11 also gives the following corollary.
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orollary 2.7. Let r ≥ 3 and F be a family of r-graphs. Suppose that x0 ∈ projΩ(F)
 a discontinuity of g(F). Then both limx→x−

0
g(F , x) and limx→x+

0
g(F , x) exist and 

mx→x−
0

g(F , x) > limx→x+
0

g(F , x). In particular, if g(F) is increasing on [c1, c2] for 
me c2 > c1 ≥ 0, then g(F) is continuous on [c1, c2].

 A point of discontinuity

In this section we will prove Theorem 1.12 by defining a family D of 3-graphs, and 
owing that g(D) is discontinuous at x = 2/3. (See Fig. 9.)
First we define a 3-graph Sn on [n] as follows. Fix u ∈ [n], let

Sn =
{

uvw : vw ∈
(

[n] \ {u}
2

)}
,

d note that Sn is a star with |Sn| =
(

n−1
2

)
.

efinition 3.1. Let D be the collection of all 3-graphs F ∈ K3
4 such that F 	⊂ Sn for all 

 ≥ 4.

Note that D 	= ∅ as H3
4 ∈ D. Since Sn is D-free and limn→∞ |∂Sn|/

(
n
2
)

= 1, by 
bservation 1.5, projΩ(D) = [0, 1].
Since T3(n, 3) is K3

4-free, ex(n, D) ≥ t3(n, 3). On the other hand, ex(n, D) ≤ ex(n, H3
4 ), 

hich, by [20], is at most t3(n, 3) when n is sufficiently large. Therefore, we obtain the 
llowing result.

heorem 3.2. Let n be sufficiently large. Then ex(n, D) = t3(n, 3) and T3(n, 3) is the 
nique D-free 3-graph with n vertices and t3(n, 3) edges.

Theorem 3.2 implies that g(D, x) ≤ 2/9 for all x ∈ [0, 1] and equality holds for x = 2/3. 
herefore, in order to prove Theorem 1.12 it suffices to prove the following result.

heorem 3.3. There exists an absolute constant δ0 > 0 such that the following is true 
r all ε ∈ (0, 10−8) and sufficiently large n. Suppose that H is a D-free 3-graph on n
rtices with |∂H| = (1/3 + ε)n2. Then |H| ≤ (1/27 − δ0)n3.

The proof of Theorem 3.3 uses a stability result for D-free 3-graphs, which can be 
sily obtained from a stability theorem for Hr

�+1-free r-graphs proved by Pikhurko [20].

heorem 3.4 (Stability). For every ξ > 0 there exists δ > 0 (we may assume that δ ≤ ξ) 
d n0 = n0(ξ) such that the following holds for all n ≥ n0. Suppose that H is a D-free 
graph on n vertices with |H| ≥ (1/27 − δ)n3. Then V (H) has a partition V1 ∪ V2 ∪ V3

ch that all but at most ξn3 edges in H have exactly one vertex in each Vi.



X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59 39

P
co
a 

T
ε 
|H
su
de

N

C

P

w

b
su

C

2
3 10

2/9

1/2

Fig. 9. The function g(D) is discontinuous at x = 2/3.

Now we are ready to prove Theorem 3.3.

roof of Theorem 3.3. We prove Theorem 3.3 by contradiction. Suppose that for all 
nstant δ > 0 and all integers n0 there exists ε = ε(δ) ∈ (0, 10−8) such that there exists 
3-graph H on n > n0 vertices for some n with |∂H| = (1/3 +ε)n2 and |H| > (1/27 −δ)n3.
Choose ξ > 0 to be sufficiently small, and let δ > 0 and n0 = n0(ξ) be given by 

heorem 3.4 and note that we may assume that δ ≤ ξ. By assumption, there exists 
∈ (0, 10−8) and a D-free 3-graphs H on n > n0 vertices with |∂H| = (1/3 + ε)n2 and 
| > (1/27 −δ)n3. Apply Theorem 3.4 to H. We obtain a partition V (H) = V1 ∪V2 ∪V3
ch that all but at most ξn3 edges in H have exactly one vertex in each Vi. Let H′

note the induced 3-partite 3-graph of H on V1 ∪ V2 ∪ V3, that is,

H′ = {E ∈ H : |E ∩ Vi| = 1 for all i ∈ [3]} .

ote that

|H′| >
n3

27 − δn3 − ξn3. (4)

laim 3.5. 
∣∣|Vi| − n

3
∣∣ < 4(δ + ξ)1/2n for all i ∈ [3].

roof. Fix 1 ≤ i ≤ 3 and let α = |Vi|. Then |H′| ≤ α(n − α)2/4 and (4) gives

α(n − α)2

4 >
n3

27 − δn3 − ξn3,

hich implies n/3 − 4(δ + ξ)1/2n < α < n/3 + 4(δ + ξ)1/2n. �

Let G = ∂H and G′ = ∂H′. Note that H′ ⊂ H, G′ ⊂ G, and G′ is 3-partite. Let K
e a 3-partite subgraph of G with the maximum number of edges among all 3-partite 
bgraphs of G, and let X1, X2, X3 denote the three parts of K.

2

laim 3.6. |K| ≥ |G′| > n

3 − 5(δ + ξ)1/2n2.
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roof. Counting the number of edges in H′ we obtain

|G′|
(n

3 + 4(δ + ξ)1/2n
) Claim 3.5

> 3|H′|
(4)
>

n3

9 − 3 (δ + ξ) n3,

hich implies |G′| > n2/3 − 5(δ + ξ)1/2n2. Since G′ is also a 3-partite subgraph of G, by 
e maximality of K, we obtain |K| ≥ |G′|. �

laim 3.7. 
∣∣|Xi| − n

3
∣∣ < 4 (δ + ξ)1/4

n for all i ∈ [3].

roof. Fix i ∈ [3] and let α′ = |Xi|. By Claim 3.6,

α′(n − α′) + (n − α′)2

4 ≥ |K| ≥ |G′| >
n2

3 − 5(δ + ξ)1/2n2,

hich implies n/3 − 4 (δ + ξ)1/4
n < α′ < n/3 + 4 (δ + ξ)1/4

n. �

For uv ∈ K the degree of uv in H is d(uv) := |{E ∈ H : {u, v} ⊂ E}|. Our next claim 
ows that most edges in K have a large degree.

laim 3.8. The number of edges in K that have degree at most 10 in H is at most 
2/40000.

roof. Suppose not. Then the assumption that |G| = |∂H| = (1/3 + ε)n2 together with 
laims 3.6 and 3.7 imply

|H|
Claim 3.7

≤ 1
3

(
|K| − n2

40000

) (n

3 + 4(δ + ξ)1/4n
)

+ 10n2

40000 + (|G| − |K|) n

Claim 3.6
≤ 1

3

(
n2

3 − n2

40000

) (n

3 + 4(δ + ξ)1/4n
)

+ n2

4000 + εn3 + 5(δ + ξ)1/4n3

<
n3

27 − n3

500000 ,

hich contradicts the assumption that |H| > (1/27 − δ)n3. Here we used the fact that 
 ξ are sufficiently small, n is sufficiently large, and ε < 10−8. �

The next claim shows that if G has a large complete 4-partite subgraph, then it 
ntains many edges that have degree at most 10 in H. This is the only place where we 

se the definition of D.

laim 3.9. Let v1v2 ∈ G and U1, U2 ⊂ V (H) \ {v1, v2}. Let
L = {{u1, u2} : u1 ∈ U1, u2 ∈ U2 and d(u1u2) ≥ 10} .
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uppose that v1 and v2 are adjacent to all vertices in U1 ∪ U2. Then L is an intersecting 
mily, and hence |L| < n.

roof. Let u1u2 ∈ L and

Ev1v2 = {E ∈ H : {v1, v2} ⊂ E} .

e claim that every set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 	= ∅. Indeed, suppose that 
ere exists Ev1v2 ∈ Ev1v2 with Ev1v2 ∩ {u1, u2} = ∅. Since d(u1u2) ≥ 10, there exists 

u1u2 ∈ H such that {u1, u2} ∈ Eu1u2 and Eu1u2 ∩ Ev1v2 = ∅. Let Ev1u1 , Ev1u2 , Ev2u1 , 
d Ev2u2 be edges in H that cover v1u1, v1u2, v2u1, v2u2, respectively, and let F1 denote 
e 3-graph with edge set

{Ev1v2 , Ev1u1 , Ev1u2 , Ev2u1 , Ev2u2 , Eu1u2}.

ote that F1 ⊂ H and F1 ∈ K3
4. However, since Eu1u2 ∩ Ev1v2 = ∅, F1 	⊂ Sn for any 

, and hence F1 ∈ D, which is a contradiction. Therefore, every set E ∈ Ev1v2 satisfies 
∩ {u1, u2} 	= ∅.
Suppose that L contains another edge w1w2 that is disjoint from u1u2. Then, the same 

gument as above implies that every set E ∈ Ev1v2 satisfies E ∩{w1, w2} 	= ∅. Therefore, 
ery set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 	= ∅ and E ∩ {w1, w2} 	= ∅, which is impossible 
nce E is a 3-set. Therefore, L is intersecting and it follows from the Erdős-Ko-Rado 
eorem [5] that |L| < n. �

Our goal in the rest of the proof is to find v1v2 ∈ G and U1, U2 ⊂ V (H) \ {v1, v2}
ith |U1||U2| large, such that v1 and v2 are adjacent to all vertices in U1 ∪ U2. Then, by 
laim 3.9, many edges in the induced subgraph of K on U1 ∪ U2 would have degree at 
ost 10, which contradicts Claim 3.8.
Let

B = {uv ∈ G : {u, v} ⊂ Xi for some i ∈ [3]} ,

d

M =
{

{u, v} ∈
(

V (H)
2

)
\ K : u ∈ Xi, v ∈ Xj for some i, j ∈ [3] and i 	= j

}
.

ts in B are called bad edges of K and sets in M are called missing edges of K. For 
∈ V (H) let dM (v) denote the number of missing edges that contain v. By Claim 3.6,

|M | ≤ 5(δ + ξ)1/2n2. (5)
n the other hand, the assumption |G| = n2/3 + εn2 implies
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|B| ≥ |M | + εn2. (6)

et Bi be the collection of bad edges in G that are completely contained in Xi for 
∈ [3]. Without loss of generality, we may assume that |B1| ≥ |B|/3. Let Δ denote the 
aximum degree of B1.

ase 1: Δ < n/100.
hen there exists a set M ′ of at least |B1|/(2Δ) > 15|B|/n pairwise disjoint edges in 

1. Fix uv ∈ B1. Let Ui(uv) = NK(u) ∩ NK(v) ∩ X2 for i ∈ {2, 3} and let Kuv denote 
e induced subgraph of K on U2(uv) ∪ U3(uv). By Claim 3.9, all but at most n edges 
 Kuv have degree at most 10 in H. It follows that

|U2(uv)||U3(uv)|
Claim 3.8

≤ n2

40000 + n + |M |
(5)
≤ n2

40000 + n + 5(δ + ξ)1/2n2 <
n2

30000 .

herefore, by Claim 3.7,

K(u) ∩ NK(v)| <
n

3 + 4(δ + ξ)1/4n + n2/30000
n/3 + 4(δ + ξ)1/4n

<
n

3 + 4(δ + ξ)1/4n + n

10000 ,

d it follows from Inclusion-Exclusion and Claim 3.7 that

dK(u) + dK(v) = |NK(u) ∪ NK(v)| + |NK(u) ∩ NK(v)|

≤ 2
(n

3 + 4(δ + ξ)1/4n
)

+ n

3 + 4(δ + ξ)1/4n + n

10000

<
101n

100 . (7)

ote that

dK(u) + dM (u) + dK(v) + dM (v) = 2 (|X2| + |X3|) ,

hich implies

|M | ≥
∑

uv∈M ′

(dM (u) + dM (v)) ≥ 15|B|
n

(2 (|X2| + |X3|) − dK(u) − dK(v))

Claim 3.7 and (7)
>

15|B|
n

(
4n

3 − 102n

100

)
> 4|B|

(6)
> |M |,

contradiction.

ase 2: Δ ≥ n/100.
hen choose a vertex v1 ∈ X1 with degree Δ. Let Ni = NK(v1) ∩ Xi for 1 ≤ i ≤ 3. The 
aximality of K implies that |N2| ≥ Δ and |N3| ≥ Δ, since otherwise we could move v1

to V2 or V3 to get a larger 3-partite subgraph of G. Choose v2 ∈ N1 and let Ui(v1v2) =
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K(v2) ∩ Ni for i ∈ {2, 3}. Similar to Case 1, we have |U2(v1v2)||U3(v1v2)| ≤ n2/30000. 
herefore, v2 is not adjacent (in K) to at least n/200 vertices in N2 ∪ N3, which implies

|M | ≥
∑

u∈N1

dM (u) ≥ n

100 × n

200 = n2

20000 > 5(δ + ξ)1/2n2
(5)
≥ |M |,

contradiction. �

Christian Reiher pointed out that the conclusion in Theorem 3.3 still holds even if we 
place the assumption |∂H| = (1/3 + ε)n2, ε ∈ (0, 10−8) by |∂H| ≥ t2(n, 3) + 1. In fact 
 proved the following stronger stability theorem for D, which immediately implies the 
ronger version of Theorem 3.3.

emma 3.10 (Reiher). For every ε > 0 there are δ > 0 and n0 such that every D-free 
graph H on n ≥ n0 vertices with |H| ≥ (1/27 − δ)n3 admits a partition V (H) =
1 ∪ U2 ∪ U3 ∪ U4 such that

every edge E ∈ H not incident with U4 has exactly one vertex in each of U1, U2, U3,
the sets U1, U2, U3 are independent in ∂H,
every vertex in U4 is incident with at most (1/18 + ε)n2 edges in H and at most 
(1/2 + ε)n edges in ∂H,
and |U4| ≤ εn.

 Cancellative hypergraphs

In this section we will prove Theorems 1.14 and 1.15. First let us present some useful 
mmas.
Let H be an r-graph. The link LH(v) of v in H is an (r − 1)-graph on V (H) and

LH(v) =
{

A ∈
(

V (H)
r − 1

)
: {v} ∪ A ∈ H

}
.

et dH(v) = |LH(v)|. For a subset S ⊂ V (H) let σH(S) =
∑

v∈S dH(v). When it is clear 
om context we will omit the subscript H.

emma 4.1. Let r ≥ 3 and let H be a cancellative r-graph. Then, for any v ∈ V (H) the 
nk L(v) is a cancellative (r − 1)-graph.

roof. Suppose that there exist A, B, C ∈ L(v) such that A�B ⊂ C. Let A′ = A ∪ {v}, 
′ = B ∪{v} and C ′ = C ∪{v}, and note that A′, B′, C ′ ∈ H. Then, A′�B′ ⊂ C ′, which 
 a contradiction. �

emma 4.2. Let r ≥ 3 and let H be a cancellative r-graph. Suppose that {u, v} ⊂ V (H)

 covered by an edge in H. Then L(u) ∩ L(v) = ∅.
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roof. Suppose that there exists E ∈ L(u) ∩L(v). Let A = E∪{u} and B = E∪{v}, and 
ote that A, B ∈ H. Then A�B = {u, v}, which by assumption is covered by another 
ge C in H, a contradiction. �

Lemma 4.2 gives the following corollary.

orollary 4.3. Let r ≥ 3 and H be a cancellative r-graph. Let S ⊂ V (H) and suppose 
at (∂r−2H)[S] is a complete graph. Then,

σH(S) =
∑
v∈S

dH(v) ≤ |∂H|.

roof. Suppose that S = {v1, . . . , vs}. Lemma 4.2 implies that the links L(v1), . . . , L(vs)
e pairwise edge disjoint. Since 

⋃s
i=1 L(vi) ⊂ ∂H, we have 

∑
v∈S dH(v) ≤ |∂H|. �

1. Proof of Theorem 1.14

In this section we will prove Theorem 1.14, but instead of proving it directly we will 
rove the following stronger statement.

heorem 4.4. Let r ≥ 2 and let H be a cancellative r-graph. Then

|H| ≤
(

|∂H|
r

) r
r−1

.

First we show that Theorem 4.4 implies Theorem 1.14.

roof of Theorem 1.14. Let us consider the lower bound first. Let α ∈ [0, 1] and let 
n(α) be the vertex disjoint union of Tr(αn, r) and a set of (1 − α)n isolated vertices. 
 is clear that Tr 	⊂ Hn(α). Let

x = lim
n→∞

|∂Hn(α)|(
n

r−1
) = lim

n→∞
r (αn/r)r−1(

n
r−1

) = αr−1(r − 1)!
rr−2 ,

d

y = lim
n→∞

|Hn(α)|(
n
r

) = lim
n→∞

(αn/r)r(
n
r

) = αr(r − 1)!
rr−1 .

hen, y = (xr/r!)1/(r−1). Letting α vary from 0 to 1, we obtain g(Tr, x) ≥ (xr/r!)1/(r−1)

r all x ∈ [0, (r − 1)!/rr−2].
Next we prove the upper bound. Suppose that (Hk)∞

k=1 is a good sequence of 
ncellative r-graphs that realizes (x, y). Let xk = (r − 1)!|∂Hk|/ (v(Hk))r−1 and 

= r!|Hk|/ (v(Hk))r for all k ≥ 1. Then Theorem 4.4 gives
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yk (v(Hk))r

r! ≤
(

xk (v(Hk))r−1

r(r − 1)!

) r
r−1

,

hich implies

yk ≤
(

(xk)r

r!

) 1
r−1

.

etting k → ∞, we obtain y ≤ (xr/r!)1/r−1, and this completes the proof. �

Now we prove Theorem 4.4. We will use the following fact.

ct 4.5. Let X be a collection of non-negative real numbers and a ∈ [0, 1]. Then

∑
x∈X

xa ≤ |X|
(∑

x∈X x

|X|

)a

= |X|1−a

(∑
x∈X

x

)a

, (8)

d
(∑

x∈X

x

)2

≤ |X|
∑
x∈X

x2. (9)

roof of Theorem 4.4. We proceed by induction on r. When r = 2, this is just Mantel’s 
eorem, so we may assume that r ≥ 3.
By Lemma 4.1, L(v) is a cancellative (r − 1)-graph for all v ∈ V (H). Therefore, by 
e induction hypothesis,

d(v) ≤
(

|∂L(v)|
r − 1

) r−1
r−2

. (10)

 follows that

|H| = 1
r

∑
v∈V (H)

d(v) = 1
r

∑
v∈V (H)

(d(v))
1

r−1 (d(v))
r−2
r−1

(10)
≤ 1

r(r − 1)
∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)|. (11)

otice that
∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)| =
∑

v∈V (H)

∑
S∈∂H
v∈S

(d(v))
1

r−1

=
∑ ∑

(d(v))
1

r−1
S∈∂H v∈S
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(8)
≤ ((r − 1)|∂H|)

r−2
r−1

( ∑
S∈∂H

∑
v∈S

d(v)
) 1

r−1

= ((r − 1)|∂H|)
r−2
r−1

( ∑
S∈∂H

σ(S)
) 1

r−1

. (12)

efine σ̂ = max {σ(H) : H ∈ H} and suppose that E ∈ H satisfies 
∑

v∈E d(v) = σ̂. 
hen,

∑
S∈∂H

σ(S) =
∑

S∈
⋃

v∈E L(v)

σ(S) +
∑

S∈∂H\
⋃

v∈E L(v)

σ(S)

Lemma 4.2=
∑
v∈E

∑
S∈L(v)

σ(S) +
∑

S∈∂H\
⋃

v∈E L(v)

σ(S)

≤
∑
v∈E

d(v) (σ̂ − d(v)) + (|∂H| − σ̂) σ̂

(9)
≤

(∑
v∈E

d(v)
) (

σ̂ −
∑

v∈E d(v)
r

)
+ (|∂H| − σ̂) σ̂

= σ̂

(
σ̂ − σ̂

r

)
+ (|∂H| − σ̂) σ̂

=
(

|∂H| − σ̂

r

)
σ̂. (13)

ote that Corollary 4.3 gives σ̂ ≤ |∂H|. On the other hand, since (|∂H| − σ̂/r) σ̂ is 
creasing in σ̂ when σ̂ ≤ r|∂H|/2, it follows from (13) and r ≥ 3 that

∑
S∈∂H

σ(S) ≤
(

|∂H| − σ̂

r

)
σ̂ ≤ r − 1

r
|∂H|2. (14)

lugging (12) and (14) into (11), we obtain

|H| ≤ 1
r(r − 1) ((r − 1)|∂H|)

r−2
r−1

(
r − 1

r
|∂H|2

) 1
r−1

=
(

|∂H|
r

) r
r−1

,

d this completes the proof. �

2. Proof of Theorem 1.15

In this section we will prove Theorem 1.15. As before, we will prove a stronger state-

ent which implies Theorem 1.15.
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heorem 4.6. Suppose that H is a cancellative 3-graph on n vertices. Then

|H| ≤
(
n2 − 2|∂H|

)
|∂H|

3n
+ 3n2.

First we show that Theorem 4.6 implies Theorem 1.15.

roof of Theorem 1.15. Let us consider the lower bound first.
A k-vertex Steiner triple system (STS for short) is a 3-graph on k vertices such that 
ery pair of vertices is covered by exactly one edge. It is known that a k-vertex STS

ists iff k ≡ 1 or 3 (mod 6) (e.g. see [26]). Let STS(k) denote the family of all Steiner 
iple systems on k vertices. Let S(n, k) denote the collection of all 3-graphs on n vertices 
at can be obtained from a 3-graph H ∈ STS(k) by blowing up every vertex in H into 
set of size either �n/k� or �n/k�. It is easy to see that every 3-graph in S(n, k) is 
ncellative.
Fix an integer k with k ≡ 1 or 3 (mod 6). Let Hn ∈ S(n, k) and in order to keep the 
lculations simple let us assume that k divides n. Then

lim
n→∞

|∂Hn|(
n
2
) = (k − 1)n2/(2k)(

n
2
) = k − 1

k
,

d

lim
n→∞

|Hn|(
n
3
) = (k − 1)n3/(6k2)(

n
3
) = k − 1

k2 .

herefore, the sequence (Hn)∞
n=1 realizes 

(
(k − 1)/k, (k − 1)/k2)

. So, g(T3, (k − 1)/k) ≥
− 1)/k2 for all integers k with k ≡ 1 or 3 (mod 6).
Next we prove the upper bound. Let (Hk)∞

k=1 be a good sequence of cancellative 3-
aphs that realizes (x, y). Let xk = 2|∂Hk|/ (v(H))2 and yk = 6|Hk|/ (v(H))3 for k ≥ 1. 
hen, it follows from Theorem 4.6 that

yk (v(Hk))3

6 ≤

(
(v(Hk))2 − xk (v(Hk))2

)
xk (v(Hk))2

/2

3v(Hk) + 3 (v(Hk))2
,

hich implies

yk ≤ xk(1 − xk) + 18
v(Hk) .

etting k → ∞, we obtain y ≤ x(1 − x), and this completes the proof. �

The idea of the proof of Theorem 4.6 is to first choose S ⊂ V (H) such that (∂H) [S]
 a clique. Then we apply the induction hypothesis to V (H) \ S. However, in order to 

 the induction we need to prove a stronger statement which implies Theorem 4.6.



48 X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59

H

T
si
T

w

fo

w
fo

cl
K

(ω

T
n

P
in

a 
u
C

P
th
th
n

We will use G to denote the graph ∂H. Let U ⊂ V (H) and let GU = G[U ] and 

U = H[U ].

heorem 4.7. Let H be a cancellative 3-graph on n vertices. Let U ⊂ V (H) be a set of 
ze m. Suppose that |GU | = xm2/2 for some real number x with 0 ≤ x ≤ (m − 1)/m. 
hen,

|HU | ≤ (1 − x)x
6 m3 + 3m2.

In particular, letting U = V (H) in Theorem 4.7 we obtain

|H| ≤
(
n2 − 2|∂H|

)
|∂H|

3n
+ 3n2,

hich is exactly Theorem 4.6.
The proof of Theorem 4.7 is by induction on m. Note that Theorem 4.7 holds trivially 

r all m ≤ 20 since 
(

m
3
)

≤ 3m2 for all m ≤ 20. Also, by Theorem 4.4,

|HU | ≤ |∂ (HU ) |3/2

3
√

3
≤ |GU |3/2

3
√

3
= x3/2

6
√

6
m3,

hich is less than x(1 − x)m3/6 + 3m2 when x ≤ 2/3. Therefore, Theorem 4.7 is true 
r all x ≤ 2/3, and hence we may assume that x > 2/3 in the rest of the proof.
In the proof of Theorem 4.7 we need the following version of Turán’s theorem. The 

ique number ω(G) of a graph G is the largest integer ω such that there is a copy of 
ω in G. Turán’s theorem implies that any n-vertex graph with no Kω+1 has at most 
− 1)n2/(2ω) edges.

heorem 4.8 ([25]). Let G be an n-vertex graph with at least xn2/2 edges for some real 
umber x ≥ 0. Then ω(G) ≥ �1/(1 − x)�.

roof. Let ω = ω(G). By Turán’s theorem, xn2/2 ≤ (ω − 1)n2/(2ω). Simplifying this 
equality we obtain ω ≥ 1/(1 − x). Since ω is an integer, ω ≥ �1/(1 − x)�. �

The idea in the proof of Theorem 4.7 is to first apply Turán’s theorem on GU to find 
large clique, say on S, and then apply the induction hypothesis to T = U \ S to get an 
pper bound for |HT |. In order to get an upper bound for |HU | we just need to apply 
orollary 4.3 to HU to get an upper bound for |HU \ HT |.

roof of Theorem 4.7. Suppose that GU contains a clique on ω vertices. We may assume 
at ω < m since otherwise by Corollary 4.3, we are done. Choose S ⊂ U of size ω so 
at GS

∼= Kω. Let T = U \ S. Let es denote the number of edges in GU that have 
2

onempty intersection with S. Let x′ = xm −2es

(m−ω)2 .
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First, notice a simple but crucial fact is that every vertex in T is adjacent to at 
ost ω − 1 vertices in S, since otherwise there would be a copy of Kω+1 in GU , which 
ntradicts the definition of ω. Therefore,

es ≤ (ω − 1)(m − ω) +
(

ω

2

)
. (15)

Applying the induction hypothesis to T we obtain

|HT | ≤ x′(1 − x′)
6 (m − ω)3 + 3(m − ω)2.

n the other hand, Corollary 4.3 gives

|HU \ HT | ≤
∑
v∈S

d(v) ≤ |GU | = x

2 m2.

herefore,

|HU | = |HT | + |HU \ HT | ≤ x′(1 − x′)
6 (m − ω)3 + 3(m − ω)2 + x

2 m2. (16)

laim 4.9. For 2/3 ≤ x ≤ 1 and 0 ≤ x′ ≤ 1 we have

x(1 − x)
6 m3 + 3m2 ≥ x′(1 − x′)

6 (m − ω)3 + 3(m − ω)2 + x

2 m2.

roof of Claim 4.9. Notice that

(m − ω)2(x − x′) = x
(
(m − ω)2 − m2)

+ 2es

(15)
≤ xω(ω − 2m) + (ω − 1)(2m − ω)

= (2m − ω) (ω(1 − x) − 1) .

onsequently,

(m − ω)2 (x′(1 − x′) − x(1 − x)) = (m − ω)2(x − x′)(x + x′ − 1)

≤ (2m − ω) (ω(1 − x) − 1) x. (17)

deed, if x ≥ x′ this follows from the previous estimate and x + x′ − 1 ≤ x. If x < x′, 
en x + x′ − 1 ≥ 1/3 and the left side of (17) is negative, while the right side of (17)
 nonnegative. Multiplying (17) by m − ω and taking the identity ω(m − ω)(2m − ω) =
3 − (n − ω)3 − m2ω into account we obtain

(m − ω)3 (x′(1 − x′) − x(1 − x))( 3 3) 2
≤ m − (m − ω) x(1 − x) − m ωx(1 − x) − x(m − ω)(2m − ω),
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hich due to ω(1 − x) ≥ 1 implies

(m − ω)3x′(1 − x′) ≤ m3x(1 − x) − x
(
m2 + (m − ω)(2m − ω)

)
.

dding 3xm2 on both sides and using

2m2 − (m − ω)(2m − ω) = 3mω − ω2 ≤ 18
(
m2 − (m − ω)2)

e reach

(m − ω)3x′(1 − x′) + 3xm2 ≤ m3x(1 − x) + 18x
(
m2 − (m − ω)2)

.

ue to x ≤ 1 this implies the claim. �

Finally, |HU | ≤ x(1 − x)m3/6 + 3m2 is an immediate consequence of Claim 4.9 and 
6) and this completes the proof of the theorem. �

 Hypergraphs without expansion of cliques

In this section we consider the feasible region of hypergraphs without expansion of 
iques. First we will prove the following result, from which Theorem 1.17 can be easily 
tained.

heorem 5.1. Let � ≥ r ≥ 2. Let H be a Kr
�+1-free r-graph. Then

(
|H|(

�
r

)
)1/r

≤
(

|∂H|(
�

r−1
)

)1/(r−1)

.

In order to derive Theorem 1.17 from Theorem 5.1 we need an easy observation. Recall 
om (2) that for i ≤ −1,

∂iH =
{

A ∈
(

V (H)
r − i

)
: H[A] is a complete r-graph

}
.

bservation 5.2. Let r ≥ 3 and H be an r-graph. If 0 ≤ i ≤ r − 2, then H is Kr
�+1-free iff 

iH is Kr−i
�+1-free. In particular, H is Kr

�+1-free iff ∂r−2H is K�+1-free. If i ≤ −1, then 
is Kr

�+1-free implies that ∂iH is Kr−i
�+1-free.

Now we show how to prove Theorem 1.17 using Theorem 5.1.

roof of Theorem 1.17. Fix r−� ≤ i ≤ r−2. Then by Observation 5.2, ∂iH is Kr−i
�+1-free. 
ince ∂ (∂iH) ⊂ ∂i+1H, it follows from Theorem 5.1 that
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(
|∂iH|(

�
r−i

)
)1/(r−i)

≤
(

|∂(∂iH|)(
�

r−i−1
)

)1/(r−i−1)

≤
(

|∂i+1H|(
�

r−i−1
)

)1/(r−i−1)

,

d this completes the proof. �

To show that all inequalities in Theorem 1.17 are tight, consider the following con-
ruction. Fix α ∈ [0, 1] and let Hn(α) be the vertex disjoint union of Tr(αn, �) and a 
t of (1 − α)n isolated vertices. It is clear that Hn(α) is Kr

�+1-free. In order to keep the 
lculations simple, let us assume that αn is an integer that is a multiple of �. For fixed 

− r ≤ i ≤ r − 1,

|∂iHn(α)| =
(

�

r − i

) (αn

�

)r−i

,

d hence

(
|∂iHn(α)|(

�
r−i

)
) 1

r−i

= αn

�
.

herefore, all inequalities in Theorem 1.17 are tight.
Notice that the construction above also proves the lower bound in Corollary 1.18 and 

e omit the calculations here.
The proof of Theorem 5.1 uses some ideas in Fisher and Ryan’s proof [6]. However 

e need to translate their proof into the language of hypergraphs, since an edge in ∂iH
ight not be equivalent to a copy of Kr−i in ∂r−2H for −� ≤ i ≤ r −3. Define the clique 
t KH of H as

KH =
{

A ⊂ V (H) : (∂r−2H)[A] ∼= K|A|
}

.

or every E ∈ ∂H let N(E) = {v ∈ V (H) : {v} ∪ E ∈ H}. Recall from Section 4 that 
(S) =

∑
v∈S d(v). We first prove a lemma that will be used in the proof of Theorem 5.1.

emma 5.3. 
∑

E∈∂H σ(E) ≤ (�−r+1)(r−1)
� |∂H|2.

roof. Let S ⊂ V (H). For every v ∈ V (H) we have d(v) =
∑

E∈∂H |N(E) ∩ {v}|. So,

σ(S) =
∑
v∈S

d(v) =
∑
v∈S

∑
E∈∂H

|N(E) ∩ {v}| =
∑

E∈∂H
|N(E) ∩ S|. (18)

n the other hand,

(σ(S))2 =
(∑

d(v)
)2

(9)
≤ |S|

∑
(d(v))2 = |S|

∑ ∑
d(v)
v∈S v∈S v∈S E∈L(v)
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∑
v∈S

∑
E∈∂H

v∈N(E)

d(v) = |S|
∑

E∈∂H

∑
v∈S∩N(E)

d(v)

= |S|
∑

E∈∂H
σ (N(E) ∩ S) ,

hich implies

∑
E∈∂H

σ (N(E) ∩ S) ≥ (σ(S))2

|S| . (19)

ow suppose that S ∈ KH. Since H is Kr
�+1-free, |E| + |N(E) ∩ S| ≤ � for all E ∈ ∂H. 

 follows from (18) that

σ(S) =
∑

T ∈∂H
|N(T ) ∩ S| ≤ (� − r + 1)|∂H|. (20)

et z be the largest real number such that σ(R) ≤ (� − r + 1)|∂H| − (� − |R|)z for all 
∈ KH. Let R0 ∈ KH such that

σ(R0) = (� − r + 1)|∂H| − (� − |R0|)z. (21)

or every E ∈ ∂H, E ∪ (N(E) ∩ R0) ∈ KH, therefore,

∑
E∈∂H

σ(E) =
∑

E∈∂H
(σ(E ∪ (N(E) ∩ R0)) − σ(N(E) ∩ R0))

≤
∑

E∈∂H
((� − r + 1)|∂H| − (� − |E ∪ (N(E) ∩ R0)|)z − σ(N(E) ∩ R0))

≤
∑

E∈∂H
((� − r + 1) (|∂H| − z) + |N(E) ∩ R0|z − σ(N(E) ∩ R0))

= (� − r + 1)(|∂H| − z)|∂H| + z
∑

E∈∂H
|N(E) ∩ R0| −

∑
E∈∂H

σ(N(E) ∩ R0)

(19),(20)
≤ (� − r + 1)(|∂H| − z)|∂H| + zσ(R0) − (σ(R0))2

|R0|
(21)= (� − r + 1)(|∂H| − 2z)|∂H| + z2� − ((� − r + 1)|∂H| − z�)2

|R0| . (22)

ince |R0| ≤ �, we may plug |R0| = � into (22) and z will be cancelled in the calculation 
d hence

∑
σ(E) ≤ (� − r + 1)(r − 1) |∂H|2. �
E∈∂H
�



X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59 53

P
th

in

It

Si

It

P
re
sh
Now we are ready to prove Theorem 5.1.

roof of Theorem 5.1. We proceed by induction on r. The case r = 2 is just Turán’s 
eorem, so we may assume that r ≥ 3.
For every v ∈ V (H) the link L(v) is a Kr−1

� -free (r − 1)-graph, therefore, by the 
duction hypothesis,

d(v) ≤
(

� − 1
r − 1

) (
|∂L(v)|(

�−1
r−2

)
) r−1

r−2

. (23)

 follows that

|H| = 1
r

∑
v∈V (H)

d(v) = 1
r

∑
v∈V (H)

(d(v))
1

r−1 (d(v))
r−2
r−1

(23)
≤

(
�−1
r−1

) r−2
r−1

r
(

�−1
r−2

) ∑
v∈V (H)

(d(v))
1

r−1 |∂L(v)|. (24)

milar to (12) in Section 4, we have

∑
v∈V (H)

(d(v))
1

r−1 |∂L(v)| =
∑

E∈∂H

∑
v∈E

(d(v))
1

r−1

(8)
≤ ((r − 1)|∂H|)

r−2
r−1

( ∑
E∈∂H

∑
v∈E

d(v)
) 1

r−1

= ((r − 1)|∂H|)
r−2
r−1

( ∑
E∈∂H

σ(E)
) 1

r−1

Lemma 5.3
≤ (r − 1)

(
� − r + 1

�

) 1
r−1

|∂H| r
r−1 . (25)

 follows from (24) and (25) that

|H| ≤
(

�

r

) (
|∂H|(

�
r−1

)
) r

r−1

. �

Now we show how to prove Corollary 1.18 using Theorem 1.17.

roof of Corollary 1.18. Let (Hk)∞
k=1 be a good sequence of Kr

�+1-free r-graphs that 
alizes (x, y). Let xk = (r − 1)!|∂Hk|/ (v(Hk))r−1 and yk = r!|Hk|/ (v(Hk))r. First, we 

ow that projΩ(Kr

�+1) = [0, (�)r−1/�r−1].
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It follows from Theorem 1.17 that

xk (v(Hk))r−1

(r − 1)! ≤
(

�

r − 1

) (
v(Hk)

�

)r−1

,

hich implies xk ≤ (�)r−1/�r−1. Letting k → ∞, we obtain x ≤ (�)r−1/�r−1. There-
re, projΩ(Kr

�+1) ⊂ [0, (�)r−1/�r−1]. On the other hand, (Tr(k, �))∞
k=1 shows that 

)r−1/�r−1 ∈ projΩ(Kr
�+1) and it follows from Observation 1.5 that projΩ(Kr

�+1) =
, (�)r−1/�r−1].
Next, we show the upper bound for g(Kr

�+1, x). It follows from Theorem 1.17 that

(
yk (v(Hk))r

r!
(

�
r

)
) 1

r

≤
(

xk (v(Hk))r−1

(r − 1)!
(

�
r−1

)
) 1

r−1

,

hich implies yk ≤ (� − r + 1) (xr
k/(�)r)1/(r−1). Letting k → ∞, we obtain y ≤ (� −

+ 1) (xr/(�)r)1/(r−1). Therefore, g(Kr
�+1, x) ≤ (� − r + 1) (xr/(�)r)1/(r−1) for all x ∈

rojΩ(Kr
�+1).

The construction for the lower bound is exactly the same as the construction for 
heorem 1.17, and it shows that g(Kr

�+1, x) ≥ (� − r + 1) (xr/(�)r)1/(r−1) for all 
 ∈ projΩ(Kr

�+1). Therefore, g(Kr
�+1, x) = (� − r + 1) (xr/(�)r)1/(r−1) for all x ∈

rojΩ(Kr
�+1). �

Let us present a lemma before proving Theorem 1.19.

emma 5.4. Let r ≥ 3 and F1, F2 be two families of r-graphs with F1 ⊂ F2. Suppose that 
ery n-vertex F1-free r-graph can be made F2-free by removing at most o(nr) edges, 
d g(F2, x) is increasing on [0, c] for some c > 0. Then g(F1, x) = g(F2, x) on [0, c].

roof. Since F1 ⊂ F2, it follows from Observation 2.2 that g(F2, x) ≤ g(F1, x) for 
l x ∈ projΩ(F2). So it suffices to show that g(F2, x) ≥ g(F1, x) for all x ∈ [0, c]. Let 
0, y0) ∈ Ω(F1) with x0 ∈ [0, c] and y0 = g(F1, x0). By definition, there exists a sequence 
 F1-free r-graphs (Hk)∞

k=1 with limk→∞ d(∂Hk) = x0 and limk→∞ d(Hk) = y0.
For every k ≥ 1 let H′

k be a subgraph of Hk that is F2-free and of maximum size, and 
t x′

k = d(∂H′
k) and y′

k = d(H′
k). By the Bolzano-Weierstrass theorem, (x′

k, y′
k)∞

k=1 con-
ins a convergent subsequence 

(
x′

tk
, y′

tk

)∞
k=1. Let x′

0 = limk→∞ x′
tk

and y′
0 = limk→∞ y′

tk
, 

d it is easy to see from the definition of H′
k that x′

0 ≤ x0 and y′
0 ≤ y0. Since 

(
H′

tk

)∞
k=1

 a good sequence of F2-free r-graphs that realizes (x′
0, y′

0), we obtain (x′
0, y′

0) ∈ Ω(F2).
By assumption, for every ε > 0 there exists n(ε) such that Hk can be made F2-free by 

moving at most ε (v(Hk))r edges whenever v(Hk) ≥ n(ε). Since limk→∞ v(Hk) = ∞, 
ere exists k(ε) such that v(Hk) ≥ n(ε) for all k ≥ k(ε), and hence |H′

k| ≥ |Hk| −

(v(Hk))r for all k ≥ k(ε). Therefore, y′

0 ≥ y0−r!ε. Letting ε → 0, we obtain y′
0 ≥ y0, and 



X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59 55

he
on

Si
co

P
th
o(
[0

fo

6.

g(
gr
qu

P

fu
re
fo

P

pi
w
pr
us

P

nce y′
0 = y0. Therefore, (x′

0, y0) ∈ Ω(F2). By the assumption that g(F2) is increasing 
 [0, c], we obtain

g(F2, x0) ≥ g(F2, x′
0) ≥ y0 = g(F1, x0).

nce x0 was chosen arbitrarily from [0, c], g(F2, x) ≥ g(F1, x) for all x ∈ [0, c], and this 
mpletes the proof. �

Now we prove Theorem 1.19 using Corollary 1.18.

roof of Theorem 1.19. It was shown by Pikhurko (see the proof of Lemma 3 in [20]) 
at every Hr

�+1-free r-graph on n-vertices can be made Kr
�+1-free by removing at most 

nr) edges. On the other hand, Corollary 1.18 shows that g(Kr
�+1) is increasing on 

, (�)r−1/�r−1]. So, it follows from Lemma 5.4 that

g(Hr
�+1, x) = g(Kr

�+1, x) = (� − r + 1)
(

xr

(�)r

) 1
r−1

r all x ∈ [0, (�)r−1/�r−1]. �

 Concluding remarks

In this paper we proved that for any r ≥ 3 and any family F of r-graphs the function 
F) has at most countably many discontinuities. We also constructed a family D of 3-
aphs such that g(D) is discontinuous at x = 2/3. It seems natural to ask the following 
estion.

roblem 6.1. Can g(F) have infinitely many discontinuities?

In Section 4 we proved several results about g(Tr) for r ≥ 3. Even for r = 3 the 
nction g(T3) is already shown to have many intersecting properties, and is closely 
lated to Steiner triple systems. The following question seems difficult for x not of the 
rm (k − 1)/k with k ≡ 1 or 3 (mod 6).

roblem 6.2. Determine g(T3, x) for all x ∈ (2/3, 1].

Reiher observed that the function x(1 − x) in Theorem 4.7 can be replaced by the 
ecewise linear function p(x) = k−1

k+1 − k2−k−1
k(k+1) x for all k ∈ N+ and k−1

k ≤ x ≤ k
k+1 , 

hich implies that g(T3, x) ≤ p(x) for all 2
3 ≤ x ≤ 1. This can be shown by redoing the 

oof of Theorem 4.7 and taking into account that instead of ω ≥ 1
1−x one can directly 

e ω ≥ k + 1, unless x = k−1
k , but this case is already understood.

Now let us show a lower bound for g(T3, x) for x ∈ (2/3, 6/7]. Let F denote the Fano 

lane, i.e., F is a 3-graph on 7 vertices with edge set
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Fig. 10. The lower bound for g(T3, x) given by (28).

{123, 345, 561, 174, 275, 376, 246}.

et α ∈ [1/7, 1/3] and β = (1 −3α)/4. Let Hn(α) be obtained from F by blowing up each 
rtex in {1, 2, 3} into a set of size of αn and blowing up each vertex in {4, 5, 6, 7} into 
set of size of βn (note that these weights for blowing up the Fano plane are optimal). 
et

x = lim
n→∞

|∂Hn(α)|(
n
2
) = 6α2 + 12β2 + 24αβ = 3

4(1 + 2α − 7α2), (26)

d

y = lim
n→∞

|Hn(α)|(
n
3
) = 6α3 + 36αβ2 = 3

4α(3 − 18α + 35α2). (27)

hen, (26) and (27) give

y = 1
147

(
−70

√
18x2 − 21x3 + 63x + 60

√
18 − 21x − 36

)
, (28)

hich implies

g(T3, x) ≥ 1
147

(
−70

√
18x2 − 21x3 + 63x + 60

√
18 − 21x − 36

)

r all x ∈ [2/3, 6/7]. (See Fig. 10.)
The construction above gives an algebraic curve connecting (2/3, 2/9) and (6/7, 6/49). 

sing a similar method, one can construct an algebraic curve defined by

y = 2
√

3(k + 3)(k − 1 − kx) 3
2

3k2
√

k − 3
+ 3kx − 2k + 2

k2 (29)

 connect (2/3, 2/9) and ((k − 1)/k, (k − 1)/k2) for all k ≡ 1 or 3 (mod 6). However, 

e do not know how to construct curves to connect ((k − 1)/k, (k − 1)/k2) and ((k′ −
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/k′, (k′ − 1)/k′ 2) for consecutive k, k′ ≥ 7 and k, k′ ≡ 1 or 3 (mod 6). Also, there is an 
teresting phenomenon that

{
((k − 1)/k, (k − 1)/k2) : k ≥ 7 and k ≡ 1 or 3 (mod 6)

}
e local maxima of the function given by (29). Therefore, we pose the following question.

roblem 6.3. For every k ≥ 7 with k ≡ 1 or 3 (mod 6), is the point ((k−1)/k, (k−1)/k2)
local maximum of g(T3)?

In [11], the first author proved the following stability theorem about the points ((k −
/k, (k − 1)/k2) in Ω(T3), which we think might be helpful for Problems 6.2 and 6.3.

heorem 6.4 (Stability, [11]). Let k be an integer with k ≡ 1 or 3 (mod 6) and H be a 
ncellative 3-graph on n vertices. For every δ > 0 there exists an ε > 0 and n0 such 
at the following holds for all n ≥ n0. Suppose that |∂H| ≥ (1 − ε)(k − 1)n2/(2k) and 
| ≥ (1 − ε)(k − 1)n3/(6k2). Then H can be transformed into a subgraph of a 3-graph 
 S(n, k) by removing at most δn3 edges.

There is also an exact result for the points ((k − 1)/k, (k − 1)/k2). Let s(n, k) =
ax{|H| : H ∈ S(n, k)}.

heorem 6.5 ([11]). Let k be an integer that satisfies k ≡ 1 or 3 (mod 6) and H be a 
ncellative 3-graph on n vertices with n sufficiently large. Suppose that |∂H| = t2(n, k). 
hen |H| ≤ s(n, k), and equality holds only if H ∈ S(n, k).

For r ≥ 4 there is very little known about upper and lower bounds for g(Tr, x) for 
 > (r − 1)!/rr−2. We pose the following question.

roblem 6.6. Let r ≥ 4 and x > (r − 1)!/rr−2. Improve the upper bound for g(Tr, x), 
d construct cancellative r-graphs to give good lower bounds for g(Tr, x).

Given our poor understanding of hypergraph Turán problems, determining the feasible 
gion of other families of hypergraphs would also be of interest. In particular, we pose 
e following two questions.

roblem 6.7. Determine the feasible region of Hr
�+1 for r ≥ 3 and � ≥ r.

roblem 6.8. Determine the feasible region of the Fano Plane.

In [13], we give an example of a (finite) family F , for which g(F) has two global 

axima. In particular, our example shows that g(F) can be non-unimodal.
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Fig. 11. g(M) has two global maxima by Theorem 6.9.

Fig. 12. Can g(F) has many global maxima?

heorem 6.9 ([13]). There exists a (finite) family M of 3-graphs such that g(M, x) ≤ 4/9
r all x ∈ projΩ(M), and equality holds iff x ∈ {5/6, 8/9}. (See Fig. 11.)

Theorem 6.9 suggests the following natural problem which we hope to address in the 
ture.

roblem 6.10. Fix r ≥ 3 and t > 0. Do there exist a (finite) family F of r-graphs and 
als 0 < x1 < x′

1 < x2 < · · · < x′
t−1 < xt such that g(F , xi) = π(F) for all i ∈ [t] and 

F , x′
i) < π(F) for all i ∈ [t − 1]. (See Fig. 12.)

cknowledgment

We are very grateful to the referees for their many helpful comments. We also thank 
hristian Reiher for allowing us to include his improvements of Theorems 1.15 and 3.3. 
he first author would like to thank Minghui Ma for discussions on Theorem 1.11. This 

search was partially supported by NSF awards DMS-1763317 and DMS-1952767.



X. Liu, D. Mubayi / Journal of Combinatorial Theory, Series B 148 (2021) 23–59 59

R

[
[

[

[

[

[

[

[
[

[1
[1

[1
[1

[1

[1
[1

[1

[1

[1

[2

[2
[2

[2
[2

[2
[2
eferences

1] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hung. 16 (1965) 447–452.
2] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, 

Discrete Math. 8 (1) (1974) 21–24.
3] B. Bollobás, Relations between sets of complete subgraphs, in: Proc. Fifth British Comb. Conference, 

Univ. Aberdeen, Aberdeen, 1975, 1975, pp. 79–84.
4] P. Erdős, L. Lovász, J. Spencer, Strong independence of graphcopy functions, in: Graph Theory and 

Related Topics, Proc. Conf. Honour W. T. Tutte, Waterloo/Ont. 1977, 1979, pp. 165–172.
5] P. Erdos, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. 12 (1961) 

313–320.
6] D. Fisher, J. Ryan, Bounds on the number of complete subgraphs, Discrete Math. 103 (3) (1992) 

313–320.
7] H. Hatami, S. Norin, On the boundary of the region defined by homomorphism densities, J. Comb. 

10 (2) (2019) 203–219.
8] P. Keevash, Hypergraph Turán problems, in: Surveys in Combinatorics, vol. 392, 2011, pp. 83–140.
9] P. Keevash, D. Mubayi, Stability theorems for cancellative hypergraphs, J. Comb. Theory, Ser. B 

92 (1) (2004) 163–175.
0] X. Liu, New short proofs to some stability theorems, arXiv preprint, arXiv :1903 .01606, 2019.
1] X. Liu, Stability theorems for the feasible region of cancellative hypergraphs, arXiv preprint, arXiv :

1912 .11917, 2019.
2] X. Liu, D. Mubayi, The feasible region of hypergraphs, arXiv preprint, arXiv :1911 .02090, 2019.
3] X. Liu, D. Mubayi, A hypergraph Turán problem with no stability, arXiv preprint, arXiv :1911 .07969, 

2019.
4] L. Lovász, Combinatorial Problems and Exercises, second edition, North-Holland Publishing Co., 

Amsterdam, 1993.
5] L. Lovász, Large Networks and Graph Limits, vol. 60, American Mathematical Soc., 2012.
6] L. Lovász, M. Simonovits, On the number of complete subgraphs of a graph II, in: Stud. in Pure 

Mathematics, Springer, 1983, pp. 459–495.
7] D. Mubayi, A hypergraph extension of Turán’s theorem, J. Comb. Theory, Ser. B 96 (1) (2006) 

122–134.
8] V. Nikiforov, The number of cliques in graphs of given order and size, Trans. Am. Math. Soc. 363 (3) 

(2011) 1599–1618.
9] O. Pikhurko, An exact Turán result for the generalized triangle, Combinatorica 28 (2) (2008) 

187–208.
0] O. Pikhurko, Exact computation of the hypergraph Turán function for expanded complete 2-graphs, 

J. Comb. Theory, Ser. B 103 (2) (2013) 220–225.
1] A. Razborov, Flag algebras, J. Symb. Log. 72 (4) (2007) 1239–1282.
2] A. Razborov, On the minimal density of triangles in graphs, Comb. Probab. Comput. 17 (4) (2008) 

603–618.
3] C. Reiher, The clique density theorem, Ann. Math. (2016) 683–707.
4] E.M. Stein, R. Shakarchi, Real Analysis. Measure Theory, Integration, and Hilbert Spaces, Princeton 

University Press, Princeton, NJ, 2005.
5] P. Turán, On an external problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452.

6] R. Wilson, The early history of block designs, Rend. Sem. Mat. Messina Ser. II 9 (2004) 267–276.


