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ABSTRACT

Computational notebooks have emerged as the platform of choice
for data science and analytical workflows, enabling rapid iteration
and exploration. By keeping intermediate program state in memory
and segmenting units of execution into so-called “cells”, notebooks
allow users to enjoy particularly tight feedback. However, as cells
are added, removed, reordered, and rerun, this hidden intermediate
state accumulates, making execution behavior difficult to reason
about, and leading to errors and lack of reproducibility. We present
NBSAFETY, a custom Jupyter kernel that uses runtime tracing and
static analysis to automatically manage lineage associated with cell
execution and global notebook state. NBSAFETY detects and pre-
vents errors that users make during unaided notebook interactions,
all while preserving the flexibility of existing notebook semantics.
We evaluate NBSAFETY’s ability to prevent erroneous interactions
by replaying and analyzing 666 real notebook sessions. Of these,
NBSAFETY identified 117 sessions with potential safety errors, and
in the remaining 549 sessions, the cells that NBSAFETY identified
as resolving safety issues were more than 7x more likely to be
selected by users for re-execution compared to a random baseline,
even though the users were not using NBSAFETY and were therefore
not influenced by its suggestions.
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1 INTRODUCTION

Computational notebooks such as Jupyter [23] provide a flexible
medium for developers, scientists, and engineers to complete pro-
gramming tasks interactively. Notebooks, like simpler predecessor
read-eval-print-loops (REPLs), do not terminate after executing,
but wait for the user to give additional instructions while keeping
intermediate programming state in memory. Notebooks, however,
are distinguished from REPLs by their use of the cell as the atomic
unit of execution, allowing users to edit and re-execute previous
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‘ def [custom_agg|(series): [11 [4] ‘
-
[agg_by_col = {'A': 'min', 'B':[custom_agg} [2] / }
¥
df_x_agg| = df_x.agg(agg_by_col) [3] [5]
df_y_agg| = df_y.agg(agg_by_col)

Figure 1: Example sequence of notebook interactions leading to
a stale symbol usage. Symbols with timestamps < 3 (resp. > 3) are
shown with blue (resp. red) borders.

cells. This cell-based iterative execution modality is a particularly
good fit for the exploratory, ad-hoc nature of modern data science.
As a result, the IPython Notebook project [35], and its successor,
Project Jupyter [23], have both grown rapidly in popularity. With
more than 4.7 million notebooks on GitHub as of March 2019 [37],
Jupyter has been called “data scientists’ computational notebook
of choice” [30]. We focus on Jupyter here due to its popularity, but
our ideas are applicable to computational notebooks in general.
Despite the tighter feedback enjoyed by users of computational
notebooks, and, in particular, by users of Jupyter, notebooks have
a number of drawbacks when used for more interactive and ex-
ploratory analysis. Compared to conventional programming en-
vironments, interactions such as out-of-order cell execution, cell
deletion, and cell editing and re-execution can all complicate the
relationship between the code visible on screen and the resident
notebook state. Managing interactions with this hidden notebook
state is thus a burden shouldered by users, who must remember
what they have done in the past.
Illustration. Consider the sequence of notebook interactions de-
picted in Figure 1. Each rectangular box indicates a cell, the note-
book’s unit of execution. The user first defines a custom aggregation
function that, along with min, will be applied to two dataframes,
df_x and df_y, and executes it as cell [1]. Since both aggregations
will be applied to both dataframes, the user next gathers them into
a function dictionary in the second cell (executed as cell [2]). After
running the third cell, which corresponds to applying the aggre-
gates to df_x and df_y, the user realizes an error in the logic of
custom_agg and goes back to the first cell to fix the bug. They re-
execute this cell after making their update, indicated as [4]. How-
ever, they forget that the old version of custom_agg still lingers
in the agg_by_col dictionary and rerun the third cell (indicated
as [5]) without rerunning the second cell. We deem this an unsafe
execution, because the user intended for the change to agg_by_col
to be reflected in df_agg_x and df_agg_y, but it was not. Upon
inspecting the resulting dataframes df_x_agg and df_y_agg, the
user may or may not realize the error. In the best case, user may
identify the error and rerun the second cell. In the worst case, users
may be deceived into thinking that their change had no effect.
This example underscores the inherent difficulty in manually
managing notebook state, inspiring colorful criticisms such as a talk
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titled “I Don’t Like Notebooks” presented at JupyterCon 2018 [17].
In addition to the frustration that users experience when spending
valuable time debugging state-related errors, such bugs can lead
to invalid research results and hinder reproducibility.

Key Research Challenges. The goal of this paper is to develop
techniques to automatically identify and prevent potentially unsafe cell
executions, without sacrificing existing familiar notebook semantics.
We encounter a number of challenges toward this end:

1. Automatically detecting unsafe interactions. To detect unsafe inter-
actions due to symbol staleness issues, it becomes clear that static
analysis on its own is not enough. A static approach must neces-
sarily be overly conservative when gathering lineage metadata /
inferring dependencies, as it must consider all branches of control
flow. On the other hand, some amount of static analysis is necessary
so that users can be warned before they execute an unsafe cell (as
opposed to during cell execution, by which time the damage may
already be done); finding the right balance is nontrivial.

2. Automatically resolving unsafe behavior with suggested fixes. In ad-
dition to detecting potentially unsafe interactions, we should ideally
also identify which cells to run in order to resolve staleness issues.
A simpler approach may be to automatically rerun cells when a
potential staleness issue is detected (as in Dataflow notebooks [24]),
but in a flexible notebook environment, there could potentially be
more than one cell whose re-executions would all resolve a partic-
ular staleness issue; identifying these to present them as options to
the user requires a significant amount of nontrivial static analysis.

3. Maintaining interactive levels of performance. We must address
the aforementioned challenges without introducing unacceptable
latencies or memory usage. First, we must ensure that any lineage
metadata we introduce does not grow too large in size. Second,
efficiently identifying cells that resolve staleness issues is also non-
trivial. Suppose we are able to detect cells with staleness issues,
and we have detected such issues in cell ¢;. We can check whether
prepending some cell ¢, (and thereby executing ¢, first before c;)
would fix the staleness issue (by, e.g., detecting whether the merged
cell ¢, ®c; has staleness issues), but we show in Section 5.2 that a di-
rect implementation of this idea scales quadratically in the number
of cells in the notebook.

Despite previous attempts to address these challenges and to facil-
itate safer interactions with global notebook state [1, 24, 38], to our
knowledge, NBSAFETY is the first to do so while preserving existing
notebook semantics. For example, Dataflow notebooks [24] require
users to explicitly annotate cells with their dependencies, and force
the re-execution of cells whose dependencies have changed. Node-
book [38] and the Datalore kernel [1] attempt to enforce a temporal
ordering of variable definitions in the order that cells appear, again
forcing users to compromise on flexibility. In the design space of
computational notebooks [25], Dataflow notebooks observe reac-
tive execution order, while Nodebook and Datalore’s kernel ob-
serve forced in-order execution. However, a solution that preserves
any-order execution semantics, while simultaneously helping users
avoid errors that are only made possible due to such flexibility, has
heretofore evaded development.

Contributions. To address these challenges, we develop NBSAFETY,
a custom Jupyter kernel and frontend for automatically detecting
unsafe interactions and alerting users, all while maintaining in-
teractive levels of performance and preserving existing notebook
semantics. After a single installation command [27], users of both
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dependencies and cell execution timestamps. This metat
used by a runtime state-aware static checker (§4) that combine
metadata with static program analysis techniques to determine
whether any staleness issues are present prior to the start of cell ex-
ecution. This allows NBSAFETY to present users with cell highlights
(§5) that warn them about cells that are unsafe to execute due to stal-
eness issues before they try executing such cells, thus preserving de-
sirable atomicity of cell executions present in traditional notebooks.

2. Efficient resolution of staleness issues. Beyond simply detecting stal-
eness issues, we also show how to detect cells whose re-execution
would resolve such staleness issues — but doing so efficiently re-
quired us to leverage a lesser-known analysis technique called ini-
tialized variable analysis (§4) tailored to this use case. We show how
initialized analysis brings staleness resolution complexity down
from time quadratic in the number of cells in the notebook to linear,
crucial for large notebooks.

We validate our design choices for NBSAFETY by replaying and an-
alyzing of a corpus of 666 execution logs of real notebook sessions,
scraped from GitHub (§6). In doing so, NBSAFETY identified that 117
sessions had potential safety errors, and upon sampling these for
manual inspection, we found several with particularly egregious
examples of confusion and wasted effort by real users that would
have been saved with NBSAFETY. After analyzing the 549 remaining
sessions, we found that cells suggested by NBSAFETY as resolving
staleness issues were strongly favored by users for re-execution—
more than 7X more likely to be selected compared to random cells,
even though these user interactions were originally performed with-
out NBSAFETY and therefore were not influenced by its suggestions.
Overall, our empirical study indicates that NBSAFETY can reduce
cognitive overhead associated with manual maintenance of global
notebook state under any-order execution semantics, and in doing
so, allows users to focus their efforts more on exploratory data anal-
ysis, and less on avoiding and fixing state-related notebook bugs.

Our free and open source code is available publicly on GitHub [27].

2 ARCHITECTURE OVERVIEW

In this section, we give an overview of NBSAFETY s components
and how they integrate into the notebook workflow.
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def custom_agg(series):
return reduce(lambda x, y: x + y, series)

agg_by_col = {'A': 'min', 'B': custom_agg}

df_x_agg = df_x.agg(agg_by_col)
df_y_agg = df_y.agg(agg_by_col)

I [31:

Figure 3: NBSAFETY highlights unsafe cells with staleness warnings
and cells that resolve staleness issues with cleanup suggestions.

Overview. NBSAFETY integrates into a notebook workflow accord-
ing to Figure 2. As depicted, all components of NBSAFETY are in-
voked upon each and every cell execution. When the user submits a
request to run a cell, the tracer (@, §3) instruments the executed cell,
updating lineage metadata associated with each variable as each
line executes. Once the cell finishes execution, the checker (@, §4)
performs liveness analysis [4] and initialized variable analysis [29]
for every cell in the notebook. By combining the results of these
analyses with the lineage metadata computed by the tracer, the
frontend (@, §5) is able to highlight cells that are unsafe due to
staleness issues of the form seen in Figure 1, as well as cells that
resolve such staleness issues.

O Tracer. The NBSAFETY tracer maintains dataflow dependen-
cies for each symbol that appears in the notebook in the form
of lineage metadata. It leverages Python’s built-in tracing capabili-
ties [3],which allows it to run custom code upon four different kinds
of events: (i) line events, when a line starts to execute; (ii) call
events, when a function is called, (iii) return events, when a func-
tion returns, and (iv) exception events, when an exception occurs.

To illustrate its operation, consider that, the first time c3 in Fig-
ure 1 is executed, symbols df_agg_x and df_agg_y are undefined.
Before the first line runs, a 1ine event occurs, thereby trapping into
the tracer. The tracer has access to the line of code that triggered
the line event and parses it as an Assign statement in Python’s
grammar, followed by a quick static analysis to determine that
the symbols df_x and agg_by_col appear on the right hand side
of the assignment (i.e., these symbols appear in use[R.H.S. of the
Assign]). Thus, these two will be the dependencies for symbol
df_agg_x. Since c3 is the third cell executed, the tracer further-
more gives df_agg_x a timestamp of 3. Similar statements hold
for df_agg_y once the second line executes.

@ Checker. The NBSAFETY static checker performs two kinds of
program analysis: (i) liveness analysis, and (ii) initialized variable
analysis. The NBSAFETY liveness checker helps to detect safety issues
by determining which cells have live references to stale symbols.
For example, in Figure 1, agg_by_col, which is stale, is live in c3—
this information can be used to warn the user before they execute
c3. Furthermore, the initialized checker serves as a key component
for efficiently computing resolutions to staleness issues, as we later
show in Sections 4 and 5.

© Frontend. The NBSAFETY frontend uses the results of the static
checker to highlight cells of interest. For example, in Figure 3,
which depicts the original example from Figure 1 (but before the
user submits c3 for re-execution), c3 is given a staleness warning
highlight to warn the user that re-execution could have incorrect
behavior due to staleness issues. At the same time, ¢ is given a
cleanup suggestion highlight, because rerunning it would resolve
the staleness in c3. The user can then leverage the extra visual cues
to make a more informed decision about which cell to next execute.
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AST Node Example Rule
Assign a=e Par(a) =USE[e]

[ (targetinRHS) [ @a=a+e | Par(a)=Par(a)UUSE[e] |
[ AugAssign | “a+=e | Par(a)=Par(a)UUSE[e] |
For for a in e: Par(a) =USE[e
FunctionDef def f(a=e): Par(f) =USE[e
ClassDef class c(e): Par(c) =USE[e

Table 1: Subset of lineage rules used by the NBSAFETY tracer.

Overall, each of NBSAFETY’s three key components play crucial
roles in helping users avoid and resolve unsafe interactions due to
staleness issues without compromising existing notebook program
semantics. We describe each component in the following sections.

3 LINEAGE TRACKING

In this section, we describe how NBSAFETY traces cell execution in
order to maintain symbol lineage metadata, and how such metadata
aids in the detection and resolution of staleness issues.

3.1 Preliminaries
We begin defining our use of the term symbol.

Definition 1 [Symbol]. A symbol is any piece of data in notebook
scope that can be referenced by a (possibly qualified) name.

For example, if 1st is a list with 10 entries, then 1st, 1st [0], and
1st[8] are all symbols. Similarly, if df is a dataframe with a column
named “col”, then df and df. col are both symbols. Symbols can be
thought of as a generalized notion of variables that allow us treat dif-
ferent nameable objects in Python’s data model in a unified manner.

NBSAFETY augments each symbol with additional lineage meta-
data in the form of timestamps and dependencies.

Definition 2 [Timestamp]. A symbol’s timestamp is the execution
counter of the cell that most recently modified that symbol. Likewise,
a cell’s timestamp is the execution counter corresponding to the most
recent time that cell was executed.

For a symbol s or a cell ¢, we denote its timestamp as ts(s) or ts(c),
respectively. For example, letting c1, ¢z, and c3 denote the three
cells in Figure 1, we have that ts(custom_agg) =ts(c;) =4, since
custom_agg is last updated in ¢, which was executed at time 4.

Definition 3 [Dependencies]. The dependencies of symbol s are
those symbols that contributed to s’s computation via direct dataflow.

In Figure 1, agg_by_col depends on custom_agg, while
df_x_agg depends on df_x and custom_agg. We denote the de-
pendencies of s with Par(s).

A major contribution of NBSAFETY is to highlight cells with un-
safe usages of stale symbols, which we define recursively as follows:

Definition 4 [Stale symbols]. A symbol s is called stale if there exists
some s’ € Par(s) such thatts(s”) > ts(s), or s’ is itself stale; that is, s
has a parent that is either itself stale or more up-to-date than s.

In Figure 1, symbol agg_by_col is stale, because ts(agg_by_col)
= 2, but ts(custom_agg) = 4. Staleness gives us a rigorous con-
ceptual framework upon which to study the intuitive notion that,
because custom_agg was updated, we should also update its child
agg_by_col to prevent counterintuitive behavior.

We now draw on these definitions as we describe how NBSAFETY
maintains lineage metadata while tracing cell execution.

3.2 Lineage Update Rules

NBSAFETY attempts to be non-intrusive when maintaining lineage
with respect to the Python objects that comprise the notebook’s



state. To do so, we avoid modifying the Python objects created by
the user, instead creating “shadow” references to each symbol. NB-
SAFETY then takes a hybrid dynamic / static approach to updating
each symbol’s lineage. After each statement has finished executing,
the tracer inspects the AST node for the executed statement and
performs a lineage update according to the rules shown in Table 1.
Example. Suppose the statement

gen = map(lambda x: f£(x), foo + [bar])
has just finished executing. Using rule 1 of Table 1, the tracer will
then statically analyze the right hand side in order to determine

use[map(lambda x: f£(x), foo + [bar])]

which is the set of used symbols that appear in the RHS. In this
case, the aforementioned set is {f, foo, bar} — everything else
is either a Python built-in (map, lambda), or an unbound symbol
(i.e. in the case of the lambda argument x). The tracer will thus set
Par(gen)={f,foo,bar} and will also update ts(gen).
Fine-Grained Lineage for Attributes and Subscripts. NBSAFETY
is able to track lineage at a finer granularity than simply top-level
symbols. For example, NBSAFETY tracks parents and children of
subscript symbols like x[0] and attribute symbols like x . a (as well
as combinations thereof) as first-class citizens, in addition to those
of top-level symbols such as x. Please see the technical report [28]
for more details.
Staleness Propagation. We already saw that the tracer annotates
each symbol’s shadow reference with timestamp and lineage meta-
data. Additionally, it tracks whether each symbol is stale, as this
cannot be inferred solely from timestamp and lineage metadata. To
see why, recall the definition of staleness: a symbol s is stale if it has
a more up-to-date parent (i.e., an s’ € Par(s) with ts(s’) > ts(s)),
or if it has a stale parent, precluding the ability to determine stal-
eness locally. Thus, when s is updated, we perform a depth first
search starting from each child c € Chd(s) in order to propagate
the “staleness” to all descendants.
Bounding Lineage Overhead. Consider the following cell:

X 0
for i in random.sample(range(10%**7),

x += lst[i]

[1]
10%*5):

In order to maintain lineage metadata for symbol x to 100% cor-
rectness, we would need to somehow indicate that Par(x) contains
1st[i] for all 10° random indices i. It is impossible to maintain
acceptable performance in general under these circumstances. Po-
tential workarounds include conservative approximations, as well
as lossy approximations. For example, as a conservative approxi-
mation, we could instead specify that x depends on 1st, with the
implication that it also depends on everything in 1st’s namespace.
However, this will cause x to be incorrectly classified as stale when-
ever 1st is mutated, e.g., if a new entry is appended. We therefore
opted for a lossy approximation that we describe in our extended
technical report [28].

Handling Calls to External Libraries. When NBSAFETY's tracer
traps due to a function call, it inspects the location of the called
function. If the called function was not defined in the user’s note-
book, but in some imported file, NBSAFETY disables tracing until
control returns to the notebook proper, since external files typically
do not have access to state defined in the notebook. If an object
in notebook state is passed explicitly as, e.g., a function param-
eter, NBSAFETY assumes the library does not mutate it; we leave
improvements to future work. By disabling tracing when control is
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if num % 3
foobar = True

%3=={ %3==2
%3==1

s = 'foobar'

foo = True

s = 'foo' -
else:
print(s, foobar) LIVE: num, foobar

INITIALIZED: s

Figure 4: Example liveness and initialized variable analysis.

outside the notebook, we ensure that additional tracing overhead
is bounded by the size of the user’s notebook.

Finally, our technical report [28] contains additional details sur-
rounding the tracer, such as how we garbage collect shadow meta-
data, how we handle mutations when variables alias each other,
and how we handle namespaced symbols such as attributes .

4 LIVENESS AND INITIALIZED ANALYSES

In this section, we describe the program analysis component of NB-
SAFETY’s backend. The checker performs liveness analysis [4], and a
lesser-known program analysis technique called initialized variable
analysis, or definite assignment analysis [29]. These techniques are
crucial for efficiently identifying which cells are unsafe to execute
due to stale references, as well as which cells help resolve staleness
issues. We begin with background before discussing the connection
between these techniques and staleness detection and resolution.

4.1 Background

Liveness analysis[4] is a program analysis technique for determining
whether the value of a variable at some point is used later in the
program. Although traditionally used by compilers to, for example,
determine how many registers need to be allocated at some point
during program execution, we use it to determine whether a cell
has references to stale symbols. We also show (§5) how initialized
variable analysis analysis [29], a technique traditionally used by
IDEs and linters to detect potentially uninitialized variables, can be
used to efficiently determine which cells to to resolve staleness.
Example. In Figure 4, symbols num and foobar are live at the top
of the cell, since the value for each at the top of the cell can be used
in some path of the control flow graph (CFG). In the case of num,
the (unmodified) value is used in the conditional. In the case of
foobar, while one path of the CFG modifies it, the other two paths
leave it unchanged by the time it is used in the print statement;
hence, it is also live at the top of the cell. The symbol that is not
live at cell start is foo, since it is only ever assigned and never used,
and s, since every path in the CFG assigns to s. We call symbols
such as s that are assigned in every path of the CFG dead once they
reach the end of the cell.

4.2 Cell Oriented Analysis

We now describe how we relate liveness, which is traditionally ap-
plied in the context of a single program, to a notebook environment.

Definition 5 [Live symbols]. Given a cell c and some symbol s, we
say that s islive in c if there exists some execution path in ¢ in which
the value of s at the start of ¢’s execution is used later in c.

In other words, s is live in ¢ if, treating c as a standalone program,
s is live in the traditional sense at the start of c. We already saw in
Figure 4 that the live symbols in the example cell are num, fiz, and
buz. For a given cell ¢, we use LIVE(c) to denote the live symbols in c.



We are also interested in dead symbols that are (re)defined in
every branch by the time execution reaches the end of a given cell c.

Definition 6 [Dead symbols]. Given a cell c and some symbol s, we
say that s isdead in c if; by the time control reaches the end of c, every
possible path of execution in ¢ overwrites s in a manner independent
of the current value of s.

Denoting such symbols as DEAD(c), we will see in Section 5 the
role they play in assisting in the resolution of staleness issues.
Staleness and Freshness of Live Symbols in Cells. Recall that
symbols are augmented with additional lineage and timestamp
metadata computed by the tracer (§3). We can thus additionally
refer to the set sTALE(c) CLIVE(c), the set of stale symbols that are
live in c. When this set is nonempty, we say that cell ¢ itself is stale:

Definition 7 [Stale cells]. A cellc is called stale if there exists some s €
LIVE(c) such that s is stale; i.e., c has a live reference to some stale symbol.

A major contribution of NBSAFETY is to identify cells that are stale
and preemptively warn the user about them.

Note that a symbol can be stale regardless of whether it is live in
some cell. Given a particular cell ¢, we can also categorize symbols
according to their lineage and timestamp metadata as they relate to
c. For example, when a non-stale symbol s that is live in ¢ is more
“up-to-date” than c, then we say that it is fresh with respect to c:

Definition 8 [Fresh symbols]. Given a cell ¢ and some symbol s, we
say that s isfresh w.r.t. ¢ if (i) s is not stale, and (i) ts(s) > ts(c).

We can extend the notion of fresh symbols to cells just as we did
for stale symbols and stale cells:

Definition 9 [Fresh cells]. A cell c is called fresh if it (i) it is not stale,
and (ii) it contains a live reference to one or more fresh symbols; that
is, ds € LIVE(c) such that s is fresh with respect to c.

Example. Consider a notebook with three cells run in sequence,
with code a=4, b=a, and c=a+b, respectively, and suppose the first
cell is updated to be a=5 and rerun. The third cell contains refer-
ences to a and b, and although a is fresh, b is stale, so the third cell
is not fresh, but stale. On the other hand, the second cell contains
a live reference to a but no live references to b, and is thus fresh.

As we see in our experiments (§6), fresh cells are oftentimes

cells that users wish to re-execute; another major contribution of
NBSAFETY is therefore to automatically identify such cells. In fact, in
the above example, rerunning the second cell resolves the staleness
issue present in the first cell. That said, running any other cell that
assigns to b would also resolve the staleness issue, so staleness-
resolving cells need not necessarily be fresh. Instead, fresh cells
can be thought of as resolving staleness in cell output, as opposed
to resolving staleness in some symbol. We study such staleness-
resolving cells next.
Cells that Resolve Staleness. We have already seen how liveness
checking can help users to identify stale cells. Ideally, we should
also identify cells whose execution would “freshen” the stale vari-
ables that are live in some cell c, thereby allowing c to be executed
without potential errors due to staleness. We thus define refresher
cells as follows:

Definition 10 [Refresher cells]. A non-stale cell ¢, is called refresher
if there exists some other stale cell cs such that

STALE(cs)—STALE(c, Dcs ) # D
where ¢, ® cs denotes the concatenation of cells ¢, and cs. That is,
the result of merging c, and cs together has fewer live stale symbol
references than does cs alone.
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Intuitively, if we were to submit a refresher cell for execution, we
would reduce the number of stale symbols live in some other cell
(possibly to 0). Note that a refresher cell may or may not be fresh.
In addition to identifying stale and fresh cells, a final major con-
tribution of NBSAFETY is the efficient identification of refresher cells.
We will see in Section 5 that scalable computation of such cells
requires initialized analysis to compute dead symbols.
Initialized Variable Analysis. Initialized variable analysis [29]
can be thought of as the “inverse” of liveness analysis. While live-
ness analysis is a “backwards-may” technique for computing sym-
bols whose non-overwritten values “may” be used in a cell, initial-
ized analysis is a “forwards-must” technique that computes symbols
that will be “definitely assigned” by the time control reaches the
end of a cell. Please see the technical report [28] for a detailed
discussion of initialized analysis; we leverage it within the context
of NBSAFETY to determine whether a non-stale cell will overwrite
any stale symbols, which turns out to be an efficient mechanism
for computing refresher cells (§5.2).

4.3 Resolving Live Symbols

In many cases, it is possible to determine the set of live symbols in
a cell with high precision purely via static analysis. In some cases,
however, it is difficult to do so without awareness of additional
runtime data. To illustrate, consider the example below:

b3 0

[1]

def £(y):
return x + y
1st = [f, lambda t: t + 1]

[ print(1st[1]1(2)) [2] }

Whether or not symbol x should be considered live at the top of
the second cell depends on whether the call to 1st[1] (2) refers
to the list entry containing the lambda, or the entry containing
function £. In this case, a static analyzer might be able to infer that
1st[1] does not reference £ and that x should therefore not be
considered live at the top of cell 2 (since there is no call to function f,
in whose body x is live), but doing so in general is challenging due
to Rice’s theorem. Instead of doing so purely statically, NBSAFETY
performs an extra resolution step, since it can actually examine
the runtime value of 1st[1] in memory. This allows NBSAFETY to
be more precise about live symbols than a conservative approach
would be, which would be forced to consider x as live even though
f is not referenced by 1st[1].

5 CELL HIGHLIGHTS

In this section, we describe how to combine the lineage metadata
with the output of the static checker to highlight cells of interest.

5.1 Highlight Abstraction

We begin by defining the notion of cell highlights in the abstract
before discussing concrete examples, how they are presented, and
how they are computed.
Definition 11 [Cell highlights]. Given a notebook N abstractly de-
fined as an ordered set of cells{c; }, a set of cell highlights H is a subset
of N comprised of cells that are semantically related in some way at
a particular point in time.
More concretely, we will consider the following cell highlights:
o H;, the set of stale cells in a notebook;



. Wf, the set of fresh cells in a notebook; and

o H,, the set of refresher cells in a notebook.
Note that these sets of cell highlights are all implicitly indexed by
their containing notebook’s execution counter. When not clear from

context we write WS(t), ‘H;t), and Wﬁt) (respectively) to make the

time dependency explicit. Along these lines, we are also interested

in the following “delta” cell highlights:
. AW}” =7—(J(Ct) —W}t_l) (new fresh cells); and

. A‘H,(t) =‘7—(£[)—‘7{,(t71) (new refresher cells)
again omitting superscripts when clear from context.
Interface. We have already seen from the example in Figure 3 that
stale cells are given staleness warnings to the left of the cell, and
refresher cells are given cleanup suggestions to the left of the cell.
NBSAFETY also augments fresh cells with cleanup suggestions of
the same color as that used for refresher cells. Overall, the fresh
and refresher highlights are intended to steer users toward cells
that they may wish to re-execute, and the stale highlights are in-
tended to steer users away from cells that they may wish to avoid,
intuitions that we validate in our empirical study (§6).
Computation. Computing H and Hy is straightforward: for each
cell ¢, we simply run a liveness checker to determine LIve(c), and
then perform a metadata lookup for each symbol s € LIVE(c) to deter-
mine whether s is fresh w.r.t. c or stale. Refresher cell computation
deserves a more thorough treatment that we consider next.

5.2 Computing Refresher Cells Efficiently

Before we discuss how NBSAFETY uses an initialized variable checker
from Section 4 to efficiently compute refresher cells, consider how
one might design an algorithm to compute refresher cells directly
from Definition 10. The straightforward way is to loop over all
non-stale cells ¢, € N—H, and compare whether sTALE(c, ®cs) is
smaller than sTALE(cs). In the case that H and N—%Hj are similar
in size, this requires performing O (|N |2) liveness analyses, which
would create unacceptable latency in the case of large notebooks.
By leveraging an initialized variable checker, it turns out that
we can check whether sTALE(cs) and DEAD(c,) have any overlap
instead of performing liveness analysis over ¢, ®cs and checking
whether sTALE(c, ®cs) shrinks. We state this formally as follows:

Theorem 1. Let N be a notebook, and let cs € Hs € N. For any other
cr € N—H, the following equality holds:
STALE(cg ) —STALE(c, Dcs ) = DEAD(c, ) NSTALE(C)

Please see the technical report [28] for a proof. [

Theorem 1 relies crucially on the fact that the CFG of the concate-
nation of two cells ¢, and ¢ into ¢, ®cs will have a “choke point”
at the position where control transfers from ¢, into cg, so that any
symbols in DEAD(c,) cannot be “revived” in ¢, ®cs.

Computing H, Efficiently. Contrasted with taking O (|N [2) pairs
cs € Hs, ¢ € N—H; and checking liveness on each concatenation
cr ®cs, Theorem 1 instead allows us compute the set H, as

U U {cr eN—WS:seDEAD(cr)}
cs €HsSESTALE(cs)

Equation 1 can be computed efficiently by creating inverted index
that maps dead symbols to their containing cells (DEAD™!) in or-
der to efficiently compute the inner set union. Furthermore, this
approach only requires O(|N|) liveness analyses and O(|N|) initial-
ized variable analyses as preprocessing, translating to significant
latency reductions in our benchmarks (§6.4).

1
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6 EMPIRICAL STUDY

We now evaluate NBSAFETY's ability to highlight unsafe cells, as
well as cells that resolve safety issues (refresher cells). We do so by
replaying 666 real notebook sessions and measuring how the cells
highlighted by NBSAFETY correlate with real user actions. After
describing data collection (§6.1) and our evaluation metrics (§6.2),
we present our quantitative results (§6.3 and §6.4).

6.1 Notebook Session Replay Data
We now describe our data collection and session replay efforts.

Data Scraping. The .ipynb json format contains a static snap-
shot of the code present in a computational notebook and lacks
explicit interaction data, such as how the code present in a cell
evolves, which cells are re-executed, and the order in which cells
were executed. Fortunately, Jupyter’s IPython kernel implements a
history mechanism that includes information about individual cell
executions in each session, including the source code and execution
counter for every cell execution. We thus scraped history.sqlite
files from 712 repositories files using GitHub’s API [2], from which
we successfully extracted 657 such files. In total, these history files
contained execution logs for ~ 51000 notebook sessions, out of
which we were able to collect metrics for 666 after conducting the
filter and repair steps described next.

Notebook Session Repair. Many of the notebook sessions were
impossible to replay with perfect replication of the session’s orig-
inal behavior (due to, e.g., missing files). To cope, we adapted ideas
from Yan et al. [37] to repair sessions wherever possible. Please see
our technical report [28] for details for repair and filtering (below).

Session Filtering. Despite these efforts, we were unable to re-
construct some sessions to their original fidelity due to various
environment discrepancies. Furthermore, certain sessions had few
cell executions and appeared to be random tinkering. We therefore
filtered out undesirable sessions, after which we were left with 2566
replayable sessions. However, we were unable to gather meaningful
metrics on more than half of the sessions we replayed because of
exceptions thrown upon many cell executions. We filtered these in
post-processing by removing data for any session with more than
50% of cell executions resulting in exceptions.

After the repair and filtration steps, we extracted metrics from
a total of 666 sessions. Our scripts are available on GitHub [26].

6.2 Metrics

Besides conducting benchmark experiments to measure overhead
associated with NBSAFETY (§6.4), the primary goal of our empir-
ical study is to evaluate our system and interface design choices
from the previous sections by testing two hypotheses. Our first
hypothesis (i) is that cells with staleness issues highlighted by NB-
SAFETY are likely to be avoided by real users, suggesting that these
cells are indeed unsafe to execute. Our second hypothesis (ii) is that
fresh and refresher cells highlighted by NBSAFETY are more likely to be
selected for re-execution, indicating that these suggestions can help
reduce cognitive overhead for users trying to choose which cells
to re-execute. To test these hypotheses, we introduce the notion of
predictive power for cell highlights.

Definition 12 [Predictive Power]. Given a notebook N with a total
of |N| cells, the id of the next cell executed c, and a non-empty set of
cell highlights H (chosen before ¢ is known), the predictive power of
H is defined as P(H)=I{ce H}-|N|/|H]|.
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Figure 5: AVG(P(H.)) for sessions with/without safety issues.

Averaged over many measurements, predictive power assesses how
many more times more likely a cell from some set of highlights H
is to be picked for re-execution, compared to random cells.

Intuition. To understand predictive power, consider a set of high-
lights H chosen uniformly randomly without replacement from
the entire set of available cells. In this case, E[I{ce H}|=P(ce H) =
[H|/|N], so that the predictive power of H is (|H|/|N|)-(IN|/|H]|)=
1. This holds for any number of cells in the set of highlights #, even
when |H|=|N|. Increasing the size of H increases the chance for a
nonzero predictive power, but it also decreases the “payout” when
ceH. For a fixed notebook N, the maximum possible predictive
power for H occurs when H ={c}, in which case P(H)=|N]|.

Rationale. Our goal in introducing predictive power is not to give
a metric that we then attempt to optimize; rather, we merely want
to see how different sets of cell highlights correlate with real user
behavior. In some sense, any P (H) # 1 is interesting: P(H) <1 indi-
cates that users tend to avoid H, and P(H) > 1 indicates that users
tend to prefer H. For the different sets of cell highlights {H.} intro-
duced in Section 5, each P(H.) helps us to make this determination.

Gathering measurements. The session interaction data available
in the scraped history files only contains the submitted cell con-
tents for each cell execution, and unfortunately lacks cell identifiers.
Therefore, we attempted to infer the cell identifier as follows: for
each cell execution, if the cell contents were >80% similar to a pre-
viously submitted cell (by Levenshtein similarity), we assigned the
identifier of that cell; otherwise, we assigned a new identifier. When-
ever we inferred that an existing cell was potentially edited and
re-executed, we measured predictive power for various highlights
H. when such highlights were non-empty. Across the various high-
lights, we computed the average of such predictive powers for each
sessions, and the averaged the average predictive powers across all
sessions, reporting the result as AVG(P(Hx)) for each H. (§6.3).

Highlights of Interest. We gathered metrics for Hs, (Hf, A‘Hf,
H;, and AH,, which we described earlier in Section 5. Additionally,
we also gathered metrics for the following “baseline highlights”:

o H,, or the next cell highlight, which contains only the k+1 cell
(when applicable) if cell k was the previous cell executed; and

ind> or the random cell highlight, which simply picks a random
cell from the list of existing cells.
We take measurements for Hj, because picking the next cell in a
notebook is a common choice, and it is interesting to see how its
predictive power compares with cells highlighted by the NBSAFETY
frontend such as Hy and H,. We also take measurements for Hing
to validate via Monte Carlo simulation the claim that random cells
Hing should satisfy P(H;pg) =1 in expectation.
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Quantity Hn | Hind Hs 7’lf Hy A(]‘(f AH,
AVG(P(H,)) | 2.64 | 1.02 | 0.30 | 2.83 | 3.90 | 9.17 6.20
AVG([H. ) 1.00 1.00 | 2.71 | 3.73 | 2.31 1.73 1.81

Table 2: Summary of measurements taken for various highlight sets.

6.3 Predictive Power Results

In this section, we present the results of our empirical evaluation.
Overall, NBSAFETY discovered that 117 sessions out of the 666 encoun-
tered staleness issues at some point, underscoring the need for a tool
to prevent such errors. Furthermore, we found that the “positive”
highlights like H; and H, correlated strongly with user choices.

Predictive Power for Various Highlights. We now discuss aver-
age P(H.) for the various H; we consider, summarized in Table 2.

Summary. Out of the highlights H, with P(H,)> 1, new fresh
cells, AHy, had the highest predictive power, while Hy had the
lowest (excepting H,pq, which had P(H,nq) = 1 as expected).
H had the lowest predictive power coming in at P (Hs)~0.30,
suggesting that users do, in fact, avoid stale cells.

We measured the average value of P(H;) at roughly 0.30, which
is the lowest mean predictive power measured out of any highlights.
One way to interpret this is that users were more then 3x less likely
to re-execute stale cells than they are to re-execute randomly se-
lected highlights of the same size as Hs — strongly supporting the
hypothesis that users tend to avoid stale cells.

On the other hand, all of the highlights H,, ‘7‘(f, H,, A?‘lf, and
AH, satistied P(H,) > 1 on average, with P(AHy) larger than the
others at 9.17, suggesting that users are more than 9x more likely
to select newly fresh cells to re-execute than they are to re-execute
randomly selected highlights of the same size as AHp. In fact, Hp
was the lowest non-random set of highlights with mean predictive
power > 1, strongly supporting our design decision of specifically
guiding users to all the cells from Hy and H, (and therefore to
AHy and AH, as well) with our aforementioned visual cues. Fur-
thermore, we found that no |H,| was larger than 4 on average,
suggesting that these cues are useful, and not overwhelming.

Finally, given the larger predictive powers of AHy and AH,, we
plan to study interfaces that present these highlights separately
from ‘Hf and H, in future work.

Effect of Safety Issues on Predictive Power. Of the 666 sessions
we replayed, we detected 1 or more safety issues (due to the user exe-
cuting a stale cell) in 117, while the majority (549) did not have safety
issues. We reveal interesting behavior by computing AVG(P(H.))
when restricted to (a) sessions without safety errors, and (b) sessions
with 1 or more safety errors, depicted in Figure 5.

Summary. For sessions with safety errors, users were more
likely to select the next cell (), and less likely to select fresh
or refresher cells (Hy and H;, respectively).

Figure 5 plots AVG(P(H.)) for various highlight sets after faceting
on sessions that did and did not have safety errors. By definition,
AVG(P(Hs)) =0 for sessions without safety errors (otherwise, users
would have attempted to execute one or more stale cells), but even
for sessions with safety errors, we still found P(H;) <1 on average,
though not enough to rule out random chance.

Interestingly, we found that AVG(P(H,,)) was significantly higher
for sessions with safety issues, suggesting that users were more
likely to “blindly” execute the next cell without thought.

Finally, we found that users were significantly less likely to
choose cells from 7’(f, H;, or AH, for sessions with safety errors.
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Figure 6: Measuring the impact of cell count on analysis latency for
NBSAFETY with and without efficient refresher computation.

Approach Jupyter | NBSAFETY | NBSAFETY (quadratic refresher)
Analysis Time (s) 0 990 5070
Execution Time (s) 3150 4850 4850
Total Time (s) 3150 5840 9920
Median Slowdown 1x 1.44x 1.58X

Table 3: Summary of latency measurements. Median slowdown mea-
sured on sessions that took > 5 seconds to execute in vanilla Jupyter.

In fact, users favored H,, over H, or ?{f in this case. Regardless
of whether sessions had safety issues, however, A‘Hf and AH, still
had the highest mean predictive powers out of any of the highlights.

6.4 Benchmark Results

Our benchmarks are designed to assess the additional overhead
incurred by our tracer and checker by measuring the end-to-end
execution latency for the aforementioned 666 sessions, with and
without NBSAFETY. Furthermore, we assess the impact of our initial-
ized analysis approach to computing refresher cells by comparing
it with the naive quadratic baseline (both discussed in Section 5).
Overall Execution Time. We summarize the time needed for var-
ious methods to replay the 666 sessions in our execution logs in
Table 3, and furthermore faceted on the static analysis and tracing
/ execution components in the same table. We measured latencies
for both vanilla Jupyter and NBSAFETY, as well as for an ablation
that replaces the efficient refresher computation algorithm with
the quadratic variant.

Summary. The additional overhead introduced by NBSAFETY is
within the same order-of-magnitude as vanilla Jupyter, taking
less than 2X longer to replay all 666 sessions, with typical
slowdowns less than 1.5x. Without initialized analysis for
refresher computation, however, total reply time increased to
more than 3 the time taken by the vanilla Jupyter kernel.

Furthermore, we see from Table 3 that refresher computation begins
to dominate with the quadratic variant, while it remains relatively
minor for the linear variant based on initialized analysis.

Impact of Number of Cells on Analysis Latency. To better illus-
trate the benefit of using initialized analysis for efficient computa-
tion of refresher cells, we measured the latency of just NBSAFETY’s
analysis component, and for each session, we plotted this time
versus the total number of cells created in the session, in Figure 6.

Summary. While quadratic refresher computation is acceptable
for sessions with relatively few cells, we observe unacceptable
per-cell latencies for larger notebooks with more than 50 or
so cells. The linear variant that leverages initialized analysis,
however, scales gracefully even for the largest notebooks in
our execution logs.

The variance in Figure 6 for notebooks of the same size can be
attributed to cells with different amounts of code, as well as different
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numbers of cell executions (since the size of the notebook is a lower
bound for the aforementioned according to our replay strategy).

7 RELATED WORK

Our work has connections to notebook systems, fine-grained data
versioning and provenance, and data-centric applications of pro-
gram analysis. Our notion of staleness and cell execution orders is
reminiscent of the notion of serializability—we elaborate on this
connection in our technical report [28].

Notebook Systems. Error-prone interactions with global note-
book state are well-documented [10, 17, 19, 22, 24, 25, 30, 31, 34, 38].
The idea of treating a notebook as a dataflow computation graph has
been studied previously [8, 24, 38]; however, NBSAFETY is the first
such system to our knowledge that preserves existing any-order
execution semantics. We already surveyed Dataflow notebooks [24],
Nodebook [38], and Datalore’s kernel in Section 1. NBGATHER [19]
takes a purely static approach to automatically organize notebooks
thereby reducing non-reproducibility. However, NBGATHER does
not help prevent state-related errors made before reorganization.
Versioning and Provenance. Provenance capture can be either
coarse-grained, typically employed by scientific workflow systems,
e.g. [5,7,9, 12, 13], or fine-grained provenance as in database sys-
tems [11, 16, 20], typically at the level of individual rows. Recent
work has examined challenges related to version compaction [6, 21],
and fine-grained lineage for scalable interactive visualization [32].
Vizier [8] attempts to combine cell versioning and data provenance
into a cohesive notebook system with an intuitive interface, while
warning users of caveats (i.e., possibly brittle assumptions that the
analyst made about the data). Like Vizie, we leverage lineage to
propagate information about potential errors. However, data de-
pendencies still need to be specified using their dataset API, while
NBSAFETY infers them automatically.

Data-centric Program Checking. The database community has
traditionally leveraged program analysis to optimize database-backed
applications [15, 18, 33, 36], while we focus on catching bugs in an
interactive notebook environment. One exception is SQLCheck [14],
which employs a data-aware static analyzer to detect and fix so-
called antipatterns that occur during schema and query design.

8 CONCLUSION

We presented NBSAFETY, a kernel and frontend for Jupyter that at-
tempts to detect and correct potentially unsafe interactions in note-
books, all while preserving the flexibility of familiar any-order note-
book semantics. We described the implementation of NBSAFETY’s
tracer, checker, and frontend, and how they integrate into existing
notebook workflows to efficiently reduce error-proneness in note-
books. We showed how cells that NBSAFETY would have warned as
unsafe were actively avoided, and cells that would have been sug-
gested for re-execution were prioritized by real users on a corpus
of 666 real notebook sessions.
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