
MSE-Optimal Neural Network Initialization

via Layer Fusion

Ramina Ghods1, Andrew S. Lan2, Tom Goldstein3, and Christoph Studer4

1Carnegie Mellon University, Pittsburgh, PA; rghods@cs.cmu.edu
2University of Massachusetts Amherst, Amherst, MA; andrewlan@cs.umass.edu

3University of Maryland, College Park, MD; tomg@cs.umd.edu
4Cornell Tech, New York, NY; studer@cornell.edu

Abstract—Deep neural networks achieve state-of-the-art perfor-
mance for a range of classification and inference tasks. However,
the use of stochastic gradient descent combined with the noncon-
vexity of the underlying optimization problems renders parame-
ter learning susceptible to initialization. To address this issue, a
variety of methods that rely on random parameter initialization
or knowledge distillation have been proposed in the past. In this
paper, we propose FuseInit, a novel method to initialize shallower
networks by fusing neighboring layers of deeper networks that
are trained with random initialization. We develop theoretical
results and efficient algorithms for mean-square error (MSE)-
optimal fusion of neighboring dense-dense, convolutional-dense,
and convolutional-convolutional layers. We show experiments for
a range of classification and regression datasets, which suggest
that deeper neural networks are less sensitive to initialization
and shallower networks can perform better (sometimes as well
as their deeper counterparts) if initialized with FuseInit.

I. INTRODUCTION

A prominent approach to improving the performance of

artificial neural networks is to increase the number of network

parameters [1], [2]. Theoretical and empirical evidence in [3]–

[5] suggest that over-parametrization (more parameters in the

network than in the training data) enables one to find better

minimizers (and often faster) and reduce the generalization

error. Furthermore, reference [6] has shown that finding global

minimizers can be easier for sufficiently large networks.

Unfortunately, the deployment of deep neural nets with

a large number of parameters in resource-constrained sys-

tems, such as mobile devices, unmanned aerial vehicles,

autonomous cars is extremely challenging in terms of both

storage and computation [7], [8]. Fortunately, the parameters

of deep networks often exhibit high redundancy and, with

appropriate initialization schemes, shallower networks can

in many situations be trained to perform as well as their

deeper counterparts [9], [10]. For example, reference [11]

has demonstrated that one can substantially compress the

number of parameters in deep networks, but training of such

shallower networks directly, without using a deeper network, is

a notoriously difficult task. In many situations, the success

The work of RG and CS was supported in part by Xilinx Inc. and by the
US National Science Foundation under grants ECCS-1408006, CCF-1535897,
CCF-1652065, CNS-1717559, and ECCS-1824379.

or failure of training shallower networks depends on the

initialization method—the design of powerful initialization

strategies, however, remains an active research area.

A. Contributions

We propose FuseInit, a principled network initialization

method. The key idea of FuseInit is to first train a deeper

neural network with initialization methods that rely on random

weights—the deeper network is then used to initialize a

shallower network by fusing neighboring layers. Using a

classical result by Bussgang [12], we develop new theory

for mean-square error (MSE)-optimal fusion of neighboring

dense-dense, convolutional-dense, convolutional-convolutional

layers with arbitrary activation functions. We propose efficient

algorithms for FuseInit that scale favorably to deeper neural

networks and large datasets. To demonstrate the efficacy of

our approach, we show experimental results for a range of

classification and regression datasets. Our results suggest that

deeper networks are less sensitive to initialization and shallower

networks can perform better (sometimes as well as their deeper

counterparts) if initialized with FuseInit.

B. Relevant Prior Art

The majority of parameter initialization schemes for neural

nets deployed in practice rely on randomly initialized network

parameters. A widespread approach to random initialization

is the use of zero-mean Gaussian random variables with

small variance (e.g., 0.01) [13]. Reference [14] proposed

random initialization with a variance that depends on the

number of inputs and outputs of the layer to be initialized.

Reference [15] improved upon this approach for networks with

ReLU activations by using random variables with variance 2/N ,

where N stands for the number of inputs to the target

layer. Other methods that focus particularly on deep network

initialization with random parameters have been proposed in,

e.g., [16], [17]. Our focus is on initializing shallow networks.

FuseInit combines random initialization with an expansion-

and-fusion strategy: To initialize a target network, first add

one (or multiple) layers to the network, initialize the deeper

network with random parameters, train it, and finally fuse it

to the smaller target architecture.



dense

dense

dense

(a) dense-dense → dense

denseconv.

dense

(b) conv.-dense → dense

conv. conv.

conv.

(c) conv.-conv. → conv.

Fig. 1: The three considered scenarios of fusing neighboring dense and/or convolutional layers.

A prominent approach to train shallow neural networks from

deep networks is knowledge distillation [18]. This approach

builds upon the idea of imposing the outputs of a deeper

teacher network to the outputs of the shallower student network.

FuseInit differs from such methods as it starts directly from

a deeper network and successively fuses neighboring layers

to initialize the parameters of the shallower network instead

of training the shallower (student) network with the outputs

of the deeper (teacher) network from scratch. FuseInit can

be combined with such methods by initializing the student

network, which can then be trained via knowledge distillation.

ExpandNet is a recent initialization method for shallow

networks [19]. The idea is to learn shallow nets by expanding

each layer into multiple linear layers and training the expanded

network. FuseInit differs from this approach in the following

ways. While ExpandNet is using linear layers, FuseInit is

able to optimally fuse nonlinear layers. FuseInit also uses

the MSE-optimal fusion weights as a starting point to retrain

the shallower network. Our experiments indicate that this

re-training step significantly improves the performance of

the shallower network. While ExpandNet only relies on

experiments, we provide theory for MSE-optimal fusion of

neighboring layers and use experiments to demonstrate the

effectiveness of FuseInit. We furthermore provide an MSE

analysis for the fused layers, which provides a metric that can

be used to determine which layers to fuse.

Slightly less related to FuseInit is the plethora of network

simplification methods that aim at reducing the number of

parameters of deep neural nets; see, e.g., [20], [21] and

the references therein. Pruning methods are among the most

prominent ones and remove network parameters based on their

magnitude [22] or the cost function [23]–[25]. Other network

simplification methods include quantization [26]–[28], sparsity

[29], and low-rank structure [30]. The concept of FuseInit can

be generalized for a range of network architectures, including

networks with sparse and low-rank structure.

II. FUSEINIT: MSE-OPTIMAL NEURAL NETWORK

INITIALIZATION VIA LAYER FUSION

We now detail FuseInit for the three cases illustrated in

Figure 1: (a) Two dense layers are fused into one dense layer,

(b) one convolutional layer and one dense layer are fused into

one dense layer, and (c) two convolutional layers are fused

into a convolutional layer. We first summarize the notation

and then present theoretical results for MSE-optimal fusion

of neighboring layers. Finally, we show an efficient FuseInit

algorithm that scales to deep neural networks and large datasets.

A. Notation

Lowercase and uppercase boldface letters represent column

vectors and matrices, respectively. For a matrix A, the transpose

is A
T , and the ith row and jth column entry is A[i, j]. For a

vector a, the ith entry is a[i], and the sub-vector containing

the ith to jth entries is a[i : j] = ai:j ; furthermore, a[i : j :
k] = ai:j:k stands for a vector consisting of one entry every

other k entries taken from the ith to the jth entries of vector a;
∑L

i=1,i+=s a[i] denotes summation of a[i] starting from index

1 to L with strides of s. The ℓ2-norm of a is ‖a‖2; flip(a)
denotes a vector a with its entries in reverse order.

B. FuseInit for Dense-Dense and Convolutional-Dense Layers

Consider the following model for two consecutive layers

of a neural network, with a0 ∈ R
L0 as the input to the first

layer and a2 ∈ R
L2 as the output of the second layer. Note

that these can be any two neighboring layers in a deep neural

network, as long as the second layer is a dense, fully-connected

layer. As it will be clear later, there are no restrictions on the

first layer since we only need its empirical moments. The

function H1(·) fully characterizes the input-output relation of

the first layer. Let the second layer use activation function f2(·),
weight matrix W2 ∈ R

L2×L1 , and bias vector b2 ∈ R
L2 . The

following model describes the end-to-end input-output relation

of the two neighboring layers:

a2 = f2(W2a1 + b2) and a1 = H1(a0). (1)

Note that the inputs to the first and second layers may not

be vectors; in this case, we vectorize a0 and a1. In order to

fuse two neighboring layers into one, we use the following

three-step procedure. In the first step, we train the parameters

of the entire network by random initialization using a standard

training method, e.g., stochastic gradient descent. In the second

step, we use the trained parameters to fuse the first and second

layer into a single dense layer with input-output relation

a2 = f2(W̃a0 + b̃), (2)

where W̃ ∈ R
L2×L0 is a new weight matrix and b̃ ∈ R

L2

a new bias vector; we keep the activation function f2(·) of

the second layer. We select the new weight matrix and bias

vector to minimize the MSE between the output of the initial

two layers (1) and the output of the new fused dense layer (2).

Mathematically, we solve the following optimization problem:

{W̃⋆, b̃⋆} = arg min
W̃∈RL2×L0 ,b̃∈RL2

MSE. (3)



Here, the MSE is defined as

MSE = E

[

∥

∥

(

W̃a0 + b̃
)

− (W2H1(a0) + b2)
∥

∥

2

2

]

, (4)

where the expectation E[·] is over the distribution of the input

vector a0. In the third step, we retrain the entire fused neural

network (including other layers) by initializing the fused layer

with the new weight matrix W̃
⋆ and new bias vector b̃

⋆

obtained from solving (3). We note that while minimizing the

MSE is not necessarily optimal in terms of classification or

regression performance, it yields analytical expressions and

efficient algorithms (see Section II-D).

The following result for MSE-optimal weights and biases

builds upon the nonlinear signal decomposition by J. J. Buss-

gang in [12]. See Appendix A for the proof.

Theorem 1. Let (1) be the input-output relation of two

neighboring layers of a trained neural net. Define the vectors

a0 = E[a0] and a1 = E[a1] = E[H1(a0)], where expectation

is over the distribution of a0. Define the covariance matrix

Ca0
= E

[

(a0 − a0)(a0 − a0)
T
]

, (5)

and the cross-covariance matrix

Ca1a0
= Ea0

[

(a1 − a1)(a0 − a0)
T
]

. (6)

By assuming that the covariance matrix Ca0
is full rank, the

new weight matrix W̃
⋆ and bias vector b̃

⋆ of the equivalent

layer (2) that minimizes MSE in (4) are given by

W̃
⋆= W2Ca1a0

C
−1
a0

and b̃
⋆ = W2a1 + b2 − W̃

⋆
a0. (7)

The only assumption required in Theorem 1 is that the

matrix Ca0
has full rank; a more general condition is to use any

new weight matrix W̃
⋆ for which W̃

⋆
Ca0

= W2Ca1a0
. In

our experiments with the algorithm detailed in Section II-D, we

have not observed this matrix to be rank deficient. Furthermore,

we emphasize that the method in Theorem 1 can also be used

to fuse more than two consecutive layers and more general

network structures—in this case, the function H1(·) simply

represents the effect of multiple layers.

From Theorem 1, we can obtain the following compact

expression for the MSE incurred by layer fusion; a short

derivation is given in Appendix B.

Corollary 1. The MSE of the fused layer in (4) obtained by

Theorem 1 is given by

MSE = trace
(

W2

(

Ca1
−Ca1a0

C
−1
a0

Ca0a1

)

W
T
2

)

. (8)

We note that this result can be used to determine which

layers in a network to fuse. A detailed study on methods that

select the best layers to fuse is left for future work.

C. FuseInit of Convolutional-Convolutional Layers

Consider the following model for two consecutive convolu-

tional layers of a neural network. For the sake of simplicity,

we detail the 1-dimensional case. The first layer has M
input channels, each of length L0, i.e., {a10, . . . , ,a

M
0 }, and

N output channels, each of length L1, i.e., {a11, . . . ,a
N
1 }.

The second layer has P output channels, each of length L2,

i.e., {a12, . . . ,a
P
2 }. In what follows, we assume that the the

following zero-padding strategy is implemented.

Definition 1. If the vector x is convolved with a filter of

length k, then we pad the first and last entries of x with ⌊k
2
⌋

and ⌊k−1

2
⌋ zeros, respectively. This zero-padding operation is

denoted by ZS(x).

The following model describes the input-output relation of

the two neighboring convolutional layers:

a
n
1 = f1

(
∑M

m=1
h
m,n
1 ∗ am0 + b

n
1

)

, n = 1, . . . , N (9)

a
p
2 = f2

(
∑N

n=1
h
n,p
2 ∗ an1 + b

p
2

)

, p = 1, . . . , P. (10)

Here, the superscripts for the filters h
m,n
1 and h

n,p
2 denote

the input and output channel index, respectively. We assume

that the convolutions performed with the filters h
m,n
1 and h

n,p
2

have stride s1 and s2, respectively. The functions f1(·) and

f2(·) describe each layer’s activation function and a max-pool

of stride r1 and r2; these functions can also represent batch

normalization or dropout.

To fuse two neighboring convolutional layers into one, we

use a three-step procedure similar to that in Section II-B. In

the first step, we train the parameters of the entire network

using random initialization. In the second step, we use the

trained parameters to fuse the two layers in (9) and (10) into

a single convolutional layer with input-output relation:

a
p
2 = f2

(
∑M

m=1
h̃
m,p ∗ am0 + b̃

p
)

, p = 1, . . . , P. (11)

Here, h̃m,p are new filter coefficients and b̃
p new bias vectors;

we keep the activation function f2(·) of the second layer. Note

that the convolution has stride s̃ and uses the same zero-padding

strategy as defined above. As in Section II-B, we propose to

select the new filter coefficients and bias vectors to minimize

the MSE per output channel p between the output of the

initial two layers, denoted by C-MSEp. Put simply, we seek

the quantities h̃
m,p, m = 1, . . . ,M , and b̃

p that minimize

C-MSEp = (12)

E

[

∥

∥

∥

(

∑N

n=1
h
n,p
2 ∗ an1+b

p
2

)

−
(

∑M

m=1
h̃
m,p ∗ am0 +b̃

p
)∥

∥

∥

2

2

]

,

for p = 1, . . . , P, where expectation is over the distribution

of the input vectors a
m
0 , m = 1, . . . ,M . In the third step, we

retrain the entire fused neural net (including the other layers)

by initializing the filters of the fused layer with the new filter

coefficients and bias vectors obtained by minimizing (12).

We obtain the following result for MSE-optimal filters and

bias vectors. The proof of the following theorem is included in

a slightly longer arXiv version of this paper; see [31, App. C].

In contrast to the derivation in Appendix A, the proof for

convolutional layers is more involved considering that they

include input, output channels, and zero-padding.

Theorem 2. Let (9) and (10) describe the input-output

relation of two consecutive 1-dimensional convolutional layers

of a trained deep neural network. Define a
m
0 = E[am0 ],





TABLE I: Validation accuracy of convolutional-dense layers

on CIFAR-10 dataset [33].

Algorithm FuseInit Random

6-layer: 32-32-64-64-128-128 – 0.8825± 0.0040

5-layer: 32-32-64-64-128 0.8826 ± 0.0041 0.8691± 0.0056

4-layer: 32-32-64-64 0.8535 ± 0.0046 0.8417± 0.0060

TABLE II: Validation accuracy of convolutional-dense layers

on Fashion-MNIST dataset [34].

Algorithm FuseInit Random

4-layer: 2-4-8-16 – 0.9107± 0.0024

3-layer: 2-4-8 0.9120 ± 0.0025 0.9104± 0.0017

2-layer: 2-4 0.9010 ± 0.0019 0.8971± 0.0024

1-layer: 2 0.8803 ± 0.0030 0.8756± 0.0043

TABLE III: Validation accuracy of convolutional-convolutional

layers on HAR dataset [35].

Algorithm FuseInit Random

2-layer: 18-36 – 0.962± 0.002

1-layer: 36 0.958 ± 0.005 0.958 ± 0.002

TABLE IV: Validation accuracy of convolutional-convolutional

layers on speech commands dataset [36].

Algorithm FuseInit Random

4-layer: 32-32-64-64 – 0.887± 0.005

3-layer: 32-64-64 0.880 ± 0.006 0.868± 0.003

TABLE V: Validation mean-absolute error (smaller is better)

of dense-dense layers on wireless positioning dataset [37].

Algorithm FuseInit Random

3-layer: 16-128-2 – 7.426± 0.112

2-layer: 16-2 7.221 ± 0.336 7.277± 0.472

1-layer: 2 12.273± 0.001 12.262 ± 0.0053

of FuseInit on CIFAR-10 [33], Fashion-MNIST [34], human

activity recognition (HAR) [35], speech commands [36] and

wireless positioning [37] dataset. For each row of each table,

we fuse one-by-one the layers of the network using FuseInit.

We then report the mean and standard deviation of the achieved

validation accuracy (or loss) over 10 trials in comparison

to a randomly initialized network. The left column lists the

number of nodes (channels) used per layer of the corresponding

dense (convolutional) network. Furthermore, we carry out a

sufficiently large number of epochs for all experiments so that

the validation accuracy (or loss) settles to a stable value.

To further illustrate the efficacy of FuseInit, we provide

Figure 2. This figure shows the mean and standard deviation

of the validation accuracy over training epochs for CIFAR-10.

Clearly, FuseInit provides a high-quality starting point for the

network parameters, which helps the network to converge to

an accuracy that is superior to that of randomly-initialized

networks with the same topology. (The accuracy jump at

epoch 75 is due to reduction of learning rate which is used to

improve performance.) Overall, our results indicate that neural

networks that are initialized with FuseInit perform better that

their randomly initialized counterparts.

IV. CONCLUSIONS

We have proposed FuseInit, a novel method to fuse neighbor-

ing layers in multi-layer neural networks. FuseInit can be used

to initialize shallower networks by first training deeper dense

or convolutional networks with random weight initialization

strategies, followed by layer fusion and retraining. For MSE-

optimal layer fusion, we have developed analytical results and

efficient algorithms. Our experiments on five datasets have

shown that FuseInit is able to consistently outperform random

weight initialization methods. Furthermore, our results reveal

that shallower networks can sometimes perform as well as their

deeper counterparts if initialized with FuseInit.

There are many avenues for future work. FuseInit can be

modified to train and initialize networks with special structure,

such as residual or sparse networks—a corresponding study is

part of ongoing work. The MSE expression in Corollary 1 can

potentially be used to identify the best layers that should be

fused in deep network architectures. Furthermore, since FuseInit

builds upon ideas from Bussgang’s theorem, one could study

lower-bounds on the information flow of neural networks.

APPENDIX A

PROOF OF THEOREM 1

We wish to minimize post-fusion MSE in (4). Our approach

builds upon a generalization of the nonlinear, scalar signal

decomposition by [12] to an affine vector decomposition.

Specifically, we first compute the new MSE-optimal bias

vector b̃
⋆. Since (4) is a quadratic form, we can take the

derivative with respect to b̃ and setting it to zero, which yields

∂

∂b̃
E

[

∥

∥

(

W̃a0 + b̃
)

− (W2a1 + b2)
∥

∥

2

2

]

= 0 (20)

∂

∂b̃
E

[

‖b̃‖22 + 2b̃T
(

W̃a0 − (W2a1 + b2)
)]

= 0. (21)

Here, expectation is over the distribution of the input data a0.

Basic matrix-vector calculus yields

b̃
⋆ = W2a1 + b2 − W̃a0, (22)

where a1 = E[a1] = Ea0
[H1(a0)] and a0 = E[a0]. Next, we

replace b̃ in MSE expression and take the derivative with

respect to the new weight matrix W̃ and set it to zero:

∂

∂W̃
E

[

∥

∥W̃ (a0 − a0)−W2 (a1 − a1)
∥

∥

2

2

]

= E

[

∂

∂W̃
‖W̃ (a0 − a0) ‖

2
2 + ‖W2 (a1 − a1) ‖

2
2

−2 (a1 − a1)
T
W

T
2 W̃ (a0 − a0)

]

(23)

= W̃Ca0
−W2Ca1a0

= 0. (24)



This expression results in the one provided in (7). Note that

even if Ca0
is not invertible, the result in (24) can be used

to find an MSE-optimal weight matrix by computing a matrix

W̃ that satisfies the following condition:

W̃Ca0
= W2Ca1a0

. (25)

APPENDIX B

PROOF OF COROLLARY 1

As an immediate consequence of Bussgang’s decomposition

in [12], and with the optimal quantities W̃
⋆ and b̃ obtained

above, the MSE in (4) can be expressed as follows:

MSE = E

[

‖W̃ (a0 − a0) ‖
2
2 + ‖W2 (a1 − a1) ‖

2
2

]

−2 (a1 − a1)
T
W

T
2 W̃ (a0 − a0)

]

(26)

= trace
(

W̃Ca0
W̃

T +W2Ca1
W

T
2 − 2W̃Ca0a1

W
T
2

)

(27)

= trace
(

W2Ca1a0
C

−T
a0

Ca0a1
W

T
2 +W2Ca1

W
T
2

−2W2Ca1a0
C

−1
a0

Ca0a1
W

T
2

)

(28)

= trace
(

W2

(

Ca1
−Ca1a0

C
−1
a0

Ca0a1

)

W
T
2

)

. (29)

Note that this expression requires invertibility of Ca1
.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint: 1409.1556, Sep. 2014.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2015, pp. 1–9.
[3] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep

learning via over-parameterization,” arXiv preprint: 1811.03962, 2018.
[4] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-

ing deep learning requires rethinking generalization,” arXiv preprint:

1611.03530, Nov. 2016.
[5] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep

networks: Implicit acceleration by overparameterization,” arXiv preprint:

1802.06509, Feb. 2018.
[6] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational

efficiency of training neural networks,” in Advances in Neural Information

Processing Systems (NeurIPS), Dec. 2014, pp. 855–863.
[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv preprint: 1704.04861,
Apr. 2017.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2018, pp. 4510–4520.
[9] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting parameters

in deep learning,” in Advances in Neural Information Processing Systems

(NeurIPS), Dec. 2013, pp. 2148–2156.
[10] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances

in Neural Information Processing Systems (NeurIPS), Dec. 2014, pp.
2654–2662.

[11] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization
bounds for deep nets via a compression approach,” arXiv preprint:

1802.05296, Feb. 2018.
[12] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted Gaus-

sian signals,” Technical Report, M.I.T., Cambridge, MA, Tech. Rep. 216,
Mar. 1952.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems (NeurIPS), Dec. 2012, pp. 1097–1105.

[14] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics (AISTATS), May 2010,
pp. 249–256.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer Visionon

(ICCV), June 2015, pp. 1026–1034.
[16] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint:

1511.06422, Nov. 2015.
[17] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,” arXiv

preprint: 1312.6120, Dec. 2013.
[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” arXiv preprint: 1503.02531, Mar. 2015.
[19] S. Guo, J. M. Alvarez, and M. Salzmann, “ExpandNet: Training compact

networks by linear expansion,” arXiv preprint: 1811.10495v3, May 2019.
[20] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and Huffman coding,”
arXiv preprint: 1510.00149, Oct. 2015.

[21] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNs,” in Advances in Neural Information Processing Systems (NeurIPS),
Dec. 2016, pp. 1379–1387.

[22] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in Neural

Information Processing Systems 13: Proceedings of the 2000 Conference,
Dec. 2015, pp. 1135–1143.

[23] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information

Processing Systems (NeurIPS), Dec. 1993, pp. 164–171.
[24] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network

construction with back-propagation,” in Advances in Neural Information

Processing Systems (NeurIPS), Dec. 1989, pp. 177–185.
[25] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Advances in Neural Information Processing Systems (NeurIPS), Dec.
1990, pp. 598–605.

[26] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convo-
lutional networks using vector quantization,” arXiv preprint: 1412.6115,
Dec. 2014.

[27] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems (NeurIPS), Dec.
2015, pp. 3123–3131.

[28] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference

on Machine Learning (ICML), July 2015, pp. 1737–1746.
[29] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse

convolutional neural networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
806–814.

[30] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
in Advances in Neural Information Processing Systems (NeurIPS), Dec.
2014, pp. 1269–1277.

[31] R. Ghods, A. S. Lan, T. Goldstein, and C. Studer, “MSE-optimal neural
network initialization via layer fusion,” arXiv preprint: 2001.10509, 2020.

[32] R. Vershynin, “How close is the sample covariance matrix to the actual
covariance matrix?” Journal of Theoretical Probability, vol. 25, no. 3,
pp. 655–686, Sep. 2012.

[33] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Technical Repot, University of Toronto, Tech. Rep., Apr.
2009.

[34] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint:

1708.07747, Aug. 2017.
[35] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz, “A public

domain dataset for human activity recognition using smartphones,” in
21th European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning (ESANN). CIACO, Apr. 2013, pp.
437–442.

[36] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint: 1804.03209, Apr. 2018.

[37] C. Studer, S. Medjkouh, E. Gönültaş, T. Goldstein, and O. Tirkkonen,
“Channel charting: Locating users within the radio environment using
channel state information,” IEEE Access, vol. 6, pp. 47 682–47 698, Aug.
2018.


