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Abstract

At present, the terahertz time-domain spectroscopic information of each component
in multi-composition compounds detection is comprehensively combined. The lower
resolution level of mixed spectra has posed many difficulties in signal analysis due to
the overlapping characteristic information in the mixed ones. In this paper, to com-
pare the performances of Nonnegative Matrix Factorization (NMF), Self-modeling
Mixture Analysis (SMMA) and Multivariate Curve Resolution-Alternating Least
Squares (MCR-ALS) on complex systems, a binary mixture and a ternary mixture
are employed during THz-TDS testing. The position of the absorption peak (PK) and
the correlation coefficient are used to evaluate the decomposition effects. The exper-
imental results show that the component spectra resolved by MCR-ALS demonstrate
good consistency with the sample components. Further, MCR-ALS presents excel-
lent results in comparison with NMF and SMMA in terms of decomposing precision
and computing speed. MCR-ALS thus appears a promising algorithm to resolve the
THz multi-way data, and may be useful for many applications, such as medicine qual-
ity assurance and unknown component identification in the general area of terahertz
science and technology.
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1 Introduction

Antibiotics and amino acids are components with significant implications for human
health and well-being frequently found in chemical materials, food and pharmaceu-
tical. With the emergence of increasingly serious problems regarding adulteration or
abuse of ingredients in medicines and foods, it has become urgent to research effec-
tive methods for detecting and identifying biomolecules and their mixtures. Thus far
various techniques have been adopted to inspect biomolecules, such as chromatog-
raphy, microwave, visual light, infrared and ultraviolet spectroscopy, and others.
These methods all have unique advantages and limitations. For example, chromatog-
raphy is an accurate approach, with the shortcomings of being labor intensive and
time-consuming [1], as well as usually being a destructive detection method. The
methods of spectroscopic are much easier and faster to manipulate. For example, the
infrared spectroscopy method presents sharp assignable features. However, its results
are susceptible to the scattering effect in samples and to thermal radiation from sur-
roundings, which may affect the stability [2, 3]. Ultraviolet spectroscopy is harmful
to some materials and the human body [4].

The terahertz (THz) wave typically refers to the frequency ranging from 0.1 to 10
THz, which lies between the microwave regions and infrared regions of the electro-
magnetic spectrum. Terahertz time-domain spectroscopy has fine time resolution and
outstanding bandwidth. The reflection or absorption coefficient calculated from the
spectrum can be employed to analyze molecular dynamics and interactions, namely
crystalline lattice, inter-molecular vibrational modes, hydrogen bonding stretches,
and some torsion vibrations [5]. Many biomolecules have unique absorption charac-
teristics in the THz region [6, 7]. Therefore, Terahertz Time-Domain Spectroscopy
(THz-TDS) shows the potential in biomolecular detection. Moreover, THz waves
have tiny photon energy, of about one-millionth that of an X-ray, which means
that it’s a non-destructive detection method. These advantages make THz spec-
troscopy popular in a broad field of sciences, ranging from material analysis to cancer
detection [8-10].

Compared with distinguishing pure materials, detection and identification of mix-
tures is a challenging task. It is well known that many materials have broad absorption
peaks in the THz wave frequency domain, and it is difficult to obtain the “stand-free”
absorption bands and map the absorption peaks to each component of the mixture.
In addition, the peak shift is another obstacle [11]. Current studies of multicompo-
nent mixture identification using THz requires the spectral signatures of ingredients
or a database of potential constituents [12—-14]. However, in many situations, the
components are unknown or their spectra cannot be easily obtained.

It is well known that resolution is a feasible way of recovering the profiles (spec-
tra, concentration) of more than one component in an unresolved and unknown
mixture when there is no further available prior information about the nature and
composition of the mixture. There have been a few related studies in terahertz field.
Li and co-workers investigated an unmixing method based on hard modeling [15]
to extract THz spectra of components from two-way mixture data. Hard modeling
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method bases the identification process on the extraction of parameters from the raw
data according to a real model [16]. However, the approach is very complicated and
requires that the spectrum of each component in the mixture has at least one charac-
teristic absorption peak. The method is not always suitable in the terahertz mixture
spectrum because of the serious aliasing problem.

Soft modeling approach may be a feasible alternative. Soft modeling approaches
need no parameters and only rely on eigenvector-eigenvalue decomposition of a raw
data matrix [16]. Among several soft modeling algorithms, NMF is usually suscep-
tible to noise corruption and initialization. Moreover, its cost function is nonconvex,
which may lead to local minima and unstable resolution. SMMA is also a widely
used deconvolution method, but the baseline of the THz spectrum may cause diffi-
culty in determination of pure variables. Although the two-order derivative is able to
deal with this problem to some extent, it is easily affected by system noise.

This study aims to develop an effective and simple soft modeling method for
terahertz time-domain data resolution. We found that the MCR-ALS method of
decomposition performs better in terms of decomposition accuracy and efficiency
than those by NMF and SMMA. The binary mixtures as resolved by MCR-ALS have
the largest correlation coefficients, of 0.999 and 0.970 respectively. Regarding the
estimation of PK, MCR-ALS also performs better than NMF and SMMA. In addi-
tion to the spectra of pure components, relative concentration of components can also
be obtained. Similarly, MCR-ALS also achieves satisfactory results. The resolved
concentration profiles show close agreement with the actual ones. The correlation
coefficients are 0.982 and 0.983 for the binary system, and 0.981, 0.981 and 0.944
for the ternary system.

The structure of this article as follows. In Section 2, the concepts and character-
istics of several different algorithms (MCR-ALS, NMF and SMMA) are introduced
and discussed; and the terahertz experimental setup, Theophylline, are described. In
Section 3, the application testing of MCR-ALS, NMF and SMMA algorithms for
binary and ternary mixture unmixing are demonstrated. Experimental results based
on various decomposition algorithms are compared and analyzed. The key affecting
factors are discussed. Finally, our research work is summarized in Section 4.

2 Procedure and Methodology
The procedure in this study mainly includes mixture sample preparation, THz data
acquisition (THz spectra acquisition of a mixture), number determination (determi-
nation of the number of components), and mixture unmixing (unmixing THz spectral
data of a mixture), as shown in Fig. 1.

2.1 Sample Preparation

Theophylline is a medicine for curing emphysema, bronchitis and asthma; histi-
dine is usually applied to treat anemia and rheumatic arthritis. Besides the two

@ Springer



International Journal of Infrared and Millimeter Waves

THz-TDS SVD ‘ soft modeling ‘

sample L data ‘ v | mnumber |y | mixture
preparation acquisition ‘ determination unmixing

Fig. 1 The procedure of THz spectroscopic decomposition and analysis in mixture detection. SVD, Sin-
gular Value Decomposition; NMF, Nonnegative Matrix Factorization; MCR-ALS, Multivariate Curve
Resolution-Alternating Least Squares; SMMA, Self-modeling Mixture Analysis

APIs (active pharmaceutical ingredient), excipients are also important ingredients
in tablets, which can improve the stability and formability of the drug. This study
applies two widely used excipients, mannitol and lactose monohydrate, to prepare
samples.

L-Theophylline, L-histidine, L-methionine and mannitol were supplied by Aladdin
Chemistry Co. Ltd.; D-lactose monohydrate was purchased from Sino-pharm Chem-
ical Reagent Co. Ltd. The purities of all materials were higher than 98% and no
further purification required before use. In this study, two systems were constructed:
a binary system containing L-methionine and L-histidine with content ranging from
about 15 to 85% (w/w) and a ternary system consisting of L-theophylline, L-lactose
monohydrate and mannitol, with content ranging from about 10 to 80% (w/w). The
samples (total mass 160 mg) of the two systems were prepared with a certain amount
of polyethylene (48 mg) as diluent under 15 MPa pressure, with diameter of 13 mm
and thickness of about 1 mm after drying treatment (423 K) for 2 h in a vacuum
drying oven [17].

2.2 Experiment Setup

In this paper, samples were measured in transmission with commercial Zomega-3
THz-TDS system (Zomega Terahertz Corp., Troy, USA). The system laser source
is a commercial mode-locked Ti: sapphire laser (Coherent Company in the USA),
which produces less than 100 fs pulse at wavelength around 800 nm with repetition
frequency of about 80 MHz and average power of about 960 mW. The frequency
range given by the system is 1-3 THz. More details of this system have previously
been reported in our earlier work [15].

During the experiment, in order to avoid the absorption of water vapor, dry nitro-
gen was used to purge the THz beam path. Every reference and sample signal were
recorded five times at room temperature (about 300 K) and humidity below 0.1%.
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2.3 Terahertz Optical Parameters Extraction

In the experiment, each sample and reference signal are taken as the average to
reduce the random error. The refractive index n(w) and absorption coefficient a(w)
are calculated as follows [18]:

@(w)e

n(w) =

+1 (D

2k(w) 2 4n(w)

—=—-ln— (2)
d A)(n(w)+1)2

where ¢(w), A(w) are the phase and amplitude ratio difference between reference

and sample signal, d is the thickness, w is the frequency, and c represents the speed

of light in a vacuum.

a(w) =

2.4 Determination of the Number of Components by Using SVD

According to Beer’s law, the absorption of a sample equals the sum of the absorption
of its various chemical constituents. Therefore, the mixture spectrum can be consid-
ered as the weighted sum of the spectra of the pure ingredients plus the experimental
noise [19]. The law can be demonstrated by a bi-linear model as stated in Eq. 3.

D=CST+E (3)

where D is a two-way matrix of mixture spectra, C is the data matrix (concentration
profiles) describing how the contributions of the N species change in different rows
of the matrix. T represents the transpose of each matrix that includes it. ST is the
data matrix (pure spectral profiles) describing how the responses of these N species
change in different rows of the matrix. E is the noise matrix which is caused by equip-
ment deviations, calculation errors and other reasons, which cannot be explained by
the chemical ingredients in C and S.

Obviously, the model provides important guiding significance for the analysis
of the spectral data of mixtures in order to obtain the qualitative and quantitative
information from the raw data D through resolution methods.

Determination of the number of components in various systems is the basic task of
the resolution [20]. In this study, the number of components is predicted by Singular
Value Decomposition (SVD):

D=UAVT 4)
where U (mxr) is a column-orthogonal matrix, A(rxr) is a diagonal matrix, and vT
is an r xn matrix. The relative contribution y is applied to measure the contribution
of each latent variable (LV):

P ST
- 2

ZLI Aj
where A; is the ith element of A, and r* represents the number of latent variables
(LVs) (1<r*<r).

x 100% (5)
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2.5 Soft Modeling Algorithms
2.5.1 SMMA

Self-modeling Mixture Analysis (SMMA), firstly proposed by Windig and Guilment
[21, 22], aims to determine the spectral variables or selective concentration. The jth
purity p;; of a variable x; is defined as follows:

gj

o s 6
Pij wuul__’_a ( )

where o; and p; are the standard deviation and mean, respectively, of the variable x;,
« is an offset given in percentage of the maximum p; to prevent low-intensity wave
numbers achieving high purity, and w;; is the determinant-dependent constant that
assigns the variables less similar to the pure variables having been identified a larger
weight.

Once the pure concentration variables C, for all the components have been
determined, the spectral profiles S can be calculated through Eq. 7.

s=«Tc)y"'c’p (7

Through normalization of the spectral profiles S, the concentration profiles C can be
re-estimated using Eq. 8.

c =(D" 'Ds (8)
2.5.2 NMF

Nonnegative Matrix Factorization (NMF), proposed by Lee and Seung [23], is
an effective technique in approximating high dimensional data. The nonnegative
constraint ensures the physical meaning of the decomposed result. Thus, NMF is
employed to deconvolve the data of mixtures to extract the information of pure
components, namely the signal of pure species and relative concentration [24, 25].

The NMF algorithm used in this study is shown in Eq. 9 and Eq. 10. The aim is
intended to minimize the error function f(S, C).

(c'D)
Sha =S Cresty ®
DS
Crai :c:ﬁ (10)
L e
£8.0)=3 HD cs ||F (11

where [ is the iteration index. The matrices § and C are randomly nonnegative ini-
tializations in the start iteration. Positivity of matrices C and S is ensured throughout
the computation. Until the residual error function f(C, S) converges, the percent-
age of change Q is obtained through Eq. 12. The stop criterion is set to 0.01% in
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this research. Moreover, NMF was executed 20 times, with the average result used to
analyze and compare.

0 = 100% (%) (12)

2.5.3 MCR-ALS

Multivariate Curve Resolution-Alternative Least Square (MCR-ALS) is a method
used for the resolution of multiple component responses in unknown mixtures. The
method is the determination of the true § and C matrices from analysis of only
matrix D. The initial estimates of S and C matrices can be determined by detection
of “purest” variables [21] or the techniques based on evolving factor analysis [26].
The initial estimations of C and S are optimized through iteration based on alternat-
ing least squares [27]. At each iteration of the optimization the new § and C matrices
are obtained according to:
sT =ctp=c*cs? 13)
C=DEHr=ciHshH* (14)
where D is the original data from experiments and the matrices (S7)* and C* are
the pseudo-inverse of the matrix ST and C. If the correct number of species has been
determined, C and S” are full-rank column (row) matrices respectively. In the pro-
cess of iteration, various constraints can be applied to enhance the performance of
MCR: (1) selectivity, (2) unimodality, (3) non-negativity, and (4) closure [28]. The
iterative optimization is carried out until a preselected number of cycles are reached
or convergence is achieved. In this study, non-negativity and closure constraints are
employed to enhance the performance of resolution for THz data. The characteris-
tic absorption peaks can also be precisely extracted by MCR-ALS. The numbers of
components of various systems were predicted by SVD, relative concentration of
components can also be obtained by MCR-ALS.
As we all know, different methods have different characteristics and application
scenarios. In order to compare the above three methods vividly, Table 1 lists the
advantages and restrictions with them.

3 Experimental Results and Discussion
3.1 Binary Mixtures

To test MCR-ALS, the resolved effect is evaluated by two parameters. The position
of the absorption peak (PK) was used to assess the accuracy of the characteristics
of the resolved spectrum and the correlation coefficient was employed to test the
consistency between resolved spectra and actual spectra [29].

The THz spectra of the binary mixture of L-methionine and L-histidine are pre-
sented in Fig. 2. As can be seen there, the absorptions of mixtures strengthen as
the content of L-methionine increases from 0.3 to 1.6 THz. Thus, the two compo-
nents have significantly different absorption strengths. Determination of the number
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Table 1 The advantages and restrictions with three methods

Method

Theory

Advantage

Restrictions

SMMA

NMF

MCR-ALS

The spectra are resolved
by extracting relative pure
variable information of the
components.

Extracting spectral infor-
mation by iterative opti-
mization

Approaching the original
matrix by alternating min-
imums based on bilinear
stoichiometry.

The results are determinis-
tic, fact satisfactorily, strong
anti-interference ability.

Applicable to the occasion
where the signal to noise
ratio is relatively high.

The test data can form a
bidirectional data matrix,
and this data set can be
interpreted very well by
bilinearity.

Difficulty in separation
with overlapping absorp-
tion peaks, spectral base-
line drift, etc.

For complex systems it is
easy to fall into local opti-
mum. In addition, simulta-
neous randomization of ini-
tialization results in non-
uniqueness of decomposi-
tion.

Intermediate products in
the formation of matter can
cause undesirable results.

of components of mixtures is an important task for resolution. In this study, SVD
was applied to require the number of components. The relative contribution versus
the number of LVs is shown in Fig. 3. The relative contribution of two of the LVs is
greater than 96.5%, while the contributions of other LVs are all less than 2.5%. The
latter are thus considered noise in this study.

MCR-ALS, NMF and SMMA were used to unmix THz spectral data of the binary
mixtures. Because of the non-uniqueness performance of NMF, the NMF was exe-
cuted 20 times for each system, and the average spectra obtained were used as results.
Figure 4 shows the results of resolution by the three methods. Compared with NMF

50 +
—16.7/83.3
—27.8/72.2
40 1 ——38.9/61.1

30

20

Absorption / a.u.

1 L
0.8 1.0 1.2

Frequency /{ THz

Fig. 2 THz absorption spectra of binary mixtures. Label as L-methionine/L-histidine
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o | |
9?- ' )
o | ' i

95 _ 4

Relative contribution / %

94 [ 4

93 -

Number of LVs

Fig. 3 The relative contribution versus number of latent variables of binary system

and SMMA, the best quality spectra are resolved with the MCR-ALS algorithm, and
its resolved spectra of pure components show close agreement with the actual ones.
The resolved spectra of L-methionine from NMF and SMMA have a significant error
in both spectral profile and absorption peaks.

To provide quantitative evaluation results, Tables 2, 3, and 4 show the details of
resolution results with MCR-ALS, NMF and SMMA respectively, involving PKs
and correlation coefficient. The spectra of L-methionine and L-histidine as resolved
by MCR-ALS have the largest correlation coefficients, of 0.999 and 0.970 respec-
tively. Regarding the PKs estimation, MCR-ALS also performs better than NMF and

MCR-ALS NMF SMMA
&0 T T T T T S T T T T T 50 T T T T T 50
L. 50 A e .
o Ttz Lo Timgmees "] i
T a0 = = True L-methionine

Intensity / au.
Absorption / a.u.

04 06 08 10 12 14 1 x? 04 06 08 10 12 14 16 04 06 08 L0 12 14 16

N |
— Resolved L-histidine N — Resolved L-histidine 7' OM _ Resolved L-histidine

- - Truc Lhistidine 30} - - True L histidine - - Truc L-histidine

112 woap

Intensity / au,
[
=
Absorption / a.u.

04 06 08 10 12 14 16 04 06 08 10 12 14 16 04 06 0F L0 12 14 L&
Frequency / THz Frequency / THz Frequency / THz

Fig. 4 Resolution result of binary system with MCR-ALS, NMF and SMMA
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Table 2 Quantitative resolution results produced by MCR-ALS for binary system

Components Correlation Peak position (THz)
coefficient PK1 PK2 PK3 PK4 PK5 PK6 PK7
L-Methionine 0.999 0.604 0.915 1.537
0.586 0.787 0.915 1.518
L-Histidine 0.970 0.366 0.567 0.787 1.006 1.208 1.555

0.421 0.604 0.787 0.988 1.208 1.317 1.500

In the section of peak position, PK is the absorption peak: true (resolved) absorption peaks are indicated
by bold (regular) numbers

Table 3 Quantitative resolution results produced by NMF for binary system

Components Correlation Peak position (THz)
coefficient PK1 PK2 PK3 PK4 PK5 PK6 PK7
L-Methionine 0.957 0.604 0.915 1.537
0.512 0.677 0.915 1.061 1.226 1.409
L-Histidine 0.939 0.366 0.567 0.787 1.006 1.208 1.555

0.421 0.586 0.787 0.988 1.189 1.299 1.482

In the section of peak position, PK is the absorption peak: true (resolved) absorption peaks are indicated
by bold (regular) numbers

Table 4 Quantitative resolution results produced by SMMA for binary system

Components Correlation Peak position (THz)
coefficient PK1 PK2 PK3 PK4 PK5 PK6 PK7
L-Methionine 0.938 0.604 0.915 1.537
0.512 0.677 0.915 1.061 1.226 1.391
L-Histidine 0.899 0.366 0.567 0.787 1.006 1.208 1.555

0.403 0.586 0.787 0.988 1.189 1.299 1.482

In the section of peak position, PK is the absorption peak: true (resolved) absorption peaks are indicated
by bold (regular) numbers
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1
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Frequency / THz

Fig. 5 THz absorption spectra of ternary mixtures

SMMA. The pure spectra extracted by SMMA strongly deteriorate, with the infe-
rior resolution of pure variables resulting from the baseline problem arising from the
serious overlap of various PKs. In addition, NMF is susceptible to noise, which makes
it prone to fall into local optimum.

100 £ 7 T T T T T T

96 - - 4

sl | -

Relative contribution / %
1

I .

1 L 1 L 1 L 1 " 1 " 1 L 1 L 1 L 1 " 1 " 1

1 2 3 4 5 6 7 8 9 10 1
Number of LVs

Fig. 6 The relative contribution versus number of latent variables of ternary system
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Fig. 7 Resolution result of ternary system with MCR-ALS, NMF and SMMA

3.2 Ternary Mixtures

As mentioned above, MCR-ALS yielded the best estimation of the three methods
tested. To test its performance for more complex systems, a ternary system made up
of L-theophylline, D-lactose monohydrate and mannitol was built. The THz spectra
of the ternary mixtures with various mass ratios are shown in Fig. 5. The spectra of
the mixtures have obvious characteristics demonstrating that some components have
feature absorption bands. Before unmixing the THz two-way data, SVD was applied
to predict the number of components. The relative contribution versus the number
of LVs is shown in Fig. 6. The sum of relative contributions of the first three LVs is
greater than 95%. In addition, the contributions of the other LVs are all less than 2%.
Thus, the method of SVD can accurately predict the number of components.

To unmix the three-way THz data, MCR-ALS, NMF and SMMA were employed,
with the resolution results presented in Fig. 7. On the whole, for the ternary system,
the three methods are all able to extract the rough spectral profiles of pure com-
ponents. However, the errors resulting from the shift effect are still present, as is
especially obvious in domains containing strong absorption peaks. For example, the
spectral profile of theophylline resolved by MCR-ALS in domain 1.3-1.4 THz is
affected by the strong absorption band of D-lactose monohydrate in this range. The
extracted spectra from other approaches also have similar errors.
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Table 5 Quantitative resolution results produced by MCR-ALS for ternary system

Components Correlation Peak position (THz)

coefficient PK1 PK2 PK3 PK4 PK5 PK6 PK7
Theophylline 0.969 0.787 0.951 1.336
0.439 0.586 0.769 0.951 1.336
D-Lactose 0.929 0.348 0.531 0.750 0.933 1.226 1.372
monohydrate 0.329 0.531 0.750 0915 1.006 1.208 1.391
Mannitol 0.986 0.403 0.604 0.769 0.951 1.116 1.317 1.500

0.586 0.769 0.915 1.116 1.336 1.500

In the section of peak position, PK is the absorption peak: true (resolved) absorption peaks are indicated
by bold (regular) numbers

Tables 5, 6, and 7 list the quantitative results of resolution produced by MCR-ALS,
NMF and SMMA respectively involving absorption peaks and correlation coefficient
of components. As a result, the correlation coefficients of all extracted spectra are
greater than 0.9, and most PKs can be resolved accurately. Moreover, the resolved
PKs are usually greater than the actual ones, as a result of the shift effect, which is
induced by the nonlinear absorption of samples.

3.3 Discussion

The results of this study show that MCR-ALS presents better resolution than NMF
and SMMA in both binary and ternary systems. MCR-ALS not only produced unique
results but also accurately resolved spectra of components. Because of the random
initialization and nonconvex cost function, the result of NMF is not unique, and it
is liable to fall into local optimum. On the contrary, the initialization of MCR-ALS

Table 6 Quantitative resolution results produced by NMF for ternary system

Components Correlation Peak position (THz)

coefficient PK1 PK2 PK3 PK4 PK5 PK6 PK7
Theophylline 0.975 0.787 0.951 1.336
0.439 0.604 0.769 0.951 1.317
D-Lactose 0.916 0.348 0.531 0.750 0.933 1.226 1.372
monohydrate 0.329 0.531 0.750 0.988 1.208 1.391
Mannitol 0.977 0.403 0.604 0.769 0.951 1.116 1.317 1.500

0.567 0.769 0.915 1.116 1.354 1.464

In the section of peak position, PK is the absorption peak: true (resolved) absorption peaks are indicated
by bold (regular) numbers
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Table 7 Quantitative resolution results produced by SMMA for ternary system

Components Correlation Peak position (THz)

coefficient PK1 PK2 PK3 PK4 PK5 PK6 PK7
Theophylline 0.953 0.787 0.951 1.336
0.421 0.604 0.769 0.951 1.299
D-Lactose 0.904 0.348 0.531 0.750 0.933 1.226 1.372
monohydrate 0.329 0.531 0.732 0.878 1.006 1.208 1.391
Mannitol 0.965 0.403 0.604 0.769 0.951 1.116 1.317 1.500
0.604 0.897 1.116 1.336 1.464

In the section of peak position, PK is the absorption peak: true (resolved) absorption peaks are indicated
by bold (regular) numbers

is based on pure variables, which contain information on the content of compo-
nents, and MCR-ALS therefore has greater resolution stability. On the other hand,
although SMMA tries to find pure variables, the baselines of THz spectra give rise
to serious overlap of absorption peaks, which makes it difficult to find enough pure
variables, and this poses a severe challenge in the resolution of the binary system.
Compared with SMMA, MCR-ALS improves the rough unmixing result through
iterative optimization called ALS, to reduce error caused by inferior pure variables.
Thus, MCR-ALS can produce accurate and stable resolution.

In addition to the spectra of pure components, relative concentration of compo-
nents can also be obtained. Similarly, MCR-ALS also achieves satisfactory results.
The resolved concentration profiles show close agreement with the actual ones. The
correlation coefficients are 0.982 and 0.983 for the binary system, and 0.981, 0.981
and 0.944 for the ternary system. Figure 8 shows the resolved profile of theophylline
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Fig.8 The resolved profile of theophylline produced by MCR-ALS
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with correlation coefficient 0.981. This paper verifies the effectiveness of the soft
modeling method for THz data.

Different methods have different applicability, MCR-ALS has its specific advan-
tages in terahertz spectral decomposition. We have tested the binary and ternary
mixture in our paper. On the separation level of the more component mixtures, Huang
Xinbao et al. proposed a quantitative analysis method for multi-source mixture com-
ponents based on the vector angle [30]. But it is mainly based on qualitative analysis,
and it is necessary to know the specific components. In fact, if the mixture does not
have intermediate by-product, the model can also be well explained by the bilinear
model. So, there is a certain possibility that the MCR-ALS will be analyzed in the
future with a mixture of more components.

Our subsequent research intends to focus on chemical imaging (CL). CL analyses
are conducted to estimate spatial, structural and quantitative information about sam-
ples. Further, future research will consider the resolution of dynamic processes, such
as chemical reactions.

4 Conclusion

This paper demonstrates the application of THz spectroscopy and chemometrics in
the characterization of unknown multicomponent systems. Several soft modeling
methods, namely MCR-ALS, NMF and SMMA, were employed to analyze the THz
data to develop a useful resolution method for THz spectra data. Several chemical
multicomponent systems were built to test the performances of the three approaches
in the THz domain. The results show that MCR-ALS produces unique and accurate
results in contrast to NMF or SMMA. The resolved spectra of pure components from
MCR-ALS demonstrate close agreement with actual ones. In addition, the character-
istic absorption peaks can also be precisely extracted. The numbers of components of
various systems were predicted by SVD. The combination of THz spectroscopy and
chemometrics could be successfully used to characterize unknown mixtures, which
is of great practical significance in areas such as detecting counterfeit drug products
and analyzing biochemical systems.
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