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POSITIVE POPULATIONS
VADIM SCHECHTMAN AND ALEXANDER VARCHENKO

Abstract. A positive structure on the varieties of critical points of master functions for KZ equations is
introduced. It comes as a combination of the ideas from classical works by G.Lusztig and a previous
work by E.Mukhin and the second named author.

1. Introduction: Whitney-Lusztig patterns and Bethe populations

1.1. Big cell and critical points. The aim of the present note is to introduce a positive structure on
varieties of critical points of master functions arising in the integral representation for solutions of
KZ equations and the Bethe ansatz method.

Let N = Nr+1 € G = SLr+1(C) denote the group of upper triangular matrices with 1’s on the diagonal.
It may also be considered as a big cell in the flag variety SL;+1(C)/B-, where B- is the subgroup of
lower triangular matrices. Let Sr+1 denote the Weyl group of G, the symmetric group.

In this note two objects, related to N, will be discussed: on the one hand, what we call here the
Whitney-Loewner-Lusztig data on N, on the other hand, a construction, introduced in [MV], which
we call here the Wronskian evolution along the varieties of critical points.

An identification of these two objects may allow us to use cluster theory to study critical sets of
master functions and may also bring some critical point interpretation of the relations in cluster
theory.

In this note we consider only the case of the group SLr+1(C), although the other reductive groups
can be considered similarly.

1.2. What is done in Introduction. In Section 1.3 we recall the classical objects: WhitneyLoewner
charts, these are collections of birational coordinate systems on N indexed by reduced
decompositions of the longest element wo € Sr+1, and Lusztig transition maps between them.

In Sections 1.4 - 1.8 the main ideas from [MV] are introduced. Namely, it is a reproduction recipe,
called here a Wronskian evolution, which produces varieties of critical points for master functions
appearing in integral representations for solutions of KZ equations, [SV]. In Section 1.10 the
content of Sections 2 - 8 is described.

1.3. Whitney-Loewner charts and Lusztig transition maps. In the seminal papers [L, BFZ]
Lusztig and Berenstein-Fomin-Zelevinsky have performed a deep study of certain remarkable
coordinate systems on N, i.e. morphisms of algebraic varieties

Ln:Ci—— N,
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q = r(r +1)/2, with dense image, which are k&irational isomorphisms. The main feature of these
morphisms is that the restriction of them to ™=0induces an isomorphism

Ln: Rg>0 —~— N>o,

where N>ois the subspace of totally positive upper triangular matrices.

Recall that a matrix g € N is called totally positive if all its minors are strictly positive, except for
those who are identically zero on the whole group N, see [BFZ].

The set of such coordinate systems, which we will be calling the Whitney-Loewner charts, is in
bijection with the set Red(wo) of reduced decompositions
(1.1)  h:wo=si..siof the longest element wo € Sy+1.

For example, for r = 2 there are two such coordinate systems, Li121and L212 corresponding to the
reduced words s1s251 and szs1sz respectively.

The construction of maps L» will be recalled below, see Section 4.1.

To every h € Red(wo) and a = (ag,..,a1) € Cithere corresponds a matrix
Nn(a) = Ln(a) €N.
A theorem of A.-Whitney?, as reformulated by Ch.Loewner, see [W, Lo], says;

Theorem 1.1. For any reduced decomposition h of the longest element wo € Sr+1 the map Ln: C'(+1)/a
PIARRITE

Sl

1
— N restricted to the positive cone defines an isomorphism of the positive cone
and the space N»o of totally positive matrices .

For any two words h,h0 Lusztig has defined a birational self-map of A4, i.e. an automorphism of
the field of rational functions

F := C(a) = C(ay,..,aq) ~= C(N)

(here we consider aias independent transcendental generators),

(1.2) Rhpo: F=—F,

such that a®= Run(a), if  Nn(a) = Nn(a®).

For

example
1 1) < g iy

Visp(ag,apag) = [ 0 1 1 1 i = eylng)ealaa)e (ag)

[J 0 [ ] 1

and

1 The notion of a totally positive matrix first appeared in the works of .Schoenberg [S] and Gantmacher-Krein [GK].

2 Anne M. Whitney (1921-2008), a student of Isaac Schoenberg (1903-1990).
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where ei(a) = 1 + ae1z, e2(a) = 1 + aezs.
It follows that
MNyoglitq i, ag ) = ,"n.'_.,-_![u'1 Ll r.lr!_ |

provided
. oy ' ' 1] ita
=, il = 1] Ty, g = ————
1 2 1 3 3
(1.3) ay + ag iy + iy
This is equivalent to
r.'.r,r.':'!_ ; ; n"l i
) ===, @p=ay+ay, a3== =
(1.4)  + Gy @& T g,

The transformation (1.3) is involutive, that is, its square is the identity.

1.4. Bethe Ansatz equations. On the other hand, in the work [MV] it was discovered that the
variety N is closely connected with the varieties of critical points of certain master functions
D

Namely, for a sequence

k = (ki,...k) € Nr,

consider a function ®«(u) depending on* = 2.i 1 ¥ivariables subdivided into r groups:
] (r] (v}

u=[.u:|II ..... LR EERE TR N |
By definition,
r ki ki
Di(u) =Y Y (u@mi) = u)ai- Y Y Y(u(mi — u@)ay.
i=1 16m<I6k; 16i<j6r m=11=1

Here A = (aj) is the Cartan matrix for the root system of type Ar, in other words,

r r-1 kikis1
Di(u) =Y Y (uany = umi)2-YYY (ui@) - u@mi+1))-1.
i=1 16l<m6k; i=11=1m=1

Functions of this kind first appeared in [SV] in the study of integral representations for solutions
of KZ differential equations. A point

— TR LU A

i)
is critical for the function log®«(u) if it satisfies the system of k equations

i |;',I*!";L. (1) — [ iy,

Mgy

. .'J|r]]i:1] () =10
iy T , l16i6r,16m6k,
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or, equivalently,
Zf" lZZJII !.-_]
(1.5) f#m i#i =1 tm — 1 , 16i6r,16m6 k.

This system of critical point equations is also called the system of Bethe Ansatz equations in the
Gaudin model.

1.5. Reproduction, or Wronskian evolution (bootstrap). The following procedure of
reproduction for constructing critical points has been proposed in [ScV], [MV].

Let us identify the group Z" with the root lattice Q of the group G using the base of standard

simple roots ajy,...,ar. Introduce the usual shifted action of W = Sy+10n Q:
wrv=w(v=-p)+p,

where p is the half-sum of positive roots. Let
w € Sr+1and let

(1.6) h:W = Sin...Sia
be a reduced decomposition of w. For any 0 6 j 6 ¢ we define an r-tuple
k@) = Sij...Si1 * (0) € Nr,

where 0 = (0,...,0) = k©.
Starting from the r-tuple of polynomials
y©=(1,.,1) e C[x]",

one defines inductively a sequence of r-tuples of polynomials (1.7) yn=
(O, yM(v1),y@A(v1,v2),...,ytM(v4,..,vm)), where

yi M) = nf_l,r',"':lf )Ly (e x)) € Clo, .., 4'_.'..r']""
066 m, with

degy:-'-':'u'.-] = |:1|'"'i'> .'-"II 'I:I:'t.l: Thyveay rl:-;-} .rJ': ":-:_'l.-'; ) = ,F‘;I il

where deg is the degree with respect to x.

The sequence (1.4.2) is Called the populatlon assoczated with a reduced word h.

We consider a polynomial '3 4 as a famlly‘ér e “) of polynomials of one variable x
depending on a parameter ¢ = c¢l) = (61,...,c}) eC.
. fitaeaf, i NS E . .
Letc € Cand ** "5 be the roots of#; % #) ordered in any way. Consider the tuple

t'.l:|:c:|—|:f|_'_. . s (7F e n :I'._|.. .I'I__H“]'

1,k

The main property of the sequence yxis:
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Theorem 1.2 ([MV]). For each j = 1,..,m, there exists a Zarisky open dense subspace U c C such that
for every c = cW € U, the tuple of roots tW)(c) is a critical point of the master function
DN (u) := Diy(u), i.e. it satisfies the Bethe Ansatz equations (1.5).

Moreover, if ®«is a master function for some index k and t a critical point of log®«as in Section 1.4,
then t appears in this construction for a reduced decomposition h of some element w € Sr+1.

The construction of y» for h € Red(wo) see in Section 1.6 below.
1.6. Wronskian bootstrap: the details. Starting from the r-tuple of polynomials

y©=(1,.,1) € C[x]",
one constructs the sequence
yh = (y©,yM(v1),y@(v1,v2),..,yM(vy,...,Vim)) (1.5.1)

by induction. Assume that the sequence
y':J:'.ri}] = -.’_r,r'I g )yt e)) e Cly, ..., 4'_,'..r']"'

has been constructed. Then the sequence

WLy = [_.-Ju:" ' ”I’l'i_l'_.r'f-. U T 2)) € Cley, . . .. (TR S ]

is such that
_4,1:'“. g ) = _.',nj".'[?:: ) Vi 6= ij1.
(1)
and¥iier WL Ve Vi1 4o constructed in two steps.
First one shows that there is a unique polynomial “y(vy,...,v;;x) such that

[N

i - L Lt
(i) Wr(¥ =1 ¥) = const¥i 41 -1 21 +1, where Wr(fg) = fg? -°g denotes the Wronskian of two
functions in x and the constant does not depend on v,x;
(ii) the polynomial "y(vy,..., v;x) is monic with respect to the variable x;

PREY] Al
(iii) the coefficient in 7y(vs,..,v;;x) of the monomialz"i 11 equals zero, where'i-.-—n is the ij1-st

coordinate of the vector k0.
Then we define
|' 1+ J:I P i _|:

w0 (v, o v E) = ) 4 v

()40, 08T)
RN 1 ) !

Consider all coordinates of the resulting family y
[ T Y | = I:_ljrll'-“ SEEEE o T ._r,.'i "lpex)) € 'l:':r| ..... .",.,:.r']"'
up to multiplication by nonzero numbers. This gives a map
Fn: Cm— P(C[x])",
where P(C[x]) is the projective space associated with C[x]. Denote by
Zn= Fp(Cm™) c P(C[x])"

its image.

Let Vbe an r + 1-dimensional complex vector space, X = G/B- the space of all complete flags in VV
. Let Fo € X be a point. The choice of Fo gives rise to a decomposition of X into |W| = (r + 1)! Bruhat
cells, which are in bijection with W = Sy+1:



POSITIVE POPULATIONS 347

Xzan.

wew
We have
dime= ‘(W)

For example, for the identity e € W, the cell Xe= {Fo} is the zero-dimensional cell, and for the longest
element wo € W, the cell Xwois the open cell, the space of all flags in general position with Fo.

Theorem 1.3 ([MV]). The union

7=z cpcix))r

w,h

over all reduced decompositions h of all elements w € Sy+1 is an algebraic subvariety of P(C[x])"
isomorphic to the variety of complete flags X = G/B-.

The subspace Zn C Z does not depend on the choice of h € Red(w), so it may be denoted by Zw. It is
identified with the Bruhat cell Xw C X.

In particular, the subset Zwo ~ = Xwois isomorphic to the big Bruhat cell N c G/B-.

The algebraic subvariety Z c P(C[x])"is what was called in [MV] the population of critical points
originated from y(©.

The proof of Theorem 1.3 in [MV] identifies the variety Z with the space of complete flags of a
particular r + 1-dimensional vector space V, where

V=V,=C[x]erc C[X]
is the vector space of polynomials of degree 6 r, and the flag Fois the standard complete flag

Fo=(Voc..c ViV, Vi=C[x]ei.

1.7. Example, [MV, Section 3.5]. For r = 2, let us see how the populations give rise to a
decomposition of X = SL3(C)/B- into six Bruhat cells. We have the zero-dimensional Bruhat cell
Zia={(1:1)} € P(C[x])2.

We have two one-dimensional Bruhat cells:

ZSl

{(x+c1:1) | c1€ C} c P(C[x])2,

Zs: {(1:x+c%)|c%1€C}cP(C[x])?,

two two-dimensional Bruhat cells:
Ls:s1 = {(x+c1:x2+ 2c1x + c2) | c1,c2 € C} € P(C[x])?, Zsis2

= {(x2+ 2co1x + c20: x + co1) | co1,c20 € C} € P(C[x])z.

The longest element wo € S3 has two reduced decompositions sis2s1 and s25152, which give two
parametrizations of the same three-dimensional Bruhat cell:
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Lsiszs1= {(x2+ c3x + c1c3—c2: x2+ 2c1x + c2) | c1,c2,c3€ C} € P(C[x])2, Zsisisz =
{(x2+ 2co1x + c02: X2 + 03X + c01C03 — €20 ) | co1,c02,c30 € C} < P(C[x])2.

The two coordinate systems are related by the equations

# o ] e Fo_a.
(1.8) o =g/ 2, £ = 0103 — 3, iy = 2oy

Notice that this transformation is involutive.
The union of the six Bruhat cells gives the subvariety Z c P(C[x])2isomorphic to SL3(C)/B-. The
subvariety Z consists of all pairs of quadratic polynomials (a2x2+ai1x+ao : b2x2+b1x+bo) such that

1
by ;4r|-"1| Foagha = 0

1.9
l(len)lark. Here are more details on how the description of Zsis.s1is obtained. The description of Zszsis:
is obtained similarly.

In the formula Zs;= {(x + c1: 1) | c1 € C}, the monic polynomial x + c1 satisfies the equation Wr(1,x
+ c1) = 1. In the formula Zs:s1= {(x + c1: X2+ 2c1x + ¢2) | c1,¢2 € C}, the monic polynomial x2+2c1x+c2
satisfies the equation Wr(1,x2+2c1x+cz2) = const(x+c1), where const = 1/2. In the formula Zss.s: = {(x2

+ 03X+ C103— €21 X2+ 2c1X + €2) | €1,€2,¢3 € C}, the monic polynomial X2 + c3x + cic3 — c2 satisfies the
equation

Wr(x + c1,x2+ c3x + c1€3— €2) = X2+ 2c1x + ¢z,
see Section 1.6.

1.8. Not necessarily reduced words. One can associate to an arbitrary, not necessarily reduced
word h of length m a sequence of m r-tuples (1.3) as well, see [MV]. Namely, using the Wronskian
differential equation

P R
Wi, 9 = const " ¥ip—18 441

as in (i) above alone, but without normalizing conditions (ii) and (iii) one gets for each j=1,...m a
tuple

y'. Moy = (i (vsz) .oyl (vix)) € P(T] r])”
where v belongs to a variety of parameters B0, which is an iterated C-torsor. This means that

BWis included into a sequence of fibrations
By -— BG-1)-— .. —— By ~=C,

where each step B() —— B(r-1)is an analytic C-torsor, locally trivial in the usual topology.
But the corresponding cohomology H!(Cp;C) vanishes which implies that the torsors are trivial,

and this provides a global isomorphism B®) ™= C.

1.9. Main point. The main new point of the present work is a definition of a certain modified
reproduction, which we call the normalized reproduction. It provides the varieties of r-tuples of
polynomials YBethe, to be called the Bethe cells, equipped with a system of coordinate charts
isomorphic to N equipped with the Whitney-Lusztig charts. We also define the totally positive
subspace-yf[f""'{: i
matrices.

isomorphic to the subspace N-o C N of totally positive upper triangular



POSITIVE POPULATIONS 349

1.10. Contents of the paper. Section 2 contains some preparations. In Section 3 a modification of
the mutation procedure of Section 1.6 is introduced. Based on it, in Section 4 the Bethe cell is
defined, and Comparison Theorem 4.4 is proven, which is one of our main results. In Section 5 we
first describe in full detail Wronsky evolution for the case of groups SL3 and SL4. In particular we
compute explicitly the positive part:l]f i of the Bethe cell, see Theorem 5.2. Afterwards we prove
Triangular Theorem 5.3, which establishes an explicit isomorphism between N and the Bethe cell.
Section 6 contains a generalization of the previous constructions. Namely, we define the Wronskian
evolution, the Bethe cell, etc. associated with a finite-dimensional subspace V < C[x] and a
distinguished complete flag Foin V. The previous consideration corresponded the subspace C[x]er
of polynomials of degree 6 r. In Section 7 we present a version of the above considerations for the

base affine space. Namely, we define a variety Y Zethe, which is related to the previous Bethe variety

YBethe in the same way as the big cell in the base affine space G/N-is related to the big cell in the flag
space G/B-. In Section 8 we interpret the Whitney-Lusztig data in the language of higher Bruhat
orders, [MS], in particular give its complete description in the crucial case of SLa.

We are grateful to E.Mukhin and M.Shapiro for useful discussions.

2. Generalities on Wronskians

2.1. Wronskian differential equation. The Wronskian of two functions f{x),g(x) is the func-
tion
Wr(fg) = f9° - fPg = f2(g/f)°. Given f(x)

and h(x), the equation

(2.1) Wr(fg) = h
with respect to the function g(x) has a solution
Z

9x) = flx) h()f(x)~2dx.
The general solution is

gla, o) = _.ﬁ;.r:-[ W) FIEY2dt + ef(x), ceC
(2.2) S .

2.2.Univaluedness. Let f(x),g(x) € C[x] be polynomials. Then h(x) := Wr(f,g) is a polynomial. Hence
the indefinite integral of a rational function,
Z

h(x)f(x)2dx,
has no logarithmic terms, which is equivalent to the condition:

(U) The function hf-2 has zero residues at its poles.

2.3. Wronskian. Let fi(x),...fa(x) be holomorphic functions. Define the Wronskian matrix

n
i

e

Uy lo.=1and the Wronskian
wr(l1e- o Ju) = det ("),
The Wronskian is a polylinear skew-symmetric function of fi,...,fn.

Example 2.1. We have
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More generally,

(2.3) Wr(xdy,...,xd) = Y(dj - di) * XPdi-k(k+1)/2,
i<j
see this formula in [MTV].

2.4. W5 Identity. Let fi(x),f2(x),... be a sequence of holomorphic functions. For an ordered finite
subset

A ={iy.,id} € N:={1,2,..},
we write
Wr(4) = Wr(fiy,...,fia)-
Denote
[a] ={L,2,..,a}.
Proposition 2.1 (W5 Identity, [MV, Section 9]). Let
A=la+1], B=[a] U{a+2}.
Then
(2.4) Wr(Wr(4),Wr(B)) =Wr(An B) - Wr(4 U B).
Example 2.2. We have
(2.5) Wr(Wr(f1,£2), Wr(f1f3)) = f1 Wr(f1,f2,f3), as one can easily check.

3. Normalized Wronskian bootstrap

3.1. Generic and fertile tuples. Let y = (y1(x),...yr(x)) € C[x]"be a tuple of polynomials.
Define yo=yr«1= 1.
We say that the r-tuple y is fertile, if for every i the equation
Wr(yi(x)y i(x)) = yi-1(x)yie1(x)
with respect to “yi(x) admits a polynomial solution. We say that y is generic, if for every i the

polynomial yi(x) has no multiple roots and the polynomials yi(x) and yi-1(x)yi+1(x) have no common
roots.

Let tiy,... tikibe the roots of yi(x) ordered in any way. Consider the tuple
t = (EL1,. Lkt L, Er k).

Lemma 3.1 ([MV]). The tuple y is generic and fertile if and only if the tuple t is a critical point of the
master function ®«, where k = (degyx,.... degyr).

3.2. Normalized mutations. Let y = (y,...Jr) € C[x]"be an r-tuple of polynomials such
(3.1) yi(0)=1, i=1,..,r.

Lemma 3.2. There exists a unique solutions y"i(x) of the differential equation

(3.2) Wr(yi(x)y"i(x)) =yi-1(x)yi+1(x),
such that
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(3.3) V0i(x) =x + 0(x2) as x— 0.
Proof. We have
R TIRIE R L D]
il = i) / o1\ WL Ill.r.'r”'_ N du.
(3.4) n woin)

Assume that the tuple y is generic and fertile, then the function “yi(x) is a polynomial by Lemma
3.1. The polynomial “yi(x) can be determined either by formula (3.4) or by the method of
undetermined coefficients, see examples in Section 5. For ¢ € C, denote

(3.5) Vi(cx) =yi(x) + cyi(x).

Notice that for any ¢ we have 7yi(c;0) = 1.
Define a new r-tuple of polynomials

(3.6) vi(Q)y := V1(x),...yi-1(x), Y7i(c:X), yist (%), yr(X))
and call it the i-th normalized mutation of the fertile generic tuple y.

Equation (3.2) with the normalizing condition (3.3) will be called the normalized Wronskian
evolution, or bootstrap, equation.

3.3. Normalized population related to a word. Let

(3.7) h = Sim...Sit

be any word in Sr+1. Sometimes we will write for brevity simply
(3.8) h = (im...I1)

instead of (3.7).

Now we proceed as in Section 1.5, but will use the normalized mutations vi. Namely, we start
with y(© = (1,..,1) € C[x]"

and for each ¢ = (cy,..,cm) € C™define an r-tuples of polynomials by the formula:

(3.9) yh(c) = n1(c;X), Vi r(€;%)) = Vim(Cm)-.Vir(c1)y(®.

Notice that for any i = 1,..,r and ¢ € C"we have
(3.10) yhi(c;0) =1.

Theorem 3.3 ([MV]). For any h and c € C™, the tuple yn(c) is a tuple of polynomials. Moreover, there
exists a Zarisky open dense subspace U c C™such that for every c € U, the tuple of roots ts(c) of the
polynomials (yn1(c;x),...ynr(C:X)) is a critical point of the corresponding master function ®«.

4. Whitney-Lusztig charts and the comparison theorem
4.1. Birational isomorphisms. Recall the group N from Section 1.1. Let e;; €
glm(q denote the elementary matrix,

(eij)ab = Siadjp.

Define the matrices
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(4.1) ei(c)=1+ceji+1EN, i=1,.,r,cecC
Given a word h = Sin...Si1, define a map
(4.2) Lp:C"-—> N, (c1usCm) 7= €im(Cm)...€0(C1).

Suppose that the word h is a reduced decomposition of the longest element woas in (1.1). Then
h is of length q = r(r + 1) /2. The corresponding map

(4.3) Lp:Ci-—> N
is called the Whitney-Lusztig chart corresponding to h. The map L is a birational isomorphism.

Remark. The map Lsis not epimorphic, and N is not even equal to the union of the images of Ln for
h € Red(wo). For example for r = 2 the set Red(wo) has two elements, the words (121) and (212). It
is easy to see that the matrices of the form 1 + ae1s,a 6= 0, are inaccessible,

1+ae13eL/ 121(C3) U L212(C3).
4.2. Comparison Theorem. Denote M = C[x]™+1. We will write the elements of M as r +1sequences

(f1,--.,fr+1) with fi € C[x], but will think of them as column r + 1-vectors with coordinates fi,...,fr+1. Then
the algebra glr+1(C) of (r+1)x(r+1)-matrices acts on M from the left in the standard way.
We introduce a distinguished element
o2

(4.4) bm = (e [z il )

For aword h = Sin...Snin Sr+1and ¢ = (c1,...,Cm) € cm, define an element

bn(c) €M,
by the formula
(4.5) br(c) := Ln(c1,...cm) b,
Let

bn(c) = (bn1(c;X),-bnr1(c;X)),

where bn,1(c;x) € C[x] be coordinates of bs(c). Recall the
r-tuple of polynomials

(4.6) yn(c) = Wni(c;x),.ynr(€;X)) = Vim(cm)---vir(c1)y®, defined in (3.9).

Theorem 4.1 (Comparison Theorem). For any j = 1,...r, we have
Wr(bn1(c;x),...,bnj(c;x)) = ynj(c;X).

Proof. The theorem is a consequence of a general statement, see Theorem 4.3 below.

4.3. Cell N. Denote

N=N,:=NbOc M,
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the orbit of the element b(® under the action of N.

An element b = (by,...,br+1) € M belongs to N if and only if

T : )
b = [r__l_”+Zh,J.r"_ i=1,....r+1
(4.7) j=i ,

for some bj € C.

For any b = (by,...,br+1) € N we have
(4.8) Wr(by,...,br+1) = 1.
We define the totally positive subvariety N-o C N as

(49) N>o= N>0b(0) .
4.4.N-Y correspondence. Define the Wronski map

(4.10) W:N -— C[x]", b 7= (b1,Wr(b1,b2),Wr(b1,b2,b3),..,.Wr(b,...,br)).

Lemma 4.2. If b = (by,....br+1) € N and y = (y1,....yr) = W(b), then

(4.11) yi=Wr(b,...,bi) =  1+0(x), i=1..,r,
(4.12) Wr(by,...,bi-1,bi+1) = x+0(x?3), i=1,.,r-1,
asx— 0.

We define the Bethe cell or variety of Bethe r-tuples as
(4.13) YBethe .= W(N) c C[x]",
the image of the Wronski map, and the totally positive Bethe subvariety or positive population as
YEethe .= W(NLg) C W(N) = YBethe
Theorem 4.3. The Wronski map induces an isomorphism ~
Bethe J'IL" 0 T :I__y_iﬁl-l":.'.-.--

W:N--Y ).
This theorem is a consequence of the Triangular Theorem below, see Section 5.3.

Theorem 4.4. The Lusztig’s mutations, i.e. multiplications by ei(c) on the left, are translated by W to
the Wronskian mutations vi(c) on the right:

W(ei(c)b) = vi(c) W(b), i=1,.r. (4.8.1)

Proof. The theorem follows from the W5 Identity. Let us treat the case r = 3. We have
=1
o

—[||..||.II:'_:-.||l.|:.:.||:'|:|.L Ili'l— - 'P+” .
(1 — 1)1 Wwr(b) =1, W(b) =y = yuyzys1).

The i =1 case. We have
ei(c)b = (b1 + cha,bz,b3,b4), y1= b1, Wr(y1,b2) = Wr(b1,b2)
:yz .

Hence “y1 = bzis the solution of the normalized Wronskian equations (3.2), (3.3), and
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vi(c)y = 1+ oy'vy2ys) = Wiei(c)y),
cf. formula (3.6).
The i = 2 case. We have ez2(c)b = (b1,bz + cbs,b3,b4).
Denote “y2:= Wr(by,b3). Then

V2(x) =x+ 0(x2) as x-0,
by formula (2.3), and
Wr(yzy"2) = Wr(Wr(b1,b2),Wr(b1,b3)) = Wr(b1)Wr(b1,bz,b3) = y1ys,

by the W5 Identity. Hence "y is the solution of the normalized Wronskian equations (3.2), (3.3),
and

v2(c)y = (V2 + cy2y3) = W(ez(c)y).

The i = 3 case. We have
e3(c)b = (b1,b2,b3 + cba,b4)

Denote “y3:= Wr(b1,b2,b4). Then
y'3(x) =x + 0(x?) as x—-0,
by formula (2.3), and
Wr(ysy's) = Wr(Wr(b1,b2,b3),Wr(b1,bz,b4)) = Wr(b1,b2)Wr(b1,b2,b3,bs) = y2,

by the W5 Identity and formula (4.8). Hence “y3 is the solution of the normalized Wronskian
equations (3.2), (3.3), and

v3(c)y = Viyzys+ cy'3) = W(es(c)y).

The case of arbitrary r is similar.

5. Triangular coordinates on the Bethe cell

5.1. Example of evolutions, group SLs.

5.1.1. Wronskian evolution. We start with y(® = (1,1) and a reduced decomposition of the longest
element in S3,

h=(121) : wo = 515251.
The pair y(© evolves by means of the normalized mutations:

vi(bY) v2(b?) 2
(5.1) L1y - (1 +b1x1) == (1 + b1x,1 + b2(x + b1x /2))

v=1(—b3) (1 + bix + b3(x + b2x2/2),1 + b2(x + b1x2/2)).

The last pair is vi(b3)va(b2)vi(b1)y©®.

The second reduced word, h® = (212), gives rise to another evolution:

v2(ch) vi(c?) 2
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(5.2) (Ly -- (L1 +c1x) == (1 + c2(x + c1x /2),1 + c1x)
v=2(—¢3) (1 + c2(x + c1x2/2),1 + c1x + c3(x + c2x2/2)).

The change of coordinates on¥i ™ from (b1,b2,b3) to (c1,c2,c3) is

c2=b1+ b3, cic2 = b2bs, c1+c3=by, c2c3= bib2,
whence
bab: by e
o= el . eg = by + b, fig = i
(5_3) g|| + ||I.|:.g h II.|| + lll'_L ,

cf. [L, Proposition 2.5].

5.1.2. Bethe cell and positive population. Analyzing formulas (5.1) and (5.2) we observe that the
Bethe cell¥"™" consists of the polynomials (1 + e1x + e2x2/2, 1 + fix + fox2/2) such that

(5.4) e2+ f2=eif1,
cf. (1.9), and the positive population}‘iffﬁ;{iﬁ: C ™™ is cut from V4T by the inequalities
(5.5) ey ez fi, f2>0.
5.1.3. Whitney-Lusztig evolution. We start with

b = (b1,b2,b3) = (1,x,x2/2)
and act on it by the elementary unipotent matrices

ei(t) =1 + teii, i=1,2,

in the order dictated by the reduced word h = (121):

(Lxx2/2) e-istd (1 + tixxx2/2) =2t (1 + tix,x + t2x2/2,x%/2)

e=1(—t3) (1 + tax + t3(x + tox2/2),x + tax2/2,x2/2).
The resulting triple is
(5.6) ba(t) = (bn1(t;x),bn2(t;x),br3(t;x))
= (1 + tax + t3(x + t2x2/2),x + t2x2/2,x2/2),

cf. Section 4.2. One easily checks that applying the Wronski map W to the evolution (5.6) we obtain
the evolution (5.1).

5.1.4. Remark. Note a useful formula
(5.7) Wr(1 + tixx + t2x2/2) = 1 + t2(x + t1x%/2),
which could be written symbolically as
Wr(ei1(t1),ez(tz)) = ex(t2)ez(t1).
In general let b = (1 + ax + bx%/2,x + cx2/2,x%/2).
Using the formulas (Wr(1,x),Wr(1,x2/2),Wr(x,x2/2)) = (1,xx%/2), we get
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y:=W(b)=(1+ax+bx%/2, 1+ cx+ (ac - b)x%2/2). Thus, the 2 x

2-matrix of nontrivial coefficients of y has the form

i fi
oo b

{(ay) € gl2(C) | a11a21 = a1z + az2} < gl2(C),

The varietyj':':i'f'”'r'ﬂ may be identified with

an exchange relation familiar in the theory of cluster algebras. Cf. Example 7.4 below.
5.2. Example of evolutions, group SLa.

5.2.1. Wronskian evolution. There are 16 distinct reduced decompositions of the longest element
wo € S4. We choose one of them: h = (121321).

We start with y(® = (1,1,1) and perform the sequence of normalized mutations corresponding to
the reduced decomposition h:

vi(al) v2(a?) 2

(L1L,1)--> (1 +a1x1,1) —= (1 + aix,1 + az(x + a1x /2),1) v=3(—a3) (1 + a1x, 1 + az(x +
aix2/2),1 + az(x + az(xz2/2 + a1x3/6))) v—1(=as) (1 + a1x + as(x + azx2/2),1 + az(x +
aixz2/2),1 + as(x + az(xz/2 + a1x3/6))).

To find the next normalized mutation, v2(as), we have to solve an equation

(5.8) Wr(1 + az(x + a1x?/2,x + b2x?/2 + b3x3/6 + bax*/24) =

1+ ey b gl - -'I:.J'zl-""_’]} 1+ agle 4 aslx? -I,.r:f'_.-"'hl:;'l
with respect to bz,b3,bs. We calculate inductively the coefficients of x,x%x3in (5.8) and obtain:

b2=ai+as+ as bs=2(a1+ as)as, bs=2azas3as.

Note that the coefficients of x*and x5 in the left-hand and right-hand sides of (5.8) should be equal
as well, but the corresponding additional equations on bz,bs,bs will be satisfied identically - these
are incarnations of the “Bethe equations”.

Thus,

ve(as)vi(as)vs(as)vz(az)vi(a1)y©® = (1 + aix + as(x + az2x2/2),
1+ az(x + a1x2/2) + as(x + (a1 + az + a4)x%/2 + 2(a1 + a4)asx3/6 + 2azasasx*/24), 1 + az(x +

az(x?/2 + a1x3/6))).
Finally, to apply vi(as) to this 3-tuple, we have to find cz,¢3 from the equation

Wr(1 + aix + as(x + azx?/2),x + c2x?/2 + c3x%/6)

=1+ az(x + a1x2/2) + as(x + (a1 + a3 + as)x2/2 + 2(a1 + a+)asx3/6 + 2azazasx*/24.
We find c2,c3 by equating the coefficients of x,x%:

c2=qaz2+as, C3=4as3ds.
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Then the coefficients of x3,x* will be equal as well by the “Bethe equations”. Thus,

yn(a) = (Wn1(a;x)yn2(a;x)yn3(a;x)) = vi(as)va(as)vi(as)vs(az)vz(az)vi(ar)y©® = (1 + aix + as(x
+azx2/2) + ae(x + (az + as)x?/2 + azasx3/6),
1+ az(x + a1x?/2) + as(x + (a1 + as + a4)x%/2 + 2(a1 + as)asx3/6 + 2azasasx*/24),

1 + as3(x + az(x2/2 + a1x3/6))), cf.

formula (3.9).

5.2.2. Lusztig evolution. Consider the Lusztig evolution corresponding to the same word h =
(121321):

b = (1,xx2/2,x3/6) e-il=a) (1 + a1x,x,x%/2,x3/6) e=2(—a2) (1 + aix,x + azx2/2,x2/2,x3/6)
e—3(—a3) (1 + aixx + az2x2/2,x2/2 + a3x3/6,x3/6) e—1(—as) (1 + a1x + as(x + axx2/2),x2/2 +
a3x3/6,x3/6) e—2(—as) (1 + awx + as(1l + azx2/2),x + ax2/2 + as(x2/2 + azx3/6),x2/2 +
asx3/6,x3/6) e=1(—as) (1 + aix + as(1 + azx2/2) + as(x + azxz2/2 + as(xz/2 + asx3/6)), x + a2x2/2
+as(x2/2 + asx3/6),x2/2 + asx3/6,x3/6)

= bn(a) = (bn1(a;x),bn2(a;x),bn3(a;x),bna(a;x)), cf. formula (4.5).
5.2.3. Comparison. We have

yn(a) = W(bn(a)).

Namely,
yni(a;x) = bni(a;x),
yh2(a;x) = Wr(bni(a;x),bnz2(a;x)),
yn3(a;x) = Wr(bni(a;x),bnz(0;x),bn3(a;x)).

5.2.4. Wronskian map and the minors of g. Let
(59) b=(1+awx+ax?%/2+asx3/6,x + b2x%/2 + b3x3/6,x%/2 + c3x3/6) € N and

1 @y @z s
o by by
=1o 0 1 e
(5.10) oo n 1

n
-

Then b = gb(0),
Let us compute y = (y1,y2,y3) = W(b) . Clearly,
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1
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i1
1

1
0
0
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VADIM SCHECHTMAN AND ALEXANDER VARCHENKO

| +aye + a0 /2 + aqx” /6.
1 2 by

ia| 1 gy i 2|y 2,

b o (‘1] [ + 1 by )"’ 4

@zl 3. iz g c

/3 : 12,

-.FJ:{ e -.FJ-_.I IIJ‘_{
iy g I @s ay 1y
1 I'.J'!_ r+ |0 .fJ-_J Il?_'!_ .i"! J-"j + 11 IIJj
0 ey 01 1] 1

Notice that all these determinants are minors of the matrix g. In particular, if the matrix g is totally
positive, then all these determinants are positive.

5.2.5. Wronskian map in matrix form. By formula (5.11):

y1i = 1l+awx+ax?/2 +asx3/6,
y2 = 1+bex+ (b3s+aibz— a2)x2/2 + (a1bs - a3)x3/3 + (azb3 - azb2)x*/12,
y3 = 1+c3x+ (bacz3— b3)x%/2 + (ai(bzcs - b3) - (azc3 - az))x3/6.

These formulas show that the inverse map
W-1: YBethe —~— N
assigns to a triple y = (y1,y2,y3) with
yi = 1+ a1x + aex2/2 + a3x3/6, y2
1+ Box + B3x%/2 + Bax3/6 + Psx*/24, y3

= 1+ y3x + yax2/2 + ysx3/6,

the triple b = W-1(y), as in (5.9), with

(5.12) a1=m, az=az, az=as,
bz= B, b3=f3- (1f2- az),
C3=7Y3.
In a matrix form, the map W is given by the formula
Bl a1 az a3 0 O
(5.13) @0 1 B2 B3 Pa S5
0 0 1 y3 ya Vs
@1 a1 a2 as 0 0
=@0 1 b2 b3+ (aibz-az2) 2(aib3-a3) 2(azb3 - a3bz) g,
0 0 1 c3 bac3 - b3 ai(bzcz - b3) - (azc3 - as)

and the inverse map W-1is given by the formula

1 @y dg

L I f}-_l
(5.14) 00 1

i1 1
Il.i'|_
Cy

L ) [
= 2

ﬂ'!_ - ':'r'||.1'g - r|-_l_:l

1 T3
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Theorem 5.1. The coefficients a1,az,a3,82,3,y3 of the polynomials y1,y2,y3 serve as global coordinates
Attt

on the Bethe cell ¥i , the other coefficients 4,5 ys are polynomial functions of the global
coordinates due to formulas (5.13) and (5.14).

lfatka

Mivthe Wirthe
Theorem 5.2. The positive population:' NS Vil N cut from vy by the inequalities (5.15)
all a;Biyi>0and B3> a1z — az> 0.

Proof. The proof follows from (5.11), (5.13), (5.14).

5.3. Triangular coordinates. For an arbitrary r, consider an element b = (bs,....br+1) € N, where

.
bi=x1/(i - 1)! + Xy i=1.r+1
j=i
Denote by
M(b) = (bi)1sisjer

the triangular array of nontrivial coefficients.
Let y be the corresponding Bethe tuple,

W(b) =y = (V1,....yr) € YBethe,
with

yix)=1+ Xa,-,-xf/j!.
j>1

Define the triangular part y* of y,

y4 = (yiery26r-1,...,yré1).

Here for a polynomial f{x) = P aix/i! € C[x] we use the notation

n
fon(x) = Xawd/it.
i=0
Denote
A(y4) = (aij)1sier;16j6r+1-i,

the triangular array of the nontrivial coefficients of y*; thus we take all r nontrivial coefficients of
y1(x); the first r - 1 nontrivial coefficients of y2(x), etc.
The following statement describes the relationship between the two arrays M(b) and A(y).

Theorem 5.3 (Triangular Theorem).
(i) Forall16i6j6T wehave
(5.16) aij-i+1 = bij+ pij((bri)k<i),

where ¢ijis a polynomial with all monomials of degree at least 2.

(ii) Conversely, forall16i6 j6r, we have

(5.17) bij = aij-i+1 + PYij( (aki)k<i),
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where ijis a polynomial with all monomials of degree at least 2.
(iii) The map
YBethe —— Cq, y 7— A(y4),
is an isomorphism.

(iv) The Wronski map
W : N —— YBethe

is an isomorphism.

Proof. All statements are corollaries of statement (i). We leave a proof of (i) to the reader, cf.
formulas (5.13) and (5.14).

Corollary 5.4. The coefficients (ai)isier;16j6r+1-i Of the polynomials y = (yi,...yr) serve as global
coordinates on the Bethe cell Y,Pethe, the other coefficients of y are polynomial functions of the global
coordinates due to formulas (5.16) and (5.17).

5.4. Polynomials ¢;. The next statement gives information on polynomials ¢i(b). Let b(® be given
by (4.4). An arbitrary b € B has the form b = gb(® for some unique g € N.
Theorem 5.5. The polynomials ¢ij(b) are linear combinations, with strictly positive coefficients, of

some minors of the matrix g. Consequently, if g is totally positive, then all the polynomials yi of the
tuple W(b) = (y1,....yr) have strictly positive coefficients.

Proof. The proof follows from formula (2.3), cf. formula (5.11).

6. Bethe cells from subspaces of C[x] and from critical points
In this section we describe a generalization of the previous correspondence.

6.1. From a vector space of polynomials to a population Zv, see [MV]. Let V c C[x] be an r+1-
dimensional vector space of polynomials in x. We assume that V has not base points, that is for any
z € Cthere is f{x) € Vsuch that f{z) 6= 0.

For any z € C there exists a unique r+1-tuple of integers A = (Ao=0 < A1 < --- <A;) such that for any
i =0,..,r, there exists f(x) € V with the property:
|';':')\"' P rJ"'I.", . )
oy [z] # [J’ E::][:J = J = )'...

The tuple A is called the tuple of exponents of V at z.

Having A introduce an r-tuple of nonnegative integers y = (u1,...,14r) by the formula
Ui+ e+ i+ i= A i=1,.,r.
The tuple p is called the slr+1 weight of V at z.
A point z is regular for Vif A = (0,1,..,r) and hence, u = (0,..,0), otherwise the point z is singular.

Denote by Zythe set of singular points. The set Zvis finite. Denote Zv= {z1,..,z.} C C.

Denote uM =iy P-'--ﬂ') the weight vector at a singular point za.
Introduce an r-tuple of polynomials T = (Ty,..., Tr),

T = | L1 -
61 1l |



POSITIVE POPULATIONS 361

Let b = (by,...,br+1) be a basis of V, then the Wronskian Wr(bj,..,br+1) does not depend on the choice
of the basis up to multiplication by a nonzero constant. Moreover,
Wr(by,...,br+1) = consti—'.'"IJF_1 . -T-IT; i
This formula shows that the set Zvof singular points of V is the set of zeros of the Wronskian of
a basis of .
Foranyi=2,..,rand bs,.,bi € Vintroduce the reduced Wronskian
W B i) = Wriby, ..., b T T T

Foranyi=1,..,rand bs,..bi € V, the reduced Wronskian is a polynomial.

Introduce the reduced Wronski map Wv*, which maps the variety of bases of V to the space of r-
tuples of polynomials. If b = (by,... br+1) is a basis of V, then
(6.2) Wyvt: b 7=y = (.. yr) i= (b1, Wrty (by,b2),.., Wrty (by,...,br)), cf. (4.10). We set yo

=yr+1= 1. Denote

(6.3) _|;r.—"v."|.'1'; (hy Bay oo B i) i=1,....r.
Then
(6.4) Wr(yiy") = const Tiyi-1yi+1, i=1,..,r.

The generalized Wronski map Wytinduces a map of the variety of bases of Vto the direct product
of projective spaces P(C[x])". The bases defining the same complete flag of V are mapped to the
same point of P(C[x])". Hence the generalized Wronski map induces a map,

Wl Xy Ty
of the variety Xvof complete flags of V to P(C[x])".

Theorem 6.1 ([MV]). This map is an embedding. The image
(6.5) Zyc P(C[x])"
of this map is isomorphic to the variety of complete flags of V.

The variety Zvis called the population associated with V, see [MV].

See in Sections 1.5-1.7 the example of this construction corresponding to the case, where V =
C[x]eris the space of all the polynomials of degree 6 r. In that case the set of singular points of Vis
empty and T1=+-=Tr=1.

Atuple y = (y1,...yr) € C[x]"is called fertile with respect to T4,.., T, if for any i = 1,..,,r the equation

(6.6) Wr(yiy") = Tiyi-1yin

with respect to “yi(x) admits a polynomial solution. For example, all tuples (y1: «+- : yr) € Zvare fertile
due to (6.4).

Atuple y = (y1,..,yr) € C[x]"is called generic with respect to Ty,.., T, if for any i the polynomial yi(x)
has no multiple roots and the polynomials yi(x) and Ti(x)yi-1(x)yi+1(x) have no common roots.

Lemma 6.2 ([MV]). All y € Zvare fertile. Also there exists a Zariski open subset U C Zysuch that any
y € Ulis generic.
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Lety = (y1,-.,yr) be a tuple of polynomials. Denote k = (k,...,.kr) := (degyy,....yr). Let
ki

yi(x) = Y(x - t), i=1,.,r,
j=1
M
where“: are the roots of yi. Denote t
ordered in any way.

—[Il;l“ IIIII ||I.I;' l:ll,ll.":-

By v

+==+1.), the tuple of roots of y

Theorem 6.3 ([MV]). A tuple y is generic and fertile with respect to Tu,.., Trif and only if the tuple of
roots t is a critical points of the master function

r k n
(6.7) Dr(u,z,u) = YY Y(ugi - za)-pia
i=1j=1a=1
r r-1 kiki+1
xY Y (uan = umi)2-YYY (ui) - u@mi+n)-1.
i=1 16l<m6k; i=11=1m=1

These master functions appear in the integral representations of the KZ equations associated
with glr+1, see [SV].
The following statement is converse to the statement of Theorem 6.3.
{a] — ¢, lel [a]y wi
Given a finite set z = (z1,..,z), a collection of u =~ — “H1 +---> Hr ) € gy
k = (ka,....kr) € Zrs0, we define the master function ®«(u,z,u) by formula (6.7).

L= 1....

" avector

Theorem 6.4 ([MV]). If t is a critical point of a master function ®«(u,z,u) with respect to the u-
variables, then there exists a unique r +1-dimensional vector space V c C[x], a basis b of V, such that

the roots of the r-tuple of polynomials Wvt (b) give t.

Cf. Theorem 1.2.

6.2. From a critical point to a population Zy, [MV]. Given z = (z1,..,2zn), a collection of u

(a) _ . tal m l

(™.t e Loy 0 =

, a vector k = (ky.,kr) € Zro, let t
_.:II (1} L alrd (vl
L L S R L SRR ), be a critical point of the master function ®«(u,zu). Define
Tix) = (z — z, e i=1,..., r,

(6.8)

a=1
(6.9) yilx) = HI_..-' .flli'-';'l, i=1,..., r,

F=1
and the tuple

y=(y1::yr) EP(C[X])".

The tuple y is generic and fertile with respect to Ti,..,Tr. Hence for every i, there exists a
polynomial “yisatisfying the equation
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Wr(y,y"i) = const Tiyi-1yis1.

Choose one solution “y; of this equation, denote

Yi(ex) = yi(x) + ¢y'i(x), c€eC

and define a curve in P(C[x])"by the formula

(6.10) yA(cx) = (y1(x) : =+ Yi(cx) : =+ 1 yr(x)) € P(C[x])".
This curve is called the generation from y in the i-th direction.

Thus starting from the point y in P(C[x])"we have constructed r curves in P(C[x])". Now starting
from any point of the constructed curves we may repeat this procedure and generate new r curves
in P(C[x])" in any of the r directions. Repeating this procedure in all possible direction in any
number of steps we obtain a subset Z c P(C[x])"of all points appearing in this way. The subset Z is
called the population generated from the critical point t

Theorem 6.5 ([MV]). The set Z is an algebraic variety isomorphic to the variety X of complete flags
in an r+1-dimensional vector space. Moreover, starting with given t one can also determine uniquely
an r + 1-dimensional vector space V and a basis b of V, such that y = Wyt (b) and Z = Zy.

6.3. Bethe cells associated with (V/;z). Let V be an r + 1-dimensional vector space as in Section
6.1. Let Zv={z1,..,zn} C C be the set of singular points of V. Fix a complex number z /€ Zv, a regular
point of V.

We say that a basis b = (by,...,br+1) of Vis a unipotent basis of V with respect to z, if forany i = 1,..,r
+ 1, we have

: m =
b = flr—'lr + C(x —z)

(6.11) (i — 1) ) as X—>Z.

Denote by N(V;z) the set of all unipotent bases of V at z.

If we consider each basis b of V as an r + 1-column vector, then the group N freely acts on N(V
;Z) from the left with one orbit. We call N(V ;z) the cell of bases of V unipotent at z.

For anyi=2,..,r and by,..,bi € V introduce the reduced Wronskian normalized at z by the formula

Wrty(by,...,b)) = wry (b b T ()T () T2
AT () T (e i1 L
b by G (). Tealz) i

= TN AT T ()L T () W
1 2

Foranyi=1,.,rand bs,..,bi € V, this is a polynomial.

Introduce the reduced Wronski map Wy, :, which maps the variety of bases of V to the space of r-

tuples of polynomials. If b = (bx,...,br+1) is a basis of V, then
(6.12) Wvt: b 7> y = (y1,...yr) := (b1, Wry2t(b1,b2),..., Wrtye(by,...,br)), cf. (4.10). We set yo
=Yr+a1= 1.

If b = (by,...,br+1) € N(V;z), then
(6.13) yi(z) =1, i=1,.,r.
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Introduce the Bethe cell YBethe(V ;z) as the image of the cell N(V ;z) under the reduced Wronski

map Wy,

(6.14) YBethe(V;z) := Wyt (N(V;2)) € Clx]".
Theorem 6.6. The reduced Wronski map Wyt induces an isomorphism
(6.15) Wi, N(Viz) = PPty z)

Proof. The theorem is deduced from Theorem 6.1, or it can be proved along the lines of the proof
of Triangular Theorem 5.3, which corresponds to the subspace V' = C[x]er of polynomials of degree

6randz=0.
Corollary 6.7. The action of N on N(V ;z) and the Wronski map Wyt induce an action of N on the
Bethe cell YBethe(V ;7).

Lemma 6.8. There exists a Zariski open subset U C YBethe(V ;z), such that any y € U is generic and
fertile.

Proof. The theorem follows from Lemma 6.2.

Recall that by Theorem 6.3, if y = (y1,....yr) is generic and fertile, then roots of these polynomials
determine a critical point of a suitable master function.

6.4. Normalized mutations and N-Y correspondence. Let y = (y3,....yr) € YBethe(V;z) and i = 1,...,1.
Define the normalized mutation of y in the i-th direction. Consider the
differential equation

v o= Lilr) - .
wilx), wilr)) = — — Wi—1|T) YialT)
(6.16) Wr( Lifz) ,
with respect to “yiwith initial condition
v!'.lrﬂ; oy — ]
(6.17) Yi(z)=0, il

It has the unique solution

. T T g Gy ()
gilx) = wilx) it

(6.18) Ti (2 )i (u)?
This solution is a polynomial, cf. equation (6.4). For c € C, denote
(6.19) Yi(cx) =yi(x) + cyi(x).

Notice that yi(c;z) = 1.
Define a new r-tuple of polynomials

(6.20) vi(Q)y := (1(x),Vi-1(x), V7i(C;X), Yis1(X),.yr(X)).
We call it the i-th normalized mutation of the tuple y € N(V ;z).

Lemma 6.9. For any i, c the tuple vi(c)y lies in Y5ethe(V ;z),
Proof. The lemma follows from formula (6.4).

By this lemma we have a map
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Vi(c) : YBethe(V ;2) = YBethe(V ;2).

Recall the unipotent matrices ei(c), i = 1,..,r, ¢ € C, introduced in (4.1).
Theorem 6.10 (Comparison Theorem). Let b € N(V;z),i=1,..,1, c € C. Then

(6.21) W _(ei(e)b) = pi(e)W,_(b)
Proof. The proof follows from formula (6.4). Cf. the proof of Theorem 4.4.

Corollary 6.11. By Corollary 6.7 the group N acts on the Bethe cell Y&ethe(V ;z). By Theorem 6.10 a
unipotent matrix ei(c) acts on the Bethe cell Y5ethe(V/ ;z) as the normalized mutation pi(c).

6.5. Positive populations. Fix any point b(® € N(V;z), that is any basis of V unipotent at z. Then
Nb® = N(V,2).
Define the totally positive part of N(V,z) as
N>o(V';z;b(0)) := N>0b(0).
The totally positive part depends on the choice of b(. Denote

y(0) := Wzt (b(0)) € YBethe(V ;2).

Since b(® is any point of N(V;z), the point y(® could be an any point of the Bethe cell Y5ethe(V ;z).

Define the totally positive Bethe subvariety or positive population as

(6.22) }Jin'lrlu,-. (V:z: blu:] — ."'-',,..I:y"":],l e J_:-fl'r the (V: '_].
We also have
(6 23) -}?fﬁ""" (V= b ) = u-l.l.-. Ie'.'l"’.:-l:-” s 2; b\ |

6.6. Coordinates on the Bethe cell. Let b(® be a point of the Bethe cell YZethe(V ;7). Let h = si,...51 €
Red(wo) be a reduced decomposition of the longest element wo € Sr+1.

We call the map
Vh: C1—— Y(V ;z)Bethe, (cger€1) 7= Vig(cq)...vir(c1)y @,

the Wronskian chart corresponding to h. Its image is Zariski open. The map vh is a birational
isomorphism.

For any two reduced words h,h® € Red(wo) we have the transition function =} @ 1y n, which
defines an automorphism

(6.24) Rpno: F—— F of the field F := C(cy,...,cq).
Recall the Whitney-Lusztig charts on N, see (4.3),
Lh:Ci-—> N
and transition function automorphisms
Rhpo: F=~—>F,
defined for any two words h,h% € Red(wo), see Section 1.3.

Theorem 6.12. For any h,h® € Red(wo) we have
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(6.25) Rhno= R ho.
Proof. The theorem follows from Comparison Theorem 6.10.

Corollary 6.13. For any h,h® € Red(wo), the map “k* * “;1 is well defined on the positive population
J=TETEES . WA
YISV 20 gng defines an isomorphism

Vit O 1y | : };!'_rl.l_u_.. [1.: - bm:] 3 };:'_rlrlu._.. I_l'f - bl-.n; 'I

Proof. The corollary follows from Theorem 1.1 and Comparison Theorem 6.10.

7. Base affine space and fat populations

7.1. Base affine space. Let N,N- c G := SLr+1(C) be the subgroups of the upper and lower triangular
matrices with 1’s on the diagonal. Let T € G be the subgroup of diagonal matrices. Let B-= N-T be
the subgroup of lower triangular matrices and B = NT the subgroup of upper triangular matrices

The quotient G/N-is called the base affine space of G. It is fibered over the flag space G/B- with
fiber T.

The image B of B in G/N-is called the big cell of the base affine space G/N-.

7.2. Fat population. Let VVbe an r + 1-dimensional vector space as in Section 6.1.

The vector space V has a volume form. The volume of a basis b = (bs,...,br+1) of V is defined to be
the number

(7.1) Wrtv (b1,...,bre1).

Denote by Brthe set of all bases of V of volume 1. We consider every basis vector as an r + 1-column
vector. Then the group SLr+1 acts on Bvon the left freely with one orbit. The quotient By /N-is
isomorphic to the base affine space of SLy+1.

The reduced Wronski map Wyt defined in (6.2) induces a map

(72 Wi : By/N_ = Clal’

Theorem 7.1. The reduced Wronski map Wvt: Bv/N-— C[x]"is an embedding. The image of the map,
denoted by Fat(Zv), is isomorphic to the affine base space G/N- of the group SLr+1. The image Fat(Zv)

will be called the fat population associated with V.

Proof. The proof is parallel to the proof of Theorem 6.1 in [MV].

We have another description of the fat population as a bundle

(7.3) Fat(Zv) - Zv
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over the population Zv, defined in Theorem 6.1, with fiber isomorphic to (C*)". Namely, ify = (y1: -
:yr) € Zvc P(C[x])"and (y1,...yr) € C[x]"is a representative of y, then the fiber over y consist of the
following r-tuples of polynomials {(dwy1,....dryr) € C[x]"| (dy,....dr) € (C*)}.

7.3. Fat Bethe cell. Let v = {z1,..,zn} C C be the set of singular points of V. Fix a complex number z
/€ Zv, aregular point of V. Let YBethe(V ;z) < C[x]"be the Bethe cell defined in (6.14). Define the fat
Bethe cell Fat(YBethe(V ;z)) by the formula

(7.4) Fat(YBethe(V/ ;2)) =
= {(dwy1,...dyr) € C[X]" | (V1,yr) € YEethe(V ;2), (d4,...,dr) € (C)1Y.

Recall N(V;z), the cell of bases of V unipotent at z. Define the fat cell Fat(N(V';z)) by the formula

(7.5) Fat(N(V;2)) = {(b1ds,b2d2/d,...,brd:/dr-1,bre1/dr) € C[x]" |
| (bi,...,brs1) € N(V;2), (d1,...,dr) € (C)7.

Clearly the fat cell is isomorphic to the big cell B of the base affine space G/N-.
Theorem 7.2. The reduced Wronski map induces an isomorphism
(7.6) Wyt: Fat(N(V;z)) — Fat(YBethe(V ;2)).
Hence the fat Bathe cell Fat(Y8ethe(V ;7)) is isomorphic to the big cell B of the base affine space G/N-.
Proof. This theorem is a corollary of Theorem 6.6.

7.4. Example of a cluster structure on a fat Bethe cell. Consider the example of the 3-
dimensional vector space V = C[x]s2 of quadratic polynomials. In this case the set Zv of singular
points of V is empty. We choose z = 0, a regular point for V', and consider the corresponding fat
Bethe cell Fat(YZethe(V ;). It consist of pairs of polynomials
(7.7) (a0 + anx + a2x?/2,Bo + P1x + f2x?/2) such that
ao6=0, Po6=0

and such that the Plu“cker equation holds,

ai1ff1= aof2 + azfo.
This is a familiar relation in the cluster algebra structure of type A1 on the ring C[SL3 /N-], where
the cluster variables are ay,f1, cf. [Z, Section 3.1] and [FZ].

In fact, in this case the coefficients of the polynomials in (7.7) are nothing else but the Plu"cker
coordinates on C[SL3 /N-].

8. Appendix: Fourteen- and Eightfold Ways

8.1. Group SLz and a 2-category. One can reformulate the Whitney-Lusztig data from Section 1.3
in the language of [MS].

Namely, consider a 2-category 3 Sz whose objects are in bijection with Ss; the 1-arrows
correspond to the weak Bruhat order on this group: there are 6 elementary arrows:

3 for a definition of (globular) n-categories see [St]
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]

(8.1) (123) 75 (213) =5 (231) =5 (321)ang

T230 T1200 T2300
(8.2) (123) -- (132) -— (312) -— (321).
Finally, there is one nontrivial 2-arrow between two compositions
(8.3) hiTiaTaaTis — TosTiaTas,

This structure is conveniently visualized in a hexagon, to be denoted P3: its 6 vertices correspond
to objects of S3, 6 oriented edges - to elementary 1-morphisms 7, and the unique 2 cell to the 2-
morphism h.

The Whitney-Lusztig data described above may be called a 2-representation p of S3: to each
object we assign the same vector space V= F3 with a fixed standard base. To the elementary

[r#e]

arrows '#f  we assign elementary matrices:

(8.4) p(t12) = e1(a1), p(t23) = ez2(az),
etc. To products of elementary arrows we assign the products of the corresponding matrices.
Finally, p(h) will be an automorphism of F given by

(8.5) p(h) = Riz1;212=: R,
see formulas (1.3) and (1.4). Note that

(8.6)  R%=1Ids see Section 1.3.

Thus, the matrix #7712 Tﬂ:a) is obtained from the matrix 727z "12) by applying the field
automorphism p(h):
(8.7) o TE':.IT;"L,T::..I:I = lr.ll:ll."lﬂllll'.ll:'.l':-_:'.l'_:-;-;'.l'|g I }

Similarly, for any r one defines in [MS] an r-category Sr, whose 1-coskeleton is a usual 1category
corresponding to the symmetric group Sr+1 with the weak Bruhat order. Informally speaking, Sris
an r-category structure on the r + 1-th permutohedron Pr.1, the r-dimensional polyhedron in R™1,

the convex hull of a generic Sr+1-orbit of a point x € R™1.

In particular for each w € Sr+1 we have an r - 1-category Homs.(e,w); its 1-skeleton
?-fri-.'n:fgl' e w) = 8k Homg, (e, w)

is a usual (1-)category; the set of its objects is by definition the set Red(w) which is obtained from
Red(w) by identifying any two words h and A0 if their only distinction is a couple ij in h vs ji in h0
somewhere in the middle, with |i - j| > 1.

According to [MS], Red(w) is equipped with a partial order, the 2nd Bruhat order 62. The

! 'l:-::l | . .
category 1475, 1% corresponds to this order, ie. two words hho € Red(w) are
connected by a unique arrow if and only if h62 hO.

8.2. Group SLsand a tetrahedron equation.
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8.2.1. The Forteenfold Way. * Consider the case r = 3. The 3-category Ssis related to a polyhedron P4
which looks as follows. We take a regular octahedron and cut from it 6 little square pyramids at its
vertices; we get a polyhedron with 6x4 = 24 vertices. It has 8 hexagons and 6 squares as its 2-faces.
The vertices of Psare in bijection with Ss. An oriented edge x — y connects elements x,y € Sssuch
thatx6yand (y) = '(x)+1 where 6 is the weak Bruhat order, and '(x) is the usual length (the number
of factors in a reduced decomposition).
Its eight hexagonal 2-faces correspond to identities of the form

(8.8) SiSi+1Si = Si+1SiSi+1,

which give rise to eight "elementary” 2-morphisms of type (1.3). Its
six square edges correspond to identities of the form

(8.9) sisj=sjs;, |i = j| > 1. which give rise to the identity 2-morphisms

in Sa.

It is convenient to imagine the vertices e and wo as the "North” and "South” poles of P4. The set
Red(wo) consists of 16 longest paths on P4, of length 6, going downstairs, which connect e and wo.
For example, the path 1 is

(1234) - (2134) 25 (2314) 1 (3214) -5 (3241) —% (3421) —+ (4321)

whereas the path sis

i

(1234) 7 (1243) 725 (1423) T (1432) T (4132) =25 (4312) 7 (4321)

Fourteen paths are depicted below, it is a 14-fold Way:
212321 -— 213231=231231=231213 --» 232123

T !
121321 323123
(8.10) I I
123121 321323
! T

123212 --» 132312=132132=312132 -—» 321232
The elementary paths which are equal as 1-morphisms are connected by the signs =. They
correspond to 6 mutations of type (8.9) and are in bijection with the square 2-faces of Ps. If we
identify the paths related by =, we are left with the set

Hom®M(e,wo) = Red(wo),

which contains 8 elements.

Let us number the elements of Red(wo) as ', ¢ € Z/8Z. These elements are connected by 8
mutations of type (8.8), which are geometrically given by hexagons:

ha(1) ha(3) h(3) ha(1)

0 o> 1 --> 2 -- 3 -5 4

(8.11) I I
h1(4) ha(2) h(2) ha(4)

4 Cf. [GN].
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Thus, the 2-nd Bruhat order on the set Red(wo) converts it to an octagon.

Finally we have one 3-morphism (homotopy)
k: h2(1)h1(3)h2(3)h1(1) —— h2(4)h1(2)h2(2)h1(4)
which corresponds to the single 3-cell of Py, its body.
8.2.2. Representation of the 3-category. The Whitney - Lusztig data give rise to a 2-representation of

the 3-category Sa. It is visualized on the permutohedron P4 as follows. Our base field will be a purely
transcendental extension of C,

F = C(a) = C(ay,azazasas,as) ~ = C(Na).
At each vertex we put the based F-vector space V = Fé. At the edges we put the elementary matrices
ei(aj) € N3(F), 16i63,16j6 6. For example, at the 3 edges going down from e we put the matrices
e1(a1),ez2(a1),e3(a1), and to the last three edges coming to wo we put the matrices e1(as),ez(as),es(as).
To any path we assign the product of the corresponding matrices.
For example
p('1) = e1(ae)ez(as)es(as)ei(as)ez(az)er(a),
whereas

p(2) = e3(as)ez(as)e1(as)es(as)ez(az)es(a),

On 2-faces of P+ we put certain automorphisms of the base field...
Namely, let us introduce involutive operators L(i): F-— F, 16i6 5, by

(8.12) L(i)(a)
L(7)(ax)

Qi+1, L(i)(ai+1) = a;

ak ifk6=1i+1,

and R(j): F-~—F, 1664, given by

(8.13) R()(a) = ajmaj2/(aj+ aj+2),
R(N(ai+1) = aj+aj,
R()(aj+2) = ajaj+1/(aj+ aj+2),
R((ax) = ar ifk6=ii+1,

cf. formula (1.3).
On eight hexagons (resp. on six squares) we put the involutions R (resp. L) according to the
picture:

(8.14)
F(212321)R-()7 F(213231) -1~ F(231231) -1 F(231213)R-B)~ F(232123)

R(1) T LR()
F(121321) F(323123)
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L(3) ! LL(3)
F(123121) F(321323)
R(4) ! TR(4)

F(123212)R-@7 F(132312) -L®™ F(132132) -t~ F(312132)R-) 7 F(321232)
Here F(h),h € Red(wo), is a copy of the field F.
This way we have associated to any path *= '(h), h € Red(wo), an upper triangular matrix p(") €
N(F), and to every homotopy *-"— 0an automorphism
R(h):F-—~—>F

such that

(8.15) p() = R(M){p ()}

Theorem 8.1. The diagram (8.14) is commutative, i.e.,

L(3)R(1)R(3)L(2)L(5)R(3)R(1) = R(4)R(2)L(1)L(4)R(2)R(4)L(3).

8.2.3. Eightfold Way. We can rewrite this assertion as follows.
Define 8 automorphisms (involutions or compositions of two involutions):

Ri(1) =R(1), Ro(1) = L(3)R(L),
R1(2) = L(4)R(2), R2(2) =R(2)L(1),
R1(3) = L(5)R(3), R2(3) = R(3)L(2),
Ri(4) = R(4)L(3), Ra(4) = R(4).
Then we have a tetrahedron equation
(8.16) R2(1)R2(3)R1(3)R1(1) = R2(4)R2(2)R1(2)R1(4).
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