
 

Journal of Singularities received: 13 May 2020 
Volume 20 (2020), 342-370 in revised form: 3 October 2020 

DOI: 10.5427/jsing.2020.20p 

 

POSITIVE POPULATIONS 

VADIM SCHECHTMAN AND ALEXANDER VARCHENKO 

Abstract. A positive structure on the varieties of critical points of master functions for KZ equations is 

introduced. It comes as a combination of the ideas from classical works by G.Lusztig and a previous 

work by E.Mukhin and the second named author. 

1. Introduction: Whitney-Lusztig patterns and Bethe populations 

1.1. Big cell and critical points. The aim of the present note is to introduce a positive structure on 

varieties of critical points of master functions arising in the integral representation for solutions of 

KZ equations and the Bethe ansatz method. 

Let N = Nr+1 ⊂ G = SLr+1(C) denote the group of upper triangular matrices with 1’s on the diagonal. 

It may also be considered as a big cell in the flag variety SLr+1(C)/B−, where B− is the subgroup of 

lower triangular matrices. Let Sr+1 denote the Weyl group of G, the symmetric group. 

In this note two objects, related to N, will be discussed: on the one hand, what we call here the 

Whitney-Loewner-Lusztig data on N, on the other hand, a construction, introduced in [MV], which 

we call here the Wronskian evolution along the varieties of critical points. 

An identification of these two objects may allow us to use cluster theory to study critical sets of 

master functions and may also bring some critical point interpretation of the relations in cluster 

theory. 

In this note we consider only the case of the group SLr+1(C), although the other reductive groups 

can be considered similarly. 

1.2. What is done in Introduction. In Section 1.3 we recall the classical objects: WhitneyLoewner 

charts, these are collections of birational coordinate systems on N indexed by reduced 

decompositions of the longest element w0 ∈ Sr+1, and Lusztig transition maps between them. 

In Sections 1.4 - 1.8 the main ideas from [MV] are introduced. Namely, it is a reproduction recipe, 

called here a Wronskian evolution, which produces varieties of critical points for master functions 

appearing in integral representations for solutions of KZ equations, [SV]. In Section 1.10 the 

content of Sections 2 - 8 is described. 

1.3. Whitney-Loewner charts and Lusztig transition maps. In the seminal papers [L, BFZ] 

Lusztig and Berenstein-Fomin-Zelevinsky have performed a deep study of certain remarkable 

coordinate systems on N, i.e. morphisms of algebraic varieties 

Lh : Cq −→ N, 
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q = r(r +1)/2, with dense image, which are birational isomorphisms. The main feature of these 

morphisms is that the restriction of them to  induces an isomorphism 

Lh : Rq>0 −∼→ N>0, 

where N>0 is the subspace of totally positive upper triangular matrices. 

Recall that a matrix g ∈ N is called totally positive if all its minors are strictly positive, except for 

those who are identically zero on the whole group N, see [BFZ]1. 

The set of such coordinate systems, which we will be calling the Whitney-Loewner charts, is in 

bijection with the set Red(w0) of reduced decompositions 

(1.1) h : w0 = siq ...si1 of the longest element w0 ∈ Sr+1. 

For example, for r = 2 there are two such coordinate systems, L121 and L212 corresponding to the 

reduced words s1s2s1 and s2s1s2 respectively. 

The construction of maps Lh will be recalled below, see Section 4.1. 

To every h ∈ Red(w0) and a = (aq,...,a1) ∈ Cq there corresponds a matrix 

Nh(a) = Lh(a) ∈ N. 

A theorem of A.Whitney2, as reformulated by Ch.Loewner, see [W, Lo], says; 

Theorem 1.1. For any reduced decomposition h of the longest element w0 ∈ Sr+1 the map Lh : Cr(r+1)/q 

→ Nr+1 restricted to the positive cone  defines an isomorphism of the positive cone  

and the space N>0 of totally positive matrices . 

For any two words h,h0 Lusztig has defined a birational self-map of Aq, i.e. an automorphism of 

the field of rational functions 

F := C(a) = C(a1,...,aq) ∼= C(N) 

(here we consider ai as independent transcendental generators), 
∼ 

(1.2) Rh,h0 : F −→ F, 

such that a0 = Rh,h0(a), if Nh(a) = Nh0(a0). 

For 

example 

  

and 
  

 
1 The notion of a totally positive matrix first appeared in the works of I.Schoenberg [S] and Gantmacher-Krein [GK]. 

2 Anne M. Whitney (1921–2008), a student of Isaac Schoenberg (1903–1990). 
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 , 

where e1(a) = 1 + ae12, e2(a) = 1 + ae23. 

It follows that 

, 

provided 

(1.3)  . 

This is equivalent to 

(1.4)  . 

The transformation (1.3) is involutive, that is, its square is the identity. 

1.4. Bethe Ansatz equations. On the other hand, in the work [MV] it was discovered that the 

variety N is closely connected with the varieties of critical points of certain master functions 

Φk. 

Namely, for a sequence 

k = (k1,...,kr) ∈ Nr , 

consider a function Φk(u) depending on  variables subdivided into r groups: 

u . 

By definition, 

 r ki kj 

 Φk(u) = Y Y (u(mi) − u(li))aii · Y Y Y(u(mi) − u(lj))aij . 

 i=1 16m<l6ki 16i<j6r m=1 l=1 

Here A = (aij) is the Cartan matrix for the root system of type Ar, in other words, 

 r r−1 ki ki+1 

 Φk(u) = Y Y (u(li) − u(mi))2 · Y Y Y (ul(i) − u(mi+1))−1 . 

 i=1 16l<m6ki i=1 l=1 m=1 

Functions of this kind first appeared in [SV] in the study of integral representations for solutions 

of KZ differential equations. A point 

t  

is critical for the function logΦk(u) if it satisfies the system of k equations 

 , 1 6 i 6 r, 1 6 m 6 ki , 
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or, equivalently, 

(1.5) , 1 6 i 6 r, 1 6 m 6 ki . 

This system of critical point equations is also called the system of Bethe Ansatz equations in the 

Gaudin model. 

1.5. Reproduction, or Wronskian evolution (bootstrap). The following procedure of 

reproduction for constructing critical points has been proposed in [ScV], [MV]. 

Let us identify the group Zr with the root lattice Q of the group G using the base of standard 

simple roots α1,...,αr. Introduce the usual shifted action of W = Sr+1 on Q: 

w ∗ v = w(v − ρ) + ρ, 

where ρ is the half-sum of positive roots. Let 

w ∈ Sr+1 and let 

(1.6) h : w = sim ...si1 

be a reduced decomposition of w. For any 0 6 j 6 q we define an r-tuple 

k(j) = sij ...si1 ∗ (0) ∈ Nr , 

where 0 = (0,...,0) = k(0). 

Starting from the r-tuple of polynomials 

y(0) = (1,...,1) ∈ C[x]r , 

one defines inductively a sequence of r-tuples of polynomials (1.7) yh = 

(y(0),y(1)(v1),y(2)(v1,v2),...,y(m)(v1,...,vm)), where 

y , 

0 6 j 6 m, with 

degy  , 

where deg is the degree with respect to x. 

The sequence (1.4.2) is called the population associated with a reduced word h. 

We consider a polynomial ) as a family ) of polynomials of one variable x 

depending on a parameter c = c(j) = (c1,...,cj) ∈ Cj. 

Let c ∈ Cj and  be the roots of ) ordered in any way. Consider the tuple 

t . 

The main property of the sequence yh is: 
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Theorem 1.2 ([MV]). For each j = 1,...,m, there exists a Zarisky open dense subspace U ⊂ Cj such that 

for every c = c(j) ∈ U, the tuple of roots t(j)(c) is a critical point of the master function 

Φ(j)(u) := Φk(j)(u), i.e. it satisfies the Bethe Ansatz equations (1.5). 

Moreover, if Φk is a master function for some index k and t a critical point of logΦk as in Section 1.4, 

then t appears in this construction for a reduced decomposition h of some element w ∈ Sr+1. 

The construction of yh for h ∈ Red(w0) see in Section 1.6 below. 

1.6. Wronskian bootstrap: the details. Starting from the r-tuple of polynomials 

y(0) = (1,...,1) ∈ C[x]r , 

one constructs the sequence 

 yh = (y(0),y(1)(v1),y(2)(v1,v2),...,y(m)(v1,...,vm)) (1.5.1) 

by induction. Assume that the sequence 

y  

has been constructed. Then the sequence 

y  

is such that 

 , ∀i 6= ij+1 . 

and ) is constructed in two steps. 

First one shows that there is a unique polynomial ˜y(v1,...,vj;x) such that 

(i) Wr(  ) = const  , where Wr(f,g) = fg0 −f0g denotes the Wronskian of two 

functions in x and the constant does not depend on v,x; 

(ii) the polynomial ˜y(v1,...,vj;x) is monic with respect to the variable x; 

(iii) the coefficient in ˜y(v1,...,vj;x) of the monomial  equals zero, where  is the ij+1-st 

coordinate of the vector k(j). 

Then we define 

. 

Consider all coordinates of the resulting family y

 

up to multiplication by nonzero numbers. This gives a map 

Fh : Cm → P(C[x])r , 

where P(C[x]) is the projective space associated with C[x]. Denote by 

Zh = Fh(Cm) ⊂ P(C[x])r 

its image. 

Let V be an r + 1-dimensional complex vector space, X = G/B− the space of all complete flags in V 

. Let F0 ∈ X be a point. The choice of F0 gives rise to a decomposition of X into |W| = (r + 1)! Bruhat 

cells, which are in bijection with W = Sr+1: 



 POSITIVE POPULATIONS 347 

X = a Xw . 
w∈W 

We have 

dimXw = `(w). 

For example, for the identity e ∈ W, the cell Xe = {F0} is the zero-dimensional cell, and for the longest 

element w0 ∈ W, the cell Xw0 is the open cell, the space of all flags in general position with F0. 

Theorem 1.3 ([MV]). The union 

Z = [ Zh ⊂ P(C[x])r 
w,h 

over all reduced decompositions h of all elements w ∈ Sr+1 is an algebraic subvariety of P(C[x])r 

isomorphic to the variety of complete flags X = G/B−. 

The subspace Zh ⊂ Z does not depend on the choice of h ∈ Red(w), so it may be denoted by Zw. It is 

identified with the Bruhat cell Xw ⊂ X.  

In particular, the subset Zw0 
∼= Xw0 is isomorphic to the big Bruhat cell N ⊂ G/B−. 

The algebraic subvariety Z ⊂ P(C[x])r is what was called in [MV] the population of critical points 

originated from y(0). 

The proof of Theorem 1.3 in [MV] identifies the variety Z with the space of complete flags of a 

particular r + 1-dimensional vector space V , where 

V = Vr = C[x]6r ⊂ C[x] 

is the vector space of polynomials of degree 6 r, and the flag F0 is the standard complete flag 

 F0 = (V0 ⊂ ... ⊂ Vr−1 ⊂ Vr), Vi = C[x]6i . 

1.7. Example, [MV, Section 3.5]. For r = 2, let us see how the populations give rise to a 

decomposition of X = SL3(C)/B− into six Bruhat cells. We have the zero-dimensional Bruhat cell 

Zid = {(1 : 1)} ∈ P(C[x])2 . 

We have two one-dimensional Bruhat cells: 

 Zs1 = {(x + c1 : 1) | c1 ∈ C} ⊂ P(C[x])2 , 

 Zs2 = {(1 : x + c01) | c01 ∈ C} ⊂ P(C[x])2 , 

two two-dimensional Bruhat cells: 

Zs2s1 = {(x + c1 : x2 + 2c1x + c2) | c1,c2 ∈ C} ⊂ P(C[x])2 , Zs1s2

 = {(x2 + 2c01x + c20 : x + c01 ) | c01 ,c20 ∈ C} ⊂ P(C[x])2 . 

The longest element w0 ∈ S3 has two reduced decompositions s1s2s1 and s2s1s2, which give two 

parametrizations of the same three-dimensional Bruhat cell: 
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Zs1s2s1 = {(x2 + c3x + c1c3 − c2 : x2 + 2c1x + c2) | c1,c2,c3 ∈ C} ⊂ P(C[x])2 , Zs2s1s2 =

 {(x2 + 2c01x + c02 : x2 + c03x + c01c03 − c20 ) | c01,c02,c30 ∈ C} ⊂ P(C[x])2 . 

The two coordinate systems are related by the equations 

(1.8)  . 

Notice that this transformation is involutive. 

The union of the six Bruhat cells gives the subvariety Z ⊂ P(C[x])2 isomorphic to SL3(C)/B−. The 

subvariety Z consists of all pairs of quadratic polynomials (a2x2+a1x+a0 : b2x2+b1x+b0) such that 

(1.9) . 

Remark. Here are more details on how the description of Zs1s2s1 is obtained. The description of Zs2s1s2 

is obtained similarly. 

In the formula Zs1 = {(x + c1 : 1) | c1 ∈ C}, the monic polynomial x + c1 satisfies the equation Wr(1,x 

+ c1) = 1. In the formula Zs2s1 = {(x + c1 : x2 + 2c1x + c2) | c1,c2 ∈ C}, the monic polynomial x2+2c1x+c2 

satisfies the equation Wr(1,x2+2c1x+c2) = const(x+c1), where const = 1/2. In the formula Zs1s2s1 = {(x2 

+ c3x + c1c3 − c2 : x2 + 2c1x + c2) | c1,c2,c3 
∈ C}, the monic polynomial x2 + c3x + c1c3 − c2 satisfies the 

equation 

Wr(x + c1,x2 + c3x + c1c3 − c2) = x2 + 2c1x + c2, 

see Section 1.6. 

1.8. Not necessarily reduced words. One can associate to an arbitrary, not necessarily reduced 

word h of length m a sequence of m r-tuples (1.3) as well, see [MV]. Namely, using the Wronskian 

differential equation 

) = const  

as in (i) above alone, but without normalizing conditions (ii) and (iii) one gets for each j = 1,...,m a 

tuple 

y , 

where v belongs to a variety of parameters B(j), which is an iterated C-torsor. This means that 

B(j) is included into a sequence of fibrations 

B(j) −→ B(j−1) −→ ... −→ B(1) ∼= C, 

where each step B(p) −→ B(p−1) is an analytic C-torsor, locally trivial in the usual topology. 

But the corresponding cohomology H1(Cp;C) vanishes which implies that the torsors are trivial, 

and this provides a global isomorphism B(j) ∼= Cj. 

1.9. Main point. The main new point of the present work is a definition of a certain modified 

reproduction, which we call the normalized reproduction. It provides the varieties of r-tuples of 

polynomials YBethe, to be called the Bethe cells, equipped with a system of coordinate charts 

isomorphic to N equipped with the Whitney-Lusztig charts. We also define the totally positive 

subspace  isomorphic to the subspace N>0 ⊂ N of totally positive upper triangular 

matrices. 
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1.10. Contents of the paper. Section 2 contains some preparations. In Section 3 a modification of 

the mutation procedure of Section 1.6 is introduced. Based on it, in Section 4 the Bethe cell is 

defined, and Comparison Theorem 4.4 is proven, which is one of our main results. In Section 5 we 

first describe in full detail Wronsky evolution for the case of groups SL3 and SL4. In particular we 

compute explicitly the positive part  of the Bethe cell, see Theorem 5.2. Afterwards we prove 

Triangular Theorem 5.3, which establishes an explicit isomorphism between N and the Bethe cell. 

Section 6 contains a generalization of the previous constructions. Namely, we define the Wronskian 

evolution, the Bethe cell, etc. associated with a finite-dimensional subspace V ⊂ C[x] and a 

distinguished complete flag F0 in V . The previous consideration corresponded the subspace C[x]6r 

of polynomials of degree 6 r. In Section 7 we present a version of the above considerations for the 

base affine space. Namely, we define a variety Y˜Bethe, which is related to the previous Bethe variety 

YBethe in the same way as the big cell in the base affine space G/N− is related to the big cell in the flag 

space G/B−. In Section 8 we interpret the Whitney-Lusztig data in the language of higher Bruhat 

orders, [MS], in particular give its complete description in the crucial case of SL4. 

We are grateful to E.Mukhin and M.Shapiro for useful discussions. 

2. Generalities on Wronskians 

2.1. Wronskian differential equation. The Wronskian of two functions f(x),g(x) is the func- 

tion 

Wr(f,g) = fg0 − f0g = f2(g/f)0 . Given f(x) 

and h(x), the equation 

(2.1) Wr(f,g) = h 

with respect to the function g(x) has a solution 

Z 

 g(x) = f(x) h(x)f(x)−2dx. 

The general solution is 

(2.2) . 

2.2. Univaluedness. Let f(x),g(x) ∈ C[x] be polynomials. Then h(x) := Wr(f,g) is a polynomial. Hence 

the indefinite integral of a rational function, 

Z 

h(x)f(x)−2dx, 

has no logarithmic terms, which is equivalent to the condition: 

(U) The function hf−2 has zero residues at its poles. 

2.3. Wronskian. Let f1(x),...,fn(x) be holomorphic functions. Define the Wronskian matrix 

 and the Wronskian 

Wr(  . 

The Wronskian is a polylinear skew-symmetric function of f1,...,fn. 

Example 2.1. We have 
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Wr . 

More generally, 

(2.3) Wr(xd1,...,xdk) = Y(dj − di) · xPdi−k(k+1)/2, 

i<j 

see this formula in [MTV]. 

2.4. W5 Identity. Let f1(x),f2(x),... be a sequence of holomorphic functions. For an ordered finite 

subset 

A = {i1,...,ia} ⊂ N := {1,2,...}, 

we write 

Wr(A) = Wr(fi1,...,fia). 

Denote 

[a] = {1,2,...,a}. 

Proposition 2.1 (W5 Identity, [MV, Section 9]). Let 

 A = [a + 1], B = [a] ∪ {a + 2}. 

Then 

(2.4) Wr(Wr(A),Wr(B)) = Wr(A ∩ B) · Wr(A ∪ B). 

Example 2.2. We have 

(2.5) Wr(Wr(f1,f2),Wr(f1,f3)) = f1 Wr(f1,f2,f3), as one can easily check. 

3. Normalized Wronskian bootstrap 

3.1. Generic and fertile tuples. Let y = (y1(x),...,yr(x)) ∈ C[x]r be a tuple of polynomials. 

Define y0 = yr+1 = 1. 

We say that the r-tuple y is fertile, if for every i the equation 

Wr(yi(x),yˆi(x)) = yi−1(x)yi+1(x) 

with respect to ˆyi(x) admits a polynomial solution. We say that y is generic, if for every i the 

polynomial yi(x) has no multiple roots and the polynomials yi(x) and yi−1(x)yi+1(x) have no common 

roots. 

Let ti,1,...,ti,ki be the roots of yi(x) ordered in any way. Consider the tuple 

t = (t1,1,...,t1,k1;...;tr,1,...,tr,kr). 

Lemma 3.1 ([MV]). The tuple y is generic and fertile if and only if the tuple t is a critical point of the 

master function Φk, where k = (degy1,...,degyr). 

3.2. Normalized mutations. Let y = (y1,...,yr) ∈ C[x]r be an r-tuple of polynomials such 

(3.1) yi(0) = 1, i = 1,...,r . 

Lemma 3.2. There exists a unique solutions yˆi(x) of the differential equation 

(3.2) 

such that 

Wr(yi(x),yˆi(x)) = yi−1(x)yi+1(x) , 
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(3.3) 

Proof. We have 

yˆi(x) = x + O(x2) as x → 0. 

(3.4)  

 

Assume that the tuple y is generic and fertile, then the function ˆyi(x) is a polynomial by Lemma 

3.1. The polynomial ˆyi(x) can be determined either by formula (3.4) or by the method of 

undetermined coefficients, see examples in Section 5. For c ∈ C, denote 

(3.5) y˜i(c;x) = yi(x) + cyˆi(x). 

Notice that for any c we have ˜yi(c;0) = 1. 

Define a new r-tuple of polynomials 

(3.6) νi(c)y := (y1(x),...,yi−1(x), y˜i(c;x), yi+1(x),...,yr(x)) 

and call it the i-th normalized mutation of the fertile generic tuple y. 

Equation (3.2) with the normalizing condition (3.3) will be called the normalized Wronskian 

evolution, or bootstrap, equation. 

3.3. Normalized population related to a word. Let 

(3.7) h = sim ...si1 

be any word in Sr+1. Sometimes we will write for brevity simply 

(3.8) h = (im ...i1) 

instead of (3.7). 

Now we proceed as in Section 1.5, but will use the normalized mutations νi. Namely, we start 

with y(0) = (1,...,1) ∈ C[x]r 

and for each c = (c1,...,cm) ∈ Cm define an r-tuples of polynomials by the formula: 

(3.9) yh(c) = (yh,1(c;x),...,yh,r(c;x)) := νim(cm)...νi1(c1)y(0) . 

Notice that for any i = 1,...,r and c ∈ Cm we have 

(3.10) yh,i(c;0) = 1. 

Theorem 3.3 ([MV]). For any h and c ∈ Cm, the tuple yh(c) is a tuple of polynomials. Moreover, there 

exists a Zarisky open dense subspace U ⊂ Cm such that for every c ∈ U, the tuple of roots th(c) of the 

polynomials (yh,1(c;x),...,yh,r(c;x)) is a critical point of the corresponding master function Φk. 

4. Whitney-Lusztig charts and the comparison theorem 

4.1. Birational isomorphisms. Recall the group N from Section 1.1. Let eij ∈ 

gl
r+1

(C) denote the elementary matrix, 

(eij)ab = δiaδjb . 

Define the matrices 
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(4.1) ei(c) = 1 + cei,i+1 ∈ N , i = 1,...,r , c ∈ C. 

Given a word h = sim ...si1, define a map 

(4.2) Lh : Cm −→ N , (c1,...,cm) 7→ eim(cm)...ei1(c1). 

Suppose that the word h is a reduced decomposition of the longest element w0 as in (1.1). Then 

h is of length q = r(r + 1)/2. The corresponding map 

(4.3) Lh : Cq −→ N 

is called the Whitney-Lusztig chart corresponding to h. The map Lh is a birational isomorphism. 

Remark. The map Lh is not epimorphic, and N is not even equal to the union of the images of Lh for 

h ∈ Red(w0). For example for r = 2 the set Red(w0) has two elements, the words (121) and (212). It 

is easy to see that the matrices of the form 1 + ae13,a 6= 0, are inaccessible, 

 1 + ae13 ∈ L/ 121(C3) ∪ L212(C3). 

4.2. Comparison Theorem. Denote M = C[x]r+1. We will write the elements of M as r +1sequences 

(f1,...,fr+1) with fi ∈ C[x], but will think of them as column r + 1-vectors with coordinates f1,...,fr+1. Then 

the algebra glr+1(C) of (r+1)×(r+1)-matrices acts on M from the left in the standard way. 

We introduce a distinguished element 

(4.4) b . 

For a word h = sim ...si1 in Sr+1 and c = (c1,...,cm) ∈ Cm, define an element 

bh(c) ∈ M , 

by the formula 

(4.5) bh(c) := Lh(c1,...cm)b(0) . 

Let 

bh(c) = (bh,1(c;x),...,bh,r+1(c;x)), 

where bh,1(c;x) ∈ C[x] be coordinates of bh(c). Recall the 

r-tuple of polynomials 

(4.6) yh(c) = (yh,1(c;x),...,yh,r(c;x)) = νim(cm)...νi1(c1)y(0) , defined in (3.9). 

Theorem 4.1 (Comparison Theorem). For any j = 1,...,r, we have 

Wr(bh,1(c;x),...,bh,j(c;x)) = yh,j(c;x). 

Proof. The theorem is a consequence of a general statement, see Theorem 4.3 below.  

4.3. Cell N. Denote 

N = Nr := Nb(0) ⊂ M , 
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the orbit of the element b(0) under the action of N. 

An element b = (b1,...,br+1) ∈ M belongs to N if and only if 

(4.7) , 

for some bij ∈ C. 

For any b = (b1,...,br+1) ∈ N we have 

(4.8) Wr(b1,...,br+1) = 1. 

We define the totally positive subvariety N>0 ⊂ N as 

(4.9) N>0 = N>0b(0) . 

4.4. N-Y correspondence. Define the Wronski map 

(4.10) W : N −→ C[x]r , b 7→ (b1,Wr(b1,b2),Wr(b1,b2,b3),...,Wr(b1,...,br)). 

Lemma 4.2. If b = (b1,...,br+1) ∈ N and y = (y1,...,yr) = W(b), then 

(4.11) yi = Wr(b1,...,bi) = 1 + O(x), i = 1,...,r , 

(4.12) Wr(b1,...,bi−1,bi+1) = x + O(x2), i = 1,...,r − 1, 

as x → 0.  

We define the Bethe cell or variety of Bethe r-tuples as 

(4.13) YBethe := W(N) ⊂ C[x]r , 

the image of the Wronski map, and the totally positive Bethe subvariety or positive population as 

. 

Theorem 4.3. The Wronski map induces an isomorphism ∼

 Bethe 

 W : N −→ Y ,. 

This theorem is a consequence of the Triangular Theorem below, see Section 5.3. 

Theorem 4.4. The Lusztig’s mutations, i.e. multiplications by ei(c) on the left, are translated by W to 

the Wronskian mutations νi(c) on the right: 

 W(ei(c)b) = νi(c)W(b), i = 1,...,r . (4.8.1) 

Proof. The theorem follows from the W5 Identity. Let us treat the case r = 3. We have 

 b  Wr(b) = 1, W(b) = y = (y1,y2,y3,1). 

The i = 1 case. We have 

e1(c)b = (b1 + cb2,b2,b3,b4), y1 = b1 , Wr(y1,b2) = Wr(b1,b2) 

= y2 . 

Hence ˆy1 = b2 is the solution of the normalized Wronskian equations (3.2), (3.3), and 
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ν1(c)y = (y1 + cyˆ1,y2,y3) = W(e1(c)y), 

cf. formula (3.6). 

The i = 2 case. We have e2(c)b = (b1,b2 + cb3,b3,b4). 

Denote ˆy2 := Wr(b1,b3). Then 

 yˆ2(x) = x + O(x2) as x → 0, 

by formula (2.3), and 

Wr(y2,yˆ2) = Wr(Wr(b1,b2),Wr(b1,b3)) = Wr(b1)Wr(b1,b2,b3) = y1y3 , 

by the W5 Identity. Hence ˆy2 is the solution of the normalized Wronskian equations (3.2), (3.3), 

and 

ν2(c)y = (y1,y2 + cyˆ2,y3) = W(e2(c)y). 

The i = 3 case. We have 

e3(c)b = (b1,b2,b3 + cb4,b4) 

Denote ˆy3 := Wr(b1,b2,b4). Then 

 yˆ3(x) = x + O(x2) as x → 0, 

by formula (2.3), and 

Wr(y3,yˆ3) = Wr(Wr(b1,b2,b3),Wr(b1,b2,b4)) = Wr(b1,b2)Wr(b1,b2,b3,b4) = y2 , 

by the W5 Identity and formula (4.8). Hence ˆy3 is the solution of the normalized Wronskian 

equations (3.2), (3.3), and 

ν3(c)y = (y1,y2,y3 + cyˆ3) = W(e3(c)y). 

The case of arbitrary r is similar.  

5. Triangular coordinates on the Bethe cell 

5.1. Example of evolutions, group SL3 . 

5.1.1. Wronskian evolution. We start with y(0) = (1,1) and a reduced decomposition of the longest 

element in S3, 

h = (121) : w0 = s1s2s1 . 

The pair y(0) evolves by means of the normalized mutations: 

 ν1(b1) ν2(b2) 2 

(5.1) (1,1) −→ (1 + b1x,1) −→ (1 + b1x,1 + b2(x + b1x /2)) 

 ν−1(→b3) (1 + b1x + b3(x + b2x2/2),1 + b2(x + b1x2/2)). 

The last pair is ν1(b3)ν2(b2)ν1(b1)y(0) . 

The second reduced word, h0 = (212), gives rise to another evolution: 

 ν2(c1) ν1(c2) 2 
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(5.2) (1,1) −→ (1,1 + c1x) −→ (1 + c2(x + c1x /2),1 + c1x) 

 ν−2(→c3) (1 + c2(x + c1x2/2),1 + c1x + c3(x + c2x2/2)). 

The change of coordinates on  from (b1,b2,b3) to (c1,c2,c3) is 

 c2 = b1 + b3, c1c2 = b2b3, c1 + c3 = b2, c2c3 = b1b2 , 

whence 

(5.3)  , 

cf. [L, Proposition 2.5]. 

5.1.2. Bethe cell and positive population. Analyzing formulas (5.1) and (5.2) we observe that the 

Bethe cell  consists of the polynomials (1 + e1x + e2x2/2, 1 + f1x + f2x2/2) such that 

(5.4) e2 + f2 = e1f1 , 

cf. (1.9), and the positive population  is cut from  by the inequalities 

(5.5) e1, e2, f1, f2 > 0. 

5.1.3. Whitney-Lusztig evolution. We start with 

b(0) = (b1,b2,b3) = (1,x,x2/2) 

and act on it by the elementary unipotent matrices 

 ei(t) = 1 + tei,i+1, i = 1,2, 

in the order dictated by the reduced word h = (121): 

 (1,x,x2/2) e−1(→t1) (1 + t1x,x,x2/2) e−2(→t2) (1 + t1x,x + t2x2/2,x2/2) 

 e−1(→t3) (1 + t1x + t3(x + t2x2/2),x + t2x2/2,x2/2). 

The resulting triple is 

(5.6) bh(t) = (bh,1(t;x),bh,2(t;x),bh,3(t;x)) 

 := (1 + t1x + t3(x + t2x2/2),x + t2x2/2,x2/2), 

cf. Section 4.2. One easily checks that applying the Wronski map W to the evolution (5.6) we obtain 

the evolution (5.1). 

5.1.4. Remark. Note a useful formula 

(5.7) Wr(1 + t1x,x + t2x2/2) = 1 + t2(x + t1x2/2), 

which could be written symbolically as 

Wr(e1(t1),e2(t2)) = e1(t2)e2(t1). 

In general let b = (1 + ax + bx2/2,x + cx2/2,x2/2). 

Using the formulas (Wr(1,x),Wr(1,x2/2),Wr(x,x2/2)) = (1,x,x2/2), we get 
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y := W(b) = (1 + ax + bx2/2, 1 + cx + (ac − b)x2/2). Thus, the 2 × 

2-matrix of nontrivial coefficients of y has the form 

. 

The variety  may be identified with 

{(aij) ∈ gl2(C) | a11a21 = a12 + a22} ⊂ gl2(C), 

an exchange relation familiar in the theory of cluster algebras. Cf. Example 7.4 below. 

5.2. Example of evolutions, group SL4. 

5.2.1. Wronskian evolution. There are 16 distinct reduced decompositions of the longest element 

w0 ∈ S4. We choose one of them: h = (121321). 

We start with y(0) = (1,1,1) and perform the sequence of normalized mutations corresponding to 

the reduced decomposition h: 

 ν1(a1) ν2(a2) 2 

(1,1,1) −→ (1 + a1x,1,1) −→ (1 + a1x,1 + a2(x + a1x /2),1) ν−3(→a3) (1 + a1x,1 + a2(x + 

a1x2/2),1 + a3(x + a2(x2/2 + a1x3/6))) ν−1(→a4) (1 + a1x + a4(x + a2x2/2),1 + a2(x + 

a1x2/2),1 + a3(x + a2(x2/2 + a1x3/6))). 

To find the next normalized mutation, ν2(a5), we have to solve an equation 

(5.8) Wr(1 + a2(x + a1x2/2,x + b2x2/2 + b3x3/6 + b4x4/24) = 

 

with respect to b2,b3,b4. We calculate inductively the coefficients of x,x2,x3 in (5.8) and obtain: 

 b2 = a1 + a3 + a4, b3 = 2(a1 + a4)a3, b4 = 2a2a3a4 . 

Note that the coefficients of x4 and x5 in the left-hand and right-hand sides of (5.8) should be equal 

as well, but the corresponding additional equations on b2,b3,b4 will be satisfied identically – these 

are incarnations of the “Bethe equations”. 

Thus, 

ν2(a5)ν1(a4)ν3(a3)ν2(a2)ν1(a1)y(0) = (1 + a1x + a4(x + a2x2/2), 

1 + a2(x + a1x2/2) + a5(x + (a1 + a3 + a4)x2/2 + 2(a1 + a4)a3x3/6 + 2a2a3a4x4/24), 1 + a3(x + 

a2(x2/2 + a1x3/6))). 

Finally, to apply ν1(a6) to this 3-tuple, we have to find c2,c3 from the equation 

Wr(1 + a1x + a4(x + a2x2/2),x + c2x2/2 + c3x6/6) 

= 1 + a2(x + a1x2/2) + a5(x + (a1 + a3 + a4)x2/2 + 2(a1 + a4)a3x3/6 + 2a2a3a4x4/24. 

We find c2,c3 by equating the coefficients of x,x2: 

 c2 = a2 + a5, c3 = a3a5 . 
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Then the coefficients of x3,x4 will be equal as well by the “Bethe equations”. Thus, 

yh(a) = (yh,1(a;x),yh,2(a;x),yh,3(a;x)) = ν1(a6)ν2(a5)ν1(a4)ν3(a3)ν2(a2)ν1(a1)y(0) = (1 + a1x + a4(x 

+ a2x2/2) + a6(x + (a2 + a5)x2/2 + a3a5x3/6), 

1 + a2(x + a1x2/2) + a5(x + (a1 + a3 + a4)x2/2 + 2(a1 + a4)a3x3/6 + 2a2a3a4x4/24), 

1 + a3(x + a2(x2/2 + a1x3/6))), cf. 

formula (3.9). 

5.2.2. Lusztig evolution. Consider the Lusztig evolution corresponding to the same word h = 

(121321): 

b(0) = (1,x,x2/2,x3/6) e−1(→a1) (1 + a1x,x,x2/2,x3/6) e−2(→a2) (1 + a1x,x + a2x2/2,x2/2,x3/6) 

e−3(→a3) (1 + a1x,x + a2x2/2,x2/2 + a3x3/6,x3/6) e−1(→a4) (1 + a1x + a4(x + a2x2/2),x2/2 + 

a3x3/6,x3/6) e−2(→a5) (1 + a1x + a4(1 + a2x2/2),x + a2x2/2 + a5(x2/2 + a3x3/6),x2/2 + 

a3x3/6,x3/6) e−1(→a6) (1 + a1x + a4(1 + a2x2/2) + a6(x + a2x2/2 + a5(x2/2 + a3x3/6)), x + a2x2/2 

+ a5(x2/2 + a3x3/6),x2/2 + a3x3/6,x3/6) 

= bh(a) = (bh,1(a;x),bh,2(a;x),bh,3(a;x),bh,4(a;x)), cf. formula (4.5). 

5.2.3. Comparison. We have 

yh(a) = W(bh(a)). 

Namely,   

yh,1(a;x) = bh,1(a;x), 

yh,2(a;x) = Wr(bh,1(a;x),bh,2(a;x)), 

yh,3(a;x) = Wr(bh,1(a;x),bh,2(a;x),bh,3(a;x)). 

5.2.4. Wronskian map and the minors of g. Let 

(5.9) b = (1 + a1x + a2x2/2 + a3x3/6,x + b2x2/2 + b3x3/6,x2/2 + c3x3/6) ∈ N and 

(5.10)  

Then b = gb(0). 

Let us compute y = (y1,y2,y3) = W(b) . Clearly, 
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(5.11) 

. 

Notice that all these determinants are minors of the matrix g. In particular, if the matrix g is totally 

positive, then all these determinants are positive. 

5.2.5. Wronskian map in matrix form. By formula (5.11): 

y1 = 1 + a1x + a2x2/2 + a3x3/6, 

y2 = 1 + b2x + (b3 + a1b2 − a2)x2/2 + (a1b3 − a3)x3/3 + (a2b3 − a3b2)x4/12, 

y3 = 1 + c3x + (b2c3 − b3)x2/2 + (a1(b2c3 − b3) − (a2c3 − a3))x3/6. 

These formulas show that the inverse map 

W−1 : YBethe −∼→ N 

assigns to a triple y = (y1,y2,y3) with 

y1 = 1 + α1x + α2x2/2 + α3x3/6, y2

 = 1 + β2x + β3x2/2 + β4x3/6 + β5x4/24, y3

 = 1 + γ3x + γ4x2/2 + γ5x3/6, 

the triple b = W−1(y), as in (5.9), with 

(5.12) a1 = α1, a2 = α2, a3 = α3, 

 b2 = β2, b3 = β3 − (α1β2 − α2), 

c3 = γ3 . 

In a matrix form, the map W is given by the formula 

 1 α1 α2 α3 0 0  

(5.13) 0 1 β2 β3 β4 β5  

 0 0 1 γ3 γ4 γ5 

 1 a1 a2 a3 0 0  

 = 0 1 b2 b3 + (a1b2 − a2) 2(a1b3 − a3) 2(a2b3 − a3b2) , 

 0 0 1 c3 b2c3 − b3 a1(b2c3 − b3) − (a2c3 − a3) 

and the inverse map W−1 is given by the formula 

(5.14)  . 
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Theorem 5.1. The coefficients α1,α2,α3,β2,β3,γ3 of the polynomials y1,y2,y3 serve as global coordinates 

on the Bethe cell , the other coefficients β4,β5,γ4 are polynomial functions of the global 

coordinates due to formulas (5.13) and (5.14).  

Theorem 5.2. The positive population  is cut from  by the inequalities (5.15) 

all αi,βi,γi > 0 and β3 > α1β2 − α2 > 0. 

Proof. The proof follows from (5.11), (5.13), (5.14).  

5.3. Triangular coordinates. For an arbitrary r, consider an element b = (b1,...,br+1) ∈ N , where 
r 

 bi = xi−1/(i − 1)! + Xbijxj, i = 1,...,r + 1. 
j=i 

Denote by 

M(b) = (bij)16i6j6r 

the triangular array of nontrivial coefficients. 

Let y be the corresponding Bethe tuple, 

W(b) = y = (y1,...,yr) ∈ YBethe, 

with 

yi(x) = 1 + Xaijxj/j!. 
j>1 

Define the triangular part y4 of y, 

y4 = (y16r,y26r−1,...,yr61). 

Here for a polynomial f(x) = Pi>0 aixi/i! ∈ C[x] we use the notation 

n 

f6n(x) = Xaixi/i!. 
i=0 

Denote 

A(y4) = (aij)16i6r;16j6r+1−i , 

the triangular array of the nontrivial coefficients of y4; thus we take all r nontrivial coefficients of 

y1(x); the first r − 1 nontrivial coefficients of y2(x), etc. 

The following statement describes the relationship between the two arrays M(b) and A(y). 

Theorem 5.3 (Triangular Theorem). 

(i) For all 1 6 i 6 j 6 r, we have 

(5.16) ai,j−i+1 = bij + ϕij((bkl)k<i), 

where ϕij is a polynomial with all monomials of degree at least 2. 

(ii) Conversely, for all 1 6 i 6 j 6 r, we have 

(5.17) bij = ai,j−i+1 + ψij((akl)k<i), 
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where ψij is a polynomial with all monomials of degree at least 2. 

(iii) The map 

YBethe −→ Cq, y 7→ A(y4), 

is an isomorphism. 

(iv) The Wronski map 

W : N −→ YBethe 

is an isomorphism. 

Proof. All statements are corollaries of statement (i). We leave a proof of (i) to the reader, cf. 

formulas (5.13) and (5.14).  

Corollary 5.4. The coefficients (aij)16i6r;16j6r+1−i of the polynomials y = (y1,...,yr) serve as global 

coordinates on the Bethe cell YrBethe, the other coefficients of y are polynomial functions of the global 

coordinates due to formulas (5.16) and (5.17). 

5.4. Polynomials ϕij. The next statement gives information on polynomials ϕij(b). Let b(0) be given 

by (4.4). An arbitrary b ∈ B has the form b = gb(0) for some unique g ∈ N. 

Theorem 5.5. The polynomials ϕij(b) are linear combinations, with strictly positive coefficients, of 

some minors of the matrix g. Consequently, if g is totally positive, then all the polynomials y i of the 

tuple W(b) = (y1,...,yr) have strictly positive coefficients. 

Proof. The proof follows from formula (2.3), cf. formula (5.11).  

6. Bethe cells from subspaces of C[x] and from critical points 

In this section we describe a generalization of the previous correspondence. 

6.1. From a vector space of polynomials to a population ZV , see [MV]. Let V ⊂ C[x] be an r+1-

dimensional vector space of polynomials in x. We assume that V has not base points, that is for any 

z ∈ C there is f(x) ∈ V such that f(z) 6= 0. 

For any z ∈ C there exists a unique r+1-tuple of integers λ = (λ0 = 0 < λ1 < ··· < λr) such that for any 

i = 0,...,r, there exists f(x) ∈ V with the property: 

 , . 

The tuple λ is called the tuple of exponents of V at z. 

Having λ introduce an r-tuple of nonnegative integers µ = (µ1,...,µr) by the formula 

 µ1 + ··· + µi + i = λi, i = 1,...,r . 

The tuple µ is called the slr+1 weight of V at z. 

A point z is regular for V if λ = (0,1,...,r) and hence, µ = (0,...,0), otherwise the point z is singular. 

Denote by ΣV the set of singular points. The set ΣV is finite. Denote ΣV = {z1,...,zn} ⊂ C. 

Denote µ ) the weight vector at a singular point za. 

Introduce an r-tuple of polynomials T = (T1,...,Tr), 

(6.1)  . 
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Let b = (b1,...,br+1) be a basis of V , then the Wronskian Wr(b1,...,br+1) does not depend on the choice 

of the basis up to multiplication by a nonzero constant. Moreover, 

Wr(b1,...,br+1) = const . 

This formula shows that the set ΣV of singular points of V is the set of zeros of the Wronskian of 

a basis of V . 

For any i = 2,...,r and b1,...,bi ∈ V introduce the reduced Wronskian 

Wr  . 

For any i = 1,...,r and b1,...,bi ∈ V , the reduced Wronskian is a polynomial. 

Introduce the reduced Wronski map WV† , which maps the variety of bases of V to the space of r-

tuples of polynomials. If b = (b1,...,br+1) is a basis of V , then 

(6.2) WV† : b 7→ y = (y1,...,yr) := (b1,Wr†V (b1,b2),...,Wr†V (b1,...,br)), cf. (4.10). We set y0 

= yr+1 = 1. Denote 

(6.3)  

Then 

(6.4) Wr(yi,yˆi) = const Ti yi−1 yi+1 , i = 1,...,r . 

The generalized Wronski map WV† induces a map of the variety of bases of V to the direct product 

of projective spaces P(C[x])r. The bases defining the same complete flag of V are mapped to the 

same point of P(C[x])r. Hence the generalized Wronski map induces a map, 

, 

of the variety XV of complete flags of V to P(C[x])r. 

Theorem 6.1 ([MV]). This map is an embedding. The image 

(6.5) ZV ⊂ P(C[x])r 

of this map is isomorphic to the variety of complete flags of V . 

The variety ZV is called the population associated with V , see [MV]. 

See in Sections 1.5-1.7 the example of this construction corresponding to the case, where V = 

C[x]6r is the space of all the polynomials of degree 6 r. In that case the set of singular points of V is 

empty and T1 = ··· = Tr = 1. 

A tuple y = (y1,...,yr) ∈ C[x]r is called fertile with respect to T1,...,Tr, if for any i = 1,...,r the equation 

(6.6) Wr(yi,yˆi) = Ti yi−1 yi+1 

with respect to ̂ yi(x) admits a polynomial solution. For example, all tuples (y1 : ··· : yr) ∈ ZV are fertile 

due to (6.4). 

A tuple y = (y1,...,yr) ∈ C[x]r is called generic with respect to T1,...,Tr, if for any i the polynomial yi(x) 

has no multiple roots and the polynomials yi(x) and Ti(x)yi−1(x)yi+1(x) have no common roots. 

Lemma 6.2 ([MV]). All y ∈ ZV are fertile. Also there exists a Zariski open subset U ⊂ ZV such that any 

y ∈ U is generic. 
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Let y = (y1,...,yr) be a tuple of polynomials. Denote k = (k1,...,kr) := (degy1,...,yr). Let 

ki 

 yi(x) = Y(x − t(ji)), i = 1,...,r , 
j=1 

where  are the roots of yi. Denote t ), the tuple of roots of y 
ordered in any way. 

Theorem 6.3 ([MV]). A tuple y is generic and fertile with respect to T1,...,Tr if and only if the tuple of 

roots t is a critical points of the master function 

 r ki n 

(6.7) Φk(u,z,µ) = YY Y(u(ji) − za)−µ(ia) 

i=1 j=1 a=1 

 r r−1 ki ki+1 

 ×Y Y (u(li) − u(mi))2 · Y Y Y (ul(i) − u(mi+1))−1 . 

 i=1 16l<m6ki i=1 l=1 m=1 

These master functions appear in the integral representations of the KZ equations associated 

with glr+1 , see [SV]. 

The following statement is converse to the statement of Theorem 6.3. 

Given a finite set z = (z1,...,zn), a collection of µ , a vector 

k = (k1,...,kr) ∈ Zr>0, we define the master function Φk(u,z,µ) by formula (6.7). 

Theorem 6.4 ([MV]). If t is a critical point of a master function Φk(u,z,µ) with respect to the u-

variables, then there exists a unique r +1-dimensional vector space V ⊂ C[x], a basis b of V , such that 

the roots of the r-tuple of polynomials WV† (b) give t. 

Cf. Theorem 1.2. 

6.2. From a critical point to a population ZV , [MV]. Given z = (z1,...,zn), a collection of µ

, a vector k = (k1,...,kr) ∈ Zr>0, let t

), be a critical point of the master function Φk(u,z,µ). Define 

(6.8) 

(6.9) 

and the tuple 

y = (y1 : ··· : yr) ∈ P(C[x])r . 

The tuple y is generic and fertile with respect to T1,...,Tr. Hence for every i, there exists a 

polynomial ˆyi satisfying the equation 
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Wr(yi,yˆi) = const Ti yi−1 yi+1 . 

Choose one solution ˆyi of this equation, denote 

 y˜i(c;x) = yi(x) + cyˆi(x), c ∈ C, 

and define a curve in P(C[x])r by the formula 

(6.10) y(i)(c;x) = (y1(x) : ··· : y˜i(c;x) : ··· : yr(x)) ∈ P(C[x])r . 

This curve is called the generation from y in the i-th direction. 

Thus starting from the point y in P(C[x])r we have constructed r curves in P(C[x])r. Now starting 

from any point of the constructed curves we may repeat this procedure and generate new r curves 

in P(C[x])r in any of the r directions. Repeating this procedure in all possible direction in any 

number of steps we obtain a subset Z ⊂ P(C[x])r of all points appearing in this way. The subset Z is 

called the population generated from the critical point t 

Theorem 6.5 ([MV]). The set Z is an algebraic variety isomorphic to the variety X of complete flags 

in an r+1-dimensional vector space. Moreover, starting with given t one can also determine uniquely 

an r + 1-dimensional vector space V and a basis b of V , such that y = WV† (b) and Z = ZV . 

6.3. Bethe cells associated with (V ;z). Let V be an r + 1-dimensional vector space as in Section 

6.1. Let ΣV = {z1,...,zn} ⊂ C be the set of singular points of V . Fix a complex number z /∈ ΣV , a regular 

point of V . 

We say that a basis b = (b1,...,br+1) of V is a unipotent basis of V with respect to z, if for any i = 1,...,r 

+ 1, we have 

(6.11) ) as x → z . 

Denote by N(V ;z) the set of all unipotent bases of V at z. 

If we consider each basis b of V as an r + 1-column vector, then the group N freely acts on N(V 

;z) from the left with one orbit. We call N(V ;z) the cell of bases of V unipotent at z. 

For any i = 2,...,r and b1,...,bi ∈ V introduce the reduced Wronskian normalized at z by the formula 

 Wr†V,z(b1,...,bi) := Wr  
 i−1 i−2 

 =  Wr(. 
 1 2 

For any i = 1,...,r and b1,...,bi ∈ V , this is a polynomial. 

Introduce the reduced Wronski map , which maps the variety of bases of V to the space of r-

tuples of polynomials. If b = (b1,...,br+1) is a basis of V , then 

(6.12) WV† : b 7→ y = (y1,...,yr) := (b1,WrV,z†(b1,b2),...,Wr†V,z(b1,...,br)), cf. (4.10). We set y0 

= yr+1 = 1. 

If b = (b1,...,br+1) ∈ N(V ;z), then 

(6.13) yi(z) = 1, i = 1,...,r . 
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Introduce the Bethe cell YBethe(V ;z) as the image of the cell N(V ;z) under the reduced Wronski 

map WV,z† , 

(6.14) YBethe(V ;z) := WV,z† (N(V ;z)) ⊂ C[x]r . 

Theorem 6.6. The reduced Wronski map WV,z† induces an isomorphism 

(6.15) . 

Proof. The theorem is deduced from Theorem 6.1, or it can be proved along the lines of the proof 

of Triangular Theorem 5.3, which corresponds to the subspace V = C[x]6r of polynomials of degree 

6 r and z = 0.  

Corollary 6.7. The action of N on N(V ;z) and the Wronski map WV,z† induce an action of N on the 

Bethe cell YBethe(V ;z). 

Lemma 6.8. There exists a Zariski open subset U ⊂ YBethe(V ;z), such that any y ∈ U is generic and 

fertile. 

Proof. The theorem follows from Lemma 6.2.  

Recall that by Theorem 6.3, if y = (y1,...,yr) is generic and fertile, then roots of these polynomials 

determine a critical point of a suitable master function. 

6.4. Normalized mutations and N-Y correspondence. Let y = (y1,...,yr) ∈ YBethe(V ;z) and i = 1,...,r. 

Define the normalized mutation of y in the i-th direction. Consider the 

differential equation 

(6.16) Wr( , 

with respect to ˆyi with initial condition 

(6.17) yˆi(z) = 0, . 

It has the unique solution 

(6.18)  

This solution is a polynomial, cf. equation (6.4). For c ∈ C, denote 

(6.19) y˜i(c;x) = yi(x) + cyˆi(x). 

Notice that ˜yi(c;z) = 1. 

Define a new r-tuple of polynomials 

(6.20) νi(c)y := (y1(x),...,yi−1(x), y˜i(c;x), yi+1(x),...,yr(x)). 

We call it the i-th normalized mutation of the tuple y ∈ N(V ;z). 

Lemma 6.9. For any i, c the tuple νi(c)y lies in YBethe(V ;z). 

Proof. The lemma follows from formula (6.4).  

By this lemma we have a map 
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νi(c) : YBethe(V ;z) → YBethe(V ;z). 

Recall the unipotent matrices ei(c), i = 1,...,r, c ∈ C, introduced in (4.1). 

Theorem 6.10 (Comparison Theorem). Let b ∈ N(V ;z), i = 1,...,r, c ∈ C. Then 

(6.21) . 

Proof. The proof follows from formula (6.4). Cf. the proof of Theorem 4.4.  

Corollary 6.11. By Corollary 6.7 the group N acts on the Bethe cell YBethe(V ;z). By Theorem 6.10 a 

unipotent matrix ei(c) acts on the Bethe cell YBethe(V ;z) as the normalized mutation µi(c). 

6.5. Positive populations. Fix any point b(0) ∈ N(V ;z), that is any basis of V unipotent at z. Then 

Nb(0) = N(V,z). 

Define the totally positive part of N(V,z) as 

N>0(V ;z;b(0)) := N>0b(0) . 

The totally positive part depends on the choice of b(0). Denote 

y(0) := WV,z† (b(0)) ∈ YBethe(V ;z). 

Since b(0) is any point of N(V ;z), the point y(0) could be an any point of the Bethe cell YBethe(V ;z). 

Define the totally positive Bethe subvariety or positive population as 

(6.22) . 

We also have 

(6.23) . 

6.6. Coordinates on the Bethe cell. Let b(0) be a point of the Bethe cell YBethe(V ;z). Let h = siq ...si1 ∈ 

Red(w0) be a reduced decomposition of the longest element w0 ∈ Sr+1 . 

We call the map 

 νh : Cq −→ Y(V ;z)Bethe, (cq,...,c1) 7→ νiq(cq)...νi1(c1)y(0) , 

the Wronskian chart corresponding to h. Its image is Zariski open. The map νh is a birational 

isomorphism. 

For any two reduced words h,h0 ∈ Red(w0) we have the transition function h h, which 

defines an automorphism 
∼ 

(6.24) Rh,h0 : F −→ F of the field F := C(c1,...,cq). 

Recall the Whitney-Lusztig charts on N, see (4.3), 

Lh : Cq −→ N 

and transition function automorphisms 

Rh,h0 : F −∼→ F, 

defined for any two words h,h0 ∈ Red(w0), see Section 1.3. 

Theorem 6.12. For any h,h0 ∈ Red(w0) we have 
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(6.25) Rh,h0 = Rh,h0 . 

Proof. The theorem follows from Comparison Theorem 6.10.  

Corollary 6.13. For any h,h0 ∈ Red(w0), the map  is well defined on the positive population

 and defines an isomorphism 

. 

Proof. The corollary follows from Theorem 1.1 and Comparison Theorem 6.10.  

7. Base affine space and fat populations 

7.1. Base affine space. Let N,N− ⊂ G := SLr+1(C) be the subgroups of the upper and lower triangular 

matrices with 1’s on the diagonal. Let T ⊂ G be the subgroup of diagonal matrices. Let B− = N−T be 

the subgroup of lower triangular matrices and B = NT the subgroup of upper triangular matrices 

The quotient G/N− is called the base affine space of G. It is fibered over the flag space G/B− with 

fiber T. 

The image B of B in G/N− is called the big cell of the base affine space G/N− . 

7.2. Fat population. Let V be an r + 1-dimensional vector space as in Section 6.1. 

The vector space V has a volume form. The volume of a basis b = (b1,...,br+1) of V is defined to be 

the number 

(7.1) Wr†V (b1,...,br+1). 

Denote by BV the set of all bases of V of volume 1. We consider every basis vector as an r + 1-column 

vector. Then the group SLr+1 acts on BV on the left freely with one orbit. The quotient BV /N− is 

isomorphic to the base affine space of SLr+1. 

The reduced Wronski map WV† defined in (6.2) induces a map 

(7.2) . 

Theorem 7.1. The reduced Wronski map WV† : BV /N− → C[x]r is an embedding. The image of the map, 

denoted by Fat(ZV ), is isomorphic to the affine base space G/N− of the group SLr+1. The image Fat(ZV ) 

will be called the fat population associated with V . 

Proof. The proof is parallel to the proof of Theorem 6.1 in [MV].  

We have another description of the fat population as a bundle 

(7.3) Fat(ZV ) → ZV 
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over the population ZV , defined in Theorem 6.1, with fiber isomorphic to (C×)r. Namely, if y = (y1 : ··· 

: yr) ∈ ZV ⊂ P(C[x])r and (y1,...,yr) ∈ C[x]r is a representative of y, then the fiber over y consist of the 

following r-tuples of polynomials {(d1y1,...,dryr) ∈ C[x]r | (d1,...,dr) ∈ (C×)r}. 

7.3. Fat Bethe cell. Let ΣV = {z1,...,zn} ⊂ C be the set of singular points of V . Fix a complex number z 

/∈ ΣV , a regular point of V . Let YBethe(V ;z) ⊂ C[x]r be the Bethe cell defined in (6.14). Define the fat 

Bethe cell Fat(YBethe(V ;z)) by the formula 

(7.4) Fat(YBethe(V ;z)) = 

= {(d1y1,...,dryr) ∈ C[x]r | (y1,...,yr) ∈ YBethe(V ;z), (d1,...,dr) ∈ (C×)r}. 

Recall N(V ;z), the cell of bases of V unipotent at z. Define the fat cell Fat(N(V ;z)) by the formula 

(7.5) Fat(N(V ;z)) = {(b1d1,b2d2/d1,...,brdr/dr−1,br+1/dr) ∈ C[x]r | 

| (b1,...,br+1) ∈ N(V ;z), (d1,...,dr) ∈ (C×)r}. 

Clearly the fat cell is isomorphic to the big cell B of the base affine space G/N−. 

Theorem 7.2. The reduced Wronski map induces an isomorphism 

(7.6) WV† : Fat(N(V ;z)) → Fat(YBethe(V ;z)). 

Hence the fat Bathe cell Fat(YBethe(V ;z)) is isomorphic to the big cell B of the base affine space G/N−. 

Proof. This theorem is a corollary of Theorem 6.6.  

7.4. Example of a cluster structure on a fat Bethe cell. Consider the example of the 3-

dimensional vector space V = C[x]62 of quadratic polynomials. In this case the set ΣV of singular 

points of V is empty. We choose z = 0, a regular point for V , and consider the corresponding fat 

Bethe cell Fat(YBethe(V ;z)). It consist of pairs of polynomials 

(7.7) (α0 + α1x + α2x2/2,β0 + β1x + β2x2/2) such that 

 α0 6= 0, β0 6= 0 

and such that the Plu¨cker equation holds, 

α1β1 = α0β2 + α2β0 . 

This is a familiar relation in the cluster algebra structure of type A1 on the ring C[SL3 /N−], where 

the cluster variables are α1,β1, cf. [Z, Section 3.1] and [FZ]. 

In fact, in this case the coefficients of the polynomials in (7.7) are nothing else but the Plu¨cker 

coordinates on C[SL3 /N−]. 

8. Appendix: Fourteen- and Eightfold Ways 

8.1. Group SL3 and a 2-category. One can reformulate the Whitney-Lusztig data from Section 1.3 

in the language of [MS]. 

Namely, consider a 2-category 3  S3 whose objects are in bijection with S3; the 1-arrows 

correspond to the weak Bruhat order on this group: there are 6 elementary arrows: 

 
3 for a definition of (globular) n-categories see [St] 
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(8.1) and 

 τ230 τ1200 τ2300 

(8.2) (123) −→ (132) −→ (312) −→ (321). 

Finally, there is one nontrivial 2-arrow between two compositions 

(8.3)  . 

This structure is conveniently visualized in a hexagon, to be denoted P3: its 6 vertices correspond 

to objects of S3, 6 oriented edges - to elementary 1-morphisms τ, and the unique 2 cell to the 2-

morphism h. 

The Whitney-Lusztig data described above may be called a 2-representation ρ of S3: to each 

object we assign the same vector space V(ijk) = F3 with a fixed standard base. To the elementary 

arrows  we assign elementary matrices: 

(8.4) ρ(τ12) = e1(a1), ρ(τ23) = e2(a2), 

etc. To products of elementary arrows we assign the products of the corresponding matrices. 

Finally, ρ(h) will be an automorphism of F given by 

(8.5) ρ(h) = R121;212 =: R, 

see formulas (1.3) and (1.4). Note that 

(8.6) R2 = IdF, see Section 1.3. 

Thus, the matrix ) is obtained from the matrix ) by applying the field 

automorphism ρ(h): 

(8.7) . 

Similarly, for any r one defines in [MS] an r-category Sr, whose 1-coskeleton is a usual 1category 

corresponding to the symmetric group Sr+1 with the weak Bruhat order. Informally speaking, Sr is 

an r-category structure on the r + 1-th permutohedron Pr+1, the r-dimensional polyhedron in Rr+1, 

the convex hull of a generic Sr+1-orbit of a point x ∈ Rr+1. 

In particular for each w ∈ Sr+1 we have an r − 1-category HomSr(e,w); its 1-skeleton 

 

 

is a usual (1-)category; the set of its objects is by definition the set Red(w) which is obtained from 

Red(w) by identifying any two words h and h0 if their only distinction is a couple ij in h vs ji in h0 

somewhere in the middle, with |i − j| > 1. 

 

According to [MS], Red(w) is equipped with a partial order, the 2nd Bruhat order 62. The 

category ) corresponds to this order, i.e. two words h,h0 ∈ Red(w) are 

connected by a unique arrow if and only if h62 h0. 

8.2. Group SL4 and a tetrahedron equation. 
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8.2.1. The Forteenfold Way. 4 Consider the case r = 3. The 3-category S4 is related to a polyhedron P4 

which looks as follows. We take a regular octahedron and cut from it 6 little square pyramids at its 

vertices; we get a polyhedron with 6×4 = 24 vertices. It has 8 hexagons and 6 squares as its 2-faces. 

The vertices of P4 are in bijection with S4. An oriented edge x → y connects elements x,y ∈ S4 such 

that x 6 y and ̀ (y) = ̀ (x)+1 where 6 is the weak Bruhat order, and ̀ (x) is the usual length (the number 

of factors in a reduced decomposition). 

Its eight hexagonal 2-faces correspond to identities of the form 

(8.8) sisi+1si = si+1sisi+1 , 

which give rise to eight ”elementary” 2-morphisms of type (1.3). Its 

six square edges correspond to identities of the form 

(8.9) sisj = sjsi, |i − j| > 1. which give rise to the identity 2-morphisms 

in S4. 

It is convenient to imagine the vertices e and w0 as the ”North” and ”South” poles of P4. The set 

Red(w0) consists of 16 longest paths on P4, of length 6, going downstairs, which connect e and w0. 

For example, the path `1 is 

, 

whereas the path `5 is 

. 

Fourteen paths are depicted below, it is a 14-fold Way: 

 212321 −→ 213231 = 231231 = 231213 −→ 232123 

 ↑    ↓ 

 121321    323123 

(8.10) || 

123121 

↓ 

123212 −→ 132312 = 132132 = 312132 −→ 

 || . 

321323 
↑ 

321232 

The elementary paths which are equal as 1-morphisms are connected by the signs =. They 

correspond to 6 mutations of type (8.9) and are in bijection with the square 2-faces of P4. If we 

identify the paths related by =, we are left with the set 

 

Hom(1)(e,w0) = Red(w0), 

which contains 8 elements. 

 

Let us number the elements of Red(w0) as `c, c ∈ Z/8Z. These elements are connected by 8 

mutations of type (8.8), which are geometrically given by hexagons: 

 h1(1) h2(3) h1(3) h2(1) 
 `0 −→ `1 −→ `2 −→ `3 −→ `4 

(8.11) || || . 
 h1(4) h2(2) h1(2) h2(4) 

 
4 Cf. [GN]. 
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 `0 −→ `−1 −→ `−2 −→ `−3 −→ `−4 

 

Thus, the 2-nd Bruhat order on the set Red(w0) converts it to an octagon. 

Finally we have one 3-morphism (homotopy) 

k : h2(1)h1(3)h2(3)h1(1) −→ h2(4)h1(2)h2(2)h1(4) 

which corresponds to the single 3-cell of P4, its body. 

8.2.2. Representation of the 3-category. The Whitney - Lusztig data give rise to a 2-representation of 

the 3-category S4. It is visualized on the permutohedron P4 as follows. Our base field will be a purely 

transcendental extension of C, 

F = C(a) = C(a1,a2,a3,a4,a5,a6) ∼= C(N4). 

At each vertex we put the based F-vector space V = F6. At the edges we put the elementary matrices 

ei(aj) ∈ N3(F), 1 6 i 6 3,1 6 j 6 6. For example, at the 3 edges going down from e we put the matrices 

e1(a1),e2(a1),e3(a1), and to the last three edges coming to w0 we put the matrices e1(a6),e2(a6),e3(a6). 

To any path we assign the product of the corresponding matrices. 

For example 

ρ(`1) = e1(a6)e2(a5)e3(a4)e1(a3)e2(a2)e1(a1), 

whereas 

ρ(`2) = e3(a6)e2(a5)e1(a4)e3(a3)e2(a2)e3(a1), 

On 2-faces of P4 we put certain automorphisms of the base field  . 

Namely, let us introduce involutive operators L(i) : F −→ F, 1 6 i 6 5, by 

(8.12) L(i)(ai) = ai+1, L(i)(ai+1) = ai, 

 L(i)(ak) = ak if k 6= i,i + 1, 

and R(j) : F −∼→ F, 1 6 j 6 4, given by 

(8.13) R(j)(aj) = aj+1aj+2/(aj + aj+2), 

 R(j)(aj+1) = aj + aj+2, 

 R(j)(aj+2) = ajaj+1/(aj + aj+2), 

 R(j)(ak) = ak if k 6= i,i + 1, 

cf. formula (1.3). 

On eight hexagons (resp. on six squares) we put the involutions R (resp. L) according to the 

picture: 

(8.14) 

 F(212321)R−(3)→ F(213231) −L(2)→ F(231231) −L(5)→ F(231213)R−(3)→ F(232123) 

 R(1) ↑ ↓ R(1) 

 F(121321) F(323123) 
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 L(3) ↓ ↓ L(3) . 

 F(123121) F(321323) 

 R(4) ↓ ↑ R(4) 

 F(123212)R−(2)→ F(132312) −L(4)→ F(132132) −L(1)→ F(312132)R−(2)→ F(321232) 

Here F(h),h ∈ Red(w0), is a copy of the field F. 

This way we have associated to any path ` = `(h), h ∈ Red(w0), an upper triangular matrix ρ(`) ∈ 

N(F), and to every homotopy ` −h→ `0 an automorphism 

R(h) : F −∼→ F 

such that 

(8.15) ρ(`0) = R(h){ρ(`)} 

Theorem 8.1. The diagram (8.14) is commutative, i.e., 

L(3)R(1)R(3)L(2)L(5)R(3)R(1) = R(4)R(2)L(1)L(4)R(2)R(4)L(3). 

8.2.3. Eightfold Way. We can rewrite this assertion as follows. 

Define 8 automorphisms (involutions or compositions of two involutions): 

R1(1) = R(1), R2(1) = L(3)R(1), 

R1(2) = L(4)R(2), R2(2) = R(2)L(1), 

R1(3) = L(5)R(3), R2(3) = R(3)L(2), 

R1(4) = R(4)L(3), R2(4) = R(4). 

Then we have a tetrahedron equation 

(8.16) R2(1)R2(3)R1(3)R1(1) = R2(4)R2(2)R1(2)R1(4). 
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