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a b s t r a c t

In this paper we show that all algebro-geometric finite gap solutions to the Korteweg–de Vries equation
can be realized as a limit of N-soliton solutions as N diverges to infinity (see remark 1 for the precise
meaning of this statement). This is done using the primitive solution framework initiated by Dyachenko
et al. (2016) and Zakharov et al. (2016) [25, 26]. One implication of this result is that the N-soliton
solutions can approximate any bounded periodic solution to the Korteweg–de Vries equation arbitrarily
well in the limit as N diverges to infinity. We also study primitive solutions numerically that have the
same spectral properties as the algebro-geometric finite gap solutions but are not algebro-geometric
solutions.
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1. Introduction

The Korteweg–de Vries (KdV) equation

t − 6uux + uxxx = 0 (1)

was originally derived to describe soliton waves on the surface of
a channel [1]. In particular, the KdV equation is a weakly nonlin-
ear description of channeled surface waves. The KdV equation has
also seen use in oceanography [2], including as a weakly nonlin-
ear description of nonlinear internal waves [3]. The KdV equation
is also important because it is the prototypical example of an infi-
nite dimensional, completely integrable Hamiltonian system [4].
The differential equation form of the infinitely many conservation
laws making the KdV completely integrable are known as the
higher KdV equations. A solution u(x, t) to the KdV equation cor-
responds to an isospectral evolution of 1D Schrödinger operators
−∂2x + u(x, t) obeying the Lax equation [5] (this is also true for
solutions u to the higher KdV equations). The solution u(x, t) is
also called a potential, because for each fixed t the function u(x, t)
can be interpretated as a potential energy when it appears in the
Schrödinger operator.

Two important boundary conditions for which exact formulas
for the solutions of the KdV equations are known are local-
ized solutions and solutions that are periodic in x. The localized
case was solved by the inverse scattering transform, and an
interesting class of solutions are the N-soliton solutions, which
occur when the Schrödinger operator is reflectionless [6,7]. The
periodic case was solved using algro-geometric methods insti-
gated by Novikov [8], Marchenko [9] and Lax [10], and resolved
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independently by Dubrovin [11,12], Matveev–Its [13–16], and
McKean–van Morebeke [17] in the important case of algebro-
geometric finite gap solutions to the KdV equation (also see
[18,19]). Marchenko–Ostrovskii showed that the space of
periodic finite gap solution is dense in the space of periodic
solutions [20], and McKean–Trubowitz showed that the algebro-
geometric methods extend to the general smooth periodic case
[21,22]. An effective way of computing periodic finite gap so-
lutions to the KdV equation that approximate smooth periodic
solutions to the KdV equation arbitrarily well is to use the isope-
riodic flows introduced by Grinevich–Schmidt to close all but a
finite number of spectral gaps because the widths of the gaps
decay exponentially at high energy [23]. It should be noted that
the algebro-geometric methods allow computation of interesting
multi/quasi-periodic solutions that are outside the space of peri-
odic solutions. A Riemann–Hilbert problem approach to infinite
gap periodic and quasi-periodic solutions to the KdV equation
was discussed in [24].

Primitive solutions to the KdV equation were introduced
in [25–27] as elements of the closure of the N-soliton solutions
to the KdV equation with respect to the topology of uniform
convergence in compact sets. This space was originally consid-
ered by Marchenko [28]. Primitive solutions were derived us-
ing the dressing method introduced by Zakharov–Manakov [29].
The primitive solution method was also adapted to the Kaup–
Broer system in [30]. The potentials are determined by a pair
of functions R1 and R2 called dressing functions, and the poten-
ials can be computed via solving a system of singular integral
quations. An intriguing aspect of this initial work was that it
llows computation of potentials that have the same spectra
s the algebro-geometric finite gap potentials, but are not the
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usual algebro-geometric finite gap potentials. These potentials
can have either simple or doubly degenerate continuous spectra
on the interiors of their spectral bands. The algebro-geometric
finite gap potentials can only have doubly degenerate spectra.
But even when the primitive potential has only a doubly de-
generate continuous spectrum on the interiors of its spectral
bands, the primitive potential need not have any periodicity or
quasi-periodicity properties. In [25–27,31] dressing functions for
cnoidal waves were determined. The main results of this paper
were reviewed in [32], but the details of this result are provided
in this paper.

Remark 1. To make the precise meaning of statements that
follow, it is convenient to introduce some terminology. We first
note that if u(x, t) solves the KdV equation then so does

(x − 6Ct, t) + C (2)

or any constant C . We then use the terminology ‘‘shifted
-soliton solution’’ and ‘‘shifted primitive solution’’ to refer to
olutions to the KdV equation that can be produced from the
-soliton solution and primitive solutions via the symmetry (2).

In this paper we show that shifted N-soliton solutions are
ense in the finite gap solutions with respect to the topology
f uniform convergence in compact sets by computing dressing
unctions corresponding to the finite gap potentials. The fact
hat the shifted N-soliton solutions are dense in the space of
ounded periodic solutions to the KdV equation then follows
rom the fact that periodic finite gap potentials are a dense
ubset of the bounded periodic potentials [20]. The density of the
-soliton solutions in the algebro-geometric finite gap solutions
nd periodic solutions was proved by Marchenko [28]. The prim-
tive potential construction gives an effective method of taking
his closure and producing explicit sequences of shifted
-soliton solutions converging to the algebro-geometric finite
ap solutions. The reverse limit of computing N-soliton solutions
s algebro-geometric finite gap solutions in the limit in which
he genus N hyper-elliptic spectral curve of the N-gap solution
egenerates to a rational curve is well known, and was completed
y Novikov, Matveev, Its and Dubrovin [7,16,19].
The existence of algebro-geometric finite gap solutions as

imits of shifted N-soliton solutions is also of interest because it
hows the possibility of approximating hyper elliptic functions by
ational functions away from the branch points/poles. In essence,
he meromorphic function theory on the hyper elliptic curve cor-
esponding to the hyper elliptic function is approximated by holo-
orphic functions on rational curves with N degenerate points.
his point of view is discussed in more detail in [31].
This paper is structured as follows.

• In Section 2 we review the primitive potential theory, and
state Theorem 2, which is the main result of this paper.

• In Section 3 we construct the KdV equation spectral curves
in a manner that naturally produces coordinates that are
useful in deriving the primitive potential integral equation.

• In Section 4 we construct the dressing functions for the
algebro-geometric finite gap solutions directly from the
Baker–Akhiezer function on the spectral curve.

• In Section 5 we numerically compute algebro-geometric
finite gap solutions to the KdV equation via the primitive so-
lution system of singular integral equations for small genus.
We also numerically compute primitive solutions that have
the same spectral properties of the finite gap solutions, but
are not finite gap solutions.

• In Section 6 we provide some concluding remarks.
2. Finite gap solutions as primitive potentials

Let R1 and R2 be nonnegative Hölder continuous real functions.
Primitive solutions to the KdV equation are defined in terms of
the solution f , g to the system of singular integral equations

f (p, x, t) +
R1(p)
π

e−2px+8p3t
[∫ k2

k1

f (q, x, t)
p + q

dq +

? k2

k1

g(q, x, t)
p − q

dq
]

= R1(p)e−2px+8p3x, (3)

g(p, x, t) +
R2(p)
π

e2px−8p3t
[? k2

k1

f (q, x, t)
p − q

dq +

∫ k2

k1

g(q, x, t)
p + q

dq
]

= −R2(p)e2px−8p3t (4)

for each fixed value of x, t . A t dependent family u(x, t) of primi-
tive potentials can be constructed as

u(x, t) =
2
π

∂

∂x

∫ k2

k1

f (q, x, t) + g(q, x, t)dq, (5)

such that
ψ(k, x, t)

= e−ikx−4ik3
(
1 +

i
π

∫ k2

k1

f (q, x, t)
k − iq

dq +
i
π

∫ k2

k1

g(q, x, t)
k + iq

dq
)

(6)

solves the Schrödinger equation

−ψxx(k, x, t) + u(x, t)ψ(k, x, t) = k2ψ(k, x, t) (7)

for complex k2 /∈ σ (−∂2x +u(x, t))∩[−k22,−k21], and u(x, t) solves
the KdV equation (1).

The solutionsψ(k, x, t) with k ∈ R are physical solutions of the
Schrödinger equation with energy k2 (by physical solutions we
mean bounded solutions). The boundary values of ψ±(k, x, t) for
k2 ∈ σ (−∂2x + u(x)) ∩ [−k22,−k21] when k2 is a doubly degenerate
point in the continuous spectrum allow computation of the other
physical solutions with either ψ±(ip, x, t) or ψ±(−ip, x, t) giving

basis of 2 linearly independent improper eigenfunctions (on
ndpoints of the spectrum, the physical solution can be deter-
ined by the singular behavior of ψ). Alternatively, we may take
+(p, x, t) = epx−4p3t f (p, x, t) and ϕ−(p, x, t) = e−px+4p3tg(p, x, t)
s a basis of physical solutions with energy −p2 as discussed
n [25–27]. In the case where either R1(p) = 0 or R2(p) = 0 for
p2 ∈ [−k22,−k21] ∩ σ (−∂2x + u(x, t)) the continuous spectrum is
imple and the nonzero choice of ϕ(p, x, t) = epx−4p3t f (p, x, t) or
(p, x, t) = e−px+4p3tg(p, x, t) gives the single physical solution.
One can use uniform grids with N/2 points to discretize the
dependence of f and g with the uniform grid for g staggered

elative to the uniform grid for f and approximate the integrals
n (3), (4) using Riemann sums; in this case the system of singular
ntegral equations becomes a finite dimensional linear system
nd the dressing method gives an exact N-soliton solution to the
dV equation [25–27]. Therefore, we can approximate a primitive
olution to the KdV equation as accurately as we desire in a
ompact subset of the x, t-plane by an N-soliton solution to the
dV equation in the above manner by making N sufficiently large.
In previous papers on primitive solutions to the KdV equation,

1 and R2 were assumed to be nonnegative Hölder continuous
unctions on [k1, k2] [25–27,31]. However, we must now weaken
his to the assumption that R1 and R2 are nonnegative and Hölder
ontinuous on their supports. This allows R1 and R2 to have jump
iscontinuities between positive numbers and 0 on the interval
k1, k2].

heorem 2. Consider an increasing sequence {κj}
g
j=1 with

< k < κ < κ < · · · < κ < k < ∞. (8)
1 1 2 2g 2



P.V. Nabelek / Physica D 414 (2020) 132709 3

1
o

η

f
k
d

H
w
e
p

M

T

Let u(x, t) be an algebro-geometric finite gap solution to the KdV
equation such that at each fixed time t the potential u(x, t) is an
algebro-geometric finite gap potential with spectrum

σ (−∂2x + u(x, t))

= [−κ2
2g ,−κ

2
2g−1] ∪ · · · ∪ [−κ2

4 ,−κ
2
3 ] ∪ [−κ2

2 ,−κ
2
1 ] ∪ [0,∞).

(9)

Then u(x, t) is the primitive solution determined by

R1(p) = exp

⎛⎝ g∑
j=1

ajp2j−1

⎞⎠ g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), (10)

R2(p) = exp

⎛⎝−

g∑
j=1

ajp2j−1

⎞⎠ g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), (11)

where aj are real constants, and 1[κ2ℓ−1,κ2ℓ] is the indicator function
of [κ2ℓ−1, κ2ℓ]. Conversely, if u(x, t) is a primitive solution to the KdV
equation determined by dressing functions R1 and R2 given by (10)
and (11) for some choice of real {aj}

g
j=1 and {κj}

2g
j=1 satisfying (8),

then u(x, t) is an algebro-geometric finite gap solution with spectrum
of the form (9).

All of the choices of dressing functions R1 and R2 of the form
(10), (11) produce finite gap solutions. These are only finite gap
solutions because there are only terms involving powers of j for
j = 1, 3, . . . 2g −3, 2g −1 appearing in the exponents. This result
is due to the invertibility of the matrixΩ appearing in (38). If any
additional terms were added for example, the matrix Ω would
not be invertible. Most other choices will likely lead to a solution
that is not finite gap, but is likely asymptotically equivalent to
a finite gap solutions. In the one gap case, this hypothesis is
supported by the rigorous analysis in [33].

Remark 3. Theorem 2 implies that:

1. Any algebro-geometric finite gap potential can be real-
ized as a shifted primitive solution (recall that a shifted
primitive solution was defined in Remark 1).

2. Any shifted primitive solution determined by dressing
functions of the form (10) and (11) is an algebro-geometric
finite gap potential.

Theorem 2 is proven by starting with a Baker–Akheizer func-
tion expressed in a convenient coordinate system on the spectral
curve, and then deriving a system of integral equations of the
form (3), (4). All potentials formed by the choice of dressing
function from Theorem 2 are related to the solution determined
by

R1(p) =

g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), (12)

R2(p) =

g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), (13)

by a transformation that maintains the period of any periodic
primitive potential.

Space and time translations are sufficient to transform any
two-gap potential into the primitive potential corresponding to
dressing functions of the form (12), (13). The primitive potentials
corresponding to dressing functions (12), (13) are examples of
symmetric primitive potentials and primitive solutions discussed
in [31]. The method for computing the Taylor coefficients of these
solutions about (x, t) = (0, 0) in the one-gap case discussed
in [31] can be easily adapted to apply to the primitive solutions
to the KdV equation determined by the dressing functions of the

form (12), (13). ω
3. Baker–Akheizer function on the ‘‘k-plane’’

Consider the curve Σ̃ defined by

w2
=

2g∏
j=1

(k2 + κ2
j ) = P4g (k). (14)

Also, consider the involution ι(k, w) = (−k,−w). The genus of Σ̃
is g ′

= 2g − 1. The spectral curve for the KdV equation can then
be formed as the quotient space Σ = Σ̃/⟨ι⟩. The surface Σ̃ is the
double cover of Σ . The curve Σ is a Riemann surface with genus
g and is homeomorphic to the curved defined by

u2
= v

2g∏
j=1

(v + κ2
j ), (15)

which is the standard representation of the KdV spectral curve.
However, the coordinates k produced from a single sheet of the
double cover are more natural when comparing to the primitive
solutions. If A ⊂ C we will use the notation iA = {ik : k ∈ A}. Let
us put the branch cuts of

√
P4g (k) on iΓ where

Γ =

g⋃
j=1

[−κ2j,−κ2j−1] ∪ [κ2j−1, κ2j] (16)

is oriented from left to right (so iΓ is oriented from down to up).
We will abuse notation, and use k to represent both the complex
number k ∈ C \ iΓ and the corresponding point on Σ . We will
use the notation

⟨
iκj
⟩
to indicate the Weierstrass point on Σ as k

approaches ±iκj.
The Abelian differentials of the first kind on Σ can be pro-

duced by computing explicitly the above homeomorphism, and
then computing a pull back. However, we can also compute them
using the above construction by computing the holomorphic dif-
ferentials on Σ̃ and then finding those that are invariant under ι.
A holomorphic differential ω on Σ̃ is uniquely expressed as

η =

2g−1∑
n=1

cn
kn−1√
P4g (k)

dk, (17)

and so ι acts as

ι∗η =

2g−1∑
n=1

cn
(−1)n−1kn−1√

P4g (k)
dk. (18)

Therefore, η is invariant if and only if c2j = 0 for j = 1, 2, . . . , g−

. This means that a basis of Abelian differentials of the first kind
n Σ is

j =
k2j−1√
P4g (k)

(19)

or j = 1, 2, . . . , g . The basis of Abelian differentials of the first
ind on Σ is g dimensional so Σ has genus g . Let η be the g
imensional vector of differentials with entries ηj.
We now introduce a canonical homology basis {aj, bj}

g
j=1 for

1(Σ) satisfying ai ◦ bj = δij, ai ◦ aj = 0 and bi ◦ bj = 0,
here ◦ indicates the minimal intersection number for homology
lements. With the homology basis in hand, we can compute the
eriod matrix M with entries

ij =

∫
aj

ηi. (20)

hen the entries ωj of

= 2π iM−1η (21)
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form a basis of Abelian differentials of the first kind on Σ nor-
alized by

aj

ωi = 2π iδij. (22)

his basis of Abelian differentials of the first kind and the choice
f base point at ∞ allows us to compute:

1. The Abel map A(k) with entries

A(k) =

∫ k

∞

ω (23)

mapping Σ into the Jacobi variety. The discontinuities on
the k-coordinate expression of the Abel map A(k) for k ∈ iΓ
correspond to g disjoint circles in the Jacobi variety.

2. The Abel map on degree g divisors δ is

A(δ) =

g∑
j=1

A(δj). (24)

3. The Riemann matrix B with negative definite real part

Bij =

∫
bj

ωi. (25)

This depends on the Riemann surface only.
4. The vector of Riemann constants K with entries

Kj =
2π i + Bjj

2
−

1
2π i

∑
ℓ̸=j

∫
aℓ
Aj(k)ωℓ. (26)

This also depends on the Riemann surface only.

We define a coordinate ζ = z−1 for Σ at k = ∞. Let ω(n) be
Abelian differentials of the second kind on Σ with poles at ∞

ith principle parts
(n)

∼ dkn = dζ−n
= −nζ−n−1dζ (27)

and∫
aj

ω(n)
= 0. (28)

This Abelian differential has the form

ω(n)
=

nk2g−1+n√
P4g (k)

+

g∑
j=1

cjωj. (29)

An important aspect of ω(n) is the vector Ω (n) with entries

Ω
(n)
j =

∫
bj

ω(n). (30)

The Riemann theta function θ : Cg
→ C is defined by

θ (z, B) =

∑
n∈Zg

exp
(
1
2
n · Bn + n · z

)
. (31)

The Riemann theta function converges uniformly because B has
negative definite real part.

The sets O1 = i(−κ1, κ1) ∪ ⟨iκ1⟩ and

Oj = i(−κ2j−1,−κ2j−2) ∪ i(κ2j−2, κ2j−1) ∪
⟨
iκ2j−2

⟩
∪
⟨
iκ2j−1

⟩
(32)

for j = 2, . . . , g form a collection of g real ovals of Σ . Consider
a degree g divisor δ ∈ Σg consisting of the direct sums of points
δj ∈ Oj. When Σ is the spectral curve for a periodic solution
to the KdV equation, then δ is the Dirichlet divisor of the initial
condition.

The Baker–Akhiezer function is the unique function onΣ with
pole divisor δ and an asymptotic behavior at ∞ of the form

ψ(k, x, t) = e−ikx−4ik3t (1 + O(k−1)). (33)
 χ
The function ψ(k, x, t) has the explicit formula

ψ(k, x, t)

= exp
(

−i
∫ k

∞

ω(1)x − 4i
∫ k

∞

ω(3)t
)

×
θ (A(k) − A(δ) − iΩ (1)x − 4iΩ (3)t − K, B)θ (−A(δ) − K, B)
θ (A(k) − A(δ) − K, B)θ (−A(δ) − iΩ (1)x − 4iΩ (3)t − K, B)

(34)

in the k-coordinate, and for each t solves the Schrödinger equa-
tion

−ψxx(k, x, t) + u(x, t)ψ(k, x, t) = k2ψ(k, x, t) (35)

where u(k, x, t) is given by the Matveev–Its formula [7]

u(x, t) = −2
∂2

∂x2
θ (−iΩ (1)x − 4iΩ (3)t − A(δ) − K, B). (36)

We make use of the auxiliary Baker–Akhiezer function intro-
uced by Trogdon and Deconinck [34] ψaux(k) with zero divisor
, pole divisor γ consisting of the direct sum of the points γj =

iκ2j−1
⟩
, and asymptotic behavior of the form

aux(k, δ) = e−iα(k,δ)(1 + O(k−1)), α(k, δ) =

g∑
j=1

tj(δ)k2j−1. (37)

rogdon and Deconinck show that tj(δ) are real constants deter-
ined by solving the linear equation
g

ℓ=1

Ω
(2ℓ−1)
j tℓ(δ) ≡ Aj(δ) − Aj(γ), (38)

here A extends to divisors by adding the evaluations of A on
he points in the divisor and ≡ represents equivalence on the
acobian variety of Σ; in particular, the matrix Ω (2ℓ−1)

j is invert-
ble [34]. The auxiliary Baker–Akheizer function has the explicit
orm
ψaux(k, t)

= exp

⎛⎝−i
∫ k

∞

g∑
j=1

ω(j)tj

⎞⎠

×

θ

⎛⎝A(k) − A(δ) − K − i
g∑

j=1

Ω (j)tj, B

⎞⎠ θ (−A(δ) − K, B)

θ (A(k) − A(δ) − K, B)θ

⎛⎝−A(δ) − K − i
g∑

j=1

Ω (j)tj, B

⎞⎠
(39)

here t is the g dimensional vector with entries tn.
The intuition behind the auxiliary Baker–Akheizer function is

hat it tells us how to evolve the initial potential along the higher
dV equation flows until the auxiliary spectral data correspond-
ng to poles of the Baker–Akheizer function lie on {

⟨
iκ2j−1

⟩
}
g
j=1.

lternatively, we can solve the higher Dubrovin equations to
volve the spectral poles of the Baker–Akheizer function. The
ight-hand side of Eq. (38) differs from the corresponding version
n [34] by a sign because our asymptotic behavior as k → ∞ used
o normalize the Baker–Akheizer functions differs from Trogdon
nd Deconinck by a sign.

. From the Baker–Akheizer function to the primitive poten-
ial

roposition 4. The function
iα(k,δ)+ikx+4ik3t
(k, x, t) = ξ (k)e ψaux(k, δ)ψ(k, x, t), (40)
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where

ξ (k) =

g∏
j=1

(
k2 + κ2

2j−1

k2 + κ2
2j

) 1
4

, (41)

solves the following nonlocal scalar Riemann–Hilbert problem:

Riemann–Hilbert Problem 5. Find a function χ (k, x, t) such that

1. χ (k, x, t) is a holomorphic function for k ∈ C \ iΓ .
2. χ (k, x, t) has continuous non-tangential boundary values

χ+(ip, x, t) = lim
ϵ→0+

χ (ip + ϵ, x, t),

χ−(ip, x, t) = lim
ϵ→0+

χ (ip − ϵ, x, t)
(42)

for k ∈ iΓ \ {endpoints}.
3. For fixed x, t , there exists a constant C(x, t) such that

χ (k, x, t) ≤ C(x, t)|k ± iκj|−1/4 (43)

for k in a neighborhood of ±iκj.
4. The boundary values χ± satisfy the jump relations

χ+(ip, x, t) = isgn(p)e2iα(ip,δ)e−2px+8p3tχ+(−ip, x, t), (44)

χ−(ip, x, t) = −isgn(p)e2iα(ip,δ)e−2px+8p3tχ−(−ip, x, t), (45)

for p ∈ Γ .
5. For fixed x and t , χ (k, x, t) has asymptotic behavior

χ(k, x, t) = 1 + O(k−1) as k → ∞. (46)

where 1 = (1, 1).

Property (3) of the above nonlocal scalar Riemann–Hilbert
roblem did not appear in the papers [25–27], and this oversight
as addressed in [31].

roof. To pin down the function ξ we must additionally set
the branch cut to be iΓ , and take the choice of branch with
symptotic behavior ξ (k) = 1 + O(k−1) as k → ∞. The fact that
and ψaux are meromorphic for C \ iΓ is inherited from the

act that they are meromorphic functions on Σ . Moreover, the
act that product ψaux(k, x, t)ψ(k, x, t) only has poles on ⟨iκ2ℓ−1⟩

means that ψaux(k, x, t)ψ(k, x, t) is holomorphic in C \ iΓ . These
functions are not holomorphic on iΓ because the coordinate k
or Σ does not extend to iΓ . By combining these considerations
ith the fact that the exponential terms are entire, property (1)
ecomes clear.
From the constructions of ψ and ψaux as meromorphic func-

ions on Σ \∞ and the placement of their poles, it clear that they
nalytically continue across the jump on two sheets into open
egions containing iΓ \ {endpoints}. Continuity of the boundary
alues of ξ and eiα(k,x,t)+ikx+4ik3t in iΓ \ {endpoints} is also clear.

Therefore, χ itself has continuous boundary values χ±(k, x, t) for
∈ iΓ \ {endpoints}, proving property (2).
The pole conditions of ψ(k, x, t)ψaux(k, x, t) at ⟨iκ2ℓ−1⟩ on the

ndpoints of the cuts imply that

(k, x, t)ψaux(k, x, t) = b2ℓ−1(x, t)(iκ2ℓ−1 ∓ k)−
1
2 + O(1) (47)

for some b2ℓ−1(x, t) as k → ±iκ2ℓ−1, ℓ = 1, 2, . . . , g .
Regularity conditions at ⟨κ2ℓ⟩ imply that

ψ(k, x, t)ψaux(k, x, t) = b2ℓ(x, t) + O((iκ2ℓ−1 ∓ k)
1
2 ) (48)

or some b2ℓ(x, t) as k → ±iκ2ℓ, ℓ = 1, 2, . . . , g . In the above,
the branch cuts of the square roots are chosen to align locally
with iΓ . The function eiα(k,δ)+ikx+4ik3t is entire, so multiplying by
it has no effect on the order of the singular behaviors (47), (48).
Multiplying the singular behaviors (47), (48) by the singular/zero
behavior of ξ (k) near ±iκj give singular behaviors

(k)ψ(k, x, t)ψaux(k, x, t) = b̃j(x, t)(iκj ∓ k)−
1
4 + O(1) (49)

for some b̃j(x, t) as k → ±iκj, j = 1, 2, . . . , 2g . The branch cuts
f the quartic roots are chosen to align locally with the cuts on
Γ . Property (3) follows easily from the singular behavior (49) at
iκj because the singular behavior occurs only at a finite number
f points.
As a meromorphic function onΣ , the Baker–Akheizer function
satisfies

+(ip, x, t) = ψ+(−ip, x, t), ψ−(ip, x, t) = ψ−(−ip, x, t) (50)

or p ∈ Γ . The auxiliary Baker–Akheizer function ψaux also
atisfies the jump relation (50). The function ξ (k) satisfies the
ump relation

+(ip) = isgn(p)ξ+(−ip), ξ−(ip) = −isgn(p)ξ−(−ip) (51)

or p ∈ Γ . The function eiα(k,δ)+ikx satisfies the relation

eiα(k,δ)+ikx+4ik3t )|k=ip= e2iα(ip,δ)−2px+8p3t (eiα(k,δ)+ikx+4ik3t )|k=−ip.

(52)

ombining these jump relations gives the jump relations appear-
ng in property (4).

Property (5) follows from the fact that ξ (k), eikx+4ik3tψ(k, x, t)
nd eiα(k,δ)ψaux(k, x, t) all have asymptotic behaviors 1+O(k−1) as
→ ∞ (for fixed x, t). □

emark 6. The nonlocal Riemann–Hilbert problem solved by χ
s equivalent to a local vector Riemann–Hilbert problem solved
y χ = [χ (k, x, t), χ (−k, x, t)]. The minor changes to the analo-
ous local vector Riemann–Hilbert problem discussed in [25–27]
hat need to be made to accommodate finite gap solutions are
lear from the conditions on the nonlocal scalar Riemann–Hilbert
roblem. One reason that the power in the bound (3) is −

1
4 is

important is because it implies that the non-tangential boundary
values χ± are elements of L2(iΓ ) ≡ L2(Γ ).

The explicit form of the local vector Riemann–Hilbert problem
discussed above is the following:

Riemann–Hilbert Problem 7. For all x, t find a 1 × 2 vector
valued function χ(k; x, t) such that

1. χ is a holomorphic function of k ∈ C \ iΓ .
2. The boundary values

χ+(ip, x, t) = lim
ϵ→0+

χ(ip + ϵ, x, t),

χ−(ip, x, t) = lim
ϵ→0+

χ(ip − ϵ, x, t)
(53)

of χ for p ∈ Γ \ {endpoints of Γ } are continuous.
3. For fixed x, t , there exists a constant C(x, t) such that

χ1(k, x, t), χ2(k, x, t) ≤ C(x, t)|k ± iκj|−1/4 (54)

for k in a neighborhood of ±ikj.
4. The boundary values χ±(ip; x, t) of χ(k, x, t) for p ∈ Γ are

related by

χ+(ip, x, t) = χ−(ip, x, t)V (p; x, t) (55)

where

V (p; x, t) =

( 1−R1(p)R2(p)
1+R1(p)R2(p)

2iR1(p)
1+R1(p)R2(p)

e−2px+8p3t

2iR2(p)
1+R1(p)R2(s)

e2px−8p3t 1−R1(p)R2(p)
1+R1(p)R2(p)

)
.

(56)
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5. The function χ has the limiting behaviors χ (k) → 1 as
k → ∞.

6. χ satisfies the symmetry

χ(−k, x, t) = χ(k, x, t)
(
0 1
1 0

)
. (57)

Proof of Theorem 2. We make the assumption that the solution
to the Riemann–Hilbert problem from Proposition 4 has the form

χ (k, x, t) = 1 +
i
π

∫
Γ

f̃ (s, x, t)
k − is

ds. (58)

The boundary values of χ (ip, x) for p ∈ Γ are then given in terms
of f̃ as

χ+(ip, x, t) = 1 + ĤΓ f̃ (p, x, t) + if̃ (p, x, t), (59)

χ−(ip, x, t) = 1 + ĤΓ f̃ (p, x, t) − if̃ (p, x, t), (60)

where ĤΓ is the Hilbert transform with support on Γ

ˆ
Γ f̃ (k, x, t) =

1
π

?
Γ

f̃ (s, x, t)
k − s

ds. (61)

The jump conditions on χ give the system of integral equations

1 + ĤΓ f̃ (p, x, t) + if̃ (p, x, t)

= isgn(p)e2iα(ip,δ)e−2px+8p3t (1 + ĤΓ f̃ (−p, x, t) + if̃ (−p, x, t)),

(62)

1 + ĤΓ f̃ (p, x, t) − if̃ (p, x, t)

= −isgn(p)e2iα(ip,δ)e−2px+8p3t (1 + ĤΓ f̃ (−p, x, t) − if̃ (−p, x, t)).

(63)

These are equivalent to

f̃ (p, x, t) − sgn(p)e2iα(ip,δ)e−2px+8p3t ĤΓ f̃ (−p, x, t)

= sgn(p)e2iα(ip,δ)e−2px+8p3t ,
(64)

f̃ (−p, x, t) + sgn(p)e−2iα(ip,δ)e2px−8p3t ĤΓ f̃ (p, x, t)

= −sgn(p)e−2iα(ip,δ)e2px−8p3t .
(65)

Define two functions f , g : [k1, k2] → R by

f (p, x, t) =

{
f̃ (p, x, t) p ∈ Γ ∩ [k1, k2]
0 otherwise

, (66)

(p, x, t) =

{
−f̃ (−p, x, t) p ∈ Γ ∩ [k1, k2]
0 otherwise

. (67)

hen f and g solve

(p, x, t) +
R1(p)
π

e−2px+8p3t
[∫ k2

k1

f (q, x, t)
p + q

dq +

? k2

k1

g(q, x, t)
p − q

dq
]

= R1(p)e−2px+8p3t , (68)

g(p, x, t) +
R2(p)
π

e2px−8p3t
[? k2

k1

f (q, x, t)
p − q

dq +

∫ k2

k1

g(q, x, t)
p + q

dq
]

= −R2(p)e2px−8p3t , (69)

where

R1(p) = exp

⎛⎝ g∑
ajp2j−1

⎞⎠ g∑
1[κ2ℓ−1,κ2ℓ](p), (70)
j=1 ℓ=1
R2(p) = exp

⎛⎝−

g∑
j=1

ajp2j−1

⎞⎠ g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), (71)

re defined in terms of the real coefficients aj = (−1)j2tj(δ). □

. Numerical primitive solutions

The primitive potential/solution method for the KdV equation
ends itself to numerical evaluations because of the simplicity
f the system of singular integral Eqs. (3), (4) [25–27,31]. The
nly difficulty is that the matrices discretizing the system (3),
4) are badly conditioned, and so the matrix inversions must be
omputed with arbitrary precision arithmetic. A regularization
ethod that allows system (3), (4) to be solved with double
recision arithmetic would be invaluable.
In this section we will numerically compute finite gap solu-

ions as primitive potentials in the g = 2 and g = 3 gap cases.
or the g = 2 gap case, we also consider the following cases
umerically:

• The case where

R1(p) = exp

⎛⎝ g∑
j=1

ajp2j−1

⎞⎠ g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), R2 = 0. (72)

These are steplike solutions that approach finite gap solu-
tions as x → −∞ and approach 0 as x → ∞. These evolve
into dispersive shockwave type solutions.

• The case where

R1(p) = R exp

⎛⎝ g∑
j=1

ajp2j−1

⎞⎠ g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p), (73)

R2(p) = R exp

⎛⎝−

g∑
j=1

ajp2j−1

⎞⎠ g∑
ℓ=1

1[κ2ℓ−1,κ2ℓ](p) (74)

for R > 0. For large R, these solutions appear to have a high
amplitude region and a phase modulation that is localized
in space–time.

We compute all these solutions numerically as follows:

1. We discretize the integral equations (3), (4) using Gauss–
Legendre quadrature on each component of the support of
R1 and R2, and handle the singularity be ignoring it (i.e. we
set the singular matrix elements to 0).

2. We use the same Gauss–Legendre quadrature rule to eval-
uate the integral appearing in formula (5).

3. We compute the derivative appearing in (5) on a uniform
spatial grid spectrally using a fast Fourier transform, and
we use a Butterworth filter to remove oscillatory artifacts
due Gibbs phenomena on the edges of the spatial grid.

n alternate method to evaluating (5) that could be implemented
t an arbitrary set of space time points (x, t) would be to compute
x(p, x, t) and gx(p, x, t) after computing f (p, x, t) and g(p, x, t) by
olving the following system of singular integral equations

x(p, x, t) +
R1(p)
π

e−2px
[∫ k2

k1

fx(q, x, t)
p + q

dq +

? k2

k1

gx(q, x, t)
p − q

dq
]

(75)

= −2pR1(p)e−2px
(
1 −

∫ k2

k1

f (q, x, t)
p + q

dq −

? k2

k1

g(q, x, t)
p − q

dq
)
,

gx(p, x, t) +
R2(p)
π

e2px
[? k2

k1

fx(q, x, t)
p − q

dq +

∫ k2

k1

gx(q, x, t)
p + q

dq
]

(76)

= −2pR2(p)e2px
(
1 +

? k2 f (q, x, t)
dq +

∫ k2 g(q, x, t)
dq
)
,

k1 p − q k1 p + q
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Fig. 1. Comparison of primitive solutions corresponding to an algebro-geometric two gap solution, a one sided two gap solution, and a two sided two gap solution
with R = 100. All three correspond to κ1 =

1
2 , κ2 =

√
2
2 , κ3 =

√
3
2 , κ4 = 1 and a1 = a2 = 0.
which can be derived by differentiating system (3), (4) in x. We
an then compute (5) via

(x, t) =
2
π

∫ k2

k1

fx(q, x, t) + gx(q, x, t)dq. (77)

We opted against this method in this paper because this would
require a second ill-conditioned matrix inversion and is, there-
fore, much slower than differentiation via the fast Fourier trans-
form.

Fig. 1 shows space-time plots of the g = 2 gap numerical
solutions, Fig. 2 shows a space-time plot of a periodic g = 3
gap numerical solution, and Fig. 3 shows a space time plot of the
bsolute difference between two g = 3 gap numerical solutions.

6. Conclusions

We have shown how algebro-geometric finite gap potentials
can be computed using primitive solutions. This produces an
effective way to generate sequences of shifted N-soliton solutions
(Remark 1) that converge to any algebro-geometric finite gap
solution in any compact region of space–time. We have also
demonstrated numerically that by modifying the dressing func-
tions for the algebro-geometric finite gap solution it is possible
to compute interesting potentials that have finitely many spec-
tral gaps but are not algebro-geometric finite gap potentials. In
particular, the third plot in Fig. 1 shows a primitive solution that
appears to have a disturbance in space–time that is localized
near the origin. This naturally leads us to the following question:
Is it possible to rigorously describe the behavior of this type of
solution to the KdV equation near the origin? A rigorous asymp-
totic description of primitive potentials with a single spectral gap
and R2 = 0 via nonlinear steepest descent was given in [33].
Therefore, it may be possible to build on the approach of [33] to
answer this question.
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a

Fig. 2. A primitive solution corresponding to an algebro-geometric three gap solution determined by κ1 =

1
√
6
, κ2 =

1
√
3
, κ3 =

1
√
2
, κ4 =

√
2

√
3
, κ5 =

√
5

√
6
, κ6 = 1,

1 = a2 = 0 and a3 = 6.
Fig. 3. The absolute difference between the three gap solutions to the KdV equation appearing in Fig. 2 and the three gap solution determined by all the same
parameters except a3 = 0.
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