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solutions.

In this paper we show that all algebro-geometric finite gap solutions to the Korteweg-de Vries equation
can be realized as a limit of N-soliton solutions as N diverges to infinity (see remark 1 for the precise
meaning of this statement). This is done using the primitive solution framework initiated by Dyachenko
et al. (2016) and Zakharov et al. (2016) [25, 26]. One implication of this result is that the N-soliton
solutions can approximate any bounded periodic solution to the Korteweg-de Vries equation arbitrarily
well in the limit as N diverges to infinity. We also study primitive solutions numerically that have the
same spectral properties as the algebro-geometric finite gap solutions but are not algebro-geometric
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1. Introduction

The Korteweg-de Vries (KdV) equation
U — 6ULy + Uy = 0 (1)

was originally derived to describe soliton waves on the surface of
a channel [1]. In particular, the KdV equation is a weakly nonlin-
ear description of channeled surface waves. The KdV equation has
also seen use in oceanography [2], including as a weakly nonlin-
ear description of nonlinear internal waves [3]. The KdV equation
is also important because it is the prototypical example of an infi-
nite dimensional, completely integrable Hamiltonian system [4].
The differential equation form of the infinitely many conservation
laws making the KdV completely integrable are known as the
higher KdV equations. A solution u(x, t) to the KdV equation cor-
responds to an isospectral evolution of 1D Schrédinger operators
—83 + u(x, t) obeying the Lax equation [5] (this is also true for
solutions u to the higher KdV equations). The solution u(x, t) is
also called a potential, because for each fixed ¢t the function u(x, t)
can be interpretated as a potential energy when it appears in the
Schrodinger operator.

Two important boundary conditions for which exact formulas
for the solutions of the KdV equations are known are local-
ized solutions and solutions that are periodic in x. The localized
case was solved by the inverse scattering transform, and an
interesting class of solutions are the N-soliton solutions, which
occur when the Schrédinger operator is reflectionless [6,7]. The
periodic case was solved using algro-geometric methods insti-
gated by Novikov [8], Marchenko [9] and Lax [10], and resolved
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independently by Dubrovin [11,12], Matveev-Its [13-16], and
McKean-van Morebeke [17] in the important case of algebro-
geometric finite gap solutions to the KdV equation (also see
[18,19]). Marchenko-Ostrovskii showed that the space of
periodic finite gap solution is dense in the space of periodic
solutions [20], and McKean-Trubowitz showed that the algebro-
geometric methods extend to the general smooth periodic case
[21,22]. An effective way of computing periodic finite gap so-
lutions to the KdV equation that approximate smooth periodic
solutions to the KdV equation arbitrarily well is to use the isope-
riodic flows introduced by Grinevich-Schmidt to close all but a
finite number of spectral gaps because the widths of the gaps
decay exponentially at high energy [23]. It should be noted that
the algebro-geometric methods allow computation of interesting
multi/quasi-periodic solutions that are outside the space of peri-
odic solutions. A Riemann-Hilbert problem approach to infinite
gap periodic and quasi-periodic solutions to the KdV equation
was discussed in [24].

Primitive solutions to the KdV equation were introduced
in [25-27] as elements of the closure of the N-soliton solutions
to the KdV equation with respect to the topology of uniform
convergence in compact sets. This space was originally consid-
ered by Marchenko [28]. Primitive solutions were derived us-
ing the dressing method introduced by Zakharov-Manakov [29].
The primitive solution method was also adapted to the Kaup-
Broer system in [30]. The potentials are determined by a pair
of functions R; and R, called dressing functions, and the poten-
tials can be computed via solving a system of singular integral
equations. An intriguing aspect of this initial work was that it
allows computation of potentials that have the same spectra
as the algebro-geometric finite gap potentials, but are not the
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usual algebro-geometric finite gap potentials. These potentials
can have either simple or doubly degenerate continuous spectra
on the interiors of their spectral bands. The algebro-geometric
finite gap potentials can only have doubly degenerate spectra.
But even when the primitive potential has only a doubly de-
generate continuous spectrum on the interiors of its spectral
bands, the primitive potential need not have any periodicity or
quasi-periodicity properties. In [25-27,31] dressing functions for
cnoidal waves were determined. The main results of this paper
were reviewed in [32], but the details of this result are provided
in this paper.

Remark 1. To make the precise meaning of statements that
follow, it is convenient to introduce some terminology. We first
note that if u(x, t) solves the KdV equation then so does

u(x — 6Ct, t)+ C (2)

for any constant C. We then use the terminology “shifted
N-soliton solution” and “shifted primitive solution” to refer to
solutions to the KdV equation that can be produced from the
N-soliton solution and primitive solutions via the symmetry (2).

In this paper we show that shifted N-soliton solutions are
dense in the finite gap solutions with respect to the topology
of uniform convergence in compact sets by computing dressing
functions corresponding to the finite gap potentials. The fact
that the shifted N-soliton solutions are dense in the space of
bounded periodic solutions to the KdV equation then follows
from the fact that periodic finite gap potentials are a dense
subset of the bounded periodic potentials [20]. The density of the
N-soliton solutions in the algebro-geometric finite gap solutions
and periodic solutions was proved by Marchenko [28]. The prim-
itive potential construction gives an effective method of taking
this closure and producing explicit sequences of shifted
N-soliton solutions converging to the algebro-geometric finite
gap solutions. The reverse limit of computing N-soliton solutions
as algebro-geometric finite gap solutions in the limit in which
the genus N hyper-elliptic spectral curve of the N-gap solution
degenerates to a rational curve is well known, and was completed
by Novikov, Matveev, Its and Dubrovin [7,16,19].

The existence of algebro-geometric finite gap solutions as
limits of shifted N-soliton solutions is also of interest because it
shows the possibility of approximating hyper elliptic functions by
rational functions away from the branch points/poles. In essence,
the meromorphic function theory on the hyper elliptic curve cor-
responding to the hyper elliptic function is approximated by holo-
morphic functions on rational curves with N degenerate points.
This point of view is discussed in more detail in [31].

This paper is structured as follows.

e In Section 2 we review the primitive potential theory, and
state Theorem 2, which is the main result of this paper.

e In Section 3 we construct the KdV equation spectral curves
in a manner that naturally produces coordinates that are
useful in deriving the primitive potential integral equation.

e In Section 4 we construct the dressing functions for the
algebro-geometric finite gap solutions directly from the
Baker-Akhiezer function on the spectral curve.

e In Section 5 we numerically compute algebro-geometric
finite gap solutions to the KdV equation via the primitive so-
lution system of singular integral equations for small genus.
We also numerically compute primitive solutions that have
the same spectral properties of the finite gap solutions, but
are not finite gap solutions.

e In Section 6 we provide some concluding remarks.

2. Finite gap solutions as primitive potentials

Let Ry and R, be nonnegative Holder continuous real functions.
Primitive solutions to the KdV equation are defined in terms of
the solution f, g to the system of singular integral equations

R ky Xt x Xt
Fp.x, 1)+ TP -apesapie [ fax 0y, qu]
T K DP+d ki P—q

= Ri(p)e ™, )
R k Xt ka Xt
800, x, 1)+ AP [J( 10X 8y, f g(q")dq]
4 ko P—( v Pta
= —Ry(p)e Pt @

for each fixed value of x, t. A t dependent family u(x, t) of primi-
tive potentials can be constructed as

29 [k
ux, t) = —— f(q, x, t) + g(q. x, t)dq, (5)
T aX Ky
such that
Yk, x, t)
— (1 L R ICE O f"z 8(g.x. 1) dq) (6)
7 Jy, k—iq 7 Jy, k+iq

solves the Schrédinger equation
Yk, %, €) + ux, Y (k, x, t) = KPY(k, X, £) (7)

for complex k? ¢ o(—32 +u(x, t))N[—k3, —k?], and u(x, t) solves
the KdV equation (1).

The solutions v (k, x, t) with k € R are physical solutions of the
Schradinger equation with energy k* (by physical solutions we
mean bounded solutions). The boundary values of v¥.(k, x, t) for
k* € o(—3% + u(x)) N [—k3, —k?] when k? is a doubly degenerate
point in the continuous spectrum allow computation of the other
physical solutions with either v (ip, x, t) or ¥(—ip, x, t) giving
a basis of 2 linearly independent improper eigenfunctions (on
endpoints of the spectrum, the physical solution can be deter-
mined by the singular behavior of ). Alternatively, we may take
9 (p, x, 1) = e W f(p, x ) and ¢~ (p, x, t) = e P g(p, x, 1)
as a basis of physical solutions with energy —p? as discussed
in [25-27]. In the case where either Ri(p) = 0 or Ry(p) = O for
—p* € [—k3, —k*]1 N o (—d2 + u(x, t)) the continuous spectrum is
simple and the nonzero choice of ¢(p, x, t) = ep"‘41’3tf(p, X, t) or
o(p, x, t) = e P+4’tg(p x, t) gives the single physical solution.

One can use uniform grids with N/2 points to discretize the
p dependence of f and g with the uniform grid for g staggered
relative to the uniform grid for f and approximate the integrals
in (3), (4) using Riemann sums; in this case the system of singular
integral equations becomes a finite dimensional linear system
and the dressing method gives an exact N-soliton solution to the
KdV equation [25-27]. Therefore, we can approximate a primitive
solution to the KdV equation as accurately as we desire in a
compact subset of the x, t-plane by an N-soliton solution to the
KdV equation in the above manner by making N sufficiently large.

In previous papers on primitive solutions to the KdV equation,
R: and R, were assumed to be nonnegative Holder continuous
functions on [kq, k2] [25-27,31]. However, we must now weaken
this to the assumption that R; and R, are nonnegative and Holder
continuous on their supports. This allows R; and R, to have jump
discontinuities between positive numbers and 0 on the interval
[k], ](2].

Theorem 2. Consider an increasing sequence {Kj}le with

0<ki <k1<ky<--<ky <ky <oo0. (8)
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Let u(x, t) be an algebro-geometric finite gap solution to the KdV
equation such that at each fixed time t the potential u(x,t) is an
algebro-geometric finite gap potential with spectrum

o (=82 +u(x, t))

—k5y 41U+ U[—kj, =31 U [—&5, —«7] U [0, 00).

(9)

2
= [_Kzg,

Then u(x, t) is the primitive solution determined by

g g
p)=exp [ Y ap? | D iy 00, (10)
j=1 =1
g
Ry(p) = exp Z ajp Z 1[;(2[,1,@5](17), (11)
=1

where q; are real constants, and 1y, , ., is the indicator function
of [k2¢—1, k2¢]. Conversely, if u(x, t) is a primitive solution to the KdV
equation determined by dressing functions Ry and R, given by (10)
and (11) for some choice of real {aJ}J , and {Kj}lz_g] satisfying (8),
then u(x t)isan algebro—geomemc finite gap solution with spectrum

of the form (9)

All of the choices of dressing functions R; and R, of the form
(10), (11) produce finite gap solutions. These are only finite gap
solutions because there are only terms involving powers of j for
j=1,3,...2g—3,2g — 1 appearing in the exponents. This result
is due to the invertibility of the matrix £2 appearing in (38). If any
additional terms were added for example, the matrix £2 would
not be invertible. Most other choices will likely lead to a solution
that is not finite gap, but is likely asymptotically equivalent to
a finite gap solutions. In the one gap case, this hypothesis is
supported by the rigorous analysis in [33].

Remark 3. Theorem 2 implies that:

1. Any algebro-geometric finite gap potential can be real-
ized as a shifted primitive solution (recall that a shifted
primitive solution was defined in Remark 1).

2. Any shifted primitive solution determined by dressing
functions of the form (10) and (11) is an algebro-geometric
finite gap potential.

Theorem 2 is proven by starting with a Baker-Akheizer func-
tion expressed in a convenient coordinate system on the spectral
curve, and then deriving a system of integral equations of the
form (3), (4). All potentials formed by the choice of dressing
function from Theorem 2 are related to the solution determined
by

g
Ri(p) = Z ]l[ffzz-lv'fzz](p)’ (12)
=1
g
= Z ]l[’(ZZ—LKZZ](p)s (13)
=1

by a transformation that maintains the period of any periodic
primitive potential.

Space and time translations are sufficient to transform any
two-gap potential into the primitive potential corresponding to
dressing functions of the form (12), (13). The primitive potentials
corresponding to dressing functions (12), (13) are examples of
symmetric primitive potentials and primitive solutions discussed
in [31]. The method for computing the Taylor coefficients of these
solutions about (x,t) = (0,0) in the one-gap case discussed
in [31] can be easily adapted to apply to the primitive solutions
to the KdV equation determined by the dressing functions of the
form (12), (13).

3. Baker-Akheizer function on the “k-plane”

Consider the curve X defined by

2g
w? = [ [k +17) = Pg(k). (14)

j=1

Also, consider the involution «(k, w) = (—k, —w). The genus of ¥
is g = 2g — 1. The spectral curve for the KdV equation can then
be formed as the quotient space ¥ = ¥/(i). The surface ¥ is the
double cover of X. The curve X is a Riemann surface with genus
g and is homeomorphic to the curved defined by

2g
= vl_[(v—i—/cjz), (15)

j=1

which is the standard representation of the KdV spectral curve.
However, the coordinates k produced from a single sheet of the
double cover are more natural when comparing to the primitive
solutions. If A C C we will use the notation iA = {ik : k € A}. Let
us put the branch cuts of /P (k) on iI” where

g
r= U[—sz, —kai—1] U [K2j—1, k2] (16)
j=1

is oriented from left to right (so iI” is oriented from down to up).
We will abuse notation, and use k to represent both the complex
number k € C\ iI" and the corresponding point on X. We will
use the notation (in) to indicate the Weierstrass point on X' as k
approaches =ik;.

The Abelian differentials of the first kind on X' can be pro-
duced by computing explicitly the above homeomorphism, and
then computing a pull back. However, we can also compute them
using the above construction by computing the holomorphic dif-
ferentials on ¥ and then finding those that are invariant under .
A holomorphic differential w on ¥ is uniquely expressed as

2g-1 n—1
n=Y cn——-dk, (17)
; " /Pag(k)
and so ¢ acts as
2g-1 n—1pn—1
=Y e (18
P4g k
Therefore, 7 is invariant if and only if c;; = 0forj=1,2,...,8—

1. This means that a basis of Abelian differentials of the first kind
on X is

(&1
- 19
nj P4g(k) (19)
forj = 1,2,...,g. The basis of Abelian differentials of the first

kind on X is g dimensional so X has genus g. Let y be the g
dimensional vector of differentials with entries ;.

We now introduce a canonical homology basis {g;, bj}fz] for
Hq(X) satisfying a; o bj = §jj, aj 0o a = 0 and b; o bj = 0,
where o indicates the minimal intersection number for homology
elements. With the homology basis in hand, we can compute the
period matrix M with entries

My = [ e (20)

]

Then the entries w; of

w=2riM "1y (21)



4 P.V. Nabelek / Physica D 414 (2020) 132709

form a basis of Abelian differentials of the first kind on X nor-
malized by

/ wi = 27is;. (22)
aj
This basis of Abelian differentials of the first kind and the choice
of base point at oo allows us to compute:

1. The Abel map A(k) with entries
k
A(k) = / ® (23)

[e.¢)

mapping X into the Jacobi variety. The discontinuities on
the k-coordinate expression of the Abel map A(k) for k € il”
correspond to g disjoint circles in the Jacobi variety.

2. The Abel map on degree g divisors 4§ is

g
=Y A@). (24)
j=1

3. The Riemann matrix B with negative definite real part

By:/a),'. (25)
b;

)

This depends on the Riemann surface only.
4. The vector of Riemann constants K with entries

2mi+B; 1
K = cmit By — 2/ Ai(K)ag. (26)
2 2mi = o

This also depends on the Riemann surface only.

We define a coordinate ¢ = z~! for ¥ at k = oo. Let »™ be
Abelian differentials of the second kind on X with poles at oo
with principle parts

M~ dk" = d; " = —ng " lde (27)

and

/ o™ = 0. (28)

J
This Abelian differential has the form
nk%8—1+n g
w(") = — 1+ chwj. (29)
P4g(k) j=1

An important aspect of »™ is the vector 2™ with entries

o = / ™. (30)
bj
The Riemann theta function 6 : C®# — C is defined by

Zexp( n-Bn+n- z) (31)

nezs

The Riemann theta function converges uniformly because B has
negative definite real part.
The sets 01 = i(—«1, k1) U (ix1) and

Oj = i(—Kgj—1, —kaj—2) Ui(Kgj_2, kaj—1) U (ikaj—a) U (ik2j—1) ~ (32)

forj = 2,...,g form a collection of g real ovals of X. Consider
a degree g divisor § € X'¢ consisting of the direct sums of points
8; € 0;. When X is the spectral curve for a periodic solution
to the KdV equation, then § is the Dirichlet divisor of the initial
condition.

The Baker-Akhiezer function is the unique function on X with
pole divisor  and an asymptotic behavior at co of the form

Wik, x, t) = e~ =41 4 ok 1y), (33)

The function ¥ (k, x, t) has the explicit formula

vk, x, t)

k k
= exp (—i/ o WVx — 41'/ a)(3)t)
o0 o0

. O(A(k) — A(8) — i2Wx — 4iN®t — K, B)9(—A(8) — K, B)
O(A(k) — A(8) — K, B)9(—A(8) — i2Mx — 4i2Pt — K, B)
(34)

in the k-coordinate, and for each t solves the Schrodinger equa-
tion

— Yk, x, £) + u(x, O (k, x, t) = Kk, x, t) (35)

where u(k, x, t) is given by the Matveev-Its formula [7]
82

u(x, t) = —Zﬁe(—iﬂ“)x —4i2%t — A(8) — K, B). (36)

We make use of the auxiliary Baker-Akhiezer function intro-

duced by Trogdon and Deconinck [34] ¥qux(k) with zero divisor

4, pole divisor y consisting of the direct sum of the points y; =

(ik2j—1), and asymptotic behavior of the form

g
alk, 8) =Y 48" (37)

j=1

Vaulk, 8§) = e ®I(1 4+ 0o(k™1)),

Trogdon and Deconinck show that t;() are real constants deter-
mined by solving the linear equation

g
2
=1

where A extends to divisors by adding the evaluations of A on
the points in the divisor and = represents equivalence on the
Jacobian variety of X'; in particular, the matrix 2% is invert-
ible [34]. The auxiliary Baker-Akheizer function ﬁas the explicit
form

Vaux(k, 1)

= exp (—1 Z Pt

= A{(8) — Al(p), (38)

(39)

A(8) — K—IZ.Q(’t],B 9(—A(8) — K, B)

j=1

0(A(k) — A(8) — K, B | —A(8) —

g
K-iy 00 B
j=1

where t is the g dimensional vector with entries ;.

The intuition behind the auxiliary Baker-Akheizer function is
that it tells us how to evolve the initial potential along the higher
KdV equation flows until the auxiliary spectral data correspond-
ing to poles of the Baker-Akheizer function lie on {(i/(zj )}}g 1
Alternatively, we can solve the higher Dubrovin equations to
evolve the spectral poles of the Baker-Akheizer function. The
right-hand side of Eq. (38) differs from the corresponding version
in [34] by a sign because our asymptotic behavior as k — oo used
to normalize the Baker-Akheizer functions differs from Trogdon
and Deconinck by a sign.

4. From the Baker-Akheizer function to the primitive poten-
tial

Proposition 4. The function

x(k. %, £) = E(k)e®IHRHAC L (k 8)y (k. x, 1), (40)
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where
1
£ (12412 1
k) = -t 41
e H(’(2+K22~ 8
j=1 ]
solves the following nonlocal scalar Riemann-Hilbert problem:

Riemann-Hilbert Problem 5. Find a function x(k, x, t) such that

1. x(k, x, t) is a holomorphic function for k € C \ iI".
2. x(k, x, t) has continuous non-tangential boundary values

Xx+(ip, x, t) = lim x(ip + €, %, t),
e—0t

42
x_(ip. x,t) = lim x(ip — . x.1) (42)
e—0t
for k € iI" \ {endpoints}.
3. For fixed x, t, there exists a constant C(x, t) such that
x(k, x, t) < C(x, t)[k Ky =4 (43)

for k in a neighborhood of +ik;.
4, The boundary values x. satisfy the jump relations

X4(ip, X, t) = isgn(p)eXPDe=2P480°Cy (_ip x t),  (44)

X_(ip, , t) = —isgn(p)eX PP 2P48°y (i x ) (45)

forper.
5. For fixed x and ¢, x(k, x, t) has asymptotic behavior
x(k,x,t)=14+0(k™") as k — oo. (46)

where 1 = (1, 1).

Property (3) of the above nonlocal scalar Riemann-Hilbert
problem did not appear in the papers [25-27], and this oversight
was addressed in [31].

Proof. To pin down the function & we must additionally set
the branch cut to be il", and take the choice of branch with
asymptotic behavior £(k) = 1+ O(k™') as k — oco. The fact that
¥ and Vg, are meromorphic for C \ iI" is inherited from the
fact that they are meromorphic functions on X. Moreover, the
fact that product V¥q(k, x, £)¥(k, x, t) only has poles on (ikz,_1)
means that ¥q.(k, x, t)¥(k, x, t) is holomorphic in C \ iI". These
functions are not holomorphic on iI” because the coordinate k
for X does not extend to iI". By combining these considerations
with the fact that the exponential terms are entire, property (1)
becomes clear.

From the constructions of ¥ and 4, as meromorphic func-
tions on X'\ oo and the placement of their poles, it clear that they
analytically continue across the jump on two sheets into open
regions containing il” \ {endpoints}. Continuity of the boundary
values of & and ekxO+ikx+4it in i\ fendpoints} is also clear.
Therefore, x itself has continuous boundary values x.(k, x, t) for
k € iI" \ {endpoints}, proving property (2).

The pole conditions of ¥ (k, X, t)¥ax(k, X, t) at (ikz,_1) on the
endpoints of the cuts imply that

Wk, X, OYaus(k, %, £) = boe_1(x, E)ikcae—1 F k)2 +0(1) (47)

for some by,_q(x,t) as k - *iky_1,£=1,2,...,8.
Regularity conditions at (k) imply that

Wk, X, ) a(k. X, £) = bae(x, ) + O((ikae—1 F k)?) (48)

for some byy(x,t) as k — ik, £ = 1,2,...,g. In the above,
the branch cuts of the square roots are chosen to align locally
with iI". The function efk®+ikx+4i’t s entire, so multiplying by
it has no effect on the order of the singular behaviors (47), (48).

Multiplying the singular behaviors (47), (48) by the singular/zero
behavior of £(k) near =ik; give singular behaviors

E(RDW (K, %, OYaunlk, x. t) = Byx, )i F k)% + O(1) (49)

for some Bj(x, t)as k — =ikj, j = 1,2, ..., 2g. The branch cuts
of the quartic roots are chosen to align locally with the cuts on
iI". Property (3) follows easily from the singular behavior (49) at
=ik because the singular behavior occurs only at a finite number
of points.

As a meromorphic function on X, the Baker-Akheizer function
Y satisfies

¢+(ip7 X, t) - I/I-F(_lp» X, t)s w—(lpv X, t) = .(/f—(_lpv X, t) (50)

for p € [I'. The auxiliary Baker-Akheizer function ., also
satisfies the jump relation (50). The function &(k) satisfies the
jump relation

&_(ip) = —isgn(p)é_(—ip) (51)
ioe(k,8)+ikx

&, (ip) = isgn(p)é,(—ip),

for p € I'. The function e satisfies the relation

( eia(l<,6)+ikx+4ik3t)| 2ic(ip,8)—2px+8p3t ( eia(l<,8)+ikx+4ik3t)|l

k=ip= € k=—ip-

(52)

Combining these jump relations gives the jump relations appear-
ing in property (4).

Property (5) follows from the fact that &(k), ety (k. x, t)
and e %8y (k, x, t) all have asymptotic behaviors 1+ 0(k™1) as
k — oo (for fixed x,t). O

Remark 6. The nonlocal Riemann-Hilbert problem solved by x
is equivalent to a local vector Riemann-Hilbert problem solved
by x = [x(k, x, t), x(—k, x, t)]. The minor changes to the analo-
gous local vector Riemann-Hilbert problem discussed in [25-27]
that need to be made to accommodate finite gap solutions are
clear from the conditions on the nonlocal scalar Riemann-Hilbert
problem. One reason that the power in the bound (3) is —% is
important is because it implies that the non-tangential boundary
values x. are elements of [%(iI") = [*(I").

The explicit form of the local vector Riemann-Hilbert problem
discussed above is the following:

Riemann-Hilbert Problem 7. For all x,t find a 1 x 2 vector
valued function x(k; x, t) such that

1. x is a holomorphic function of k € C \ iI".
2. The boundary values
X+(ip, x, t) = lim x(ip +€,x,t),
e—07t
. . . (53)
x-(ip,x, t) = lim x(ip —€,x, 1)
e—071

of y for p € I' \ {endpoints of I"} are continuous.
3. For fixed x, t, there exists a constant C(x, t) such that
xalk, x, t), xa(k, x, t) < C(x, t)]k % iK;| ="/ (54)

for k in a neighborhood of +ik;.
4. The boundary values x.(ip; x, t) of x(k,x,t) forp € I' are

related by
x+(ip, x, t) = x_(ip, x, t)V(p; x, t) (55)
where
1-R1(P)R>(p) 2Ry (p) e—2px+8p3t
o= (ol e )
14+R1(p)R2(s) 1+R1(p)R2(p)

(56)
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5. The function yx has the limiting behaviors x(k) — 1 as
k — oc.
6. x satisfies the symmetry

x(—k. x, £) = x(k. x, 1) <? é) . (57)

Proof of Theorem 2. We make the assumption that the solution
to the Riemann-Hilbert problem from Proposition 4 has the form

xkxt)=1+- /f”t 5. (58)

The boundary values of x(ip, x) for p € I" are then given in terms
of f as

X+(ip. %, t) = 1+ Hrf(p. x, ) + if (p. x. 1), (59)
x-(ip,x, ) = 14+ Hrf(p, x, ) = if(p, x, 1), (60)
where H r is the Hilbert transform with support on I
t
Frfk x, t) = — ff(s i (61)
k—s

The jump conditions on x give the system of integral equations

1+Hrf(p,x, 6) +if(p, x, t)

= isgn(p)e2(Pde= 2P0 (1 4 1 f(—p, x, ) + if (—p. x. 1)),
(62)
1+Hrf(p.x, t) — if(p. x, t)
= —isgn(p)eX PP (1 4 [ F(—p, x, t) — if (—p. x, 1)).
(63)
These are equivalent to
F(p, x, t) — sgn(p)eePIe=2P+8’t 1 F(_p x 1) (64)
_ Sgn(p)EZia(ip,é)e—pr+8p3t,
F(=p.x,£) + sgn(p)e 2P D28t f F(p x ¢) (65)
_ _sgn(p)672ia(ip,8)62px78p3t'
Define two functions f, g : [kq, k2] — R by
f.x.t) pe Nk, k]
X, t) = . , 66
p.x.t) {O otherwise (66)
~f(=p.x.t) pe Nk k]
,X, t) = 67
&p.x. 1) {0 otherwise (67)

Then f and g solve

R K flqx.t @ glg.x.¢
f(p,x, t)+ %eﬂwp% [ qu + f 2 g(qX)dq]

6w P+d p—gq
= Ri(p)e P+, (68)
R k X, t ky X, t
g, x, 0) + 2P) s [ HHaxn . / £a.x.1) )dq]
T ki DP—(q K P+4a
= —Ry(p)e" ", (69)
where
g ) g
p) = exp Z ajpzj_] Z ]1[K2471,K2£J(p)s (70)
j=1 =1

Ry(p) = exp

Zafp

are defined in terms of the real coefficients q; =

g
Y Lo 1ol (P): (71)
=1

(—1y2¢(8). O
5. Numerical primitive solutions

The primitive potential/solution method for the KdV equation
lends itself to numerical evaluations because of the simplicity
of the system of singular integral Eqs. (3), (4) [25-27,31]. The
only difficulty is that the matrices discretizing the system (3),
(4) are badly conditioned, and so the matrix inversions must be
computed with arbitrary precision arithmetic. A regularization
method that allows system (3), (4) to be solved with double
precision arithmetic would be invaluable.

In this section we will numerically compute finite gap solu-
tions as primitive potentials in the g = 2 and g = 3 gap cases.
For the g = 2 gap case, we also consider the following cases
numerically:

e The case where

g g
p) = exp Z ajp217] Z 1[)(2/,1,»(2(](1’)
j=1 =1

These are steplike solutions that approach finite gap solu-
tions as x — —oo and approach 0 as x — oo. These evolve
into dispersive shockwave type solutions.

e The case where

g
= Rexp Z ap?~!
j=1

R, =0. (72)

g
Z ]l[l(z/é,].l(z(](p)v (73)
=1

Ry(p) = Rexp

Z ap?”

for R > 0. For large R, these solutions appear to have a high
amplitude region and a phase modulation that is localized
in space-time.

g
Z Licpg—1c2¢1(P) (74)
=1

We compute all these solutions numerically as follows:

1. We discretize the integral equations (3), (4) using Gauss-
Legendre quadrature on each component of the support of
Rq and R, and handle the singularity be ignoring it (i.e. we
set the singular matrix elements to 0).

2. We use the same Gauss-Legendre quadrature rule to eval-
uate the integral appearing in formula (5).

3. We compute the derivative appearing in (5) on a uniform
spatial grid spectrally using a fast Fourier transform, and
we use a Butterworth filter to remove oscillatory artifacts
due Gibbs phenomena on the edges of the spatial grid.

An alternate method to evaluating (5) that could be implemented
at an arbitrary set of space time points (x, t) would be to compute
fx(p, x, t) and g(p, x, t) after computing f(p, x, t) and g(p, x, t) by
solving the following system of singular integral equations

R ky ¢ " ot
flp, x, t) + Meﬂp" [ CRS )d n JC 2 M ] 75)
b k1 p + q k1 P—q
k t k ¢
= —2pR;(p)e > <1 - qu — JC : qu) ’
ke p+q kk D—q
k X, t ko Xt
gl x )+ = (p) e [ ha.x 0, +/ qu] (76)
ke p—4 n  Pta

k2 f(q, X, t 2 g(q,x,t
Ry () <1+ > f(q, % )dq+/ glg, x )dq)7
ko p—q W P+a
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-2.0 -1.5

-1.0 -0.5 0

Fig. 1. Comparison of primitive solutions corresponding to an algebro-geometric two gap solution, a one sided two gap solution, and a two sided two gap solution
with R = 100. All three correspond to k1 = 3,k = ‘/TE k3= k4=1and a; =a, =0.

which can be derived by differentiating system (3), (4) in x. We
can then compute (5) via

2 [k
U(X, t) = ; p f;((q’ X, t) +gx(qv X, t)dq (77)
1
We opted against this method in this paper because this would
require a second ill-conditioned matrix inversion and is, there-
fore, much slower than differentiation via the fast Fourier trans-
form.

Fig. 1 shows space-time plots of the g = 2 gap numerical
solutions, Fig. 2 shows a space-time plot of a periodic g = 3
gap numerical solution, and Fig. 3 shows a space time plot of the
absolute difference between two g = 3 gap numerical solutions.

6. Conclusions

We have shown how algebro-geometric finite gap potentials
can be computed using primitive solutions. This produces an

effective way to generate sequences of shifted N-soliton solutions
(Remark 1) that converge to any algebro-geometric finite gap
solution in any compact region of space-time. We have also
demonstrated numerically that by modifying the dressing func-
tions for the algebro-geometric finite gap solution it is possible
to compute interesting potentials that have finitely many spec-
tral gaps but are not algebro-geometric finite gap potentials. In
particular, the third plot in Fig. 1 shows a primitive solution that
appears to have a disturbance in space-time that is localized
near the origin. This naturally leads us to the following question:
Is it possible to rigorously describe the behavior of this type of
solution to the KdV equation near the origin? A rigorous asymp-
totic description of primitive potentials with a single spectral gap
and R, = 0 via nonlinear steepest descent was given in [33].
Therefore, it may be possible to build on the approach of [33] to
answer this question.
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0
X

u(x,t)
|

-1.4 -1.2

Fig. 2. A primitive solution corresponding to an algebro-geometric three gap solution determined by «; = ﬁ, Ky = % K3 =

a; =a; =0 and a3 = 6.

-1.0

40

-0.8 -0.6

%’lﬁl = %,Ks = %,Ks =1

10

-5f

_10.

-40 -20 0 20 40
X
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Fig. 3. The absolute difference between the three gap solutions to the KdV equation appearing in Fig. 2 and the three gap solution

parameters except az = 0.
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