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Given the scarcity of geological data, knowledge of Earth’s land-
scape during the Archean is limited. Although the continental crust
may have been as massive as present by 4 Ga, the extent to which
it was submerged or exposed is unclear. One key component in un-
derstanding the amount of exposed landmasses in the early Earth is
the evolution of the oceanic lithosphere. Whereas the present-day
oceanic lithosphere subsides as it ages, based on numerical models
of mantle convection we find that higher internal heating due to a
larger concentration of radioactive isotopes in the Archean mantle
halted subsidence, possibly inducing seafloor shallowing prior to 2.5
Ga. In such a scenario, exposed landmasses in the form of volcanic
islands and resurfaced seamounts or oceanic plateaus can remain
subaerial for extended periods of time, and may have provided the
only stable patches of dryland in the Archean. Our results therefore
permit a reevaluation of possible locations for the origin of life, as
they provide support to existing hypothesis that suggests that life

had its origins on land rather than in an oceanic environment.

Nucleobases were either formed under early Earth conditions [1, 2, 3] or
had an extraterrestrial origin [4]. The synthesis of complex biomolecules ca-
pable of self-replication, however, involves polymerization of nucleobases into
nucleotides and nucleic acids. Because polymerization requires precise ther-
modynamic conditions [5, 6, 7] that were unlikely to be prevalent in the early
Earth, an understanding of the Archean surface environment is essential when
discussing possible locations for abiogenesis. Presently, candidate locations in-
clude deep-sea hydrothermal vents [8] or warm little ponds near volcanic flanks

[9]. Phylogenetic studies have suggested that hyperthermophilic archaea of the
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type found near the vents may be akin to the last universal common ancestor,
suggesting that life might have arisen in these vents [10]. However, hyper-
thermophiles may just be survivors of bolide impacts in the early Earth [11],
and the capacity of the vents and surroundings to sustain polymerization is
still debated [5, 6, 7]. Warm little ponds, in turn, allow for long-term poly-
merization through seasonal wet-dry and/or freeze-thaw cycles [12, 13, 14] but

require the existence of exposed landmasses [15, 16].

Given a limited number of geological constraints, estimating the extent of
exposed landmass during the Archean is difficult. A recent theoretical study
that considers the co-evolution of prebiotic chemistry and surface environ-
ment suggests polymerization in warm little ponds following the delivery of
nucleotides by meteorites [17]. Their parameterization of exposed landmass
in the Archean is, however, questionable because it assumes that the mass of
exposed continents is equal to the mass of continental crust. Although it is pos-
sible that continents were as massive as present by 4 Ga [18, 19], the amount
of exposed landmass is a function of several time-dependent parameters, such
as ocean-mantle water exchange and seafloor topography [20]. In particu-
lar, seafloor topography in deep time is poorly understood. As newly-formed
seafloor moves away from a mid-ocean ridge, isostatic adjustment due to cool-
ing from the surface results in changes in seafloor depth [21], thus affecting
the water capacity of ocean basins and the flooding of continents. At present,
volcanic islands become seamounts owing to continuous seafloor subsidence
(Figure 1a). Subsidence then appears to slows down when the lithosphere is
70-80 Myr-old, likely owing to the onset of small-scale convection [22] as well
as the impingement of mantle plumes [23]. In the Archean, however, radio-

genic heat production in the mantle was approximately four times larger than
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at present [24]. If radiogenic heating is high enough, subsidence may cease al-
together and seafloor shallowing might occur, allowing seamounts and oceanic

plateaus to resurface (Figure 1b).

To assess the likelihood of exposed landmasses in the Archean, therefore, we
systematically explore the effect of radiogenic heating on bathymetry through
numerical modeling. As shown later, our results suggest that seafloor shal-
lowing is indeed possible for the bulk of the Archean. Additionally, we also
explore the effect of our new model of bathymetric evolution on the sea level,
mid-ocean ridge depth, and the exposed fraction of continental crust, thus
providing a more comprehensive assessment of the Archean landscape and its

possible implications for the origin of life.

Modeling seafloor bathymetry

To model the evolution of seafloor topography, we integrate the two-dimensional
(2-D) thermal convection equations with temperature-dependent viscosity and
radiogenic heating using a finite-element approach [25]. The running time
is 500 Myr. Our strategy consists in calculating 2-D ridge-parallel thermal
evolution and then horizontally averaging such evolution to construct a 2-D,
ridge-perpendicular, mantle thermal structure with a prescribed plate velocity
[26] (see Methods; Extended Data Figure 1). Instantaneous Stoke flow is then

computed for this mantle structure. Seafloor depth is calculated as:

Pm U* z*=0
— (aATd )Z=, L
v <a Pm — Pw Ra ( )



74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

where w is subsidence with respect to zero-age seafloor, « is thermal expan-
sivity (set as 3 x 107 K~1), AT is mantle potential temperature (1350 K
at present), d is mantle thickness (2900 km), p,, is surface mantle density

(3300 kg m™?), p,, is density of water (1000 kg m™?), o7,

»+—o 1s the nondimen-
sional normal stress at the surface, and Ra = apogATd?/nok is the Rayleigh
number, for which py is reference density (4000 kg m=3), & is thermal diffu-
sivity (107¢ m? s71), g is gravitational acceleration (9.8 m s72), and 7 is the
reference asthenospheric viscosity. We vary 1, within the range 10'%-10%° Pa s,
consistent with geophysical observations [27]; we assume that the present-day
asthenospheric viscosity is also valid for the Archean, based on the likely effect
of global water cycle on mantle viscosity [28]. The viscosity structure of the
mantle is computed using realistic temperature dependence with an activation

energy of 300 kJ mol™! (see Methods).

We measure the effect of radiogenic heating by varying the heating rate
per unit mass, H, and comparing the subsidence with that predicted by the
case with H=0. Prior to the onset of sublithospheric convection, the latter
case is equivalent to seafloor subsidence as predicted by the half space cooling

(HSC) model with no radiogenic heating:

Whs = QQApo—m<

/17)1/2
Pm — Pw 7

(2)

™

where 7 is the age of the lithosphere [21]. The range of H is from 2.1x10712 W kg~!

at present to 8.5x107'12 W kg~! at the Hadean-Archean boundary (4 Ga), as
calculated from the present concentrations of K (102 ppm), U (9.7 ppb) and
Th (30 ppb) in the depleted mantle [24].
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Effect of radiogenic heating and mantle viscos-

ity on seafloor bathymetry

Seafloor bathymetry is most sensitive to radiogenic heating, with H > 0 lead-
ing to slower seafloor subsidence than that predicted by the HSC model (Fig-
ure 2a-c). Significant shallowing is inferred from our model throughout the
Archean, starting at ~50-100 Myr. As H decreases, shallowing also decreases,
and by 1.7 Ga the seafloor is continuously subsiding. On the contrary, whereas
variations in asthenospheric viscosity have a noticeable effect on the onset of
sublithospheric convection (with decreasing viscosity leading to an earlier on-
set time), the overall evolution of a subsidence curve for a given H does not
change significantly when the viscosity is in the range of 10*°-10%° Pa s, sug-
gesting seafloor shallowing probably occurred in the early Earth regardless of

the value of 7.

More realistic models may be explored by employing depth-dependent pro-
files for heat generation and viscosity. Depth-dependent heat generation re-
sults from the melting of the mantle, which partitions heat-producing elements
into the oceanic crust. We employ depleted mantle concentrations of K, U and
Th, as before, from which we calculate three profiles for three ages: present,
2.5 Ga and 4 Ga (Figure 2d). For each case, we assume that all heat-producing
elements partition into the crust, leaving behind an entirely depleted (H=0)
mantle lithosphere. The concentration of heat-producing elements in the crust
is calculated from the expected thicknesses for the crust and the mantle litho-
sphere at each age (7 km and 70 km, respectively, at present, 29 km and 137 km
at 2.5 Ga, and 19 km and 106 km at 4 Ga, as calculated from the thermal

history of the upper mantle [29] and a mantle melting model [30]). For the vis-
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cosity profile, several geophysical observations suggest that the lower mantle
may be ~10-30 times more viscous, on average, than the upper mantle [27].
We constructed two viscosity profiles with a tenfold and thirtyfold increase in
lower mantle viscosity, in addition to the purely temperature-dependent case

(Figure 2e). For the asthenospheric viscosity, we employ 7y ~ 3 x 10 Pa s.

For a given age, bathymetry for models with depth-dependent H is roughly
comparable to that predicted by models with uniform H (Figure 2f). This
suggests that dynamic topography reflects the aggregated heat content in the
subsurface, thereby being insensitive to the details of vertical distribution;
this is consistent with the topography kernel (the sensitivity of topography to
the internal density structure) expected for the suboceanic mantle [31]. The
lower-mantle viscosity partially modulates the effect of radiogenic heating on
bathymetry. At low H, the model is mostly cooling from above and density
changes are located within the lithosphere only. Dynamic topography thus
remains insensitive to the viscosity structure of the convective interior. As
H increases, however, the effect of the viscosity of the lower mantle becomes
noticeable. A general trend is that a higher value of lower-mantle viscosity
consistently gives deeper seafloor, although the difference introduced by the
thirtyfold increase in the lower mantle is < 1 km at most in the Hadean-
Archean boundary. This trend is also consistent with how the topography
kernel is influenced by depth-dependent viscosity [31]. Overall, using depth-
dependent profiles of heat generation and viscosity does not significantly affect

the bathymetry with respect to models with uniform profiles.
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Archean surface environment and the origin of

life

The models above highlight the effect of radiogenic heating on seafloor depth.
Moreover, the high concentration of heat-producing elements in the early man-
tle suggest that seafloor shallowing was possible prior to 2.5 Ga. We now
model the Archean surface environment by tracking the evolution of sea level,
ridge depth, and the exposed fraction of continents. For this, we use a recent

freeboard model developed to investigate the global water cycle [20].

Our freeboard model assumes isostatic balance across ocean basins and con-
tinents. Secular changes in continental lithospheric buoyancy are allowed [32],
as well as changes in seafloor bathymetry through either HSC bathymetry or
the bathymetry with radiogenic heating (hereafter referred to as RH bathymetry).
To facilitate modeling, we parameterize the RH bathymetry through an empir-
ical scaling law for w, expressed as a function of H (see Methods; equation 16
and Extended Data Figures 2-3). Our modeling strategy closely follows that
of Ref. [20], but the following two input parameters are worth some detailed
account: (1) the continental growth function, and (2) the ocean-mantle water

flux due to subduction.
The growth of continents is parameterized through:

Mc(t) _ MC(tp)

1 — e—rgltp—ts)

1 — e rat=ts) | (3)

where M, is the continental mass, ¢, is the time when crustal growth started
(4.51 Ga), t, is the present time measured from the beginning of the solar

system (4.567 Ga), M,(t,) is the present continental mass (2.09 x 10** kg),
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and k, is a growth constant [18]. By adjusting ,, we can explore a wide
range of crustal growth scenarios. We test two models: k4 = 17, representing
a rapid continental growth in the Hadean, and s, = 0.5, representing a gradual
growth of the continents (Figure 3a). The rapid growth model is consistent
with the evolution of the samarium-neodymium isotope systems [18] as well as
the degassing history of argon [19]. The gradual growth model is tested here
to assess the effects of growth rate on landscape evolution. As for the ocean-
mantle water flux, we constrain it by selecting a constant value that keeps
the sea level approximately stable up to 2.5 Ga, consistent with the geological
record [20, 33]. Net water flux in the ocean-mantle system has various sources
and sinks, including water loss by subducting slabs (in sediments, the crust and
lithospheric mantle), magmatic output from mid-ocean ridges, hotspots, and
arcs, and non-magmatic up-dip transport from slab to oceans. Considerable
uncertainties exist even when estimating the present-day water flux [34, 35].
Yet, using a constant value of net water influx is justified a posteriori, as a long-
term average that can reproduce a steady sea level, at least back to 2.5 Ga.
It should be stressed that, even with non-zero water flux, sea level can remain
constant owing to changes in the relative buoyancy of continental lithosphere
with respect to that of oceanic lithosphere [20, 32]. Positive net water flux
indicates more voluminous oceans in the past. Other model parameters are
the same as in the reference case of the original freeboard study [20]. For the
models presented here, we assume the continuous operation of plate tectonics
[28] with a decrease in plate velocity in the past. With the effect of mantle
melting on viscosity (i.e., dehydration stiffening), a hotter mantle in the past
is expected to convect more slowly, thus leading to slower plate tectonics [30].
Such a dynamics has been shown to be consistent with a range of geological

records including the life spans of passive margins [36], the cooling history of
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the upper mantle [29], and the evolution of continental plate velocities [37, 38].

Most studies place the present net ocean-mantle water flux at < 10 x
10M g yr=1 [20, 34, 35, 39, 40], although it could be as large as 18 x 1014 g yr=!
[35]. In this study, 3.3x 101 g yr=! and 4.4x 10 g yr~! are required to satisfy
the constancy of sea level from 2.5 Ga to present for the rapid and gradual
growth models, respectively (Figures 3b-c), in relative agreement with the most
recent estimates [20, 39]. With these fluxes, ridge depth was deeper in the past
(Figures 4a and 4e). Continents become more flooded with RH bathymetry
than with HSC bathymetry because the former leads to shallower seafloor,
and thus a higher sea level (Figures 4b and 4f). Additionally, a more gradual
growth of continents means that the ocean basins would have been wider in the

past, being able to hold more water and resulting in less continental flooding.

Hypsometry snapshots through the Archean and at present are shown in
Figures 4c-d for RH bathymetry. During the early Archean, as the tempo of
plate tectonics was slower [20, 28|, the maximum age of oceanic lithosphere is
extended and seafloor flattening is more likely to occur. By 2.5 Ga, flattening
is still appreciable. For the present-day case, because the bathymetry is better
approximated by the plate cooling model [41], we also consider this case. For
both growth models, the RH and plate model hypsometries are approximately
equal, indicating the accuracy of our approach. In comparison, using HSC
bathymetry results in continuous seafloor subsidence throughout the Archean

(Figures 4g-h).

Although the chosen model for continental growth does have an impact on
the size of ocean basins and thus on sea level, seafloor shallowing occurs for

both rapid and gradual growth. This result is particularly important; because

10
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the rapid and gradual growth models could be considered end-member scenar-
ios for other intermediate growth models that have been proposed [42], seafloor
shallowing in the Archean is expected to persist regardless of the details of con-
tinental formation. The results presented here, therefore, are robust enough
to provide a picture of an Archean landscape in which the seafloor shallows

up and submerged seamounts and oceanic plateaus may resurface (Figure 1).

The existence of dryland in the Archean is compatible with a number of
origin-of-life models [14, 15], and the results presented here provide geological
support to such theories. Unequivocal evidence of life has been dated at 3.5 Ga
[43], although the record may be pushed back to the late Hadean or early
Archean (~4 Ga) [44]. During this period, our results indicate that continents
were fully submerged (Figures 4b and 4f). As we assume a time-independent
water influx, this part of our modeling results is subject to greater uncertain-
ties compared to the Proterozoic part. The mantle at >2.5 Ga is likely to
have been hotter than that at <2.5 Ga [29], and net water influx can be more
reduced in the Archean [39]. Even if the net water influx is reduced in half
during the Archean, however, continents are still expected to have been fully
submerged (Figure 3b,c). Also, temporal topographic elevation by continent-
continent collision is expected to be limited because of hot crustal geotherm
in the Archean [45], and this effect is already included in our freeboard mod-
eling [20]. This may be used to argue that the synthesis of the first prebiotic
compounds likely occurred in an aquatic environment, such as near hydrother-
mal vents. The formation of primitive RNA-like molecules, however, requires
polymerization of nucleotides [46], and the vent’s surroundings are probably
not well suited for this. High water temperature near the vents [5] and low

concentration of phosphorous compounds and nitrogen oxides in the primitive

11
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ocean [6, 7] are considered to be limiting factors. The very presence of water
may also be problematic, because water tends to degrade polymerization and
inhibit the formation of nucleotides through hydrolysis. Although it is possi-
ble for polymers to form with the aid of mineral surfaces [47] or within pore
space near the vents [48], the results we present here permit us to consider
warm little ponds as an alternative location. The synthesis of organic com-
pounds is achievable in these ponds through wet-dry and freeze-thaw cycles
[13, 14], or through geochemical reactions such as serpentinization of ultra-
mafic igneous rocks [15]. Even with continents submerged, seafloor shallowing
due to radiogenic heating would ensure that any volcanic islands formed on
sufficiently old seafloor or resurfaced seamounts and oceanic plateaus would
be long-lived (Figure 1b), providing the exposed landmass that is required for
warm little ponds to exist. What is promising about this new possibility is
that, whereas the spatial extent of such oceanic islands and plateaus may be
limited, the tendency of these landmasses to remain subaerial is robust, as
it is supported by the long-term mantle-scale heating. Considering the ther-
modynamic limitations of deep-water hydrothermal vents as a possible site
for abiogenesis, therefore, the results presented here suggest that warm little

ponds are a viable location for the origin of life.

Methods

Model Description

All models share the following boundary conditions and properties. Surface
temperature is set to zero and the bottom boundary is insulated. The top and

bottom boundaries are free slip, and a reflecting boundary condition is applied

12
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to the sides. Time and temperature are nondimensionalized by d?/x and AT,
respectively, where d is model depth, x is thermal diffusivity and AT is the
difference between initial and surface temperature. Nondimensional variables
are denoted with an asterisk. The aspect ratio is set to 4, and the model is
discretized into 257 horizontal and 93 vertical nodes. Whereas the horizontal
nodes are distributed uniformly, we concentrate 40 of the 93 vertical nodes in
the shallowest part of the model (z*>0.8, where z* is height and z*=1 is the
top surface) to better capture the dynamics of sublithospheric convection (i.e.,

growth and instability of the upper thermal boundary layer).

We employ a linearized version of the Arrhenius-type of temperature-

dependent viscosity, given by:
7 (1) = exp [0(1 = T7)] (4)

where n* is normalized by reference (i.e. asthenospheric) viscosity, 7y, defined
at T*=1, and @ is the Frank-Kamenetskii parameter [49], which is related to

the activation energy, E, as:

g_ _ BAT )
 R(T, + AT)?’

where R is the universal gas constant and T5,=273 K is the surface temperature.

The Rayleigh number is defined as:

ATd3
Ra — %7 (6)

ok

where « is thermal expansivity (3x1075 K1), py is reference density (4000 kg m~3),

and g is gravitational acceleration (9.8 m s72). Finally, heat generation rate
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per unit mass (H) is nondimensionalized by:

= (B ”

where k=4 W m~! K~ is thermal conductivity.

Our models are fully described by the three non-dimensional parameters
0, Ra and H*. We employ § = 18.5 for all our models, consistent with
E = 300 kJ mol™! for the upper mantle [50]. Such a value for 6 remains
approximately constant in the deep time because of the limited variation of
AT (1350 K at present). The asthenospheric viscosity is set between 10! Pa s
and 10%° Pa s, corresponding to Ra~ 3 x 103—3 x 10°. The range of H* is
between 0 and 50, corresponding to H = 0—8.5 x 10712 W kg™! (see Theo-
retical Formulation and Results). Because the bottom boundary is insulated,
our models are purely internally-heated and do not incorporate the effect of
upwelling mantle plumes, thus allowing us to focus on the dynamics of the

ocean lithosphere exclusively.

Our modeling strategy is as follows [26]. We run a convection model for a
given set of Ra and H* for a duration of 500 Myr. Depth-dependent profiles
for H* and viscosity (see Figures 2d-e) may also be employed. At each time
step, we calculate an horizontally-averaged temperature profile from 2-D ridge-
parallel simulation (Extended Data Figures la-c) and assemble them to create
a ridge-perpendicular thermal structure profile with a prescribed plate velocity
(Extended Data Figure 1d). Instantaneous Stokes flow is then computed.
Dynamic seafloor topography (i.e. topography due to mantle motions) along

our trench-perpendicular thermal structure is proportional to the normal stress
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acting on the surface, o, |,—¢:

Ozz|z:() = apogw. (8)

Equation (1) may then be obtained by nondimensionalizing the normal stress

by nok/d? in Equation (8), and multiplying by the topographic scale a ATdp,, /(pm—

pw). Seafloor subsidence is then converted to a function of seafloor age using
the prescribed plate velocity. It should be noted that Equation (1), when ap-
plied to a model with H = 0, recovers the bathymetry predicted by the half

space cooling model (Equation 2).

Empirical Scaling Law for Seafloor Subsidence

To apply our model of bathymetric evolution to our freeboard model, however,
we develop an empirical scaling law for seafloor subsidence by using the results
from our generic models (Extended Data Figure 2) and analyzing the deviation
of modeled seafloor depth (w; equation 1) with respect to the seafloor depth
as calculated from the HSC model (wys; equation 2). We define this deviation
as:

Wps — W

(9)

ow =

Whs
Seafloor depth deviates from that predicted by the HSC model as internal
heating increases (Extended Data Figure 2a). Because sublithospheric con-
vection affects subsidence after the onset time (t.), we construct our empirical
scaling law by approximating the evolution of Jw during the conductive (i.e.,

prior to onset time) and convective phases through linear trends. For the
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conductive phase, the linear trend is given by:
Swy = my (/2 — /%), (10)

where my is the slope and ¢; /? 2 2.5 Myr!/2 is the intersection with the horizon-
tal axis (Extended Data Figure 2a). The subscript 1 refers to the conductive
phase. The slope is a function of H* (Extended Data Figure 2b), and it may

be found from the following linear fit:
my=a H". (11)

where a; = 0.001. Substituting equations (9) and (11) into equation (10), the
empirical scaling law for the seafloor subsidence during the conductive phase
is given by:

Wi = Whs [1 —a (2 3], (12)

Similarly, the linear trend for the evolution of dw after the onset of con-

vection is given by:
(SZUQ = 51[11 (tc) + mg(tl/Q - ti/Q)a (13)

where the subscript 2 refers to the convective phase, and the slope ms is given

by:

511}2 (tmax) - (51111 (tc>

Ilr{a?x - té/z

my = (14)

In equation (14), the maximum running time is set at ty., = 500 Myr. For
dws(tmax), we notice that the final seafloor depth for a given amount of ra-
diogenic heating is approximately the same for all reference viscosity (i.e.,

Rayleigh number) values (Figure 2a-c). We can thus express dws(tmax) as a
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function of H* only (Extended Data Figure 2c), and the data may be fitted
by:
(S'LUQ(tmaX) = CLQH* + bg, (15)

where a; = 0.0228 and by = 0.0452. We may find dws from equations (12)-
(15). Our empirical scaling law for seafloor subsidence throughout 500 Myr

(wy) is thus a piecewise function of the form:

1— a H* (V2 — 117

Wg = Wpg X D H* a1<t(1:/2 _ tzl/Q) _ (12] — by
1—a H* (£ — 1) +

o — 1/

(16)

where t. may be calculated from previously derived scaling laws [25].

The difference between the subsidence as calculated from equation (1) and
through our empirical scaling remains relatively low (below 250 m) for all
values of Ra and H* (Extended data Figure 3). Because our empirical scaling
is based on the analytical HSC bathymetry model, seafloor subsidence may be
readily calculated for any given value of radiogenic heating through equation
(16), allowing us to bypass the instantaneous Stokes flow calculation on which

our modeling results are constructed.
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Extended Data Fig. 1 Modeling Strategy ext_figl.pdf Numerical results of a model with Ra=3x10 (1,~1.3x10" Pa s)
and H*=13.2 (H=2.12x10"2 W kg'!), appropriate for present-
day Earth. a-b: Snapshots of uppermost section of
temperature field at 40 Myr and 109 Myr, before and after
onset of convection, respectively, with temperature contours
at an interval of 100° C. ¢: Horizontally-averaged temperature
profiles for snapshots a and b. d: Ridge-perpendicular thermal
structure constructed by assembling horizontally-averaged
temperature profiles for every time step. Subsidence may
then be calculated by computing instantaneous Stokes flow
and applying Equation (1). Location of temperature profiles a
and b, as well as the onset time, are shown. Isotherms of
1200°C and 1300 °C as calculated using radiogenic heating
(RH; solid) and half space cooling (HSC; dashed) bathymetries
are highlighted. Prior to onset time, thermal structure of RH
model resembles that predicted by HSC model.

Extended Data Fig. 2 Subsidence deviation ext_fig2.pdf a: Evolution of éw for models with different values of H* and
Ra = 3x108. Models are divided into conductive and
convective phases at onset time, with each phase being fitted
by a linear trend (6w, and dw,, respectively). For any H*, dw,
intersects the horizontal axis at til/2 = 2.5 Myr". b-c: Slope
of Swy (b) and dw;, at t,;,,,, = 500 Myr (c) as a function of H*.
Linear trends are given by m; = a;H" in b, where a; = 0.001,
and by 6w, (tmax) = a,H™ + b, in ¢, where a, = 0.0228 and
b, = 0.0452. Color coding as in a.
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Extended Data Fig. 3

Comparison between
modeled bathymetry
and empirical scaling law

ext_fig3.pdf

a-c: Modeled seafloor subsidence for models with Ra =
3x108 (a), Ra = 1x10° (b) and Ra = 3x10° (c), respectively
(solid). Color coding as in Extended Data Figure 2. Seafloor
subsidence as predicted from empirical scaling law is also
shown (equation 16; dashed). d-f: Difference between
modeled seafloor subsidence and empirical scaling for

a = 3x108 (d), Ra = 1x10° (e) and Ra = 3x10° (f),
respectively. Color coding as in a. Zero-difference level is
shown (thin horizontal line). Difference never exceeds 250 m
(dashed horizontal lines).

natureresearch

Extended Data v8. 2019
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