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ABSTRACT

Continental lithospheric mantle (CLM) may have been built from subducted slabs, but
the apparent lack of concurrent oceanic crust in CLM, known as the mass imbalance problem,
remains unresolved. Here we present a simple dynamic model to evaluate the likelihood of
losing dense eclogitized oceanic crust from CLM by gravitational instability. Our model allows
us to assess the long-term evolution of such crust removal, based on how thermal and viscosity
profiles change over time across the continental lithosphere. We find that the oceanic crust
incorporated early into CLM can quickly escape to the asthenosphere, whereas that incorporated
after a certain age would be preserved in CLM. This study provides a plausible explanation to
the mass imbalance problem posed by the oceanic ridge origin hypothesis of CLM and points to
the significance of preservation bias inherent to the studies of cratonic diamonds.
INTRODUCTION

Several hypotheses have been proposed for the origin of continental lithospheric mantle
(CLM), including plume-type magmatism, convergent boundary magmatism, and ocean ridge-
type magmatism, among which the ocean ridge origin is most consistent with petrological and

geochemical observations (Kelemen et al., 1998; Simon et al., 2007; Rollinson, 2010; Herzberg
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and Rudnick, 2012; Pearson and Wittig, 2014; Su and Chen, 2018). Also, a recent global
compilation of major element data in mantle xenoliths shows a trend of increasingly depleted
CLM with age (Servali and Korenaga, 2018), which conforms to the prediction of the ocean
ridge origin hypothesis. Hotter mantle in the Archean resulted in a higher degree of melting
beneath mid-ocean ridges, producing highly depleted mantle residues (Korenaga, 2006; Herzberg
and Rudnick, 2012), some of which may have been incorporated into CLM during subduction.

However, the presence of highly depleted mantle xenoliths beneath cratons is rarely
accompanied by observations of their complementary melt products, and this issue is known as
the mass imbalance problem of cratonic lithosphere (Herzberg and Rudnick, 2012). In the
context of the oceanic ridge origin, a high degree of melting beneath mid-ocean ridges produces
not only highly depleted mantle residue but also thick oceanic crust, which should also be
incorporated into CLM and eclogitized under pressure. The presence of eclogite inclusions is
observed in cratonic diamonds with ages younger than 3 Ga (Shirey and Richardson, 2011). One
explanation is that there was no plate tectonics and thus no CLM with an oceanic ridge origin
before 3 Ga, but this explanation may overlook the possibility that the oceanic crust incorporated
into CLM at earlier times was simply lost due to gravitational instability. Numerical modeling by
Percival and Pysklywec (2007) shows that a narrow horizontal slab of eclogite lying between
cratonic crust and depleted peridotite lithosphere could sink rapidly into the asthenosphere on the
order of a few tens of million years. However, their exploration of relevant model parameter
space is limited, and it is difficult to draw general conclusions on the fate of oceanic crust in
CLM.

In this study, we address the mass imbalance problem in an alternative setting, where

parts of oceanic lithosphere are broken off during subduction and then imbricated below the
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continent to form CLM (Fig. 1A). This scenario follows closely what has been suggested from
studies of mantle xenoliths and cratonic diamonds (Pearson and Wittig, 2008; Stachel and Harris,
2008). Without loss of much generality, we simplify this imbrication scenario to a uniform
vertical stacking model (Fig. 1B). Negative buoyancy due to a density difference between the
eclogitized oceanic crust and the surrounding lithospheric mantle will result in the descent of the
oceanic crust, which is regulated by viscous drag from the surrounding mantle. To evaluate the
magnitude of viscous drag, we first estimate the temporal evolution of continental geotherm to
constrain the viscosity profile of lithospheric mantle at different ages. Then we calculate the
descent velocity of oceanic crust, from which the time needed for the oceanic crust to escape
from the continental lithosphere can be obtained as a function of its age of incorporation. Finally,
we discuss the impact of this crust removal mechanism for cratonic diamonds and their
inclusions as well as its implications for the onset of plate tectonics during Earth history.
METHOD AND RESULTS
Temperature

The viscosity profile of mantle material depends strongly on pressure and temperature.
Pressure is straightforward to estimate and remains relatively constant over time. The
temperature of oceanic lithosphere imbricated to CLM is expected to equilibrate with the
continental geotherm within a diffusion time scale of hundred million years (i.e., the same time
scale to grow the oceanic lithosphere by conductive cooling). Thus, the evolution of continental
geotherm governs how the viscosity profile of CLM would change with time. We solve the

following 1-D heat conduction equation (Jaupart and Mareschal, 2015),

AT = Q). (1)
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where A(T) is temperature-dependent thermal conductivity and Q(z) is depth-dependent heat
flow, with temperature boundary conditions at surface and at 250 km depth. Following the
approach of Chu and Korenaga (2012), the surface temperature is fixed at 25 °C, and the bottom
temperature is set according to mantle potential temperature with an adiabatic gradient of
0.5 °C/km. The potential temperature increases with age and peaks at around 3 Ga according to
geodynamical calculations (Korenaga, 2008) and petrological observations (Herzberg et al.,
2010). Temperature-dependent thermal conductivities for the crust and the mantle are adopted
from Whittington et al. (2009) and McKenzie et al. (2005), respectively. The Moho is fixed at 40
km. We use the average present-day heat production of 0.5 uW/m? for the crust and 0.028
uW/m? for the lithospheric mantle and adopt a three-layer crust model where the shallowest layer
contributes to 60% of crustal heat production (Rudnick et al., 1998). We then calculate heat
production in the past based on the decay constants of radiogenic isotopes and obtain the
temporal evolution of continental geotherm (Fig. 2A). Our geotherms are consistent with the
geothermometry of cratonic diamonds (Fig. S1). Model parameters for the geotherm calculation
as well as the viscosity calculation described next are fully described in the supplementary
information.
Viscosity

The rheology of the upper mantle is dominated by that of olivine, because olivine is the
weakest and also the most abundant phase in the upper mantle (Karato and Wu, 1993). We

calculate viscosity profiles based on both the diffusion creep of olivine aggregates,

E+PV

Naigr = A1 d? exp (50) , 2)

and the dislocation creep,

E+PV

Nais = A~ o1 exp (520, 3)



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

where d, g, P, T, and R are grain size, stress, pressure, temperature, and the gas constant,
respectively. We adopt the pre-exponential constants A, the grain size exponent p, the stress
exponent n, and the activation energy E from the model OL-DB: of Jain et al. (2019), which
corresponds to dry conditions, because the surrounding mantle in this case is highly depleted and
thus expected to be dry. For grain size d, a typical mantle xenolith value of 5 mm is used (Ave
Lallemant et al., 1980). The activation volume V is the most uncertain flow-law parameter,
which is not estimated by the global inversion of Jain et al. (2019). As laboratory-based
estimates so far vary from 2.5 cm?/mol to 27 cm?/mol under dry conditions (Hirth and Kohlstedt,
2003; Durham et al., 2009; Dixon and Durham, 2018), the activation volumes of 10, 20, and 30
cm?’/mol are tested in this study.

The stress o exerted by dense oceanic crust on the surrounding mantle (Fig. 1B) may be

expressed as

o = Apgw, (4)
where Ap is the density difference between oceanic crust and lithospheric mantle, g is
gravitational acceleration, and w is the thickness of oceanic crust. The density difference is ~200
kg/m?, based on the bulk density of eclogitic crust (Aoki and Takahashi, 2004). The thickness of
oceanic crust depends on the degree of melting beneath mid-ocean ridges and is thus time
dependent. Using the mantle melting model described in Korenaga (2006), we calculate the
degree of melting and the thickness of oceanic crust from mantle potential temperature. For the
present-day case, ~7 km-thick oceanic crust produces stress of ~7 MPa, and dislocation creep

results in a much lower viscosity than diffusion creep. The oceanic crust in the past would be

thicker and produce higher stress, and dislocation creep remains the dominant deformation
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mechanism in our model. The temporal evolution of viscosity profile in the surrounding mantle
is thus calculated with dislocation creep (Fig. 2B).
Descent Velocity

As viscosity changes by several orders of magnitude across the continental lithosphere,
different parts of oceanic crust descend at different speeds, with deeper parts sinking faster. Such
differential velocity, when combined with the nonlinear rheology of eclogite, would lead to
necking instability (e.g., Zuber and Parmentier, 1986; see also Fig. S2). We thus divide the
oceanic crust into multiple segments with height h, and the overall viscous drag force applied on
each segment is represented by the drag force at midpoint, as schematically shown in Fig. 1B.
The descent of each segment can be modeled as Stokes’ flow with some modifications. We
estimate the viscous drag force using the formula for a long slender body (Happel and Brenner,

1983) as

_ 4mtnvL
T In(L/r)+0.5°

()

Fq
where 7 is the viscosity, v is the terminal velocity, and L is the overall length scale of the

subduction zone, for which 2500 km, a representative value for intermediate size subduction

zone (Schellart et al., 2007), is used. The cross-sectional radius r is calculated by

where h is the segment height and w is the thickness of the oceanic crust. By equating the
viscous drag with the negative buoyancy,
Fy = ApghwL, (7)

the terminal velocity of the segment may be expressed as

v= @Apghw. (8)

4mtn
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The temporal evolution of descent velocity at different depths is shown in Fig. 2C, with a default
segment height h of 20 km. The dependence of velocity on h is sublinear, so different choices of
h in a reasonable range have limited influence (Fig. S3).

Escape time

Descent velocity increases with depth but, owing to the nature of secular cooling,
decreases as time proceeds, which results in two contrasting fates of oceanic crust embedded in
CLM, as schematically drawn in Fig. 2C. If the oceanic crust was incorporated into CLM at early
times, it would start to descend with a high velocity, and it could quickly descend into deeper
regions gaining even higher velocity, which is a positive feedback. As a result, an early
incorporated oceanic crust could rapidly escape into the asthenosphere. On the other hand, if the
oceanic crust was incorporated into CLM relatively late, the initial velocity would be small,
preventing it from descending into deeper regions quickly, and as time proceeds, the descent
velocity would become even smaller, which is a negative feedback. As a result, a late
incorporated oceanic crust would eventually be stuck in the lithosphere and thus preserved.

Fig. 3 shows the escape time of oceanic crust as a function of its incorporation age, i.e.,
when imbricated oceanic lithosphere is equilibrated with the cratonic geotherm. The escape time
of oceanic crust is the time needed for its topmost segment to escape from CLM by descending
into the asthenosphere, as shown in Fig. S4. Considering that the thickness of the preexisting
subcontinental mantle is uncertain, the starting depth of the topmost crustal segment is varied, in
addition to the activation volume of dislocation creep and the segment height. The effect of
varying these model parameters is shown by different curves in Fig. 3; in all cases, a sharp
transition from early positive feedback (short escape time) to late negative feedback (long escape

time) can be seen. Immediately following the sharp transition, these curves intersect with a cutoff
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line at which the incorporation age of oceanic crust equals the escape time. For example, the
reference curve intersects the cutoff line at ~2.2 Ga. This means that under the conditions
assumed in the reference case, the oceanic crust incorporated into CLM at ~2.2 Ga would need
~2.2 Gyr to escape. Therefore, the oceanic crust incorporated before this age has already escaped
into the asthenosphere, whereas the oceanic crust incorporated after this age is still preserved in
CLM. Such an age is referred to as the transition age hereafter.
DISCUSSION

We have presented a simple geodynamic model for the removal of oceanic crust from
CLM. The simplicity has allowed us to explore the relevant parameter space and understand the
varying nature of this process through Earth history. The temperature near the bottom of CLM is
mostly controlled by the secular change of mantle temperature, which gradually increases before
3 Ga and decreases after 3 Ga with rates around 50-100 K/Ga (Herzberg et al., 2010). On the
other hand, the temperature at shallower regions is more affected by radiogenic heat production
in the continental crust, which decreases monotonically as time proceeds. As shown in Fig. 2A,
the temporal evolution of continental geotherm is a gradual process, and the Moho temperature
drops by less than 300 K in the span of 3.5 Gyr. However, viscosity increases exponentially with
decreasing temperature, and the descent velocity of oceanic crust decreases drastically as time
proceeds. This strong dependence on temperature results in a sharp contrast between the removal
of early incorporated oceanic crust and the preservation of late incorporated oceanic crust.

The fact that the gradual temporal evolution of geotherm can cause a sudden change in
the fate of embedded oceanic crust provides a plausible explanation to the mass imbalance
problem involved in the oceanic ridge origin hypothesis of CLM. It also underscores the

significance of preservation bias in the geological record (Korenaga, 2018). For the range of
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parameters explored in this study, the transition age varies from ~1.5 Ga to ~3 Ga. The transition
age can be quite different depending on the set of parameters used, but the sharpness of this
transition is likely to persist (Fig. 3). Whenever the transition age is, it could introduce a sudden
discontinuity in some observables instead of a gradual evolution. Shirey and Richardson (2011),
for example, suggest that the Wilson cycle did not start until 3 Ga because eclogitic diamond
older than 3 Ga is not observed. However, according to our results, the absence of older eclogitic
diamond may instead reflect the complete removal of early diamondiferous eclogitic crust from
CLM. Similarly, the absence of mass-independently fractionated sulfur isotopes in 3.5 Ga
diamonds (Smit et al., 2019) does not necessarily mean that ancient CLM was not constructed by
subduction related processes. If sediments on top of oceanic crust, which are an important carrier
of the sulfur signal, are also incorporated into CLM, they are likely to be removed by the sinking
of dense eclogitized crust, which must have dragged part of the surrounding materials. There are
a number of proxies for the operation of plate tectonics in the deep time (e.g. Korenaga, 2013),
and the possibility of preservation bias becomes particularly important when evaluating the
strength of a given proxy.

The causal relationship between the gradual change of geotherm and the sudden change
of oceanic crust preservation is an enlightening example showing that the continuous evolution
of Earth and its physical states can sometimes result in discontinuous observations. Therefore,
careful considerations are warranted before extrapolating a discontinuity in observables to a
significant watershed in the history of Earth.
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FIGURE CAPTIONS

Figure 1. A: The schematic diagram showing the oceanic origin of CLM, the scenario assumed
in this study, based on the models of Helmstaedt and Schulze (1989) and Stachel and Harris
(2008). Only features that are essential to our model are shown here. B: The schematic diagram
illustrating our simplified model setting with oceanic crust embedded in vertically stacked

oceanic lithospheric mantle. F; is negative buoyancy, and Fy is viscous drag force, where o is the

stress acting on the surrounding mantle by the descending crust with thickness w. The white

rectangle with height h represents the segment used to estimate Stokes flow velocity.

Figure 2. A: Temporal evolution of continental geotherm. B: Temporal evolution of viscosity
profile calculated based on temperature shown in A, with dislocation creep and the activation
volume of 20 cm?/mol. C: Temporal evolution of descent velocity calculated based on viscosity
shown in B, with a segment height of 20 km. Two contrasting fates of oceanic crust are also

shown schematically.
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Figure 3. Escape time of oceanic crust as a function of its incorporation age, with a range of
parameters tested. Thick solid curve is the reference case, with an activation volume V of 20
cm?®/mol for the dislocation creep regime, a segment height h of 20 km, and a starting depth z, of
100 km. Red and blue solid curves are calculated by changing activation volume only. Similarly,
dashed curves are for different segment heights, and dotted curves for different starting depths.
Black dashed line is the cutoff line at which the incorporation age of oceanic crust equals the

escape time.
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1. MODEL PARAMETERS
Temperature dependent thermal conductivities
Crust (Whittington et al., 2009):

199.5+0.0857 «T —5%10°* T2 (567.3+«T~1 —0.062)
*
0.21178 106

k(T < 846K) = 2700

229324+ 0.0323+«T —479%107%*T? (0.732—1.35%10"*«T)
*
0.22178 106

k(T > 846K) = 2700

Mantle (McKenzie et al., 2005):

5.3

1753 % 1072 — 1.0365 * 104 + T + 2.2451 + 10~7 * T2
1400015+ (T —273) - * wh i -

k(T) =

—3.4071 %1071 % T3



Radiogenic heat production in cratons (calculated based on Rudnick et al., 1998)

By 238U 22Th WK Present Heat Production
(ppm) | (ppm) | (ppm) | (ppm) (LW m-3)
Bulk continental crust | 4.9%10°3 0.70 3.0 1.2 0.51
Lithospheric mantle 2.6%¥10* | 0.037 0.14 0.043 0.028

The continental crust is divided into upper, middle, and lower one thirds, with 60%, 34%, and

6% of total crust heat production, respectively.

Dislocation creep constants (Jain et al., 2019)

Model OL-DB: for dry diffusion and dry dislocation is used.

For diffusion, p = 2.11 + 0.15,E = 370 + 15 kJ/mol, A = 107-86%0-15

For dislocation, n = 3.64 + 0.99,E = 424 + 23 kJ/mol, A = 10%10+0:20

The mean value is used for each parameter. Preexponential factors A listed above are calibrated

at 1523 K and 0.3 GPa with activation volume V = 0. We recalibrated the preexponential factor

for every activation volume tested in this study as follows:

Aagiffusion Agistocation
V=10 cm? 10778 10220
V =20cm? 10759 10231
V = 30cm3 10799 10241




2. SUPPORTING FIGURES
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Figure S1. Calculated current, 1 Ga, 2 Ga, and 3 Ga geotherms are plotted with current and 3 Ga

adiabat lines. Dashed rectangle represents the constraints from the geothermometry of cratonic

diamonds, 1174 + 99 °C at 55 + 8 kbar (Stachel and Harris, 2008).
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Figure S2. The ratio of the time scale for a segment to descend over the time scale for the
growth of necking instability is plotted as a function of segment height h. The descent time scale

is based on eq. (8) in the main text. The time scale for necking instability is estimated as t =
((n —1) = é)_l based on eq. (6) in Zuber and Parmentier (1986). € is the strain rate generated by
differential velocity, and n is the stress exponent of the material, where we use n = 3.5 for

eclogite (Zhang and Green, 2007). Necking instability grows exponentially from infinitesimal

perturbations, and segmentation would take place when the ratio >> 1.
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Figure S3. Descent velocities calculated with a range of segment heights are normalized
regarding to the result of 20 km height, with other parameters fixed at L = 2500 km, w = 7 km,

n = 2x103° N'm, and Ap = 200 g/cm’.



70

130 . %
€ T S
1
£ i ' l
< 160 ! | :
o | ! 1
g o
1 1
_ —_ 1
190 |—t= 3.5 Ga, 20—80 km : : :
- - t,=3.5 Ga, z;=120 km ! i X
_ - 1 ! 1
—t= 3.0 Ga, 20—80 km : : :
220 H- - t0= 3.0 Ga, Zo=120 km | : |
—t,= 2.5 Ga, z,=80 km : : :
1 1
-~ 1,=2.5Ga, ;=120 k : ! |
250. 1 ul METEEETIT L vl L | L aul L m L u L u Ll
10° 102 10* 10° 108 1010

Time elapsed (yr)
Figure S4. The depth of oceanic crust fragments with different incorporation ages and starting
depths is plotted as a function of the time elapsed after incorporated into CLM. An activation
volume V of 20 cm?/mol for the dislocation creep regime and a segment height h of 20 km are
used for this plot. Each of the curves in this plot corresponds to a point in Figure 3, and the time

elapsed until the curst fragments descend to 250 km is the escape time shown in Figure 3.
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