

1 Argon constraints on the early growth of felsic continental crust 2

3 Meng Guo^{1*}, Jun Korenaga¹
4

5 ¹Department of Geology and Geophysics, Yale University, New Haven, CT, USA.
6

7 *Correspondence: meng.guo@yale.edu
8

9 Abstract

10
11 The continental crust is a major geochemical reservoir, the evolution of which has shaped
12 the surface environment of Earth. In this study, we present a new model of coupled crust-mantle-
13 atmosphere evolution to constrain the growth of continental crust with atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$. Our
14 model is the first to combine argon degassing with the thermal evolution of Earth in a self-
15 consistent manner and to incorporate the effect of crustal recycling and reworking using the
16 distributions of crustal formation and surface ages. Our results suggest that the history of argon
17 degassing favors rapid crustal growth during the early Earth. The mass of continental crust, highly
18 enriched in potassium, is estimated to have already reached >80% of the present-day level during
19 the early Archean. The presence of such potassium-rich, likely felsic, crust has important
20 implications for tectonics, surface environment, and the regime of mantle convection in the early
21 Earth.

22
23 One sentence summary: The degassing history of argon favors the rapid growth of felsic
24 continental crust in the early Earth.

25
26
27

28 **MAIN TEXT**

29 **Introduction**

30 The continental crust covers ~40 % of Earth's surface and accounts for ~80 % of the total
31 volume of Earth's crust. Its relatively low density and great thickness allow its surface to be
32 exposed above sea level, providing a unique environment for life. The evolution of continental
33 crust is directly linked with a number of important issues in Earth sciences, such as the origin of
34 plate tectonics (1), the history of mantle degassing (2), and the distribution of heat producing
35 elements within the solid Earth (3). During crustal formation, incompatible elements in the parental
36 mantle, which include rare earth elements and heat-producing elements such as K, U, and Th, are
37 preferentially partitioned to the crust, and noble gases are degassed to the atmosphere. In addition,
38 crustal recycling continuously returns incompatible elements to the mantle, and along with crustal
39 reworking, they redistribute these elements among silicate reservoirs. Consequently, even though
40 the continental crust comprises only ~0.5 % of the mass of the bulk silicate Earth, it is a major
41 geochemical reservoir, whose composition places significant constraints on the chemical budget
42 of other terrestrial reservoirs. Thus, understanding how the mass of continental crust and its
43 composition evolve helps unravel the workings of the Earth system as a whole.

44 A number of Earth scientists have tried to constrain crust-mantle evolution (e.g., 4-8).
45 Whereas the existing models of continental growth exhibit great diversity, it has recently been
46 shown that such diversity is mostly superficial (9). Following the classification scheme of
47 Korenaga (9), we can group them into three categories: crust-based, mantle-based, and others.
48 Crust-based models are estimates on the present-day distribution of the formation age of
49 continental crust (e.g., 5, 10, 11). They do not contain information of the crust that has been
50 recycled into the mantle, thereby serving as the lower bound on net crustal growth. Mantle-based

51 models aim at the net growth of continental crust, by utilizing the complementary nature of the
52 depleted mantle and the crust (e.g., 7, 8). Because of crustal recycling, the appearance of these two
53 types of models can be very different, but this does not necessarily indicate inconsistency. In fact,
54 the latest crust-based model (11) and the latest mantle-based model (8) are in agreement with each
55 other, once the effect of recycling is taken into account.

56 In this study, we aim to constrain continental evolution using the history of argon
57 degassing. This approach belongs to the third category of crustal growth models (e.g., 2, 12),
58 because it aims at net growth of continental crust using less direct, albeit quantitative, constraints
59 than the mantle-based approach. Nevertheless, using the degassing history of Earth allows us to
60 understand crustal growth in the broader framework of the Earth system. Inert noble gases residing
61 in the atmosphere are an integrated result of degassing from the Earth's interior, and as such, they
62 can potentially provide important insights into the evolution of terrestrial reservoirs (e.g., 13). The
63 relation between crustal growth and argon degassing has been explored most recently by Pujol et
64 al. (2); they provided estimates on the $^{40}\text{Ar}/^{36}\text{Ar}$ of the Archean atmosphere derived from
65 measurements of Archean hydrothermal quartz and used the box model of Hamano and Ozima
66 (14) to infer crustal growth. Given the possibility of radiogenic ^{40}Ar added from the sample, the
67 estimates provided by Pujol et al. (2) are better to be seen as an upper bound on the $^{40}\text{Ar}/^{36}\text{Ar}$ of
68 the Archean atmosphere. Even with this limitation, their estimates still present a new exciting
69 opportunity for this field, because degassing models have long suffered from the lack of
70 observational constraints on the ancient atmosphere.

71 However, as in a number of previous studies, Pujol et al. (2) used directly the net growth
72 of continental crust in their model. Such simplistic treatment of continental growth does not
73 acknowledge that net growth is a product of a dynamic balance between new crust generation and

74 crustal recycling, and as a result, the effect of crustal growth on argon degassing is severely
75 underestimated in their study. Also, the other aspects of their model, such as the timing of sudden
76 degassing and the mode of thermal evolution, are difficult to justify. For example, a sudden
77 degassing event, which plays an important role in the early phase of argon degassing, represents
78 the collective effect of giant impacts, and its timing corresponds to the Moon-forming giant impact.
79 While the details of giant impacts remain debated, all of the solutions of Pujol et al. (2) begin with
80 an atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$ of 50 at 170 Myr after the beginning of solar system. With an earlier
81 timing of the last giant impact, which is more consistent with recent estimates on the age of the
82 Moon (e.g., 15), the sudden degassing event cannot effectively elevate the atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$
83 as high as 50. Similarly, their assumption on the history of mantle degassing, which is inherited
84 from the model of Hamano and Ozima (14), is grossly outdated, given the recent development on
85 the thermal evolution of Earth (e.g., 1, 9).

86 In light of the above, we have built a more comprehensive model of argon degassing to
87 better understand its constraints on crustal growth. Our model is the first to investigate the full
88 effects of crustal evolution, including both crustal recycling and reworking, on the degassing
89 history of Earth. Here, the term ‘crustal recycling’ is used to denote the loss of continental crust to
90 the mantle through subduction and delamination, whereas the term ‘crustal reworking’ refer to the
91 processes that change isotopic compositions and reset the apparent age of the preexisting crust
92 (e.g., erosion, sedimentation, and partial melting). Crustal recycling affects both the continental
93 crust and the mantle, while crustal reworking takes place within the continental crust. Also, the
94 net growth of continental crust is defined to be the evolution of continental mass present on the
95 Earth’s surface, i.e., with the effect of crustal recycling already taken into account. Our model also
96 incorporates geophysical and geochemical constraints on the thermal evolution of Earth and

97 utilizes several robust geological observations to depict a coherent story of continental evolution.
98 Most previous crustal growth models are based on one kind of observation from either
99 geochemical, geophysical, or petrological aspect. However, these observations provide different
100 and complementary constraints on crust formation. In our new model, we use the $^{40}\text{Ar}/^{36}\text{Ar}$ of the
101 present-day atmosphere (16) as well as the Archean atmosphere (2) to constrain argon degassing,
102 the distributions of formation age (11) and surface age (17) of continental crust to constrain the
103 extent of crustal recycling and reworking, and Archean and Proterozoic mantle potential
104 temperatures (18) to constrain the thermal history of Earth. In what follows, we first present a brief
105 description of our modeling strategy, then summarize model results, and discuss how the history
106 of argon degassing constrains crustal evolution. The details of our box modeling are given in the
107 Methods section.

108

109 **Model Formulation and Results**

110 We have built a box model to simulate the degassing history of argon, using the following
111 three terrestrial reservoirs: the mantle, the continental crust, and the atmosphere. As in traditional
112 degassing models, the oceanic crust is not considered as a major reservoir in our model because of
113 its relatively short residence time. However, degassing caused by oceanic crust formation is
114 tracked throughout Earth history and is part of the total rate of mantle degassing. Among the three
115 reservoirs, the mantle degasses argon into the atmosphere through magmatism, and the crust does
116 so through crustal recycling and reworking. Potassium-40, which decays to argon-40, is transferred
117 to the continental crust from the mantle during partial melting, and part of it is recycled back into
118 the mantle through subduction. To understand how the model is constrained by different
119 observations, we conduct our modeling in three stages, first with crustal evolution only, then with

120 thermal evolution, and finally with the history of argon degassing. We choose to use simple Monte
121 Carlo sampling for all three stages of our modeling. By comparing the a posteriori distributions of
122 model parameters with their a priori distribution, this simple random sampling allows us to better
123 quantify how each stage constrains crustal evolution. A total of 16 independent variables (Table 1)
124 are used to control the details of these three stages, and 6 dependent variables (Table 2) are used
125 to ensure internal consistency between the thermal and chemical evolution of Earth. Following
126 Rosas and Korenaga (8), crustal evolution is parameterized using the onset of crustal growth (t_s),
127 the initial and present-day crustal recycling rates (R_s and R_p), and the decay constants of crustal
128 recycling and growth rates (κ_r and κ_g). The extent of crustal reworking is controlled by the
129 reworking factor (f_{rw}), which is the fraction of the initial reworking rate with respect to the initial
130 recycling rate. A wide range of crustal evolution can be modeled by varying these six parameters,
131 and it is relatively easy to find various combinations of those parameters that can satisfy the
132 observed crustal formation and surface age distributions. Even with simple Monte Carlo sampling,
133 the sampling efficiency is about 10 %. Next, we couple the accepted models of crustal evolution
134 with different models for the thermal evolution of Earth, by taking into account the uncertainties
135 of heat productions and heat fluxes of terrestrial reservoirs. Because these uncertainties are
136 relatively small, it is also easy to find adequate thermal budgets to satisfy the history of mantle
137 cooling during the Archean and Proterozoic; the sampling efficiency at the second stage is as high
138 as about 50 %. Lastly, we couple the successful combinations of crustal evolution and thermal
139 evolution with different scenarios of argon degassing, by testing the impact of early sudden
140 degassing as well as incomplete degassing during mantle magmatism. Successful solutions at the
141 third stage are chosen on the basis of the argon isotopic abundances of the present-day atmosphere
142 and $^{40}\text{Ar}/^{36}\text{Ar}$ in the Archean atmosphere. This stage is most time-consuming, and from 8×10^6

143 iterations of Monte Carlo sampling, we have collected a total of $\sim 3 \times 10^3$ successful solutions that
144 exhibit good agreements with all of the observational constraints (Fig. 1).

145 The a posteriori distributions of the parameters R_s , R_p , t_s , κ_r , κ_g , and f_{rw} characterize
146 important features of crustal evolution models selected at different stages (Fig. 2). Based on our
147 previous work (8), R_s and R_p have a priori ranges of 0 to 10×10^{22} kg Gyr $^{-1}$ and 0 to 2×10^{22} kg
148 Gyr $^{-1}$, respectively, and κ_r is varied from -3 to 3 Gyr $^{-1}$ to cover from convex to concave evolution
149 patterns for crustal recycling, whereas κ_g is varied from -1 to 30 Gyr $^{-1}$ to cover from late-stage to
150 instantaneous crustal growth. The onset time t_s is varied from 0.057 to 0.567 Gyr, i.e., from the
151 likely timing of the Moon-forming giant impact (15) to the end of Hadean. The temporal evolution
152 of crustal reworking is assumed to follow that of crustal recycling, and different reworking rates
153 are tested by varying f_{rw} within the range of 0.1 to 0.8. Compared to stage three, stages one and
154 two do not provide tight constraints on crustal evolution; most parameters exhibit nearly uniform
155 distributions (Figs. 2D to 2F), with a slight preference to low recycling rates (Figs. 2A to 2C).
156 However, all successful solutions at stage three have R_s larger than 2.5×10^{22} kg Gyr $^{-1}$ (Fig. 2A),
157 R_p smaller than 9.5×10^{21} kg Gyr $^{-1}$ (Fig. 2B), and κ_r larger than 0.2 Gyr $^{-1}$ (Fig. 2C), favoring crustal
158 evolution with intense recycling at the beginning followed by rapid decrease. The rate of crustal
159 reworking is similarly high as that of crustal recycling, as indicated by the distribution of f_{rw} (Fig.
160 2F). Both recycling and reworking are responsible for vigorous crustal degassing in the early Earth,
161 and consequently, the rise of atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$ in the Archean (Fig. 1A). Net crustal growth
162 models are characterized by κ_g , and $\sim 80\%$ of the successful solutions have κ_g larger than 3 Gyr $^{-1}$,
163 i.e., rapid crustal growth in the early Earth (Fig. 2D). Such rapid crustal generation contributes to
164 elevating the atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$ to ~ 100 at the beginning of the Archean, which is important
165 for matching the Archean constraints (Fig. 1A). The distribution of t_s is rather uniform with some

166 preference to later onset (Fig. 2E), which gives time for ^{40}K to decay and stock terrestrial
167 inventories of ^{40}Ar . The evident contrast between the distributions from stage three and those from
168 previous stages indicates that degassing history is sensitive to different models of crustal formation
169 and thus can place useful constraints on continental growth. For the a posteriori distributions of
170 other model parameters, see Fig. S1.

171 The preferred models of crustal evolution, as determined by the parameters mentioned
172 above, are visualized in Fig. 3. About 80% of the net crustal growth display rapid formation during
173 the early Archean, with the crustal mass being comparable to the present-day value (Fig. 3A). Such
174 early formation challenges the popular notion of less than 30% of continental crust in the Archean
175 (2, 7, 12), but it is essential to match the atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$ in the Archean (Fig. 1A). All
176 successful solutions exhibit high crustal generation during the early Earth, which requires vigorous
177 mantle melting and results in significant mantle degassing (Fig. 3B). The rapid crustal growth
178 generates a substantial amount of Hadean and Archean continental crust, but as constrained by the
179 distributions of crustal formation and surface ages, intense early recycling and reworking are also
180 necessary to erase and reset the records of the old crust (Figs. 3C & 3D), with only $\sim 1\%$ and
181 $\sim 10\%$, respectively, preserved at present-day from the Hadean and early Archean (Figs. 1C &
182 1D). As a consequence, vigorous crustal degassing during the early Archean is achieved through
183 recycling and reworking, and along with mantle degassing, they have elevated the atmospheric
184 $^{40}\text{Ar}/^{36}\text{Ar}$ (Fig. 1A).

185 In order to understand how different degassing processes contribute to the atmospheric
186 argon abundance, their instantaneous and cumulative contributions are compared in Fig. 4. In our
187 model, the modern degassing rate of ^{40}Ar from the solid Earth ranges from 7.1×10^7 to 3.6×10^8
188 mol/yr, which is broadly consistent with the estimate of Bender et al. (19) ($1.1 \pm 0.1 \times 10^8$ mol/yr).

189 It is noted that our model can reproduce an acceptable present-day degassing rate, without using
190 such a constraint. The mantle degasses argon at different rates while generating continental crust
191 (K_{mc}), oceanic crust (K_{mo}), and hotspot islands (K_{mp}). Among them, K_{mc} is calculated from the rate
192 of crustal generation, with the consideration of continental crust being the secondary product of
193 oceanic crust (Equations 4 and 5), while K_{mo} and K_{mp} are inferred from the thermal history of the
194 Earth, with the possibility of incomplete degassing taken into consideration (Table 2). With K_{mc}
195 being the largest contributor to the atmospheric ^{40}Ar through Earth history (Fig. 4A),
196 approximately 50% of the present-day abundance originates in the generation of continental crust
197 (Fig. 4B), which demonstrates that continental growth greatly affects the degassing history of
198 Earth. The continental crust can release a significant amount of ^{40}Ar in the early Archean through
199 recycling (K_{rc}) and reworking (K_{rw}) (Fig. 4A), thanks to abundant parent isotope ^{40}K in the crust.
200 Whereas the major element composition of continental crust is not directly considered in our
201 modeling, the crust that is as enriched in potassium as the present-day crust should be closer to
202 felsic than mafic. A large quantity of such felsic-like crust in the early Earth (e.g., 20) conflicts
203 with the prevailing notion of little felsic crust in the early Archean (e.g., 3, 12, 21), requiring a
204 careful rethinking of tectonics, surface environment, and the style of mantle convection during the
205 early Earth.

206
207 **Discussion**

208 Our results show that the degassing history of argon is sufficiently sensitive to different
209 modes of net crustal growth, and all of our successful solutions are consistently characterized by
210 rapid crustal generation with intense recycling and reworking during the early Earth (Fig. 3). The
211 preference for such rapid crustal evolution is largely guided by the high $^{40}\text{Ar}/^{36}\text{Ar}$ of the Archean
212 atmosphere. In our model, the potassium content in the continental crust is first tracked backward

213 in time using its decay constant and present-day concentration, and then scaled to be proportional
214 to the growth of continental crust. As a consequence, the early crust is assumed to be as enriched
215 in potassium as the present-day crust. The considerable contribution of crustal degassing to the
216 Archean atmospheric ^{40}Ar (Fig. 4) indicates that such a large amount of potassium-enriched, thus
217 possibly felsic crust during the early Earth was essential. The substantial amount of potassium-
218 enriched crust does not necessarily indicate that the continental crust like today already existed in
219 early Archean, but the equivalent amount of potassium in the crust is required to explain the
220 atmospheric ^{40}Ar . In other words, our model constrains the evolution of crustal mass based on the
221 assumption that the crust is as enriched in potassium as the present-day crust through Earth history;
222 if the early continental crust is not as felsic as assumed (e.g., 3), our estimate on net crustal growth
223 should serve as a lower bound. Because early crustal growth is already very rapid in our model,
224 however, we suspect that the true crustal growth would not significantly deviate from this lower
225 bound. The secular evolution of crustal composition has been studied with a variety of approaches
226 using the geochemistry of sedimentary and igneous rocks, the weighted average of stratigraphic
227 successions, crustal xenoliths, and seismic crustal structure (e.g., 3, 22, 23, 24), but the
228 composition of early continental crust still remains controversial (e.g., 12, 20, 21). Our study
229 provides a new constraint from a different perspective.

230 One important feature of our model is the simultaneous application of multiple
231 observational constraints to ensure the internal consistency among the thermal evolution, crustal
232 evolution, and degassing history of Earth, which also allows us to quantitatively investigate the
233 effects of recycling and reworking on crustal degassing. This feature is one of the important
234 differences between this study and Pujol et al. (2). Instead of mechanistically relating various crust-
235 mantle differentiation processes with mantle degassing, Pujol et al. (2) modeled mantle degassing

236 in an abstract manner, with only one parameter. As one can see from Fig. 4, however, the mantle
237 degasses argon through three types of magmatism, each of which follows a different evolutionary
238 trend. To make matters worse, their modeling of mantle degassing assumes an exponential
239 decrease in the vigor of mantle convection. Recent progress on the thermal evolution of Earth,
240 however, suggests more sluggish mantle convection in the past (e.g., 1, 9). Moreover, Pujol et al.
241 (2) adopted the approach of Hamano and Ozima (14) to model the rate of crustal degassing, which
242 was inferred from the difference between K-Ar mineral ages and Rb-Sr whole rock ages, i.e., they
243 only considered the contribution of reworking to crustal degassing. Without taking into account
244 the effect of crustal recycling, the total crustal contribution to degassing history is underestimated
245 (Fig. 4). With such low crustal degassing, Pujol et al. (2) were able to match the Archean
246 atmospheric constraint only by introducing a late onset of sudden degassing, which effectively
247 elevated their atmospheric $^{40}\text{Ar}/^{36}\text{Ar}$ to 50 (see their Fig. 2a). As mentioned in the Introduction
248 section, sudden degassing at 170 Myr is probably too late to be consistent with what
249 geochronological studies suggest (e.g., 15). Pujol et al. (2) provided an invaluable observational
250 constraint on the ancient atmosphere, but for the aforementioned reasons, we reached different
251 conclusions using the same Archean data.

252 The significant differences between Pujol et al. (2) and this study underline the importance
253 of treating crustal evolution properly in degassing models, though this issue is not widely
254 appreciated. For example, a recent study of mantle xenon isotopes (25) suggests that the deep
255 volatile cycles shifted from a net degassing to a net regassing regime around 2.5 Ga. They used,
256 however, the net growth of continental crust to calculate the mantle degassing rate corresponding
257 to continental growth, which is the same treatment used by Pujol et al. (2). In fact, a recent study
258 on Archean komatiites (26) suggests that the subduction of water was initiated before 3.3 billion

259 years ago, which is more consistent with our modeling results. For these reasons, the degassing
260 models that do not fully acknowledge the effect of continental growth (e.g., 25, 27) deserve to be
261 revisited carefully.

262 As mentioned in the Introduction section, our model of crustal growth belongs to the third
263 category, because it is inferred indirectly from the degassing history of Earth. Nevertheless, this
264 model is in good agreement with the recent mantle-based model by Rosas and Korenaga (8),
265 thereby reinforcing the notion of rapid crustal growth during the Hadean and the early Archean
266 (Fig. 3A and their Fig. 1c). Based on the samarium-neodymium isotope systems, Rosas and
267 Korenaga (8) were able to place a tighter bond on crustal evolution because the mantle-based
268 approach is more direct. Given that potassium is much more incompatible than samarium and
269 neodymium, however, our model can better constrain the compositional evolution of continental
270 crust. Also, as a heavy noble gas, the atmospheric argon keeps an integrated degassing history of
271 the bulk Earth, thus suffering less from preservation issues than mantle-based models, which rely
272 critically on preserved rock samples. Crust-based models are essentially the present-day
273 distribution of crustal formation ages, and with consideration of crustal recycling, both our study
274 and Rosas and Korenaga (8) are in good agreement with the recent crust-based model of Korenaga
275 (11), so the different approaches appear to be converging. The large offset between the rapid
276 crustal growth (Fig. 3A) and the nearly linear distribution of formation ages (Fig. 1C) can be
277 explained by a time-integrated effect of crustal recycling (8). This model of crustal evolution,
278 characterized with rapid crustal growth and efficient crustal recycling in the early Earth, resembles
279 closely what Armstrong suggested almost forty years ago (28).

280 The net growth of continental crust is controlled by a dynamic balance between crustal
281 generation and recycling. The approximately zero net crustal growth after the Hadean, but with

282 non-zero crustal recycling, indicates that new crust must have been continuously formed at the
283 same rate of recycling (Fig. 3). Such persistent crustal formation and destruction through Earth
284 history is consistent with the onset of plate tectonics in the very early Earth (e.g., 29). Here, the
285 term ‘plate tectonics’ is defined in a broad sense, a mode of mantle convection with the continuous,
286 wholesale recycling of surface layer, as opposed to stagnant lid convection. Our result of rapid
287 crustal growth with efficient early recycling suggests vigorous mantle convection in the early
288 Hadean, followed by a gradual decrease to the present-day level. Such decline in crustal generation
289 may be explained by the secular cooling of the mantle (18), because a cooler mantle yields less
290 voluminous melting. The corresponding decrease in crustal recycling may be attributed to an
291 increasing preservation potential of continental crust (9). The positive net water flux from the
292 surface into the mantle, as inferred from deep water cycle and continental freeboard (30), suggests
293 the gradual hydration of the convecting mantle through time, and as a consequence, the continental
294 mantle lithosphere, which remains dry owing to its generation mechanism, becomes stronger with
295 respect to the convecting mantle, making crustal recycling less efficient (1). The mode of mantle
296 convection in the early Earth is still controversial (e.g., 17, 21, 29), and more careful geodynamical
297 work is warranted (31) to discuss whether mantle convection had switched from a different mode
298 to modern plate tectonics under early Earth conditions.

299

300 **Methods**

301 As briefly described in the Model Formulation and Results section, the terrestrial reservoirs
302 considered in our box model are the mantle, the continental crust, and the atmosphere. The mantle
303 degases argon to the atmosphere through mantle magmatism, and the crust does so through crustal
304 recycling and reworking. The potassium is transferred between the mantle and crust during partial

305 melting and subduction. We modeled the crustal evolution first to constrain the mass transfer rates
306 between mantle and crust, then simulated the thermal evolution of Earth to infer the rates of mantle
307 magmatism, and calculated the degassing history of argon using the degassing rates acquired from
308 the above two stages. The model formulation for each stage is described in details below.

309 **Continental crust growth**

310 As mentioned in the Model Formulation and Results section, we follow Rosas and
311 Korenaga (8) for the parameterization of crustal growth and recycling rates:

312
$$M_{cc}(t) = \frac{M_{cc}(t_p)}{1 - e^{-\kappa_g(t_p - t_s)}} (1 - e^{-\kappa_g(t - t_s)}), \quad (1)$$

313
$$K_{rc}(t) = R_s + \frac{R_p - R_s}{1 - e^{-\kappa_r(t_p - t_s)}} (1 - e^{-\kappa_r(t - t_s)}), \quad (2)$$

314
$$\frac{dM_{cc}(t)}{dt} = K_{cc}(t) - K_{rc}(t), \quad (3)$$

315 where $M_{cc}(t)$ is the mass of continental crust at time t . As shown in equation (3), the time derivative
316 of $M_{cc}(t)$ equals to the difference between the crustal generation rate, $K_{cc}(t)$, and the crustal
317 recycling rate, $K_{rc}(t)$. The present-day crustal mass $M_{cc}(t_p)$ is set to be 2.09×10^{22} kg. The term t_s
318 denotes the onset of crustal generation and recycling; R_s and R_p are the rates of crustal recycling at
319 t_s and t_p , respectively; and κ_g and κ_r are the decay constants for K_{cc} and K_{rc} , respectively. A wide
320 variety of crustal growth patterns can be tested in our model by varying these parameters, covering
321 from late growth to nearly instantaneous growth.

322 The crustal generation rate $K_{cc}(t)$ describes how much mass has been added to the crust
323 with time. To calculate the mantle processing rate corresponding to the generation of continental
324 crust, $K_{mc}^{prod}(t)$, we use the complementary nature between the crust and the mantle:

325
$$K_{mc}^{prod}(t) = \frac{K_{cc}(t)N_{40K}^{CC}(t)}{M_{cc}(t)} \frac{M_M(t)}{N_{40K}^M(t)}, \quad (4)$$

326 where $M_M(t)$ is the mass of the mantle at time t , and $N_{40K}^M(t)$ is the number of ^{40}K atoms in the
 327 mantle at time t . Both of them can be inferred from mass balance among the mantle, the continental
 328 crust, and the bulk silicate Earth.

329 However, the continental crust does not result from the single-stage melting of the mantle.
 330 Considering that at least part of continental crust is likely to be produced through the secondary
 331 melting of oceanic crust, treating all of $K_{mc}^{prod}(t)$ as the mantle processed rate to generate
 332 continental crust can overestimate the total mantle processing rate. Following Padhi et al. (32),
 333 therefore, the mantle processing rate solely responsible for the generation of continental crust, K_{mc} ,
 334 is calculated as follows:

335
$$K_{mc}(t) = \max(K_{mc}^{prod}(t) - K_{mo}(t), 0). \quad (5)$$

336 Crustal reworking is likely to be in sync with recycling, as the former is necessary to break
 337 down the crust into subductable sediments, so we set the secular evolution of reworking to be
 338 similar to that of recycling, with a factor of f_{rw} , which varies between 0.1 to 0.8 in our model. The
 339 crustal reworking rate is therefore calculated as:

340
$$K_{rw}(t) = K_{rc}(t)f_{rw}. \quad (6)$$

341 Taking into account that reworking is responsible for the difference between the
 342 distributions of crustal formation and surface ages (11), we choose the acceptable reworking factor
 343 f_{rw} by calculating these distributions and comparing to observational constraints. To do so, we
 344 first follow Rosas and Korenaga (8) to model the formation age distribution of continental crust,

345 $m(t, \tau)$, where t is the time and τ represents the formation age. The summation of the $m(t, \tau)$ over
346 time τ gives the total crustal mass at time t :

347

$$M_{CC}(t) = \int_0^t m(t, \tau) d\tau. \quad (7)$$

348 In our model, the continental crust is considered to be a homogeneous reservoir at all time,
349 so recycling uniformly affects the crustal parts that are formed at different times, i.e., crustal
350 recycling is independent of formation age. The evolution of $m(t, \tau)$ with such age-independent
351 recycling may be expressed as:

352

$$\frac{\partial m(t, \tau)}{\partial t} = K_{mc}(t) \delta(t - \tau) - \frac{K_{rc}(t)}{M_{CC}(t)} m(t, \tau), \quad (8)$$

353 where $\delta(t)$ is the Dirac delta function. The present-day cumulative formation age distribution,
354 $CFD(\tau)$, may then be calculated as:

355

$$CFD(\tau) = \frac{1}{M_{CC}(t_p)} \int_0^\tau m(t_p, \tau') d\tau'. \quad (9)$$

356 Second, we model the cumulative surface age distribution (*CSD*) considering the combined
357 effects of crustal generation, recycling, and reworking to the surface age distribution $s(t, \tau)$ of
358 continental crust. Crustal reworking resets the apparent age of older crust, and since we consider
359 the continental crust as a single reservoir, reworking uniformly affects older crust. That is, the
360 surface age distribution, $s(t, \tau)$, may be calculated as:

361

$$\frac{\partial s(t, \tau)}{\partial t} = K_{mc}(t) \delta(t - \tau) - \frac{K_{rc}(t)}{M_{CC}(t)} s(t, \tau) + K_{rw}(t) \delta(t - \tau)$$

362

$$- \frac{K_{rw}(t)}{M_{CC}(t)} s(t, \tau) (1 - \delta(t - \tau)). \quad (10)$$

363 The present-day cumulative surface age distribution, $CSD(\tau)$, may then be calculated as
364 the present-day surface age distribution integrated over τ :

365
$$CSD(\tau) = \frac{1}{M_{CC}(t_p)} \int_0^\tau s(t_p, \tau') d\tau'. \quad (11)$$

366 **Thermal evolution**

367 The thermal evolution of Earth constrains the mantle processing rates to generate oceanic
368 crust, K_{mo} , and hotspot islands, K_{mp} . First, we calculate K_{mo} considering that the oceanic crust is
369 generated through decompressional melting beneath mid-ocean ridges, so its production rate can
370 be directly linked with the thermal history of Earth. To be more concrete, the mantle processing
371 rate for oceanic crust K_{mo} can be constrained based on plate velocity, V , and the initial depth of
372 mantle melting, Z , as:

373
$$K_{mo}(t) = K_{mo}(t_p) \frac{Z(t) V(t)}{Z(t_p) V(t_p)}, \quad (12)$$

374 where $K_{mo}(t_p)$ is the present-day mantle processing rate at mid-ocean ridges, which is estimated to
375 be $6.7 \times 10^{14} \text{ kg/yr}$ (33).

376 The initial depth of melting $Z(t)$ is controlled by mantle potential temperature, T_p , which
377 can be calculated as (32):

378
$$Z(t) = \frac{T_p(t) - 1150}{g \rho_m (1.2 \times 10^{-7} - (\frac{dT}{dP})_S)}, \quad (13)$$

379 where g is gravitational acceleration (9.8 m/s^2), ρ_m is mantle density (3300 kg/m^3), and $(\frac{dT}{dP})_S$ is
380 the adiabatic gradient in the mantle ($1.54 \times 10^{-8} \text{ K/Pa}$).

381 Then, using the relationship between surface heat flux and plate velocity, the temporal
382 evolution of plate velocity can be calculated as:

383
$$V(t) = V(t_p) \left(\frac{Q(t)}{Q(t_p)} \frac{T_p(t_p)}{T_p(t)} \right)^2, \quad (14)$$

384 where the present-day plate velocity $V(t_p)$ is set to 5 cm/yr (34), and the present-day mantle heat
 385 flux $Q(t_p)$ is calculated as the difference between the present-day total terrestrial heat flux (46 ± 3
 386 TW) (35) and the present-day continental crust heat production, $H_{cc}(t_p)$, as:

387
$$Q(t_p) = (46 + 3\varepsilon_1) - H_{cc}(t_p), \quad (15)$$

388 where ε_1 is a random variable, which can vary between -1 to 1.

389 The present-day continental crust heat production is considered to be (24):

390
$$H_{cc}(t_p) = 7.5 + 2.5\varepsilon_2 \quad (16)$$

391 where ε_2 is another random variable, whose range is between -1 to 1.

392 The evolution of mantle potential temperature, $T_p(t)$, can be tracked backward in time using
 393 the heat production, $H(t)$, the mantle heat flux, $Q(t)$, and the core heat flux, $Q_c(t)$, according to the
 394 following global energy balance (31):

395
$$C_m \frac{dT_p(t)}{dt} = H(t) - Q(t) + Q_c(t), \quad (17)$$

396 where C_m is the heat capacity of the whole mantle (4.97×10^{27} J/K).

397 In our model, we take the present-day core heat flux $Q_c(t_p)$ as a free parameter, which can
 398 vary from 5 to 15 TW. To track the evolution of core heat flux Q_c , we consider Q_c changes linearly
 399 with time:

400
$$Q_c(t) = \Delta Q_c(t_p - t)/t_p + Q_c(t_p), \quad (18)$$

401 where ΔQ_c is the difference between initial and present-day core heat flux, which can vary between
 402 2 to 5 TW (36).

403 To integrate equation (17), we need to express H and Q as functions of time. Following
 404 Korenaga (33), H can be expressed as a function of time using the decay constants and heat

405 production rates of major heat producing elements within Earth (^{238}U , ^{235}U , ^{232}Th , and ^{40}K) as
406 following:

407
$$H(t) = H(t_p) \frac{\sum_{i=1}^4 c_i p_i e^{\lambda_i t}}{\sum_{i=1}^4 c_i p_i} \quad (19)$$

408 where c_i and p_i are the present-day relative concentration and the heat generation rate of the isotope
409 in interest, λ_i are the decay constant, and $H(t_p)$ is the present-day mantle heat production, which is
410 calculated as the total bulk silicate Earth heat production of 16 ± 3 TW (37) minus the present-day
411 continental crust heat production $H_{cc}(t_p)$:

412
$$H(t_p) = (16 + 3\varepsilon_3) - H_{cc}(t_p) \quad (20)$$

413 where ε_3 is a random variable, whose range is between -1 to 1. Because the uncertainties of the
414 terrestrial heat flux $Q(t_p)$, the present-day continental crust heat production $H_{cc}(t_p)$, and the present-
415 day mantle heat production $H(t_p)$ are not related to each other, the three random variables, ε_1 , ε_2 ,
416 and ε_3 vary independently to each other.

417 As for the mantle heat flux Q , we assume it to be constant (36 TW) over the entire Earth
418 history following Korenaga (1). This assumption results in mantle potential temperature T_p rising
419 gradually from the present-day value of 1350 °C to approximately 1700 °C during Earth history.
420 The classical scaling law, which can be expressed as $Q(t) \approx \alpha T_p(t)^\beta$, results in T_p quickly rises
421 and reach to infinity, and such phenomenon is known as the thermal catastrophe. Compared with
422 the classical scaling law, using a constant Q is more comparable with the evolution of the mantle
423 potential temperature (e.g., 18) as well as the geochemical model of Earth's composition. For more
424 details of the two heat flux scaling laws, see Korenaga (1, 33). This validity of relatively constant
425 heat flux becomes uncertain before ~3.5 Ga, as mantle potential temperature in such a deep time
426 is not constrained observationally, and it is probably unrealistic to represent the thermal state of

427 the very early Earth. However, the impact of this early phase of thermal evolution on argon
428 degassing is limited thanks to our parameterization of mantle degassing rates (equation 5).

429 Knowing $Q_c(t)$, $Q(t)$, and $H(t)$, we can integrate equation (17) backward in time to obtain
430 the mantle potential temperature $T_p(t)$ and then calculate the mantle processing rate to generate
431 oceanic crust K_{mo} with equation (12).

432 Second, by assuming a linear relation between the mantle processing rate to generate
433 hotspot islands K_{mp} and the core heat flux Q_c , we calculate K_{mp} as following:

434
$$K_{mp}(t) = K_{mp}(t_p) \frac{Q_c(t)}{Q_c(t_p)}, \quad (21)$$

435 where $K_{mp}(t_p)$ is the present-day rate of plume mass flux, which can be estimated from the present-
436 day plume buoyancy flux, $f_{pb}(t_p)$, as:

437
$$K_{mp}(t_p) = \frac{f_{pb}(t_p)}{\alpha \Delta T}, \quad (22)$$

438 where $f_{pb}(t_p)$ is considered to be 55×10^3 kg/s (38), α is the thermal expansivity ($4 \times 10^{-5} \text{ K}^{-1}$), and
439 ΔT is the temperature anomaly associated with mantle plumes (200 K).

440 **The history of argon degassing**

441 The different modes of degassing are considered before and after a sudden degassing event,
442 which is assumed to have occurred in the early Earth (e.g., 14). The high $^{40}\text{Ar}/^{36}\text{Ar}$ values
443 ($>10,000$) reported for mantle-derived ultramafic rocks suggest a substantial degassing of
444 primordial ^{36}Ar in the early Earth. Such catastrophic degassing is likely to have resulted from the
445 highly energetic phase of planetary accretion. We denote the end of such an intense degassing
446 phase by t_d . At t_d , the mantle loses a fraction of primordial argon, F_d , through sudden degassing to
447 atmosphere, and after t_d , the mantle and the crust lose argon to the atmosphere in a gradual manner,
448 corresponding to continuous crustal formation and destruction through Earth history. Since the

449 detailed information of giant impacts is unknown, the timing of sudden degassing t_d and the
450 degassing fraction F_d are both treated as free parameters in our model, with t_d varies from 0.05 Ga
451 to 0.1 Ga and F_d from 10% to 80%, respectively.

452 From the beginning of the solar system, t_0 , to the time of sudden degassing t_d , the parent
453 isotope ^{40}K in the bulk silicate Earth (BSE) gradually decays through time, whereas the amount of
454 daughter isotope ^{40}Ar in the BSE increases accordingly. Meanwhile, ^{40}Ar and ^{36}Ar in the BSE
455 experience sudden degassing at t_d :

456 In the BSE domain:

457
$$\frac{d}{dt} N_{^{40}\text{K}}^{\text{BSE}}(t) = -\lambda N_{^{40}\text{K}}^{\text{BSE}}(t), \quad (23)$$

458
$$\frac{d}{dt} N_{^{40}\text{Ar}}^{\text{BSE}}(t) = \lambda_e N_{^{40}\text{K}}^{\text{BSE}}(t) - F_d \delta(t - t_d) N_{^{40}\text{Ar}}^{\text{BSE}}(t), \quad (24)$$

459
$$\frac{d}{dt} N_{^{36}\text{Ar}}^{\text{BSE}}(t) = -F_d \delta(t - t_d) N_{^{36}\text{Ar}}^{\text{BSE}}(t); \quad (25)$$

460 In the atmosphere domain (Atm):

461
$$\frac{d}{dt} N_{^{40}\text{Ar}}^{\text{Atm}}(t) = F_d \delta(t - t_d) N_{^{40}\text{Ar}}^{\text{BSE}}(t), \quad (26)$$

462
$$\frac{d}{dt} N_{^{36}\text{Ar}}^{\text{Atm}}(t) = F_d \delta(t - t_d) N_{^{36}\text{Ar}}^{\text{BSE}}(t), \quad (27)$$

463 where λ and λ_e are the total decay constant and branch decay constant of ^{40}K , respectively, and N
464 is the number of atoms of the isotope denoted in the subscript contained in the reservoir denoted
465 in the superscript. For example, the number of ^{40}K in the continental crust (CC) is denoted
466 by $N_{^{40}\text{K}}^{\text{CC}}(t)$, which can also be expressed as:

467
$$N_{^{40}\text{K}}^{\text{CC}}(t) = \frac{c_{^{40}\text{K}}^{\text{CC}}(t) M_{\text{CC}}(t)}{m_{^{40}\text{K}}}, \quad (28)$$

468 where C is the concentration, M is the reservoir mass, and m is the atomic mass of the isotope in
469 interest.

470 From t_d to the present day t_p , argon degassing is modeled as follows. The amount of ^{40}K in
471 the continental crust is tracked backward in time according to its present-day abundance, and then
472 scaled to be proportional to the growth of continental crust. The abundance of ^{40}K in the mantle is
473 calculated from mass balance among the bulk silicate Earth, the mantle, and the continental crust.
474 Argon degassing is considered to take place during mantle magmatism as well as crustal recycling
475 and reworking, with the former parameterized by the mantle processing rates to generate
476 continental crust K_{mc} , oceanic crust K_{mo} , and hotspot islands K_{mp} ; and the latter by the crustal
477 recycling rate K_{rc} and the reworking rate K_{rw} :

478 In the BSE domain:

479
$$\frac{d}{dt} N_{^{40}\text{K}}^{\text{BSE}}(t) = -\lambda N_{^{40}\text{K}}^{\text{BSE}}(t); \quad (29)$$

480 In the continental crust domain (CC):

481
$$N_{^{40}\text{K}}^{\text{CC}}(t) = N_{^{40}\text{K}}^{\text{CC}}(t_p) e^{\lambda t} \frac{M_{\text{CC}}(t)}{M_{\text{CC}}(t_p)}, \quad (30)$$

482
$$\frac{d}{dt} N_{^{40}\text{Ar}}^{\text{CC}}(t) = \lambda_e N_{^{40}\text{K}}^{\text{CC}}(t) - [K_{rw}(t) + K_{rc}(t)] N_{^{40}\text{Ar}}^{\text{CC}}(t), \quad (31)$$

483
$$\frac{d}{dt} N_{^{36}\text{Ar}}^{\text{CC}}(t) = -[K_{rw}(t) + K_{rc}(t)] N_{^{36}\text{Ar}}^{\text{CC}}(t); \quad (32)$$

484 In the mantle domain (M):

485
$$N_{^{40}\text{K}}^{\text{M}}(t) = N_{^{40}\text{K}}^{\text{BSE}}(t) - N_{^{40}\text{K}}^{\text{CC}}(t), \quad (33)$$

486
$$\frac{d}{dt} N_{^{40}\text{Ar}}^{\text{M}}(t) = \lambda_e N_{^{40}\text{K}}^{\text{M}}(t) - K_m(t) N_{^{40}\text{Ar}}^{\text{M}}(t), \quad (34)$$

487
$$\frac{d}{dt} N_{^{36}\text{Ar}}^{\text{M}}(t) = -K_m(t) N_{^{36}\text{Ar}}^{\text{M}}(t); \quad (35)$$

488 In the atmosphere domain:

489 $\frac{d}{dt} N_{40Ar}^{Atm}(t) = K_m(t) N_{40Ar}^M(t) + [K_{rw}(t) + K_{rc}(t)] N_{40Ar}^{CC}(t), \quad (36)$

490 $\frac{d}{dt} N_{36Ar}^M(t) = K_m(t) N_{36Ar}^M(t) + [K_{rw}(t) + K_{rc}(t)] N_{36Ar}^{CC}(t), \quad (37)$

491 where K_m is the combination of K_{mc} and the effective parts of K_{mo} and K_{mp} . Given that argon may
492 not degas completely from basalts erupted in deep water, we consider the possibility of incomplete
493 degassing at mid-ocean ridges (39). We also allow incomplete degassing for hotspot magmatism
494 for three reasons: (1) the plume buoyancy flux estimate of Sleep (38) is subject to large
495 uncertainties (40); (2) flux estimates based on swell topography are likely to be the upper bound
496 of the buoyancy flux (41); and (3) thick lithosphere may hinder some of plume magma to reach
497 the surface. The effective parts of K_{mo} and K_{mp} are modeled by free parameters $f_{eff}^{K_{mo}}$ and $f_{eff}^{K_{mp}}$,
498 which can vary from 50% to 100% and 10% to 100%, respectively. We assume 100% efficiency
499 during all of other degassing processes. The total mantle degassing rate K_m is calculated as follows:

500
$$K_m(t) = K_{mc}(t) + K_{mp}(t) f_{eff}^{K_{mp}} + K_{mo}(t) f_{eff}^{K_{mo}}. \quad (38)$$

501 In the above mass transfer equations, the five mass transfer rates K_{mo} , K_{mc} , K_{mp} , K_{rc} , and
502 K_{rw} are the critical unknowns in our model. Constraining them with crustal growth and thermal
503 evolution assures us to conduct the model in a self-consistent manner.

504 **References and Notes**

505 1. J. Korenaga, Initiation and evolution of plate tectonics on Earth: theories and observations.
506 *Annu. Rev. Earth Planet. Sci.* **41**, 117-151 (2013).

507 2. M. Pujol, B. Marty, R. Burgess, G. Turner, P. Philippot, Argon isotopic composition of
508 Archaean atmosphere probes early Earth geodynamics. *Nature* **498**, 87 (2013).

509 3. S. R. Taylor, S. M. McLennan, *The Continental Crust: Its Composition and Evolution*
510 (Blackwell, Oxford, 1985).

511 4. R. L. Armstrong, Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-
512 continent-growth Earth, *Phil. Tram. R. Soc. Lond. A* **301**, 443-472 (1981).

513 5. B. K. Nelson, D. J. DePaolo, Rapid production of continental crust 1.7 to 1.9 by ago: Nd isotopic
514 evidence from the basement of the North American mid-continent. *Geol. Soc. Am. Bull.* **96**,
515 746-754 (1985).

516 6. M. T. McCulloch, V. C. Bennett, Progressive growth of the Earth's continental crust and
517 depleted mantle: geochemical constraints. *Geochim. Cosmochim. Acta* **58**, 4717-4738
518 (1994).

519 7. I. H. Campbell, Constraints on continental growth models from Nb/U ratios in the 3.5 Ga
520 Barberton and other Archaean basalt-komatiite suites. *Am. J. Sci.* **303**, 319-351 (2003).

521 8. J. C. Rosas, J. Korenaga, Rapid crustal growth and efficient crustal recycling in the early Earth:
522 Implications for Hadean and Archean geodynamics. *Earth Planet. Sci. Lett.* **494**, 42-49
523 (2018).

524 9. J. Korenaga, Crustal evolution and mantle dynamics through Earth history. *Philos. Trans. Royal
525 Soc. A* **376**, 20170408 (2018).

526 10. K. C. Condie, R. C. Aster, Episodic zircon age spectra of orogenic granitoids: the
527 supercontinent connection and continental growth. *Precambrian Res.* **180**, 227-236
528 (2010).

529 11. J. Korenaga, Estimating the formation age distribution of continental crust by unmixing zircon
530 ages. *Earth Planet. Sci. Lett.* **482**, 388-395 (2018).

531 12. S. M. McLennan, S. R. Taylor, Geochemical constraints on the growth of the continental crust.
532 *J. Geol.* **90**, 347-361 (1982).

533 13. D. R. Hilton, D. Porcelli, “Noble gases as mantle tracers” in *Treatise on Geochemistry* **Vol.**
534 **2**, Eds H. D. Holland, K. K. Turekian (2004), pp. 277–318.

535 14. Y. Hamano, M. Ozima, Earth-atmosphere evolution model based on Ar isotopic data. *Adv.*
536 *Earth Planetary Sci.* **3**, 155-171 (1978).

537 15. M. Barboni, P. Bohnke, B. Keller, I. E. Kohl, B. Schoene, E. D. Young, K. D. McKeegan,
538 Early formation of the Moon 4.51 billion years ago. *Sci. Adv.* **3**, e1602365 (2017).

539 16. J. Y. Lee, K. Marti, J. P. Severinghaus, K. Kawamura, H. S. Yoo, J. B. Lee, J. S. Kim, A
540 redetermination of the isotopic abundances of atmospheric Ar. *Geochim. Cosmochim. Acta*
541 **70**, 4507-4512 (2006).

542 17. N. M. W. Roberts, C. J. Spencer, The zircon archive of continent formation through
543 time. *Geol. Soc.* **389**, 197-225 (2015).

544 18. C. Herzberg, K. Condie, J. Korenaga, Thermal history of the Earth and its petrological
545 expression. *Earth Planet. Sci. Lett.* **292**, 79-88 (2010).

546 19. M. L. Bender, B. Barnett, G. Dreyfus, J. Jouzel, D. Porcelli, The contemporary degassing rate
547 of ^{40}Ar from the solid Earth. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 8232-8237 (2008).

548 20. T. M. Harrison, The Hadean crust: evidence from > 4 Ga zircons. *Annu. Rev. Earth Planet. Sci.* **37**, 479-505 (2009).

549 21. M. Tang, K. Chen, R. L. Rudnick, Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. *Science* **351**, 372-375 (2016).

550 22. C. B. Keller, B. Schoene, Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. *Nature* **485**, 490-493 (2012).

551 23. K. C. Condie, Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. *Chem. Geol.* **104**, 1-37 (1993).

552 24. Rudnick, R. L., Gao, S., “Composition of the Continental Crust” in *Treatise on Geochemistry* **Vol. 3**, Eds H. D. Holland, K. K. Turekian (Pergamon, 2003), pp. 1–64.

553 25. R. Parai, S. Mukhopadhyay, Xenon isotopic constraints on the history of volatile recycling into the mantle. *Nature* **560**, 223-227 (2018).

554 26. A. V. Sobolev, E. V. Asafov, A. A. Gurenko, N. T. Arndt, V. G. Batanova, M. V. Portnyagin, D. Garbe-Schönberg, A. H. Wilson, G. R. Byerly, Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago. *Nature* **571**, 555-559 (2019).

555 27. B. Marty, D. V. Bekaert, M. W. Broadley, C. Jaupart, Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean. *Nature* **575**, 485-488 (2019).

556 28. R. L. Armstrong, Comment on “Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes.” *Geochim. Cosmochim. Acta* **45**, 1251 (1981).

557 29. M. D. Hopkins, T. M. Harrison, C. E. Manning, Constraints on Hadean geodynamics from mineral inclusions in > 4 Ga zircons. *Earth Planet. Sci. Lett.* **298**, 367-376 (2010).

569 30. J. Korenaga, N. J. Planavsky, D. A. Evans, Global water cycle and the coevolution of the
570 Earth's interior and surface environment. *Philos. Trans. Royal Soc. A* **375**,
571 20150393(2017).

572 31. J. Korenaga, Pitfalls in modeling mantle convection with internal heat production. *J. Geophys.*
573 *Res. Solid Earth* **122**, 4064-4085 (2017).

574 32. C. M. Padhi, J. Korenaga, M. Ozima, Thermal evolution of Earth with xenon degassing: A
575 self-consistent approach. *Earth Planet. Sci. Lett.* **341**, 1-9 (2012).

576 33. J. Korenaga, Archean geodynamics and the thermal evolution of Earth. *Geophysical*
577 *Monograph-American Geophysical Union* **164**, 7 (2006).

578 34. B. Parsons, The rates of plate creation and consumption. *Geophys. J. Int.* **67**, 437-448 (1981).

579 35. C. Jaupart, S. Labrosse, J. C. Mareschal, "Temperatures, heat and energy in the mantle of the
580 Earth" in *Treatise on Geophysics Vol. 7*, Eds G. Schubert (Elsevier, 2007), pp. 253-303.

581 36. J. G. O'Rourke, J. Korenaga, D. J. Stevenson, Thermal evolution of Earth with magnesium
582 precipitation in the core. *Earth Planet. Sci. Lett.* **458**, 263-272 (2017).

583 37. T. Lyubetskaya, J. Korenaga, Chemical composition of Earth's primitive mantle and its
584 variance: 2. Implications for global geodynamics. *J. Geophys. Res. Solid Earth* **112**,
585 B03212 (2007).

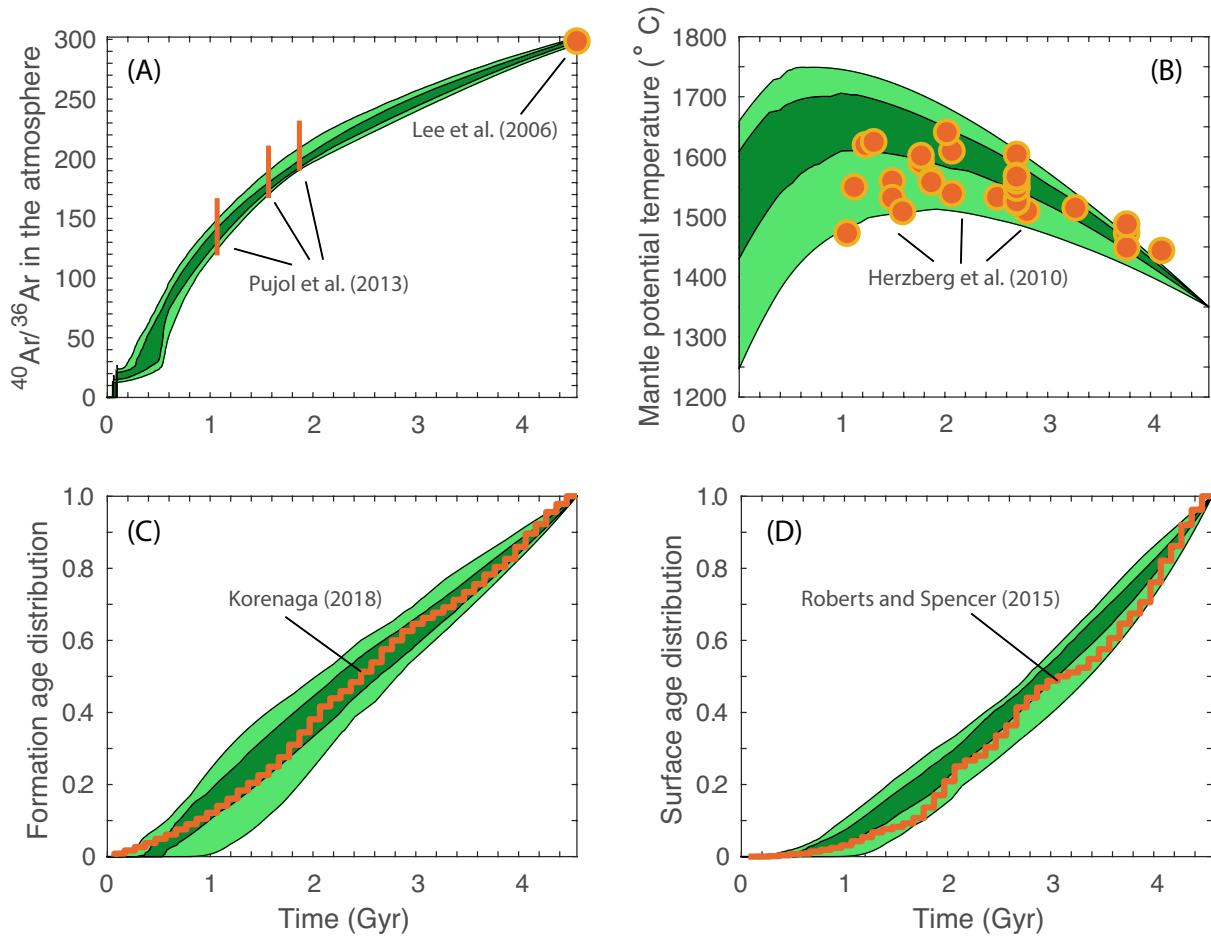
586 38. N. H. Sleep, Hotspots and mantle plumes: Some phenomenology. *J. Geophys. Res. Solid*
587 *Earth* **95**, 6715-6736 (1990).

588 39. P. Sarda, D. Graham, Mid-ocean ridge popping rocks: implications for degassing at ridge
589 crests. *Earth Planet. Sci. Lett.* **97**, 268-289 (1990).

590 40. S.D. King, C. Adam, Hotspot swells revisited. *Phys. Earth Planet. Inter.* **235**, 66-83 (2014).

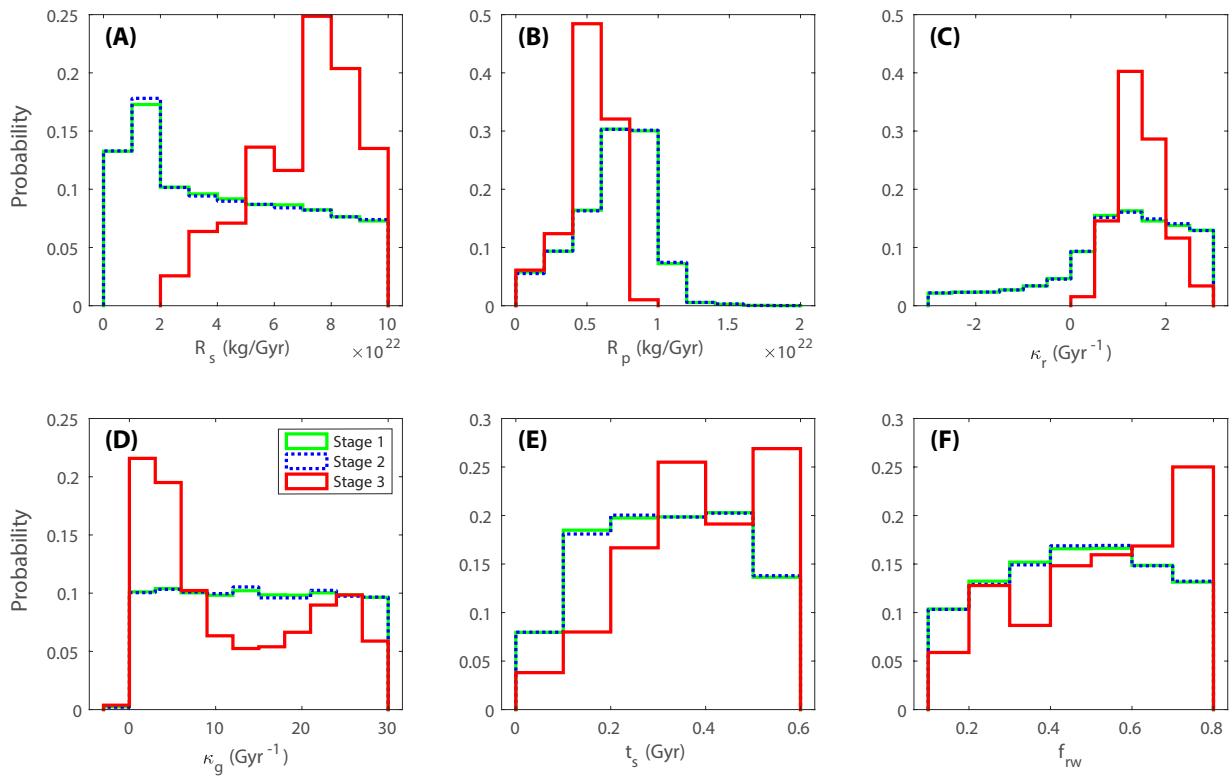
591 41. J. Korenaga, Firm mantle plumes and the nature of the core–mantle boundary region. *Earth*
592 *Planet. Sci. Lett.* **232**, 29-37 (2005).

593 **Acknowledgements**


594 This article was based on work supported by National Science Foundation under grant
595 EAR-1753916. The authors thank three anonymous reviewers for constructive comments and
596 suggestions.

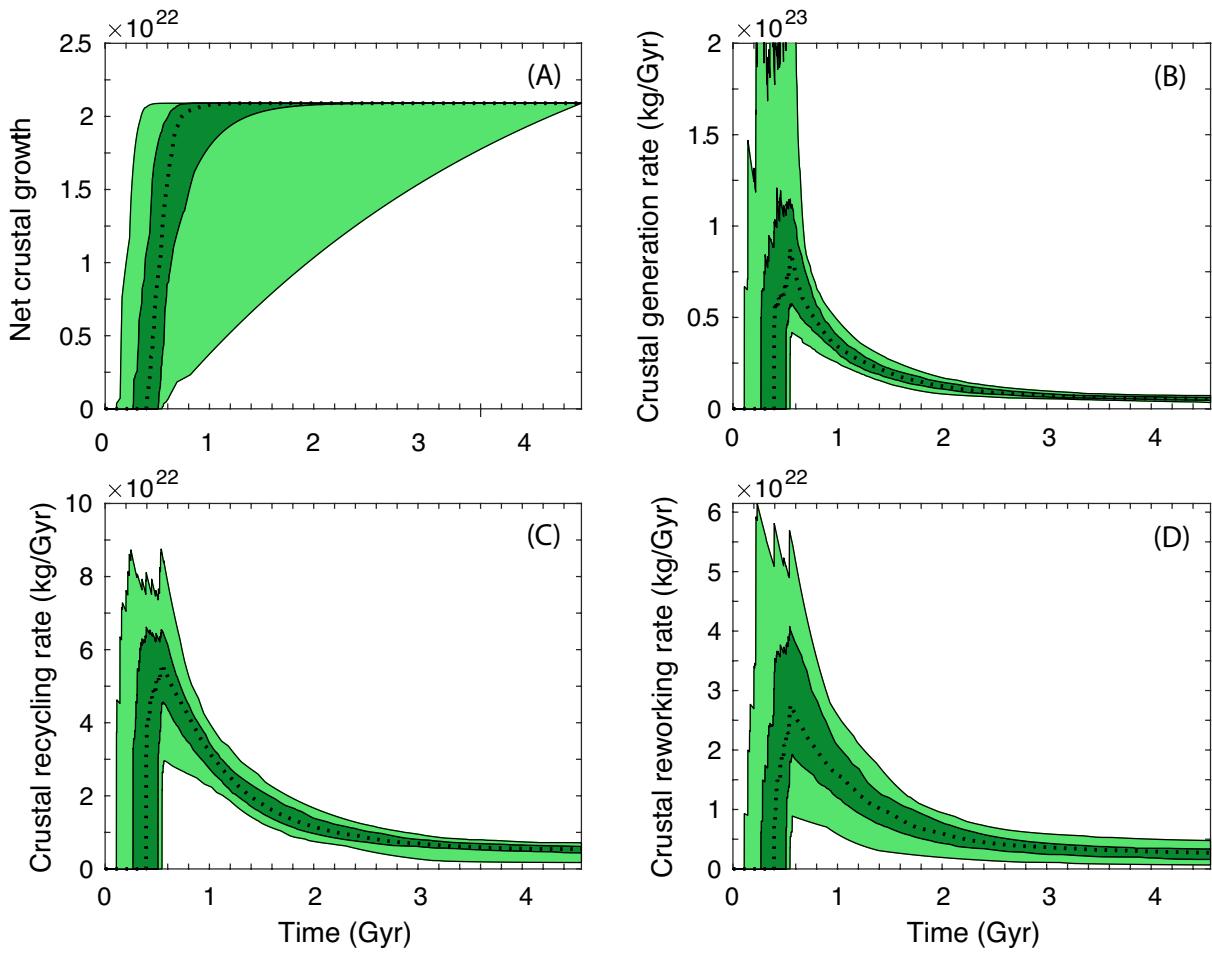
597 Competing Interests: The authors declare that they have no competing interests.

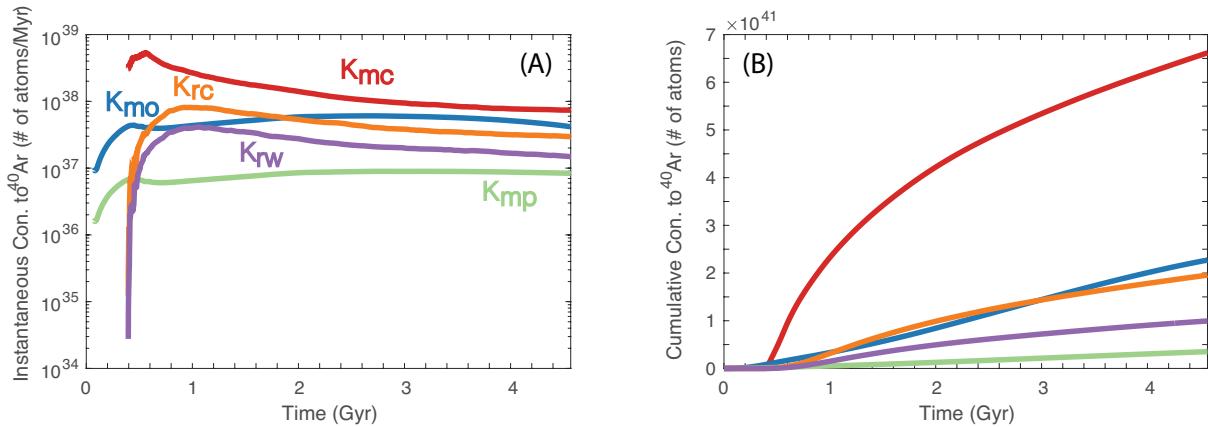
598 Author Contributions: M. G. performed the modeling and wrote the manuscript. J. K.
599 designed the project, discussed the results, and commented on the manuscript.


600 Data and materials availability: All data needed to evaluate the conclusions in the paper
601 are present in the paper and/or the Supplementary Materials. MATLAB scripts used for our
602 modeling are also included in the Supplementary Materials.

603 **Figures and Tables**
 604
 605

606
 607
608 Fig. 1. Observational constraints and the distribution of successful model solutions.


609 Observational constraints used to select successful solutions are shown in orange.
 610 The 50th and 90th percentiles of successful solutions are shown in dark green and
 611 light green, respectively. (A) $^{40}\text{Ar}/^{36}\text{Ar}$ in the atmosphere. Orange bars are based
 612 on $^{40}\text{Ar}/^{36}\text{Ar}$ measurements of Archean hydrothermal quartz by Pujol et al. (2), and
 613 orange dot is the present-day $^{40}\text{Ar}/^{36}\text{Ar}$ from Lee et al. (16). (B) Mantle potential
 614 temperature. Orange dots are the Archean and Proterozoic mantle potential
 615 temperatures from Herzberg et al. (18). (C) Present-day cumulative distribution of
 616 crustal formation age. Orange line is from Korenaga (11). (D) The present-day
 617 cumulative distribution of crustal surface age. Orange line is based on the
 618 distribution of zircon U-Th crystallization ages (17).


619

620 **Fig. 2. The a posteriori distributions of crustal evolution parameters, based on $\sim 2 \times 10^4$,**
 621 **$\sim 2.5 \times 10^4$, and $\sim 3 \times 10^3$ successful Monte Carlo solutions from stage 1, 2, and 3,**
 622 **respectively.** Distributions from stage 1, 2, and 3 are shown in green, blue, and red,
 623 respectively. (A) Initial recycling rate, (B) present-day recycling rate, (C) decay
 624 constant for crustal recycling, (D) decay constant for crustal generation, (E) onset
 625 time for crustal formation, and (F) reworking factor.

626

627
628 **Fig. 3. Net crustal growth and crustal generation and destruction rates, based on**
629 **$\sim 3 \times 10^3$ successful Monte Carlo solutions.** The middle 50 % and 90 % of our
630 successful solutions are shown in dark green and light green, respectively. The
631 medians of the successful solutions are shown in black dotted lines. (A) Net crust
632 growth, (B) crustal generation rate, (C) crustal recycling rate, and (D) crustal
633 reworking rate.

634
635
636
637
638
639
640
641

Fig. 4. Instantaneous and cumulative contributions of individual mass transfer rates to atmospheric ^{40}Ar , based on the medians of $\sim 3 \times 10^3$ successful Monte Carlo solutions. Mantle processing rates to generate continental crust (K_{mc}), oceanic crust (K_{mo}), hotspot islands (K_{mp}) are shown in red, dark blue, and green, respectively. Crustal recycling (K_{rc}) and reworking (K_{rw}) rates are shown in yellow and light blue, respectively. (A) Instantaneous contributions and (B) cumulative contributions of individual mass transfer rates to atmospheric ^{40}Ar .

Table 1. List of independent variables in argon degassing model.

Parameter	Definition	Value	Unit
t_d	Timing of sudden degassing	0.05 to 0.1	Gyr
F_d	Sudden degassing fraction	10 % to 80 %	-
$^{36}\text{Ar}(t_0)$	Initial amount of ^{36}Ar in bulk silicate Earth	2×10^{39} to 2×10^{40}	# of atoms
κ_r	Decay constant of crustal recycling rate	-3 to 3	Gyr^{-1}
κ_g	Decay constant of crustal generation rate	-1 to 30	Gyr^{-1}
R_s	Initial crustal recycling rate	0 to 10×10^{22}	kg Gyr^{-1}
R_p	Present-day crustal recycling rate	0 to 2×10^{22}	kg Gyr^{-1}
t_s	Crustal growth starting point	0.057 to 0.567	Gyr
f_{rw}	Crustal reworking rate factor	0.1 to 0.8	-
$H_{BSE}(t_p)$	Present-day BSE heat production	13 to 19	TW
$H_{CC}(t_p)$	Present-day continental crust heat production	5 to 10	TW
$Q_{total}(t_p)$	Present-day total terrestrial heat flux	43 to 49	TW
$Q_c(t_p)$	Present-day core heat flux	5 to 15	TW
ΔQ_c	Difference between initial and present-day Q_c	2 to 5	TW
$f_{eff}^{K_{mo}}$	Incomplete degassing factor for mid-ocean ridge degassing	50 % to 100 %	-
$f_{eff}^{K_{mp}}$	Incomplete degassing factor for mantle plume degassing	10 % to 100 %	-

Table 2. List of dependent variables in argon degassing model.

Parameter	Definition	Calculation
$Q(t_p)$	Present-day mantle heat flux	$Q(t_p) = Q_{total}(t_p) - H_{CC}(t_p)$
$^{40}\text{K}_{BSE}(t_p)$	Present-day ^{40}K in the BSE	Calculate according to $H_{BSE}(t_p)$
$^{40}\text{K}_{cc}(t_p)$	Present-day ^{40}K in the continental crust	Calculate according to $H_{CC}(t_p)$
Q_c	Core heat flux	$Q_c(t) = \Delta Q_c(t_p - t)/t_p + Q_c(t_p)$
K_{mp}	Hotspot islands generation rate	$K_{mp}(t) = K_{mp}(t_p) \frac{Q_c(t)}{Q_c(t_p)} f_{eff}^{K_{mp}}$
K_{mo}	Oceanic crust generation rate	$K_{mo}(t) = K_{mo}(t_p) \frac{Z(t)V(t)}{Z(t_p)V(t_p)} f_{eff}^{K_{mo}}$

647 **List of Supplementary materials:**

648 Materials and Methods

649 Fig S1. The a posteriori distributions of independent model parameters, based on

650 $\sim 2.5 \times 10^4$ and $\sim 3 \times 10^3$ successful Monte Carlo solutions from stage 2 and 3, respectively.

651 Data S1. Data in Fig.1-4 and Fig.S1

652 Data S2. Input data for the argon degassing code

653

654