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1 INTRODUCTION
Discrete fair division of resources is a fundamental problem in many multi-agent settings. Here,

the goal is to distribute a setM ofm indivisible items among n agents in a fair manner. Each agent

i has a valuation function vi : 2
M → R≥0 that quantifies the amount of utility agent i derives from

each subset of items. In case of additive valuation functions, vi (S ) :=
∑

j ∈S vi ({j}), ∀S ⊆ M . Let

X = ⟨X1,X2, . . . ,Xn⟩ denote a partition of M into n bundles such that Xi is allocated to agent i .
Among various choices, envy-freeness is the most natural fairness concept, where no agent i envies
another agent j’s bundle, i.e., for all agents i , j with i , j we have vi (Xi ) ≥ vi (X j ). However, an
envy-free allocation does not always exist, e.g., consider allocating a single valuable item among

n ≥ 2 agents. This necessitates the study of relaxed notions of envy-freeness:

Envy-freeness up to one item (EF1): This relaxation was introduced by Budish [7]. An allocation

X is said to be EF1 if no agent i envies another agent j after the removal of some item in j’s bundle,
i.e., vi (Xi ) ≥ vi (X j \ д) for some д ∈ X j . So we allow i to envy j , but the envy must disappear after

the removal of some valuable item (according to agent i) from j’s bundle. Note that there is no
actual removal: This is simply to assess how agent i values his own bundle when compared to j’s
bundle. It is well known that an EF1 allocation always exists, and it can be obtained in polynomial

time using the famous envy-cycles procedure by Lipton et al. [26]. However, an EF1 allocation

may be unsatisfactory: Intuitively, EF1 insists that envy disappears after the removal of the most
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valuable item according to the envying agent from the envied agent’s bundle—however, in many

cases, the most valuable item might be the primary reason for very large envy to exist in the first

place. Therefore, stronger notions of fairness are desirable in many circumstances.

Envy-freeness up to any item (EFX):. This relaxation was introduced by Caragiannis et al. [10].

An allocation X is said to be EFX if no agent i envies another agent j after the removal of any item

in j’s bundle, i.e., vi (Xi ) ≥ vi (X j \ д) for all д ∈ X j . Unlike EF1, in an EFX allocation, the envy

between any pair of agents disappears after the removal of the least valuable item (according to

agent i) from j’s bundle. Note that every EFX allocation is an EF1 allocation, but not vice-versa.
Consider a simple example of two agents with additive valuations and three items {a,b,c} from [13],

where the agents valuation for individual items are as follows,

д1 д2 д3

Aдent 1 1 1 2

Aдent 2 1 1 2

Observe that д3 is twice as valuable than д1 or д2 for both agents. An allocation where one

agent gets {д1} and the other gets {д2,д3} is EF1 but not EFX. The only possible EFX allocation is

where one agent gets

{
д3
}
and the other gets

{
д1,д2

}
, which is clearly fairer than the given EF1

allocation. This example also shows how EFX helps to rule out some unsatisfactory EF1 allocations.

Caragiannis et al. [9] remark that

“Arguably, EFX is the best fairness analog of envy-freeness of indivisible items.”
While an EF1 allocation is always guaranteed to exist, very little is known about the existence of

EFX allocations. Caragiannis et al. [10] state that

“Despite significant effort, we were not able to settle the question of whether an EFX
allocation always exists (assuming all itemsmust be allocated), and leave it as an enigmatic
open question.”

Plaut and Roughgarden [27] show two scenarios for which EFX allocations are guaranteed

to exist: (i ) All agents have identical valuations (i.e., v1 = v2 = · · · = vn), and (ii ) Two agents

(i.e., n = 2). Unfortunately, starting from three agents, even for the well studied class of additive
valuations, it is open whether EFX allocations exist. Plaut and Roughgarden [27] also remark that:

“The problem seems highly non-trivial even for three players with different additive
valuations.”

Furthermore, it is also suspected in [27] that EFX allocations may not exist in general settings:

“We suspect that at least for general valuations, there exist instances where no EFX
allocation exists, and it may be easier to find a counterexample in that setting.”

Contrary to this suspicion, we show that

Theorem. EFX allocations always exist for three agents with additive valuations.

EFX with charity: Quite recently there have been studies [9, 13] that consider relaxations of EFX,

called “EFX with charity”. Here we look for partial EFX allocations, where not all items need to

be allocated (some of them remain unallocated). There is a trivial such allocation where no item

is allocated to any agent. Therefore, the goal is to determine allocations with some qualitative or
quantitative bound on the set of unallocated items. For instance, Chaudhury et al. [13] show how

to determine a partial EFX allocation X and a pool of unallocated items P such that no agent envies

the pool (i.e. for any agent i , we have vi (Xi ) ≥ vi (P )), and P has less than n items (i.e., |P | < n),
even in the case of general valuations. In case of additive valuations, Caragiannis et al. [9] show the



existence of a partial EFX allocation X = ⟨X1,X2, . . . ,Xn⟩, where every agent gets at least half the

value of his bundle in the allocation that maximizes the Nash welfare i.e., the geometric mean of

agents’ valuations (suggesting that unallocated items are not too valuable).

The Nash welfare of a fair allocation is often considered as a measure of its efficiency [9]:

Intuitively, it captures how much average welfare the allocation achieves while still remaining fair.

The result of Caragiannis et al. [9] imply that there are efficient partial EFX allocations (partial

EFX allocations with a 2-approximation of the maximum possible Nash welfare). Indeed, it is a

natural question to ask whether there are complete EFX allocations (all items are allocated) with

good efficiency. To this end, Caragiannis et al. [9] conjecture:

Conjecture 1. “In particular, we suspect that adding an item to an allocation problem (that
provably has an EFX allocation) yields another problem that also has an EFX allocation with at least
as high Nash welfare as the initial one.”1

If this conjecture is true, it implies the existence of an efficient complete EFX allocation. We

show (in Section 5) that

The above conjecture is false.

To disprove the conjecture we exhibit an instance where there exists a partial EFX allocation with

higher Nash welfare than the Nash welfare of any complete EFX allocation. This also highlights an

inherent barrier in the current techniques to determining EFX allocations: Several of the existing

algorithms for approximate EFX allocations ([27]) and EFX allocations with charity ([13]) start with

an inefficient partial EFX allocation and make it more efficient iteratively by cleverly allocating

some of the unallocated items and unallocating some of the allocated items. However, our instance

in Section 5 shows that such approaches will not help if our goal is to determine a complete EFX

allocation.

A large chunk of our work in this paper develops better tools to overcome this particular barrier,

and we consider the tools introduced here as the most innovative technical contribution of our

work. We also feel that these tools and the instance may help resolving the major open problem of

the existence of EFX allocations for more than three agents and more general valuations (positively

or negatively).

1.1 Our Contributions
Our major contribution in this paper is to prove that an EFX allocation always exists when there

are three agents with additive valuations. The proof is algorithmic. To discuss our techniques, we

first briefly highlight how we overcome two barriers in the current techniques.

Splitting bundles: We first sketch the simple algorithm of Plaut and Roughgarden [27] that

determines an EFX allocation when all agents have the same valuation function, say v . Let us
restrict our attention to the special case where there is no zero marginals, i.e., for any S ⊆ M and

д < S we have v (S ∪ д) > v (S ). Also, note that since agents have the same valuation function,

if v (Xi ) < v (X j \ д) for two agents i and j for some д ∈ X j then we have v (Ximin ) < v (X j \ д)
where imin is the agent with the lowest valuation. The algorithm in [27] starts off with an arbitrary

allocation (not necessarily EFX), and as long as there are agents i and j such that v (Xi ) < v (X j \ д)
for some д ∈ X j , the algorithm takes the item д away from j (j’s new bundle is X j \ д) and adds it

to imin’s bundle (imin’s new bundle is Ximin ∪ д). Also, note that after re-allocation the only changed

bundles are that of imin and j, and both of them have valuations still higher than imin’s initial

valuation:v (Ximin ∪д) > v (Ximin ) andv (X j \д) > v (Ximin ). Observe that such an operation increases

1
This was posed as a monotonicity conjecture in their presentation at EC’19.



the valuation of an agent with the lowest valuation. Thus, after finitely many applications of this

re-allocation we must arrive at an EFX allocation. Note that this crucially uses the fact that the

agents have identical valuations. In the general case, the valuation of agent j may drop significantly

after removing д and j’s current valuation may be even less than imin’s initial valuation. Therefore,
it is important to understand how agents value item(s) that we move across the bundles. To this

end, we carefully split every bundle into upper and lower half bundles (see (1) in Section 2). We

systematically quantify the agents’ relative valuations for these upper and lower half bundles. In

most cases, we can move these bundles from one agent to another, improving the valuation of some

of the agents while still guaranteeing the EFX property. This idea is detailed in Sections 3 and 4.

A new potential function: We need to show that there is progress after every swap of half bundles.

The typical method here is to show improvement of the valuation vector on the Pareto front (see

[13] and [27]). However, there are limitations to this approach: In particular, we show an instance

and a partial EFX allocation such that the valuation vector of any complete EFX allocation does

not Pareto dominate the valuation vector of the existing partial EFX allocation. To overcome this

barrier, we first pick an arbitrary agent a at the beginning and show that whenever we are unable

to improve the valuation vector on the Pareto front, we can strictly increase a’s valuation. In
other words, the valuation of a particular agent a never decreases throughout re-allocations, and it

improves after finitely many re-allocations, showing convergence. A more elaborate discussion on

this technique is presented in Section 2.

1.2 Further Related Work
Fair division has received significant attention since the seminal work of Steinhaus [28] in the 1940s,

where he introduced the cake cutting problem among n > 2 agents. Perhaps the two most crucial

notions of fairness properties that can be guaranteed in case of divisible items are envy-freeness and
proportionality. In a proportional allocation, each agent gets at least a 1/n share of all the items. In

case of indivisible items, as mentioned earlier, none of these two notions can be guaranteed. While

EF1 and EFX are fairness notions that relax envy-freeness, the most popular notion of fairness that

relaxes proportionality for indivisible items is maximin share (MMS), which was introduced by

Budish [7]. While MMS allocations do not always exist [24], but there has been extensive work to

come up with approximate MMS allocations [1, 4, 6, 7, 19–21, 24].

While much research effort goes into finding fair allocations, there has also been a lot of interest

in guaranteeing efficient fair allocations. A standard notion of efficiency is Pareto-optimality2.
Caragiannis et al. [10] showed that any allocation that has the maximumNash welfare is guaranteed

to be Pareto-optimal (efficient) and EF1 (fair). Therefore, the Nash welfare of an allocation is also

considered as a measure of efficiency and fairness of an allocation. However, finding an allocation

with the maximum Nash welfare is APX-hard [25], and its approximation has received a lot of

attention recently, e.g., [2, 3, 5, 11, 14–17]. Barman et al. [5] give a pseudopolynomial algorithm to

find an allocation that is both EF1 and Pareto-optimal. Other works try to approximate MMS with

Pareto-optimality [18] or explore relaxations of EFX with high Nash welfare [9].

Applications: There are several real-world scenarios where resources need to be divided fairly

and efficiently, e.g., splitting rent among tenants, dividing inheritance property in a family, splitting

taxi fares among riders, and many more. One example of fair division techniques used in practice is

Spliddit (http://www.spliddit.org). Since its launch in 2014, Spliddit has attracted several thousands

of users [10]. For more details on Spliddit, we refer the reader to [22, 27]. Another example is

2
An allocation X = ⟨X1, . . . , Xn ⟩ is Pareto-optimal if there is no allocation Y = ⟨Y1, . . . , Yn ⟩ where vi (Yi ) ≥ vi (Xi ) for
all i ∈ [n] and vj (Yj ) > vj (X j ) for some j .

http://www.spliddit.org


Course Allocate, which is used by the Wharton School at the University of Pennsylvania to fairly

allocate 350 courses to 1700 MBA students [8, 27]. Kurokawa et al. [23] used leximin fairness to
allocate unused classrooms in public schools to charter schools in California. The best part of the

allocations determined in all these applications is that they yield results that not only seem fair on

most instances, but also come with mathematical guarantees.

2 PRELIMINARIES AND TECHNICAL OVERVIEW
An instance I of fair allocation problem is a triple ⟨[3],M ,V⟩, where we have three agents 1, 2,
and 3, a setM ofm indivisible items (or goods), and a set of valuation functionsV = {v1,v2,v3},
where each vi : 2

M → R≥0 captures the utility agent i has for all the different subsets of goods that
can be allocated. We assume that the valuation functions are additive (vi (S ) =

∑
д∈S vi (

{
д
}
)) and

normalized (vi (∅) = 0). For ease of notation, we write vi (д) for vi (
{
д
}
). Further, we write S ⊕i T for

vi (S ) ⊕vi (T ) with ⊕ ∈ {≤,≥,<,>}. Given an allocation X = ⟨X1,X2, . . . ,Xn⟩ we say that i strongly
envies a bundle S ⊆ M if Xi <i S \ д for some д ∈ S , and we say that i weakly envies S if Xi <i S
but Xi ≥i S \ д for all д ∈ S . From this perspective an allocation is an EFX allocation if and only if

no agent strongly envies another agent.

Non-degenerate instances: We call an instance I = ⟨[3],M ,V⟩ non-degenerate if and only if no

agent values two different sets equally, i.e., ∀i ∈ [3] we have vi (S ) , vi (T ) for all S , T . We first

show that it suffices to deal with non-degenerate instances. LetM =
{
д1,д2, . . . ,дm

}
. We perturb

any instance I to I (ε ) = ⟨[3],M ,V (ε )⟩, where for every vi ∈ V we define v ′i ∈ V (ε ), as

v ′i (дj ) = vi (дj ) + ε2
j .

Lemma 2. Let δ = mini ∈[3] minS,T : vi (S ),vi (T ) |vi (S )−vi (T ) | and let ε > 0 be such that ε ·2m+1 < δ .
Then
(1) For any agent i and S ,T ⊆ M such that vi (S ) > vi (T ), we have v ′i (S ) > v

′
i (T ).

(2) I (ε ) is a non-degenerate instance. Furthermore, if X = ⟨X1,X2,X3⟩ is an EFX allocation for I (ε )
then X is also an EFX allocation for I .

Proof. For the first statement of the lemma, observe that

v ′i (S ) −v
′
i (T ) = vi (S ) −vi (T ) + ε (

∑
дj ∈S\T

2
j −
∑

дj ∈T \S

2
j )

≥ δ − ε
∑

дj ∈T \S

2
j

≥ δ − ε · (2m+1 − 1)

> 0

For the second statement of the lemma, consider any two sets S ,T ⊆ M such that S , T . Now,
for any i ∈ [3], if vi (S ) , vi (T ), we have v

′
i (S ) , v ′i (T ) by the first statement of the lemma. If

vi (S ) = vi (T ), we have v
′
i (S ) −v

′
i (T ) = ε (

∑
дj ∈S\T 2

j −
∑
дj ∈T \S 2

j ) , 0 (as S , T ). Therefore, I (ε )
is non-degenerate.

For the final claim, let us assume thatX is an EFX allocation in I (ε ) and not an EFX allocation in I .
Then there exist i, j , andд ∈ X j such thatvi (X j \д) > vi (Xi ). In that case, we havev

′
i (X j \д) > v

′
i (Xi )

by the first statement of the lemma, implying that X is not an EFX allocation in I (ε ) as well, which
is a contradiction. □

From now on we only deal with non-degenerate instances. In non-degenerate instances, all goods

have positive value for all agents.



Overall approach: An allocation X ′ Pareto dominates an allocation X if vi (Xi ) ≤ vi (X
′
i ) for all

i with strict inequality for at least one i . The existing algorithms for “EFX with charity” [13] or

“approximate EFX allocations” [27] construct a sequence of EFX allocations in which each allocation

Pareto dominates its predecessor. However we exhibit in Section 5 a partial EFX allocation that is

not Pareto dominated by any complete EFX allocation. Thus we need a more flexible approach in

the search for a complete EFX allocation.

We name the agents a, b, and c arbitrarily and consider the lexicographic ordering of the triples

ϕ (X ) = (va (Xa ),vb (Xb ),vc (Xc )),

i.e., ϕ (X ) ≺lex ϕ (X
′) (X ′ dominates X ) if (i) va (Xa ) < va (X

′
a ) or (ii) va (Xa ) = va (X

′
a ) and vb (Xb ) <

vb (X
′
b ) or (iii) va (Xa ) = va (X

′
a ) and vb (Xb ) = vb (X

′
b ) and vc (Xc ) < vc (X

′
c ). We construct a

sequence of allocations in which each allocation dominates its predecessor. Of course, if X ′ Pareto
dominates X , then it also dominates X , so we can use all the update rules in [13].

Our goal then is to iteratively construct a sequence of EFX allocations such that each EFX

allocation dominates its predecessor.

Most envious agent: We use the notion of a most envious agent, introduced in [13]. Consider an

allocation X , and a set S ⊆ M that is envied by at least one agent. For an agent i such that S >i Xi ,

we “measure the envy” that agent i has for S by κX (i,S ), where κX (i,S ) is the size of a smallest

subset of S that i still envies, i.e., κX (i,S ) is the smallest cardinality of a subset S ′ of S such that

S ′ >i Xi . Thus, the smaller the value of κX (i,S ), the greater the envy of agent i for the set S . So let

κX (S ) = mini ∈[3]κX (i,S ). Naturally, we define the set of the most envious agents AX (S ) for a set S
as the set of agents with smallest values of κX (i,S ), i.e.,

AX (S ) = {i | S >i Xi and κX (i,S ) = κX (S )} .

The following simple observation about the most envious agents of specific kinds of bundles will

be useful.

Observation 3. Given any allocationX , and an unallocated goodд, for any i ∈ [3],AX (Xi∪д) , ∅.

Proof. It suffices to prove that there exists at least one agent who strictly prefers Xi ∪д over his

own bundle in allocation X . This is guaranteed since we are dealing with non-degenerate instances,

in which Xi ∪ д >i Xi . □

Champions and Champion Graph MX : Let X be the partial EFX allocation at any stage in our

algorithm, and let д be an unallocated good. We say that i champions j (w.r.t д) if i is a most

envious agent for X j ∪д, i.e., i ∈ AX (X j ∪д). We define the champion graphMX , where each vertex

corresponds to an agent and there is a directed edge (i, j ) ∈ MX if and only if i champions j.

Observation 4. The champion graphMX is cyclic.

Proof. By Observation 3, we have that the set of champions of any agent is never empty.

Therefore, every vertex inMX has at least one incoming edge. ThusMX is cyclic. □

If i champions j , we defineGi j as a largest cardinality subset ofX j ∪д such that (X j ∪д) \Gi j >i Xi .
Since the valuations are additive, note that such a subset can be identified efficiently as the set K of

the k least valuable goods for i in X j ∪ д such that (X j ∪ д) \ K >i Xi and k is maximum. Now we

make some small observations.

Observation 5. Assume i champions j.
(1) We have ((X j ∪ д) \Gi j ) \ h ≤k Xk for all h ∈ (X j ∪ д) \Gi j and all agents k including i .
(2) If agent k does not champion j, we have (X j ∪ д) \Gi j ≤k Xk .



Proof. Note that by definition, Gi j is a largest cardinality subset of X j ∪ д such that i values
(X j ∪ д) \ Gi j more than Xi . This implies that (X j ∪ д) \ Gi j is a smallest cardinality subset of

X j ∪ д that i values more than Xi . Thus |(X j ∪ д) \Gi j | = κX (i,X j ∪ д). Since i champions j, we
have that i ∈ AX (X j ∪ д) and thus κX (i,X j ∪ д) = κX (X j ∪ д). Now, no agent k values a subset

of X j ∪ д of size less than κX (k,X j ∪ д) more than Xk . Note that ((X j ∪ д) \ Gi j ) \ h has size

κX (X j ∪ д) − 1 < κX (k,X j ∪ д) and ,thus, ((X j ∪ д) \Gi j ) \ h ≤k Xk .

Now if k did not champion j then κX (k,X j ∪д) < κX (X j ∪д). Thus, |(X j ∪д) \Gi j | = κX (X j ∪д) <
κX (k,X j ∪ д). Since k values any subset of X j ∪ д of size less than κX (k,X j ∪ д) at most Xk , we

have (X j ∪ д) \Gi j ≤k Xk . □

We next mention two cases where it is known how to obtain a Pareto dominating EFX allocation

from an existing EFX allocation. For an allocation X , we define the envy graph EX , whose vertices
represent agents, and in which there is a directed edge from i to j if i envies j, i.e., X j >i Xi . We

can assume without loss of generality (w.l.o.g.) that EX is acyclic.

Fact 6 ([26]). Let X = ⟨X1,X2,X3⟩ be an EFX allocation. Then there exists another EFX allocation
Y = ⟨Y1,Y2,Y3⟩, where for all i ∈ [3], Yi = X j for some j ∈ [3], such that EY is acyclic and
ϕ (Y ) ⪰lex ϕ (X ) (because Y Pareto dominates X ).

Observation 7 ([13]). Consider an EFX allocationX . Let s be any agent and let д be an unallocated
good. If i champions s and i is reachable from s in EX , then there is an EFX allocation Y Pareto
dominating X . Additionally, agent s is strictly better off in Y , i.e., Ys >s Xs .

Proof. We have that i is reachable from s in EX . Let t1 → t2 → · · · → tk be the path from t1 = s
to tk = i in EX . We determine a new allocation Y as follows:

Ytj = Xtj+1 for j ∈ [k − 1]

Yi = (Xs \Gis ) ∪ д

Yℓ = Xℓ for all other ℓ

Note that every agent along the path has strictly improved his valuation: Agents t1 to tk−1 got
bundles they envied in EX and agent i championed s and got (Xs \Gis ∪д), which is more valuable

to i than Xi (by definition of Gis ). Also, every other agent retained their previous bundles and thus

their valuations are not lower than before. Thus ϕ (Y ) ≻lex ϕ (X ) and also Ys >s Xs (s was an agent

along the path). It only remains to argue that Y is EFX. To this end, consider any two agents j and
j ′. We wish to show that j does not strongly envy j ′ in Y .

Case j ′ , i: Note that Yj′ = Xℓ for some ℓ ∈ [3] (j ′ either received a bundle of another agent

when we shifted the bundles along the path or retained the previous bundle). Also, note that

Yj ≥j X j (no agent is worse off in Y ). Therefore, Yj ≥j X j ≥j Xℓ \h =j Yj′ \h for all h ∈ Yj′ (j
did not strongly envy ℓ in X as X was EFX).

Case j ′ = i: We have Yj′ = (Xs \Gis ) ∪ д. Since i championed s , by Observation 5 (part 1) we

have that ((Xs \Gis ) ∪ д) \ h ≤j X j . Like earlier, Yj ≥j X j (no agent is worse off in Y ). Thus j
does not strongly envy i . □

Observation 7 implies that if there is some unallocated good and (i) if the envy graph EX has a

single source
3
or (ii) any agent champions himself then there is a strictly Pareto dominating EFX

allocation.

3
A source is a vertex in EX with in-degree zero.



Corollary 8. Let X be an EFX allocation, and д be an unallocated good. If EX has a single source
s , orMX has a 1-cycle involving agent s , then there is an EFX allocation Y that Pareto dominates X in
which Ys >s Xs .

Proof. If EX has a single source s , the champion of s (which always exist, by Observation 3) is

reachable from s . IfMX has a 1-cycle involving agent s then again the champion of s (which is s
itself) is reachable from s . In both cases, since the champion of s is reachable from s in the envy

graph EX , there is a Pareto dominating allocation Y such that Ys >s Xs by Observation 7. □

Hence, starting from Section 3, we only discuss the cases where the envy-graph has more than one
source and there are no self-champions.

We start with some simple yet crucial observations.

Observation 9. If i champions j and Xi ≥i X j , then д < Gi j , Gi j ⊆ X j , and Gi j <i д.

Proof. We have i ∈ AX (X j ∪ д). Since д < X j , Gi j ⊆ X j ∪ д, and valuations are additive and we

have thatvi ((X j ∪д) \Gi j ) = vi (X j ) +vi (д) −vi (Gi j ). Again since i ∈ AX (X j ∪д), by the definition
of Gi j , (X j ∪ д) \Gi j >i Xi , and hence, vi (Xi ) < vi (X j ) +vi (д) −vi (Gi j ). Now we have Xi ≥i X j ,

implying that Gi j <i д, and therefore, д < Gi j . □

Observation 9 tells us that if i champions j, and i does not envy j, then Gi j ⊆ X j . Therefore, we

can split the bundle of agent j into two parts Gi j and X j \Gi j . We refer to Gi j as the lower-half
bundle of j, and to X j \Gi j as the upper-half bundle of j, and visualize the bundle of agent j as

X j =

X j \Gi j
Gi j

(j )

if i champions j and i does not envy j. (1)

We collect some more facts about the values of lower and upper half bundles.

Observation 10. If i champions j and j does not champion himself (self-champion), then we have
Gi j , ∅ and Gi j ≥j д.

Proof. Since j does not self-champion, by Observation 5 (part 2), we have that (X j∪д)\Gi j ≤j X j .

Since д < X j and Gi j ⊆ X j ∪ д we have vj ((X j ∪ д) \ Gi j ) = vj (X j ) + vj (д) − vj (Gi j ) ≤ vj (X j ),
implying that Gi j ≥j д. Since the value of д for j is non-zero, Gi j is non-empty. □

Observation 11. Let i champion j, and Xi ≥i X j . Let i ′ champion k and Xi′ ≥i′ Xk . If i does not
champion k , then X j \Gi j >i Xk \Gi′k .

Proof. Since i ∈ AX (X j ∪ д) and Xi ≥i X j , by Observation 9, we have д < Gi j . Thus, Gi j ⊆ X j .

By the same reasoning, д < Gi′k and Gi′k ⊆ Xk . Therefore, (X j ∪ д) \ Gi j = (X j \ Gi j ) ∪ д, and
(Xk ∪ д) \ Gi′k = (Xk \ Gi′k ) ∪ д. By the definition of Gi j , we have (X j \ Gi j ) ∪ д >i Xi . Since

i < AX (Xk ∪ д), we have Xi ≥i (Xk \ Gi′k ) ∪ д by Observation 5 (part 2). Combining the two

inequalities, we have (X j \Gi j ) ∪ д >i (Xk \Gi′k ) ∪ д, which implies X j \Gi j >i Xk \Gi′k . □

In the upcoming sections, we show how to derive a dominating EFX allocation from an existing

EFX allocation. Corollary 8 already deals with the cases that EX has a single source orMX has a

1-cycle. We proceed under the following general assumptions: EX is cycle-free and has at least two
sources and there is no 1-cycle inMX . We distinguish the remaining cases by the number of sources

in EX .



3 EXISTENCE OF EFX: THREE SOURCES IN EX

If EX has three sources, the allocation X is envy-free, i.e., Xi ≥i X j for all i and j. We make a case

distinction by whether or notMX contains a 2-cycle.

3.1 2-cycle inMX

Assume without loss of generality that agent 2 champions agent 1 and agent 1 champions agent 2.

Since X1 ≥1 X2 and X2 ≥2 X1, the bundles X1 and X2 decompose according to (1). Since neither 1

nor 2 self-champion (asMX has no 1-cycle), by Observation 11, we have X2 \G12 >1 X1 \G21 and

X1 \G21 >2 X1 \G12. We swap the upper-halves of X1 and X2 to obtain

X ′ =

X2 \G12

G21

(1)

X1 \G21

G12

(2)

X3

(3)

.

Note that agent 3 has the same valuation as before, while 1 and 2 are strictly better off. If X ′ is EFX
we are done. So assume otherwise. We first determine the potential strong envy edges.

• From 1: We replaced the more valuable (according to 1) X2 \G12 in X2 with the less valuable

X1\G21 and leftX3 unchanged. Thus 1 is strictly better off and according to him, the valuations

of the bundles of 2 and 3 in X ′ is at most the valuation of their bundles in X . As 1 did not

envy 2 and 3 before in X , 1 does not envy 2 and 3 in X ′.
• From 2: A symmetrical argument shows that 2 does not envy 1 and 3.

• From 3: For agent 3, the sum of the valuations of agents 1 and 2 has not changed by the swap

and 3 envied neither 1 nor 2 before the swap. Thus 3 envies at most one of the agents 1 and 2

after the swap. Assume without loss of generality that he envies agent 2. We then replace the

lower-half bundle of agent 2 (G12) with д to obtain

X ′′ =

X2 \G12

G21

(1)

X1 \G21

д

(2)

X3

(3)

.

In X ′′, agent 2 is still strictly better off than in X since by the definition of G21, we have

(X1 \G21) ∪ д >2 X2. Thus, X
′′
Pareto dominates X . We still need to show that X ′′ is EFX.

To this end, observe that as we have not changed the bundles of agents 1 and 3, there is no

strong envy between them. So we only need to exclude strong envy edges to and from agent

2.

– Nobody strongly envies agent 2: Note that 2 championed 1. Thus, ((X1 \G21) ∪ д) \ h ≤1 X1

and ((X1 \G21) ∪ д) \ h ≤3 X3 for all h ∈ (X1 \G21) ∪ д by Observation 5 (part 1). Since

both 1 and 3 are not worse off than before, they do not strongly envy 2.

– Agent 2 does not envy anyone: We have that (X1 \G21) ∪ д >2 X2. Also according to 2, the

valuation of the current bundles of 1 and 3 is at most their previous one, and 2 did not envy

them before (when he had X2). Hence, 2 does not envy 1 and 3.

We have thus shown that X ′′ is EFX and Pareto dominates X . Actually, the strategy described

above handles a more general situation. It yields a Pareto dominating EFX allocation as long as 3

envies neither 1 nor 2 initially, even if 1 and 2 envied (not strongly envied) 3 initially:

Remark 12. Let X be an EFX allocation, and let д be an unallocated good. IfMX has a 2-cycle, say
involving agents 1 and 2, and agent 3 envies neither 1 nor 2, then there exists an EFX allocation Y
Pareto dominating X .



1 2

3

Fig. 1. Envy Graph for two sources when (2,3) < EX : Green nodes correspond to the agents. Blue edges are
the edges in EX .

Remark 12 will be helpful when we deal with certain instances where EX has two sources later

in Section 4.

We now consider the case whenMX has no two cycle. SinceMX is cyclic and we neither have a

1-cycle nor a 2-cycle, we must have a 3-cycle. We can show by a very similar but more involved

approach that there exists an EFX allocation Y that Pareto dominates X . The complete proof can

be found in Subsection 3.2 in the full version of the paper [12]. Thus, we arrive at the following

lemma,

Lemma 13. Let X be a partial EFX allocation and д be an unallocated good. If EX has three sources,
then there is an EFX allocation Y Pareto dominating X .

4 EXISTENCE OF EFX: TWO SOURCES IN EX

Let us assume that agents 1 and 2 are the sources, and let (1,3) ∈ EX . We have two configurations

for EX now, depending on whether or not (2,3) ∈ EX . If (2,3) ∈ EX , it is relatively straightforward

to determine a new EFX allocation Pareto dominating X . Agent 3 is reachable from both 1 and

2 in EX , and hence, if 3 champions either 1 or 2, we have a Pareto dominating EFX allocation by

Observation 7. If 3 champions neither 1 nor 2, 1 and 2 must be champions of each other (Recall that

no agent self-champions). Also note that 3 envies neither 1 nor 2. Therefore, by Remark 12, we

have a Pareto dominating EFX allocation.

From now on, we assume that (2,3) < EX .
The envy graph of the scenario is now as shown in Figure 1. Next, we discuss the possible

configurations of the champion graphMX . We show that most configurations are easily handled. If

3 champions 1, then by Observation 7, there is a Pareto dominating EFX allocation. If 3 does not

champion 1, and since 1 does not self-champion, agent 2 champions 1. If now 1 champions 2, we

have a 2-cycle in MX involving 1 and 2, and 3 envies neither of them. Therefore by Remark 12,

there is a Pareto dominating EFX allocation. Thus, we may assume that 1 does not champion 2.

Since 2 does not self-champion, agent 3 champions 2. There are only three possible configurations for
MX now, depending on who champions 3 (only 1, only 2, both 1 and 2 as 3 does not self-champion) (see
Figure 2).
We now show how to deal with these configurations of MX . In Section 3, we showed how to

move from the current allocation X to an allocation that Pareto dominates X . In Section 5, we show

that this is impossible in this particular configuration of EX andMX . More specifically, we exhibit

an EFX allocation X that is not Pareto dominated by any complete EFX allocation. We also show

that there is no complete EFX allocation with higher Nash welfare than X , thereby falsifying a

conjecture of Caragiannis et al. [9].

Recall that our potential is ϕ (X ) = (va (Xa ),vb (Xb ),vc (Xc )). We move to an allocation in which

agent a is strictly better off. We distinguish the cases: a = 1, a = 2, and a = 3.

Also, recall that we are in the scenario where 2 champions 1 and 2 does not envy 1. Similarly 3

champions 2 and 3 does not envy 2. Therefore, by Observation 9, we have that д < G21 and д < G32,
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Fig. 2. The possible states ofMX that require further discussion: Green nodes correspond to the agents. Blue
edges are the edges in EX and green edges are the edges inMX . There is a unique configuration of EX and
three different configurations ofMX , depending on who champions 3: only 1 (left), only 2 (middle), both 1
and 2 (right).

and hence, the bundles X1 and X2 decompose according to (1). Also, since 2 champions 1 and 1 does

not self-champion, by Observation 10, we have that G21 , ∅, and a similar argument also shows

that G32 , ∅.

4.1 Agent a is agent 1 or 3
We start from the allocation

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3

(3)

.

Our goal is to determine an EFX allocation in which 1 and 3 are strictly better off (2 may be worse

off). To this end, we consider

X ′ =
X3

(1)

X1 \G21

G32

(2)

X2 \G32

д

(3)

.

In X ′, every agent is better off than in X : 1 is better off because X3 >1 X1 (1 envied 3 in EX ). We

now show that 2 is better off: 2 championed 1 and 3 championed 2. Also, 2 did not self-champion,

2 did not envy 1 and 3 did not envy 2 . Therefore, by Observation 11, (setting i = k = 2, j = 1,

i ′ = 3), we have that X1 \G21 >2 X2 \G32. Hence, (X1 \G21) ∪G32 >2 (X2 \G32) ∪G32 = X2. Thus

2 is also better off. Agent 3 is better off as 3 championed 2, and by the definition ofG32, we have

(X2 \G32 ∪ д) >3 X3. Thus X
′
Pareto dominates X . If X ′ is EFX, we are done. So assume otherwise.

We show that the only possible strong envy edge will be from 1 to 2.

• Nobody envies 1: Note that 1 has X3 and neither 2 nor 3 envied X3 earlier (3 had X3 and 2 did

not envy 3). Since both 2 and 3 are better off than before, they do not envy 1.

• Nobody strongly envies 3: 1 does not strongly envy 3 and 2 does not envy 3: 3 championed 2

and 1 did not. Therefore, by Observation 5 (part 1) we have ((X2 \G32) ∪ д) \ h ≤1 X1 for all

h ∈ (X2 \G32) ∪ д. Since 1 is better off than in X , it does not strongly envy 3. Agent 2 does

not envy 3 since its prefers both of its parts over the corresponding part of agent 3. This was

argued above for the top part and follows from Observation 10

• 3 does not envy 2: 3 championed 2 and 3 did not envy 2 earlier. Therefore by Observation 9

we have that G32 <3 д. Therefore (X1 \G21) ∪G32 <3 (X1 \G21) ∪ д. Since 2 championed 1



and 3 did not, by Observation 5 (part 2), we have ((X1 \G21) ∪ д) ≤3 X3. Since 3 is better off

than in X , 3 does not envy 2.

Thus, the only strong envy edge is from 1 to 2. The current state of the envy-graph is depicted

below:

1 2 3

LetZ be a smallest cardinality subset of (X1 \G21)∪G32 that 2 values more than max2 ((X2 \G32)∪
д,X3), where max2 ((X2 \G32) ∪ д,X3) is defined as the more valuable bundle out of (X2 \G32) ∪ д
and X3 according to 2. Note that max2 ((X2 \G32) ∪д,X3) ≤2 (X1 \G21) ∪G32 since 2 does not envy

neither 1 nor 3 in X ′. Since the instance is non-degenerate, the inequality is strict, and hence Z
exists. We now consider two allocations depending on 1’s value for Z .

Case Z ≤1 X3: We replace 2’s current bundle with Z and obtain

X ′′ =
X3

(1)

Z

(2)

X2 \G32

д

(3)

Agents 1 and 3 have the same bundles as in X ′ and hence are strictly better off than in X .
Thus, X ′′ dominates X , as a = 1 or a = 3 and we improve a strictly. We next show that X ′′

is EFX. Since the only bundle we have changed is that of 2, and there were no strong envy

edges between 1 and 3 earlier, it suffices to show that there are no strong envy edges to and

from 2.

• Nobody envies 2: 3 did not envy the set (X1 \G21) ∪G32. As Z ⊆ (X1 \G21) ∪G32, agent 3

does not envy Z either . 1 does not envy Z because we are in the case where Z ≤1 X3.

• 2 does not envy anyone: This follows from the definition of Z itself since Z >2 max2 ((X2 \

G32) ∪ д,X3).
Case Z >1 X3: In this case, we consider

X ′′ =
Z

(1)

max2 ((X2 \G32) ∪ д,X3)

(2)

min2 ((X2 \G32) ∪ д,X3)

(3)

Agent 1 is still strictly better off than in X as we are in the case Z >1 X3 >1 X1, and agent 3

is not worse off than before as both X3 and (X2 \G32) ∪ д are at least as valuable to him as

his previous bundle X3. We first show that X ′′ is EFX.
• 1 does not envy anyone: We are in the case where Z >1 X3 and 1 did not envy (X2 \G32) ∪д
when he had X3 itself (and now 1 is better off than with X3). Thus, 1 does not envy anyone.

• 2 does not strongly envy anyone: Since 2 chooses the better bundle out ofX3 and (X2\G32)∪д,
2 does not envy 3. Agent 2 does not strongly envy 1 since by the definition of Z , we have
Z \h ≤2 max2 ((X2 \G32) ∪д,X3) for all h ∈ Z . However, note that 2 envies 1. Thus, 2 does
not envy 3 and does not strongly envy 1 (but envies 1).

• 3 does not strongly envy anyone: 3 did not envy the set (X1 \G21) ∪G32,
4
and X3 ≤ X ′′

3

as we argued above. Thus, 3 will not envy Z either as Z ⊆ (X1 \ G21) ∪ G32. We next

show that 3 does not strongly envy 2, observe that (X2 \ G32) ∪ д >3 X3. Therefore, if

min2 ((X2\G32)∪д,X3) = (X2\G32)∪д, we are done. So assumemin2 ((X2\G32)∪д,X3) = X3.

4
We repeat the argument made earlier: 3 championed 2 and 3 did not envy 2 earlier. Therefore, by Observation 9 we have

that G32 <3 д. Hence, (X1 \G21) ∪G32 <3 (X1 \G21) ∪ д. Since 2 championed 1 and 3 did not, by Observation 5 (part 2),

we have ((X1 \G21) ∪ д) ≤3 X3.



Since 3 championed 2 and fromObservation 5 (part 1), we have that ((X2\G32)∪д)\h ≤3 X3

for all h ∈ (X2 \G32) ∪ д: Thus 3 does not strongly envy 2.

Now if a = 1, we are done, as X ′′ is EFX and agent 1 strictly improved. So assume a = 3. If

min2 ((X2 \G32) ∪ д,X3) = (X2 \G32) ∪ д, then agent 3 is strictly better off and we are done.

This leaves the case that agent 3 gets X3, and hence

X ′′ =
Z

(1)

X2 \G32

д

(2)

X3

(3)

The envy graph EX ′′ with respect to allocation X ′′ is a path (shown below): 1 does not envy

anyone, 2 envies 1 (not strongly) and does not envy 3, and 3 envies 2.

1 2 3

Also, note that we have some unallocated goods, e.g., the goods inG21. Recall that we argued

G21 , ∅ in the paragraph just before Section 4.1. Consider any good д′ ∈ G21. Since 3 is the

only source in EX ′′ , by Corollary 8, there is an EFX allocation X ′′′ Pareto dominating X ′′,
where X ′′′

3
>3 X

′′
3
= X3. Thus, we have an EFX allocation X ′′′ that dominates X (as agent 3

is strictly better off and a = 3).

4.2 Agent a is agent 2
Recall that we argued just before the beginning of Section 4.1 that д < G21 and д < G32. Thus, the

current EFX allocation X is

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3

(3)

Our aim is to determine an EFX allocation, in which agent 2 has a bundle more valuable than X2.

First, observe that (X1 \G21) ∪д is such a bundle. As 2 championed 1, we have (X1 \G21) ∪д >2 X2

by the definition of G21. We also observe that both agents 1 and 3 value X3 as least as much as X2

and (X1 \G21) ∪ д.

Observation 14. X3 >i maxi (X2, ((X1 \G21) ∪ д) for i ∈ {1,3}.

Proof. We argue ≥i ; strict inequality then follows from non-degeneracy.

Nobody envies 2 in X . Thus, X2 ≤3 X3, and X2 ≤1 X1 <1 X3 (the strict inequality holds as 1

envies 3 in X ).

2 is the unique champion of 1 in X (both 1 and 3 do not champion 1). Therefore, by Observation 5

(part 2), we have (X1 \G21) ∪д ≤3 X3 and (X1 \G21) ∪д ≤1 X1 <1 X3 (the strict inequality holds as

1 envies 3 in X ). □

For i ∈ {1,3}, letκi be the size of a smallest subsetZi ofX3 such thatZi >i maxi ((X1\G21)∪д,X2).
We use the relative size of κ1 and κ3 to differentiate between agents 1 and 3. We usew (winner) to

denote the agent with the smaller value of κi , i.e.,w = 1 if κ1 ≤ κ3 andw = 3 if κ1 > κ3. We use ℓ
(loser) for the other agent. Consider

X ′ =
X3

(w )

maxℓ (X2, (X1 \G21) ∪ д)

(ℓ)

minℓ (X2, (X1 \G21) ∪ д)

(2)



In X ′, the only possible strong envy edge is from ℓ tow . By Observation 14,w envies neither ℓ
nor 2. Note that 2 championed 1 and therefore, (X1 \G21) ∪ д >2 X2, but by Observation 5 (part 1),

we have ((X1 \G21) ∪д) \h ≤2 X2 for all h ∈ (X1 \G21) ∪д. Thus, 2 gets a bundle worth at least X2

and does not strongly envy ℓ. 2 also does not envyw (as he did not envy X3 when he had X2). ℓ
does not envy 2 as he chooses the better bundle out of X2 and X1 \G21 ∪ д. Thus, the only possible

strong envy edge is from ℓ tow . How we proceed then depends on whether or not ℓ strongly envies
w .

ℓ does not strongly envyw : Then X ′ is EFX. If minℓ (X2, (X1 \G21) ∪ д) = (X1 \G21) ∪ д, we are
done as X ′ dominates X (2 is strictly better off and a = 2). So assume otherwise. Then

X ′ =
X3

(w )

X1 \G21 ∪ д

(ℓ)

X2

(2)

By Observation 14, ℓ enviesw . Since 2 only envies ℓ, ℓ only enviesw , andw does not envy anyone,

the envy graph EX ′ is a path with source 2.

2 ℓ w

Also, note that there are unallocated goods, namely the goods in G21 (we argued just before the

beginning of Section 4.1 that G21 , ∅). Therefore, by Corollary 8, there is an EFX allocation X ′′, in
which 2 is strictly better off. Thus, X ′′ dominates X as 2 is strictly better off and a = 2.

ℓ strongly enviesw : We keep removing the least valuable good according tow fromw’s bundle,

until ℓ does not strongly envyw anymore. Let Z be the bundle obtained in this way. Consider

X ′ =
Z

(w )

maxℓ (X2, (X1 \G21) ∪ д)

(ℓ)

minℓ (X2, (X1 \G21) ∪ д)

(2)

Claim 15. w does not envy 2 and ℓ.

Proof. Recall that κw is the smallest cardinality of a subset of X3 thatw still values more than

maxw (X2, (X1 \ G21) ∪ д); κw was defined just after Observation 14. Such a set can be obtained

by removingw’s |X3 | − κw least valuable goods from X3. Observe that Z is obtained by removing

|X3 | − |Z | ofw ’s least valuable goods fromX3. If |Z | ≥ κw ,w will envy neither 2 nor ℓ. If |Z | < κw ≤
κℓ (recall that κw ≤ κℓ), let h be the last good removed. Then ℓ strongly envies Z ∪ h (otherwise

we would not have removed h), meaning that there exists an h′ ∈ Z ∪ h such that (Z ∪ h) \ h′ >ℓ
maxℓ (X2, (X1 \G21) ∪ д). Thus, there is a subset of X3 of size |(Z ∪ h) \ h

′ | < κw + 1 − 1 = κw that

ℓ values more than maxℓ (X2, (X1 \G21) ∪ д), a contradiction to κw ≤ κℓ . □

The allocation X ′ is EFX:w envies neither 2 nor ℓ, ℓ does not strongly envyw , ℓ does not envy
2, and 2 envies neither ℓ norw . If minℓ (X2, (X1 \G21) ∪ д) is X1 \G21 ∪ д, then we are done as X ′

dominates X (2 is strictly better off and a = 2). So assume otherwise. Then

X ′ =
Z

(w )

X1 \G21 ∪ д

(ℓ)

X2

(2)

In X ′,w envies nobody (by Claim 15), 2 envies ℓ, and ℓ may or may not envyw . We distinguish

cases according to whether or not ℓ enviesw .



2 ℓ w

Case ℓ enviesw : Then, the current envy graph is a path with 2 as the source.

2 ℓ w

Since there are unallocated goods, namely the goods in G21 (we argued just before the

beginning of Section 4.1 thatG21 , ∅), by Corollary 8, there is an EFX allocation X ′′ in which

agent 2 is strictly better off. The allocation X ′′ dominates X (as 2 is strictly better off and

a = 2).

Case ℓ does not envyw : Then the current envy graph has two sources, namelyw and 2, and

one envy edge from 2 to ℓ.

2 ℓ w

There are at least two unallocated goods, the goods inG21 (we argued just before the beginning

of Section 4.1 that G21 , ∅) and the goods in X3 \ Z (note that this set is not empty; we

definitely have removed at least one good from X3 as ℓ strongly envied it in X ′). Now
consider the allocation X ′ and some д′ ∈ G21. If the champion of 2 is 2 itself or ℓ (definition of

champion based on allocation X ′ and the unallocated good д′), by Observation 7 there is an

EFX allocation Y where the source, namely 2, is strictly better off and hence Y will dominate

X . So assume that the champion of 2 isw , i.e.,w ∈ AX ′ (X
′
2
∪ д′). Let д′′ ∈ X3 \ Z be the last

element that we removed from X3 when we constructed Z from X3. Then ℓ strongly envies

Z ∪ д′′ and, according tow , д′′ is the least valuable good in Z ∪ д′′. We observe that ℓ is the
unique champion ofw (definition of champion based on allocation X ′ and the unallocated

good д′′) ,i.e., AX ′ (X
′
w ∪ д

′′) = {ℓ}.

Observation 16. Let д′′ ∈ X3 \ Z be the last element that we removed from X3 when we
constructed Z from X3. We have AX ′ (X

′
w ∪ д

′′) = {ℓ}.

Proof. We have X ′w = Z . First we show that 2 < AX ′ (Z ∪ д
′′). Note that Z ∪ д′′ ⊆ X3. Since

X2 ≥2 X3 (as 2 did not envy 3 in X ), 2 will not envy Z ∪ д′′ either.
By the construction of Z , д′′ isw’s least valuable good in Z ∪ д′′. Thus, the removal of any

good from Z ∪д′′ will result in a bundle whose value forw is no more than the value of Z for

w . Therefore, κX ′ (w ,Z ∪ д
′′) = |Z ∪ д′′ |5. Note that ℓ strongly envies Z ∪ д′′. Hence, there

exists h ∈ Z ∪ д′′ such that (Z ∪ д′′) \ h >ℓ X
′
ℓ
. Therefore, κX ′ (ℓ,Z ∪ д

′′) ≤ |(Z ∪ д′′) \ h | =
|Z∪д′′ |−1 < κX (w ,Z∪д

′′). Thus,w does not self-champion and henceAX ′ (Z∪д
′′) = {ℓ}. □

Consider

X ′′ =
(X ′

2
∪ д′) \Gw2

(w )

(X ′w ∪ д
′′) \Gℓw

(ℓ)

X ′
ℓ

(2)

or equivalently

X ′′ =
(X2 ∪ д

′) \Gw2

(w )

(Z ∪ д′′) \Gℓw

(ℓ)

(X1 \G21) ∪ д

(2)

.

Note that every agent is strictly better off than in X ′.w championed 2, and by the definition

of Gw2, we have (X
′
2
∪ д′) \Gw2 >w X ′w . Similarly, ℓ championedw , and by the definition of

5
Recall that κX (i, S ) is the size of the smallest subset of S which is more valuable to i than Xi .



Gℓw , we have (X ′w ∪ д
′′) \Gℓw >ℓ X

′
ℓ
. 2 is better off as 2 envied ℓ in X ′ i.e. X ′

2
<2 X

′
ℓ
. Now

we have an allocation X ′′ in which agent 2 is strictly better off than it was in X . Thus, X ′′

dominates X (as a = 2). It suffices to show that X ′′ is EFX now. To this end, observe that,

• Nobody strongly enviesw : w championed 2. Thus, by Observation 5 (part 1), we have that

((X ′
2
∪ д′) \Gw2) \ h ≤2 X

′
2
and ((X ′

2
∪ д′) \Gw2) \ h ≤ℓ X

′
ℓ
for all h ∈ ((X ′

2
∪ д′) \Gw2).

Since both 2 and ℓ are better off than before (in X ′), they do not strongly envyw .

• Nobody strongly envies ℓ: The argument is very similar to the previous case. ℓ championed

2. Thus, by Observation 5 (part 1), we have that ((X ′w ∪ д
′′) \Gℓw ) \ h ≤2 X

′
2
and ((X ′w ∪

д′′) \Gℓw ) \ h ≤w X ′w for all h ∈ ((X ′w ∪ д
′′) \Gℓw ). Since both 2 andw are better off than

before (than they were in X ′), they do not strongly envyw .

• Nobody strongly envies 2: Both w and ℓ did not envy X ′
ℓ
(ℓ had X ′

ℓ
and w did not envy ℓ)

when they had X ′w and X ′
ℓ
itself. Bothw and ℓ are strictly better off than they were in X ′.

Therefore, they also do not envy 2.

We conclude that there is an EFX allocation dominating X in the case, a = 2 as well.

This allows us to summarize our main result for this section as follows,

Lemma 17. Let X be a partial EFX allocation, and let д be an unallocated good, where the envy
graph EX has two sources. Then there is an EFX allocation Y dominating X .

Having covered all the cases, we arrive at our main result:

Theorem 18. For any instance I = ⟨[3],M ,V⟩ where all vi ∈ V are additive, an EFX allocation
always exists.

Proof. We start off with an empty allocation (Xi = ∅ for all i ∈ [3]), which is trivially EFX.

As long as X is not a complete EFX allocation, there is an allocation Y that dominates X : If EX
has a single source or MX has a 1-cycle, there is a dominating EFX allocation Y by Corollary 8.

Lemmas 13 and 17 establish the existence of Y when EX has multiple sources andMX does not have

a 1-cycle. Since ϕ is bounded from above, the process must stop. When it stops, we have arrived at

a complete EFX allocation. □

5 BARRIERS IN CURRENT TECHNIQUES
In this section, we highlight some barriers to the current techniques for computing EFX allocations.

We give an instance with three agents and seven goods such that there is a partial EFX allocation

for six of the goods that is not Pareto dominated by any complete EFX allocation for the full set of

goods. We also generalize this example and give an instance with a partial EFX allocation which has

a Nash welfare larger than the Nash welfare of any complete EFX allocation. These examples make

it unlikely that there is an iterative algorithm towards a complete EFX allocation that improves the

current EFX allocation in each iteration either in the sense of Pareto domination or in the sense

of Nash welfare (like the algorithms in [27] and [13]). The second example (see Section 5 in the

full version of the paper [12]) also falsifies the EFX monotonicity conjecture (see Conjecture 1 in

Section ??) by Caragiannis et al. [9].

Theorem 19. For the instance given in Table 1, the partial allocation X = ⟨X1,X2,X3⟩, where

X1 =
{
д2,д3,д4

}
X2 =

{
д1,д5

}
X3 =

{
д6
}
,

is an EFX allocation of the first six goods. No complete EFX allocation Pareto dominates X .

Proof. Note that v1 (X1) = 16, v2 (X2) = 15, and v3 (X3) = 10. We will show that there is no

complete EFX allocation X ′ with v1 (X
′
1
) ≥ 16, v2 (X

′
2
) ≥ 15 and v3 (X

′
3
) ≥ 10. To this end, we

systematically consider potential bundles X ′
1
that can keep a1’s valuation at or above 16.



д1 д2 д3 д4 д5 д6 д7

a1 8 2 12 2 0 17 1

a2 5 0 9 4 10 0 3

a3 0 0 0 0 9 10 2

Table 1. An instance where no complete EFX allocation dominates the EFX allocation X for the first six goods
defined in the text. The valuations are assumed to be additive and the entry in row i and column j is the value
of good j for agent i .

Let us first assume д6 ∈ X
′
1
, and hence, v1 (X

′
1
) ≥ 17. Now, to ensure v3 (X

′
3
) ≥ 10, we need to

allocate д5 and д7 to a3. We are left with goods д1, д2, д3 and д4. In order to ensure v2 (X
′
2
) ≥ 15,

we definitely need to allocate д1, д3 and д4 to a2. Now even if we allocate the remaining good д2
to a1, we will have v1 (X

′
1
) = v1 (

{
д2,д6

}
) = 19 < 20 = v1 (

{
д1,д3

}
) ≤ v1 (X

′
2
\ д4). Therefore, a1 will

strongly envy a2. Thus д6 < X
′
1
.

If д6 < X
′
1
and v1 (X

′
1
) ≥ 16, X ′

1
must contain д3 (the total valuation for a1 of all the goods other

than д3 and д7 is less than 16). We need to consider several subcases.

Assume д1 ∈ X
′
1
first. Since X ′

1
already contains д1 and д3, the goods that can be allocated to a2

and a3 are д2, д4, д5, д6, and д7. In order to ensure v2 (X
′
2
) ≥ 15 we need to allocate д4, д5, and д7 to

a2. Even if we allocate all the remaining goods (д2 and д6) to a3, we have v3 (X
′
3
) = v3 (

{
д3,д6

}
) =

10 < 11 = v3 (
{
д5,д7

}
) ≤ v3 (X

′
2
\ д4). Therefore, a3 will strongly envy a2.

Thus д1 < X
′
1
. Since neither д1 nor д6 belongs to X

′
1
, the only way to ensure v1 (X

′
1
) ≥ 16 is to at

least allocate д2, д3, and д4 to a1(we can allocate more). Similarly, given that the goods not allocated

yet are д1, д5, д6, and д7, the only way to ensure v1 (X
′
2
) ≥ 15 is to allocate at least д1 and д5 to a2.

Similarly, the only way to ensure v3 (X
′
3
) ≥ 10 now is to allocate at least д6 to a3. We next show

that adding д7 to any one of the existing bundles will cause a violation of the EFX property.

• Adding д7 to X
′
1
: a2 strongly envies a1 as v2 (X

′
2
) = 15 < 16 = v2 (

{
д3,д4,д7

}
) = v2 (X

′
1
\ д2).

• Adding д7 to X
′
2
: a3 strongly envies a2 as v3 (X

′
3
) = 10 < 11 = v3 (

{
д5,д7

}
) = v3 (X

′
2
\ д1).

• Adding д7 to X
′
3
: a1 strongly envies a3 as v1 (X

′
1
) = 16 < 17 = v1 (д6) = v1 (X

′
3
\ д7).

Thus, there exists no complete EFX allocations Pareto dominating X . □

6 CONCLUSION
In this paper, we have shown that EFX allocations always exist when we have three agents with

additive valuations. Our proof is constructive and leads to a pseudo-polynomial algorithm. We

have identified some crucial barriers in the current techniques and have overcome them with

novel techniques. We feel that this is a step towards resolving the bigger question whether EFX

allocations always exist when we have an arbitrary number of agents.

Our proofs crucially use additivity and do not work for more general valuation functions like

submodular or subadditive. Therefore, an ideal next step would be to investigate EFX allocations

with three agents, but more general valuations.

We also showed some barriers to finding efficient EFX allocations (EFX allocations with high Nash

welfare). While efficient approximate EFX allocations or efficient EFX allocations with bounded

charity exist, it is unclear how much efficiency we can guarantee for complete EFX allocations—i.e.,

what trade-off with efficiency is required to guarantee fairness.
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