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Prize Collecting Multi-Agent Orienteering:
Price of Anarchy Bounds and Solution Methods

Timothy Murray, Jugal Garg, and Rakesh Nagi

Abstract—We propose and address a new variation of the
Team Orienteering Problem (TOP) in which all members of the
team are independent self-interested agents. The prize-collecting
nature emanates from the fact that the prize available at a node of
the traversal graph can be collected only by a single visiting agent.
The problem is motivated by situations in which team members
(agents) must accomplish tasks towards a common goal but are
unable to communicate, such as a fleet of surveillance drones
operating in a communication denied area or with remote pilots
operating independently. We explore three policies for minimizing
the amount of inefficiency these self-interested agents can bring
into the situation. We analyze these policies in a game theoretic
framework and show upper bounds on the Price of Anarchy
(PoA) ranging from ~ 1.582 to unbounded depending on the
policy, network type and number of players k. This is done by
extending well-known PoA bounds for valid utility systems to a
leader-follower setting. The PoA also depends on the behavior of
the agents, which could not have goodwill towards other agents.
In many cases we are able to provide examples that establish the
tightness of the bounds. Finally, solution methods are provided
for each of these policies. Numerical results computed by these
solution methods are then presented and compared to the optimal
centrally coordinated solutions.

Note to practitioners—-Unmanned Aerial Vehicles (UAVs) are
becoming increasingly popular for information collection tasks in
defense and civilian applications alike. When the collection area is
large, it is not unusual that a fleet of UAVs is deployed. Routing
of a fleet can be performed in a centralized or decentralized
manner. Decentralized routing might be the only possibility when
centralized situational awareness is not possible due to bandwidth
limitations and when centralized optimal routes for each UAV are
too complex to compute. For managers of UAV systems, our work
provides a theoretical bound on how bad decentralized routing
could be in the context of a prize-collecting game. Under a game
theoretic framework, we prove that the fleet will collect at least
50% of the prizes collected by the optimal centralized solution.
Empirically we show that the performance of the fleet is much
better, usually providing at least 90% of the optimal centralized
solution. Our routing strategies provide valuable guidance to the
practicing engineer or manager of a UAV fleet.

Index Terms—Multi-agent Systems; Prize Collection; Game
Theory; Price of Anarchy

I. INTRODUCTION

Team Orienteering Problems (TOPs) began as outdoor
games: players arrive in the woods and are equipped with
compasses, maps, and instructions for finding checkpoints, and
must visit as many checkpoints as possible within a given time
limit. These games have a natural link to the classical Vehicle
Routing Problem (VRP), but are distinct from the VRP in that
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it may not be possible to visit all checkpoints; the players must
decide where they should go in order to collect the maximum
number of points given that not all checkpoints are equal. The
TOP is NP-hard even in the single agent case; see [1].

The TOP arises naturally in logistics as an extension of
the VRP: direct-to-customer shipping companies must decide
which of their orders should be filled today rather than
tomorrow when it is infeasible to fill all orders, and retail
companies must determine which outlets need to be resupplied
immediately to maintain positive inventory and which can wait
until next week. Fittingly for such an important problem, it
has been well-studied and heuristics have been proposed with
empirically satisfying results (more on this in Section I-A).

The situation which we were interested in modeling as
a TOP is an Unmanned Aerial Vehicle (UAV) or drone
Intelligence Surveillance and Reconnaissance (ISR) network.
However, we found that the traditional TOP setup could
not realistically model this scenario: TOP problems assume
centralized solutions or communication between teammates,
as all are working toward a common goal. This is not a
realistic assumption for a drone intelligence-gathering net-
work, particularly in an adversarial setting where incoming
and outgoing communications may be observed or denied by
jamming, and team members may be out of communication
with the central authority for extended periods of time. Agents
may be aware of their teammates’ locations through passive
sensing techniques such as visual detection but are unable
or unwilling to communicate more actively by broadcasting
information. Therefore, we consider a natural approach to this
problem, allowing each team member to act as an independent
agent seeking to maximize its own score. By reasoning about
their fellow agents’ locations, agents attempting to maximize
their own scores will naturally try to minimize their overlap.
We designate this setting as the Prize-Collecting Multi-Agent
Orienteering Problem (PCMOP), a new variation on the TOP.
The PCMOP is distinct from the Multiagent Orienteering
Problem (MOP) formulated by [2] as prizes can be collected
by only one agent, with rules regarding which agent may
collect them determined by a policy over the game. More detail
on these distinctions will be given in Section I-A. We propose
three such policies to determine how prizes can be distributed
among the agents, and examine the resulting total prize col-
lection. We consider the equilibria resulting from our policies
on different graphs such as general, undirected, and directed
acyclic, and calculate the theoretical Price of Anarchy (PoA)
related to them as a measure of the maximum inefficiency of
these equilibria compared to a centrally coordinated optimal
solution. The goal of the fleet operator is to have agents collect



a maximum value set of prizes through the selection of an
appropriate policy.

The rest of the paper is organized as follows: the following
subsection comprises an in-depth literature review of work
related to the traditional TOP, as well as the few papers
which address situations with self-interested agents. Section
IT details the setting of our problem, and provides a full
description of the three policies we propose and examine.
In §III, we analyze our policies for different network types
for 2 agents and develop tight bounds on the PoA for each
policy, as well as an extension to the result on the PoA of
simultaneous games over valid utility systems [3], showing
that they display a PoA of at most 2. In §IV, we repeat
the analysis for an arbitrary number of players k. In §V, we
develop methods for solving the Stackelberg games resulting
from each of our proposed prize-division policies. In §VI, we
numerically analyze on test cases by generating approximate
R? and R? planar networks. In §VII, we present a summary
and discussion of our results. A full summary of our theoretical
results is given in Table II organized by network type, policy
type, number of players, range of players, and whether players
represent a homogeneous fleet (the details of the policies are
defined in §II).

A. Literature Review

As mentioned in the introduction, the TOP is well-studied
and several heuristic and exact solution approaches have been
proposed and empirically tested in papers such as [4], [5], [6],
[71, [8], [1], [9], [10]. [11] performs an in-depth analysis of
the single-agent case. [12] examines the applicability of the
TOP to drone-related military situations and [13] addresses a
UAV variant in which each prize is information, and depending
on UAV configuration a single agent may only collect certain
types of information from each location. Additionally, [14]
addresses the problem of managing a UAV fleet in a commu-
nication denied area where time to complete actions and the
reward for doing so are uncertain.

Many works, such as [15], [16], [17], [18], [19], [20], [21],
[22], propose frameworks and algorithms for coordination of
UAV fleets in different settings, such as combating wildfires,
surveillance, and target removal, and do so under both online
and a priori knowledge settings.

Another work somewhat closely related to ours is [2], which
formulates and addresses the MOP, and relies on a game-
theoretic framework for analysis. In particular, a node ¢ with
a prize p; takes time ¢; to deliver that prize to any player
who visits it. The node 7 can only service k; players at a
time, leading to a queue if more than k; players are present.
However, while the number of players who may receive a prize
at once on a node is a limiting condition, once an earlier player
leaves, the next queued player can still receive a prize. This
game models theme-park or tourist routing situations, in which
players want to visit the most attractions with the fewest lines,
but does not adapt to the situation of limited prizes which we
consider, necessitating our PCMOP model. However, the work
from which this paper most draws inspiration is the recent
article [23], which considers the problem of area surveillance
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with self-interested agents. In it, two or more UAVs greedily
consider choosing routes for the next [ time-steps. Addition-
ally, different types of information/prizes are available at each
site, which can only be collected by a specific UAV if it
has the appropriate sensor type (audio, video, thermal, etc.).
The sensors have varying levels of effectiveness so that some
portion of the collectible information type is captured and the
residual information of that type may be collected by another
UAV. However, there are two fundamental differences between
[23] and our work: [23] considers simultaneous movements
in the game, while our paper considers variations on leader-
follower strategies. We will see in Sections III and IV that the
leader-follower setting introduces several new complications.
Additionally, [23] focuses on games over spacial grid graphs,
while we consider games over more general networks.

The proposed PCMOP model has the following similarities
with congestion games [24]: both consist of multiple self-
interested agents attempting to get from source to destination.
However, congestion games focus on the edges of the graph
as the source of the delay, while the PCMOP focuses on the
nodes of the graph as the locations of prizes. Further, unlike
in a congestion game where each player of the same type
traveling along an edge experiences the same delay, variations
on the prize collecting problems provide inherently unequal
payoffs as prizes can only be collected by one individual.
However, the two classes of games are similar enough that we
look to similar tools in order to analyze them: [25], [26] and
[27] all describe variations on Stackelberg (leader-follower)
strategies for player decision-making in the congestion game
which we consider in our analysis of the PCMOP. In this paper,
we focus on a Stackelberg setting in which a pure equilibrium
is guaranteed to exist, as opposed to the simultaneous setting
(meaning that both players choose their routes simultaneously
rather than in leader-follower ordering) in which a PNE does
not necessarily exist; see Lemma 2. However, a leader-follower
setting also introduces complications to decision-making and
analysis, which we detail in Sections III and IV.

II. SETTING

A Prize-Collecting Multi-Agent Orienteering Problem is
defined by a graph G(V, E, R) and agents P(D,S,T) where
|P(D,S,T)|=k is the number of agents. Here,

o V := the set of vertices/nodes in the network, |V |= n.

o I/ := the set of directed or undirected edges in the graph.

Edge e has a nonnegative length .

e R := the set of prizes at each vertex.

¢ D :=the set of maximum distances each player can travel

before they must reach their destination.

o S := the set of source nodes for each player, i.e. where

they begin their route.

o T := the set of terminal nodes for each player, i.e. where

they must end their route.

o X := the set of strategy spaces of each player, with X;

the set of mixed strategies of player ¢; a mixed strategy is
a probability distribution over the pure strategies, which
in this context are the set of all paths from s; to ¢;.

We consider positive edge lengths and non-negative prizes
as we are concerned primarily with the drone surveillance
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network use-case, and a graph network is a convenient ab-
straction from the R? setting that prizes (areas of interest for
surveillance) are likely to be in. Graphs can be constructed as
a grid network, or solely as edges between the prize locations
(nodes) depending on operator preference.

We consider the general case of this problem, where player
sources, terminals, and maximum distances may vary, although
traversal speed is assumed to be equal for all players. However,
special consideration will also be given to the case of a homo-
geneous fleet, in which each player has the same maximum
distance d, a common source S, and a common terminal 7.
We will consider the homogeneous case specifically due to
its relation to our underlying use case: operators of a fleet
of surveillance drones will likely have a homogeneous fleet,
and may well be operating from the same origin/destination
(s; = s5,t; = t; Vi,7). A natural question for a manager or
fleet commander in this setting is how to deploy its agents such
that the inefficiency due to agent selfishness is minimized. That
is, the manager wants its agents to collect a set of prizes so that
the net value of prizes collected by all agents is maximized.
This is in contrast to the agents, who want to collect as set
of prizes of maximum value for themselves. We will consider
three potential deployment policies.

A. Policies to explore

We propose and explore the efficiencies of three natural
policies. We assume an arbitrary ordering of the players
1,2, ..., k to indicate turn-ordering in a leader-follower setting.
We believe both the policies and the ordering to be natural
to large organizations, which frequently display hierarchies
based on seniority (e.g., nurses or flight attendants picking
schedules). The policies are:

1) Reserved path policy: A player ¢ declares its path from
s; to t;. All prizes it claims cannot be picked up by
another player j > i, even if j arrives first.

2) Unreserved path policy (priority for ties): A player %
declares its path from s; to ¢;, and may not deviate from
it. If another player j with lesser priority (i.e., j > % in
the ordering) arrives at a node first, j collects the prize.
If both ¢ and j arrive simultaneously, 7 collects the prize
in its entirety and j receives nothing.

3) Turn-based policy: Players take turns moving through
the network one node at a time. This corresponds to
players moving simultaneously through the network but
only having to commit to the next node, rather than their
whole route. In the event that two players ¢ and 7 > 4
arrive at a node simultaneously, ¢ collects the prize in
its entirety and j receives nothing.

We use the term “full-path” policies to refer to the reserved
and unreserved path policies, as each player i’s strategy set
consists of full paths from s; to ¢;. Additionally, we assume
that agents are not capable of waiting in a single location,
i.e. choosing not to move, as areas which need constant
surveillance will have permanent cameras installed. However,
waiting can be easily incorporated by adding a self-loop on
each node in the network. Waiting will only occur in the turn-
based policy though, as it is sub-optimal in the reserved and

unreserved path policies. We choose these policies because,
due to the successive manner in which players choose their
moves, each can be considered an instance of a Stackelberg
game in which players take turns selecting their strategies, and
the actions of earlier players can be observed by later players.
This guarantees the existence of a pure equilibrium. While
Stackelberg defined the equilibrium for games of 2-players,
the concept can be generalized to k& players. More formally:

Definition 1. A k-player leader-follower (Stackelberg) game
with a leader-follower ordering of players {1,2,...,k} is said
to display a pure Stackleberg equilibrium when no deviation
by player i will result in a higher payoff for player 1, taking
into account the changes that players i + 1 through k will
make to their strategies in response.

We adopt this k-player extension of the Stackelberg equi-
librium from [28].

Lemma 1. Any k-player full-knowledge leader-follower game
displays a pure equilibrium provided the maximum total num-
ber of strategy decisions for the game is finite and players
have a fixed rule for breaking ties between strategies with
equivalent payoffs.

Proof. Consider player k, the last player to move. Player &
must pick the strategy which benefits it the most with full
knowledge of the strategies chosen by the first £ — 1 players.
Therefore, the choice which maximizes its payoff given those
strategies is a pure equilibrium choice. In the event of an equal
maximal payoff between multiple strategies, player k picks
according to the fixed tie-breaking rule. Player k—1 can predict
exactly how player k will react to its own strategy and has full
knowledge of the first £ — 2 players. The use of a fixed-rule
for choosing between ties ensures this. Therefore, the choice
which maximizes its payoff given those strategies and player
k’s response is a pure equilibrium choice. Similarly, player ¢
knows the strategy choices of the first ¢ — 1 players, and can
predict how player 7 4 1, and by extension all players after it,
will react to its own strategy. Thus, picking the strategy which
maximizes 7’s payoff given the chosen strategies and coming
(predictable) reactions is a pure equilibrium for ¢. Therefore,
under this policy, every player has a pure equilibrium choice
regardless of what the previous players did. O

We note that we require the maximum total number of
choices made to be finite, not the total number of choices
available: On an undirected graph, an agent with infinite range
has an infinite number of routes, as it may cycle indefinitely.
However, it has only a finite, albeit exponentially large in
|E|, number of routes it should consider as cycling will not
result in any increase in payoff. We note that when each
agent ¢ has finite range d; € D, this is not a problem as
there are only a finite number of choices available. With non-
finite d; we resolve this issue by assuming that given two
strategies with equal payoff from the same set of nodes, an
agent will pick the one corresponding to a shorter route (i.e.
avoiding needless cycling). This removes the possibility of
non-terminating routes in the reserved and unreserved path
policies. However, it does become a problem in the turn-based



policy when agents have unrestricted range, as it may result in
non-terminating routes. Theorem 5 shows this in more detail.
We also note that having an agent with non-finite range is not
feasible in our motivating use case, but we believe it important
to consider how agents behave in extreme settings.

While the term PoA traditionally refers to the ratio of the op-
timal centrally coordinated solution to the worst Nash equilib-
rium when discussing utility maximization games, we will use
it here to refer to the ratio of the optimal centrally coordinated
solution to the worst Stackelberg equilibrium where PoA > 1.

More formally, for a game g, PoA(g) = max,csp(y) %

where o* is the centrally coordinated solution. It is also
standard practice to denote the PoA of a set of games G
as the supremum of the PoAs of the games in the set,
PoA(G) = sup,cq PoA(g). Finally, we will be interested
in two specific fixed tie-breaking rules in this paper, Goodwill
and Sadism. The rule of Goodwill will limit or reduce some
of the performance inefficiencies of our three policies, and the
corresponding rule of Sadism will increase these inefficiencies.

Definition 2. A player i is said to display goodwill to a player
7 if, given a set of strategies 3.; all resulting in equal (maximal)
payoff for i, player i picks the one which allows j to achieve
the maximum payoff.

Definition 3. A player i is said to display sadism to a player j
if, given a set of strategies Y; all resulting in equal (maximal)
payoff for i, player i picks the one which forces j to achieve
the minimum payoff.

Under any fixed rule which fails to break a tie, we assume
that the player choosing makes its choice according to some
second arbitrary rule, such as a lexicographic ordering of
routes, which will not fail.

Another policy to consider would be one of simultaneous
route picking, in which each agent simultaneously picks its
entire route and proceeds through the network, collecting
any prizes it comes across first. However, we have largely
neglected to explore this policy because it does not necessarily
possess a PNE as shown in the following lemma.

Lemma 2. Consider a 2-player game in which both players
simultaneously pick their entire routes and split any prizes they
arrive at simultaneously according to some fixed proportion
A € [0,1]. This game does not necessarily contain a PNE.

Proof. We show this by a counter-example. Consider the
network in Figure 1. There are 3 routes between S and 7"
ABC, AC, and D. The value underneath each node label is
the prize associated with that node, i.e. node C' has a prize
of 2 — 4e, where 0 < € < 1. Players are identical: both start
from S and go to T, with d; = dy > 4 and [, = 1 for all
edges e € E' . If both players arrive simultaneously at a node,
player 1 receives A € [0, 1] of the prize and player 2 receives
i = (1 —=X). Due to the small number of routes, we construct
the payoff matrix for both players picking their entire route
simultaneously in Table I, where player 1 is the row player
and player 2 is the column player. There is no value A € [0, 1]
in which causes a cell in the matrix to be a PNE. O
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Fig. 1. Network with no pure Nash equilibrium for a 2-Player full-route
simultaneous game

TABLE I
PAYOFF MATRIX FOR A FULL-ROUTE SIMULTANEOUS GAME ON FIGURE 1
Route | ABC AC D
ABC | A(3—2¢), u(3—2¢) 1+(1+Ne,2—B3+Ne | 3—2¢,1+2¢
AC 2—(4—XNe, 2—XNe | AM2—3¢e), u(2—3¢) 2—3e, 1+ 2¢

D 1+2e,3—2¢ 1+262—3¢ A1+ 2¢), u(1+2e)

We conclude this section with a compilation of our theoreti-
cal results, presented in Table II. We use ¢ to represent Euler’s
number, ~ 2.718, as e is already used for edge representation.

III. RESULTS: THE 2-PLAYER PCMOP

We now provide the proofs of the results for 2-player games.

A. The General 2-Player PCMOP

Before providing results related to the PoAs of the reserved
and unreserved path policies, we first revisit the idea of
simultaneous games under these full-path policies. Lemma 2
shows that a PNE may not exist in all games for this setting.
Therefore, we now derive PoA bounds under mixed Nash
equilibrium, which is guaranteed to exist [29], and we show
that the PoA under the reserved and unreserved path policies
is at most 2. We will do so by drawing upon the concept of a
valid utility system from [3].

A utility system is defined with the following structure:
Non-cooperative agents whose action spaces are subsets of
an underlying groundset make decisions which induce some
social utility, measured by a set function on the actions taken.
The agents attempt to maximize their own private utility
rather than the social utility. Additionally, the following three
conditions hold:

1) The social utility function v and the private utility

functions u; are measured in the same standard unit.

2) The social utility set-function w is submodular. Mathe-
matically, for A C B and = ¢ B, we have u(AU{z})—
u(A) > u(BU{x}) —u(B).

3) The private utility of an agent ¢ is at least the change
in social utility which would occur if the agent did not
participate in the game. For a strategy set o and o_;,
the actions of all other agents, we have that u;(o) >
u(o) —u(o_;).

A utility system is valid if and only if
4. Zle u;(0) < u(o) for all strategy profiles o.

[3] shows that any game over a valid utility system has a PoA
of at most 2.
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TABLE I

POA BOUNDS FOR STUDIED POLICIES ON DIFFERENT NETWORK TYPES

Homogeneous Fleet General Fleet
Network Policy 2-Player k-Player 2-Player k-Player
Directed Reserved 4% RS e | o o
Acyclic Path 3 kk—(k—1)F -1
Unreserved o k2 9% K2
Path k—1 E—1
Turn-Based | Unbounded Unbounded Unbounded Unbounded
Reserved 4% Lk ¢ * . Ny
General Path 3 W (h=D)F — 71 2 2
Unreserved o &2 o K2
Path k—1 k—1
Turn-Based | Unbounded” | Unbounded’ Unbounded* | Unbounded*
. Reserved 4% Kk ¢ * * *
Undirected Path 3 W (h=D)F =1 2 2
Unreserved o k2 9% k2
Path E—1 E—1
Turn-Based | Unbounded Unbounded Unbounded Unbounded
Undirected Reserved
(Unrestricted 1* 1* 1* 1*
Path
Range)
Unreserved R * % *
Path 1 1 1 1
Turn-Based | 1* 1* 1* 1*

* Bound is tight
t Non-Terminating

Theorem 1. Any simultaneous game under the reserved or
unreserved path policies has a PoA of at most 2.

Proof. This proof will proceed by showing that in the simul-
taneous setting, the game under the reserved and unreserved
path policies is a game over a valid utility system, as defined
in [3]. This is sufficient, as [3] also shows that any k-player
game over a valid utility system has a PoA of at most 2.

1) The social utility function and player utility functions
are both measured in the same units: the value of the
prizes collected.

2) The social utility function is submodular. To see this,
suppose we have two sets of player paths, S and S’
such that S C S’. For some path p, we have that u(S U
{p}) —u(S) > u(S"U{p}) —u(S’) as the set of prizes
on p which are uncollected in S’ must be a subset of
the set of prizes on p which are uncollected in S.

3) Private utility of each player is at least as much as
the change in the social utility if that player was not
present and all other players played the same strategy:
The change in the social utility from player ¢ being
present is exactly the value of the prizes which are on
its path p; and not any of the other paths p_;, and player
1 receives at least this set of prizes under both policies.

4) The sum of the players’ private utilities is at most the
value of the social utility function. This is equivalent to
saying Zle u;(S) < u(S) for any set of paths S. Here
the social utility is defined to be the value of all prizes
obtained which means that Zle u; (S) = u(S).

This completes our proof. O

Next, we provide an extension of [3]’s proof to show

that any 2-player Stackelberg equilibrium over a valid utility
system also has a PoA of at most 2 when the social and private
utility functions are u;(S_;Uf);) =0 forall S_; € ¥_; for all
players 7. Here (); is equivalent to player 4 taking no action.

Theorem 2. Given a 2-player leader-follower game over a
valid utility system in which Z?Zl u; (S) = u(S) and u;(0;) =
0, the PoA is at most 2.

Proof. This will be proven by constructing a new simultaneous
game in which there is a PNE equivalent to the leader-
follower equilibrium, then showing that the setting over which
the new game is played is still a valid utility system. Let
S5t = {55t s5'} be the Stackelberg equilibrium. Define
BRy(s1) = argmaxg,cy, u2(S1,82) as the second player’s
best response to the first player playing s;. We next introduce
a new pure strategy *o for player 2, where wuj(s1,*2) =
u1(s1, BRa(s1)) and ua(s1,*2) = ua(s1, BRz(s1)) for all
s1 € X1. Thus playing %4 is equivalent to player 2 playing its
best response to s; after observing s;. Because 9 is the best
response to every pure strategy si, it is also the best response
to every mixed strategy oj. *o is thus a (possibly weakly)
dominant strategy for player 2, and therefore there exists at
least one PNE {s3?, x2}. This equilibrium is equivalent to the
Stackelberg equilibrium S%!. As an example, consider playing
the simultaneous prize-collecting game over the network in
Figure 1 under the unreserved policy: After the introduction of
%o there is a pure equilibrium of (AC, *3), which is equivalent
to the Stackelberg equilibrium of (AC, D).

Next, we show that the new game still represents a game
over a valid utility system as defined by [3]. As the original
game was over a valid utility system, we only need to consider



what happens when the second player plays xo. However, we
first note that if player ¢ takes action s; and player —: takes no
action, then u(s;) = u(s;, 0_;) = u;(si,0_;)+u_;(s;,0-;) =
1) The social utility and players’ personal utilities are still
measured in the same units. This is because the original
game was over a valid utility system, and the utility
functions have not changed with the introduction of *s.
2) The private utility each player receives is at least as
much as the change in social utility from their ac-
tion. To demonstrate this, we must show us(S1,*2) >
u(s1,%2) — w(s1) and wi(s1,*2) > u(sy,*2) — u(*2)
where s; is any action taken by player 1. ua(s1,*3) >
u(s1,*2) —u(sy) follows from the fact that the original
game was over a valid utility system and playing o is
equivalent to playing BRa(s1), player 2’s best response
to s1. For the second, let s = BRy(s1) be the second
player’s best response to s; and let s, = BRy(0;)
be player 2’s best action when under no competition.
Clearly u(sh) = ua(sh) > uz(s2) = u(sz). Therefore,

u1(81,*2) = u1(s1, s2) > u(sy, s2) — u(s2)
> u(sy,s2) —u(sh) (1)
= u(s1, *2) — u(*a).

3) The social utility function is submodular. To show this,
we note there are only two players and show that u(x5)—
w(0) > u(s1,*2)—u(s1) and u(sy)—u(d) > u(sy, *2)—
u(x3). The first follows from the fact that the original
game was over a valid utility system: adding x5 to the set
is equivalent to adding s = BRy(s1), player 2’s best
response to sj, on the right hand side. On the left hand
side, it is equivalent to adding s, = BRa((1), player
2’s best action when under no competition. Therefore

u(2) = u(0) = u(sy) = ua(sh)
> uz(s2)
= u(sz) (2)
> u(s1,59) — u(s1)
= u(sy, *2) — u(s1),
where us(sh) > ua(s2) was established in the previous

point. For the second, from the original game we know
that u(s1) > u(s1, s2) — u(s2). We also know u(sz) <

u(s,) which implies
u(s1) —u(0) > u(s1, s2) — u(s2)
> u(s1, s2) — u(sy) 3)
= u(s1,%2) — u(*2).
4) 2271 w;(S) < wu(S). As we have assumed

Z?:l u;(S) = u(S), and the utility functions have not
changed with the introduction of o, this is true.

This completes the proof. O

It is immediately apparent that Theorems 1 and 2 together
imply an upper bound of 2 on the PoA of 2-player games
under the unreserved path policy. In Theorem 4 we will show
that this bound is tight.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, XYZ

Fig. 2. Network With PoA of 2 under reserved and unreserved path policies

Lemma 3. The PoA in the general k-Player setting under the
reserved path policy is at most 2.

Proof. Theorem 1 demonstrates that in the simultaneous set-
ting, the k-Player game under the reserved path policy repre-
sents a game over a valid utility system. Therefore, [3] implies
that under the simultaneous setting, the game has a PoA of
at most 2. We make the observation that under the reserved
path policy, the leader-follower and simultaneous games are
equivalent as for ¢ < j < [, player j can ignore the actions
of player [ and predict the actions of player ¢, as ¢ can also
ignore all players with less “seniority” than it has, even in the
simultaneous setting. Therefore, the reserved path policy has a
PoA of at most 2 in the general setting, as it is equivalent to a
simultaneous game over a valid utility system. Figure 2 shows
this bound to be tight using k& = 2 players: The first player
will go to B and the second will go to C' before continuing
to t; and to, respectively. A total of 1 + 2¢ in prizes will
be collected, when the centrally coordinated solution would
collect a total of 2 in prizes, from nodes A and B. O

B. The Homogeneous 2-Player PCMOP

Previously, we considered the most general form of the
2-Player PCMOP. Now we consider the homogeneous fleet
PCMOP, where S; = 85 = S, fi = tj = T, and di = dj =d.
We refer to such a setting as a homogeneous game and we
will see that although the PoA for the 2-player game under
the unreserved path policy remains 2, the PoA for the reserved
path policy will be reduced to %.

In order to prove several of our results in this section, we
first let A};) denote the total value of the prizes that are on the
routes planned by players 1 through i. We let A%, denote the
total value of the prizes collected by %k players in the optimal
centrally coordinated solution. We will typically normalize
A’{k] = 1 when proving theorems.

Lemma 4. In a k-player homogeneous game in which players
1 through i have planned their routes to collect a total of Ay
prizes, there is a path containing at least + (A — Apy)) prizes
which none of the first i players will collect in the unreserved
and reserved path policies.

Proof. If the first ¢ players have set their routes so that their
paths contain a set of prizes valued at A in total, then
the optimal paths of the k players must still retain at least
(A[k Ay;)) in ignored prizes. There are k optimal paths, so
at least one must contain a set of prizes with minimum value
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of %(Ai‘k] — Ap;)) which is non-overlapping with the set of
prizes in the first ¢ players’ paths. O

Theorem 3. Under the reserved path Policy, the PoA of 2-
player homogeneous games has a tight upper bound of %.

Proof. Lemma 4 directly provides an upper bound of % on
the PoA: If we normalize Af,, = 1, the value of the prizes
collected by two players in the centrally coordinated solution,
there is a path containing a; > % in prizes which the first
player collects. With that in mind, the Lemma then shows
there is a path containing az > % (1—ay) in uncollected prizes
which is taken by the second player, as it cannot steal any
prizes from the first player. The total collected is a; +ag > %.
We show this bound is tight by example, using the network
in Figure 3. The network displays a PoA of %, so this is a
tight bound for the reserved path policy in a directed acyclic,
and therefore general, graph: In the figure, the first player will
maximize its payoff by going to the two nodes containing
prizes of 1+ ¢, leaving the second player able to collect only
one of the remaining prizes. We also show it to be tight on
an undirected graph with restricted range d using the same
example. We do so by setting the range to d = 3 and changing
the edges in Figure 3 to be undirected. Player 1 again collects
the two 1 + € prizes and Player 2 again collects only one of
the two remaining prizes. Therefore, the PoA is %, so this
is a tight bound for undirected graphs with limited range as
well. O

Fig. 3. Network with a 2-Player PoA of % under the reserved path Policy

Theorem 4. Under the unreserved path Policy, the PoA of
2-player homogeneous games has a tight upper bound of 2.

Proof. Theorems 1 and 2 together imply that in the general
2-player game the unreserved path policy has a PoA of at most
2 for all networks. Now we show by example that this bound
is tight for identical 2-player games: Figure 4 demonstrates
a PoA of 2 on a directed acyclic graph (DAG) and hence a
general graph, with the first player choosing B — C' — T
and the second choosing C' — T'. If the network in the figure
is undirected and each player has a maximum range of 4, then
the first player again chooses B — C' — T while the second
player now chooses C' — T'— E — T. Thus the bound of 2
also applies to undirected networks with limited range. O

Thus far we have not addressed the turn-based policy. This
is because even in the 2-player setting it must be considered
as an extensive-form game, something which we can avoid
in the reserved and unreserved path policies. Therefore, most
of our work with the turn-based path policy is presented in
Sections V and VI, as an empirical study. However, we will
at this time provide one theoretical result:

Fig. 4. Network with a 2-Player PoA of 2 for Turn-Based and Unreserved
Policies

Theorem 5. Under the turn-based policy, the Price of Anarchy
for a k-player homogeneous game may be unbounded for an
arbitrary fixed tie-breaking rule.

Proof. This will be a proof by example using a game with
k = 2. Suppose there is a bound r on the PoA of turn-based
games in general graphs. We will construct a game which has
a PoA greater than this. Consider the graph in Figure 5 and a
2-player game where each player has range d = 7+ 3 and the
directed ring of 1-prize nodes is of length greater than 2(r+1).
There are directed edges from both A and B to every node in
the ring, and every ring node also has a directed edge going
to T. Centrally coordinated, each player should move to one
of the staging nodes (A and B) and then move to the ring in
such a way that they can each collect r + 1 + ¢ prizes before
moving to T, resulting in 2(r + 1+ ¢) prizes collected in total.

Now we consider the game when each player displays
sadism toward the other. After both players’ initial moves, each
will be at A or B. Without loss of generality, assume player
1 is at A and player 2 is at B. The first player must decide
whether to go to B or go to one of the nodes on the ring. If it
goes to one of the nodes on the ring, the first player will collect
a prize of one and the second player, being sadistic, will move
directly in front of it resulting in the first player obtaining 1+¢
prizes. The first player is able to do this at any point, as the
second player cannot collect all the ring prizes, so it obtains
the same value in prizes by waiting. Additionally, it knows that
the second player will not venture into the ring and so will
reduce the number of prizes it can collect. Because the first
player is sadistic, it therefore moves to B. The second player
is then faced with the same choice and, as it is also sadistic,
it moves from B to A. The two players cycle back and forth
until each has two moves left, then each will visit one ring
node before proceeding immediately to 7". The value of the

prizes collected is 2(1+¢), giving a PoA of % >r. O

Note that Theorem 5 only implies that an arbitrarily chosen
fixed tie-breaking rule may have an unbounded PoA, not that
every fixed tie-breaking rule has one.

Note that as this result applies to homogeneous games, it
also applies to the more general PCMOP setting. It is also
worth noting that in the setting described in the proof of
Theorem 5, if both players have infinite range they may cycle
indefinitely, and the game will not terminate.

Despite the lack of formal theoretical bounds on the perfor-
mance of the turn-based policy, we show in Section VI that
empirically it results in a lower average PoA across nearly all
tested problem classes and sizes than the unreserved policy.



Fig. 5. Network with an unbounded 2-Player PoA for Turn-Based Policy

IV. THE k-PLAYER PCMOP GAME

We now wish to consider the PCMOP with an arbitrary
number of players k. For the k-player game, we will confine
our discussion to the homogeneous setting.

From Lemma 3, we know the k-player reserved path policy
has a PoA of at most 2, and that bound is tight. However,
Theorem 3 shows the bound improves to % in 2-player
homogeneous games, leading to the following Theorem:
Theorem 6. Under the reserved path Policy, the Price of
Anarchy for homogeneous k-player games has a tight upper

k
bound of MTU’W with a limit of e_% as k — oo.

*

Proof. Suppose A[k]
first player captures prizes with a value of a; > % The second
player captures prizes with a minimum value of ay > %(lfal)
after player 1 plays, so players 1 and 2 together capture prizes
with a minimum value of 2552, Table III shows the results of
continuing this line of reasoning. We next show that a lower

bound on the value of the prizes captured in a k player game

Koo (5)ekd (1) k(g nyk
s =T

Suppose for games with k players, the first ¢ players capture
i—1 i\, pi(_1)i—1—J
a minimum of Ay > Zi=o(3) :i( b of what they
optimally could. Now consider player ¢ + 1. It captures a
minimum of a;41 > ¢ (1 — Ap;) where

= 1. Using Lemma 4 we know that the

is

| L/ S ()« k(1)
A= - g ) w
_ Yo () xR (=)
o i+l

We then have A1) = A};)+aiq1, and note that the minimum
value of Af;yq) can occur only if the minimum value of Ap;
occurred (and thus we have the maximum guarantee on the
value of a;;1) as an increase of § to Ap; results in a decrease
of only % to the guaranteed minimum of a;y;. Thus

Ajir1) = A + i
1—1 /4 : i—1—i i ] . i
S >0 (j) kI (=1)71 n > =0 (]) * kI (=1)"7
= ki Lit1
i (LY i (1)
_ 2]70( i ) ( ) 7 (5)

ki+l
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k — 0o, we have
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We can show that this is a tight lower (upper) bound on the
efficiency (PoA) of the reserved path policy by constructing
examples of networks with these efficiencies (PoAs). We do
so by creating a graph with k parallel paths of length k*~' and
add edges in a way so that each player collects the minimum it
is guaranteed, and visits all paths. Figure 3 displays this PoA
of % for k = 2, and Figure 6 displays a PoA of 12 for k = 3,

27
but due to exponential size of these graphs in k£ we have not
provided images here for k > 4. O
TABLE III

RESERVED PATH BOUNDS

i Min Captured Min Captured, k = ¢
T
1[I 1
) 2k—1 3
k2 4
3 3k27§k+1 19
k 27
4 4k3 —6k%44k—1 175
k4 256
k—1 (k i k—1—3j
e | Zi=0 () R SR A R e
P P

Sy

Fig. 6. Network with a 3-Player PoA of % for all policies

We now consider the unreserved path policy. From Theorem
1, we know that the k-player game under the unreserved
path policy represents a game over a valid utility system
when played simultaneously. Therefore, we know that in the
simultaneous setting the PoA of the k-player game is at most
2. However, we do not have a theorem concerning the PoA
of k-player leader-follower games over valid utility systems.
Because of this, we establish a loose bound on the PoA of the
unreserved path policy.

Lemma 5. Under the unreserved path Policy, the Price of
Anarchy for a k-player hongogeneous game on a general graph
is less than or equal to %

Proof. We will normalize Af,, = 1. Consider the case where
k — 1 players have laid out their routes and collected a
total of Ap_1j. If Aj_1) > 4 then at least Ap,_q will be
collected no matter what player k£ does. Therefore, assume
Ap—q < % By Lemma 4, there is a path g; containing at
least ¢ (1 — Ap—1]) > £ uncollected prizes, so we know
that the k" player will collect at least this many. O
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Lemma 6. Under all policies on an undirected graph with
unlimited range, the general game has a PoA of 1.

Proof. The reserved path policy is trivial: The first player
will plot the shortest route which visits all nodes and collect
all prizes. The unreserved path policy is similarly easy: The
first player must plot a path which ultimately ends at ¢, as
must the second player and so on. If by the time player k
must select its route, there are still prizes which will remain
uncollected, then player k& will make sure to obtain all of them
before terminating at ¢;. The turn-based policy is slightly more
difficult: Each player has determined its entire route prior
to making its first move. Each infinite route is dominated
by a finite route (unlike in the directed cyclic case seen in
Figure 5) because after some time, none of the routes plan to
collect anymore prizes. Since all players plan to end at ¢; in
a finite number of turns, some player ¢ plans to finish last. ¢
will not move to 7' until all remaining prizes are collected,
because range is unlimited and the undirected graph has full
bi-directional connectivity between all collectible prize nodes.

In the case where the graph has disconnected components,
each component represents its own subgame where the above
scenarios play out. O

V. SOLUTION METHODS

Having introduced the PCMOP and providing theoretical
analysis of the PoA under our three policies in Sections II
through IV, we next develop solution methodologies to solve
a 2-player games with integer length edges. This section
illustrates how to solve a game for each policy on directed
acyclic graphs, beginning with an integer program formulation
for the original TOP. Formulating the TOP is necessary for
two reasons: First, to measure the PoA of a given problem
to compare to our theoretical bounds, we must compute
the optimal solution to the TOP. Second, all of our policy
solution methods incorporate the TOP formulation as a helper
function. Our reserved path solution method uses the TOP
formulation repeatedly to iteratively construct each player’s
path, the solution method for the unreserved path approach
uses it to iterate over multiple high value paths and expands
it to compute best responses for the second player to the
first player’s path, and our solution method for the turn-
based policy, which iterates over the game tree, will use the
TOP formulation to avoid non-optimal leaves in the tree. All
algorithms will be discussed in depth in the remainder of this
section, with pseudocode for each provided in Appendix A.

TOP Formulation: We begin by formulating the TOP be-
cause each of our solution methods will either build on it
or solve the formulation as a helper method. We model the
problem as an Integer Program patterned on the integer-valued
flow-conservation formulation given in [30], given here as IP1
in Appendix A. z77 is binary to indicate whether agent m
traversed edge (4,7), z; € {0,1} indicates whether the prize
at node 7 is collected, I;; is the length of an edge, and r is
the common maximum range for all players. Finally, d; = 0
except for d; = 1, d, = —1 to establish the flow conservation
constraints, and ¢; is the value of the prize at node 1.

Reserved Path Analysis: The reserved path policy is the
simplest policy to derive a solution for. Because each player
does not need to be concerned with the actions of any
later player, each need only solve a single-player orienteering
problem where the prizes that earlier players will collect are
set to zero. Pseudocode is given in Algorithm 1 in Appendix
A, where SolvelP1 is a helper function which solves the
integer program formulation (IP1) of the TOP presented in
the previous subsection.

Unreserved Path Analysis: Given the complexity of this
problem, we only consider the two-player game. We consider
the unreserved path as a two-stage game tree. While the
players may no longer be able to observe each other after
they begin moving through the network, each is required to
declare its path prior to setting out. However, for a directed
acyclic graph of n nodes there may be as many as 2”2 paths
going from node 1 to node n, meaning the tree may have as
many as 22("~2) Jeaf nodes. To reduce computation time we
make the following observation: if the first player has found
a path that gives v in prizes after the second player makes its
best response, then any path containing less than v total prizes
must be strictly worse for the first player than the path it has
already found. Thus we can order the paths in the network
according to the value of their prizes and stop searching paths
once their value drops below the current best value v that the
first player is able to obtain after player 2’s best response. We
refer to v and the corresponding path as the first player’s best
strategy so far. Therefore, we adopt a computation strategy
based on computing the k’-best paths. Note that &’ is distinct
from k, the number of players in the game.

In order to compute the second player’s best response, we
use the integer program IP2 in Appendix A, where M is
defined to be a large, positive constant. ¢/ is a variable that
represents the time-step at which player j arrives at node 7,
and is 0 if i is not visited by j. v] is a binary variable which
is 1 if and only if player j visits node i. Because we are
calculating a best response to player 1’s path, all ¢} and v}
are set to their appropriate value to represent the path, and
are capitalized to T}! and V! to indicate they are constants.
We offset arrival times for visited nodes so that if the first
player reaches node i at time j, then 7}' = j — 0.5, in order
to represent the fact that the first player obtains the prize in
any tied arrivals. Again, it is important note that IP2 is made
for Directed Acyclic Graphs, as constraint (19) will not allow
a node to be visited by the second player more than once.

The problem of finding the top & paths through a network is
well studied, with efficient algorithms proposed as far back as
the 1970’s in [31] and [32]: these still form the basis for many
algorithms used today. While these approaches are developed
towards finding the k’-shortest or cheapest paths, it is possible
that algorithms patterned after them may be developed in
the case of directed acyclic graphs. In an enterprise-level
solution this should be attempted, but we chose to solve the
TOP iteratively with &’ = 1 for convenience as we already
developed the framework (IP1) to do so by setting k£ = 1.
Paths are constructed iteratively, then compared the value of
the path to the value v of the first player’s current best strategy.



If the value of the current path is less, we terminate and return
the current best strategy. Otherwise, we compute the second
player’s best response to the path using IP2. Following the best
response of the second player, the first player’s best strategy
is updated if a new best strategy is found. We then add a
constraint to IP1 to disallow the current path, and continue to
the next iteration. The pseudocode in Algorithm 2 in Appendix
A illustrates this method, where SolvelP2 computes the second
player’s best response to the first player’s current path.

Turn-Based Analysis: For the turn-based policy, we again
consider the game tree. The game tree has the same number
of leaf nodes as the two-level game tree from the unreserved
path policy, but resists an easy ordering of them. However,
there is a great deal of commonality between several nodes in
the game tree: For a DAG, if the next player to take a turn is at
node ¢ and the other player is at node j, then it does not matter
where they were before, only which prizes have been collected
on the nodes between ¢ and j and the remaining range of each
player. Because of this, we maintain a hashset with states of
the game as keys, and the next move (i.e., next state) along
with the value for each player of the current state. If a state is
not already in the set then it has not been solved yet, and its
solution is the successor state that leads to the maximum value.
The recursion stops when it reaches a state where one player is
at n. It then solves IP1 with & = 1 starting from the position of
the unfinished player and returns. Algorithm 3 illustrates this
approach, using Algorithm 4 as a helper function. The helper
function fills in the game tree (StateSpace in Algorithm 3) for
each feasible pair of positions for the two players, including
which nodes between their positions have already been visited.
Finally, a second helper function ConstructPaths follows the
pointers through the game tree to return the paths of each
player as a sequence of nodes. Pseudocode versions of both
algorithms are given in Appendix A.

Of our solution methods, the turn-based solution is the
only one which requires integer length edges. To represent
the fact that players are moving and making decisions near
simultaneously, we convert the integer edge-length graph into
an unweighted graph, dividing a length [ edge into [ length-1
edges with [ — 1 nodes between them, containing no prizes.

VI. NUMERICAL ANALYSIS

This section presents numerical experiments using the solu-
tion methods detailed in Section V. Section VI-A details our
generation of test-cases for these methods, while Section VI-B
presents the results of games played on these test cases.

A. Test-Case Generation

1) Approximate R? Networks: Because our motivation for
considering the PCMOP is for its applications to UAV surveil-
lance networks, we chose to generate networks which resemble
real geography. We did so as follows: consider a [ x [ box in
the plane (R?). To generate an n node DAG, place n points
uniformly at random within the box and label the points so
that 1 < 22 < ... < z,,. Compute the Euclidean distance
between each pair of points. Let D € Z* be the maximum
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length permitted for any edge within the network. For i < j,
if the distance from point ¢ to point j is dist(i,j) < D,
add an edge from node i to j of length [dist(i, ;)] to the
DAG. We take the ceiling of the distance because, as noted
in the previous section, it is easier to compute the turn-based
game with integer length edges. Because we only consider
adding an edge (i,5) if ¢ < j, the resulting network will be
a DAG. Having constructed the network, we then ran tests
using two different prize distributions for the nodes: In the
first, each node is assigned a prize drawn from the geometric
distribution with p = % In the second, each node is assigned a
prize of value 1, 2, or 3, uniformly at random. Therefore both
distributions generate the same mean prize value. Additionally,
the prizes on S =1 and T' = n are set to 0.

It should be noted that the resulting network may not have
a path from 1 to n, or may not have one of sufficiently short
length. In this case, a new network is generated.

2) Planar Networks: We were also interested in studying
planar networks, as they are another common type of real
network in R2. In particular, they better model a surveillance
fleet which is restricted to roads. In order to generate these
networks we again generate a set of n nodes uniformly in a
box on the plane (R?). We then use the method of Delaunay
triangulation to produce planar networks from these points.
If an edge exists between nodes ¢ and j such that i < j
then the edge is assigned to be (i, j) rather than (j,4), which
guarantees the resulting network is a DAG. After constructing
the network, we use the same uniform prize distribution we
used previously and assign all nodes other than S = 1 and
T = n aprize of 1, 2, or 3 uniformly at random. We chose not
to run trials for the geometric prize distribution because while
we are interested in planar networks as a subset of networks
in R?, they are less applicable to our use case as UAVs are
not bound to roadways and infrastructure.

B. Empirical Results

Table IV at the end of this section presents the full details
of our numerical experiments, both in our approximate R?2
and planar networks. Max Edge refers to the maximum length
edges inserted into the graph as described in Section VI-A.
Box refers to the edge length [ of the box used to generate
the graph. All entries related to Computation Time are in
seconds. Tests for uniformly distributed prizes in both planar
and approximate R’ networks were run on machines using
the Windows 10 Enterprise OS and 16GB RAM with Intel
Xeon(R) v6 CPUs at 3.30GHz. Tests for the geometrically
distributed prizes for the approximate R? networks were run
with Windows 10 Pro OS and 32GB RAM with Intel(R) i7
CPUs at 2.6GHz.

To test how PoA changes with the average size of the
network, we generated instances of approximate R? networks
with varying numbers of nodes n. These trials are detailed
in Table IV. Additionally, Figures 7 and 9 show the average
PoA for approximate R? networks as function of n when these
graphs are generated in an [ = 10 x 10 box, with max edge
length 3, range 15, and prizes drawn geometrically with p = %
and uniformly at random from 1, 2, 3, respectively. Figures
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8 and 10 show the corresponding average computation times
for solving these networks, given as the log of the average
milliseconds (ms) required.

When we consider the figures, we see that the computation
times for the two prize distributions display similar behavior,
with an approximately linear increase in log-scaled mean
computation time as a function of the number of nodes n.
The unreserved case for n = 35 and geometrically distributed
prizes is the main contradiction to this statement, however
this is likely due to the fact that only 5 trials were run for
this instance: Considering the higher sample variance for the
unreserved policy when n = 25, 30 especially when compared
to their sample means, it is evident that when test cases are
generated according to this distribution there is a tendency to
produce very difficult outlying instances, which may not occur
with a smaller sample size of test cases.

The more interesting figures to consider are Figures 7 and
9. While test cases generated from the uniform distribution
in most cases demonstrate a lower average PoA, the results
are empirically very close. However, while we see a possible
upward trend with respect to n in the average PoA for all
policies when prizes are geometrically distributed, the same is

N
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Fig. 8. Average Computation time (log-scaled) for Approximate
R? Networks With Geometric Prize Distribution
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Fig. 10. Average Computation time (log-scaled) for Approxi-
mate R? Networks With Uniform Prize Distribution

—4—Reserved
Unreserved

Tumn

LOG(COMPUTATION TIME

Fig. 12. Average Computation time (log-scaled) for Planar
Networks with Uniform Prize Distribution

not true of the networks when prizes are uniformly distributed:
While the reserved policy seems to display an upward trend,
it is difficult to say what if any regular behavior the average
PoAs of the unreserved and turn-based policies display.
While we are interested in planar networks as they are an
important subset of graphs in R2, we have already noted
that they are less relevant to our UAV use-case as UAVs
are not bound to existing infrastructure. Because of this, and
the fact that computing the equilibrium in the turn-based
game is the most computationally expensive portion of the
approximate R? networks, we used our planar test cases to
consider what happens to the turn-based game when some
of the computational complexities disappear. In particular, all
tests were run with unit edge lengths and unlimited range,
with prizes again drawn uniformly at random from 1, 2, and
3 for each node. The resulting average PoA’s as a function
of n can be seen in Figure 11, with Figure 12 containing
the associated average computation times. Unsurprisingly, this
reduces the computation time immensely for the turn-based
game, bringing computation time down by a factor of approx-
imately e compared to a uniform distribution of prizes over
a similarly sized approximate R? network which can be seen
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TABLE IV
NUMERICAL RESULTS RELATED TO POA AND COMPUTATION TIMES

R? Approximate Networks . .
Geometric Prize Distribution PoA Computation Time (s)

Reserved Unreserved Turn Reserved Unreserved Turn
n Box Eﬁge Range | Trials | Mean | Var Mean | Var Mean | Var Mean | Var Mean Var Mean Var
20 [ 10 3 15 5 1.018 | .002 1.064 | .012 | 1.045 | 0.004 | 0.042 | IE-4 .168 .056 201.56 | 1.30E5
25 | 10 3 15 15 1.045 | .004 | 1.066 | .008 | 1.084 | .006 .056 3E-4 .280 474 763.14 | 1.57E6
30 | 10 3 15 15 1.023 | .001 1.081 | .007 | 1.053 | .002 .074 4E-4 413 287 4.53E3 | 1.18E8
35 | 10 3 15 5 1.049 | .001 1.101 | .007 | 1.078 | .007 .097 4E-4 159 .006 4.06E4 | 4.85E9
20 | 7 2 12 5 1.018 | 6E-4 | 1.12 .022 | 1.038 | .002 .031 1E-4 .186 .027 57.839 | 5.85E3
30 |5 2 0 2 1.009 | 1E4 | 1.074 | .011 | 1.06 .003 .109 SE-10 | 3295 1.39E5 | 1.05E6 | 1.43E10
R? Approximate Networks o ]
Uniform Prize Distribution PoA Computation Time (s)

Reserved Unreserved Turn Reserved Unreserved Turn
n Box gﬁ;‘e Range | Trials | Mean | Var Mean | Var Mean | Var Mean | Var Mean Var Mean Var
20 | 10 3 15 5 1.010 | 5E-4 | 1.112 | .040 | 1.013 | .001 .054 2E-4 154 .006 285.30 | L.71E5
25 | 10 3 15 15 1.032 | .002 | 1.066 | .005 | 1.058 | .006 .066 4E-4 .201 071 3.27E3 | 1.02E8
30 | 10 3 15 15 1.036 | .003 | 1.058 | .004 | 1.054 | .007 .072 3E-4 215 .051 1.63E3 | 1.46E7
35|10 3 15 5 1.053 | .004 | 1.064 | .007 | 1.031 | .005 128 .001 .503 .076 2.23E4 | 2.50E8
20 | 7 2 12 5 1.020 | .001 1.024 | .001 | 1.012 | .001 .044 1E-4 425 258 69.074 | 1.25E4
30 | 5 2 00 2 1.010 | 2E-4 | 1.039 | .001 | 1 0 115 .001 756.35 | 1.00E6 | 2.91E4 | 8.90E8
Planar Networks PoA Computation Time (s)

Reserved Unreserved Turn Reserved Unreserved Turn
n Box II\E/EJ‘ge Range | Trials | Mean | Var Mean | Var Mean | Var Mean | Var Mean Var Mean Var
30 [ NA |1 S 10 1.051 | .001 1.074 | .004 | 1.018 | .001 130 .001 191.84 | 9.26E4 | 62.84 596.8
35 | N/A | 1 s8] 10 1.040 | .003 1.063 | .002 | 1.044 | .002 283 .005 84278 | 3.26E6 | 406.68 | 4.22E4
40 | N/A | 1 oS} 10 1.021 | .001 1.056 | .001 | 1.037 | .001 234 .007 668.75 | 1.84E6 | 509.46 | 1.09E5
45 | N/A | 1 00 5 1.011 | 1E-4 | 1.049 | .003 | 1.029 | .002 .268 .004 4.00E4 | 1.79E9 | 2.82E3 | 8.54E6

by comparing Figures 10 and 12. What is initially surprising
though is the degree to which it raises the computational
effort for calculating the unreserved equilibrium. However,
upon further consideration the reason becomes clear: As what
is essentially a bi-level optimization problem in which the
first player needs to calculate its optimal move given the best
response of the second player, removing limits on the range
of each player, even in a DAG, allows for the potential of
exponentially more strategies being available without a method
to remove consideration for some of these strategies. Still, the
fact that the average computational effort exceeds that of the
turn-based game is noteworthy. The variance in computation
times sheds some light on this, as Table IV shows in all cases
the variance in computation time for the unreserved case is an
order of magnitude or more higher than the variance for the
turn-based, suggesting that some outlying test networks are
particularly difficult to solve.

VII. SUMMARY AND DISCUSSION

In this paper, we introduced the Prize-Collecting Multi-
Agent Orienteering Problem and proposed three policies to
govern the selfishness of the agents. Given that the PCMOP
lies at the intersection of congestion games, shortest path com-
putation, longest path computation, top k paths computation,
and the TOP, it is natural that it inherits complexities from
each of them, in particular an extreme sensitivity to changes
in parameter values. Despite these complexities, we derived
theoretical bounds on the maximum inefficiency possible un-
der each of these policies in the form of PoAs. As part of that
analysis, we extended [3]’s result related to PoA of games over
valid utility systems to a 2-player leader-follower setting. In
addition to theoretical bounds, we developed solution methods
to solve a PCMOP under three policies. In terms of empirical
efficiency, there are relatively small differences in the average

PoA of the three policies, as seen in Figures 7, 9, and 11.
While the reserved path policy produces the best average
PoA in most cases, we see there are some where the average
performances of the turn-based policy surpasses it. Also, while
the performance of the unreserved policy is the worst on
average for all but one of our test cases, there are individual
instances where it delivers the best value, albeit not as many
as the reserved and turn-based policies.

We have seen that the reserved path policy has the best
theoretical guarantees on performance in terms of prize-
collecting. However, it may produce poorly distributed prize
divisions: consider that with sufficient range on an undirected
graph, the first agent will collect all prizes, which defeats the
purpose of using multiple agents. Also, while the reserved path
policy has the best guarantees, it does not always produce the
best results: A 2-Player game on the directed graph in Figure
13 using either the unreserved or turn-based policies results in
all prizes being collected, but the reserved path policy results
in a PoA of 22 its theoretical worst result.

3+2¢?

Fig. 13. Network with a 2-Player PoA of % for reserved policy and 1 for
other policies

The unreserved path and turn-based policies appear to pro-
duce the best results in terms of distributions: earlier players
have a hierarchical advantage, being able to get any specific
prize they want before or at the same time as lower-ranked
players and taking it from them, but they must weigh the cost
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of the prizes they can no longer guarantee themselves against
the ones they want. The turn-based policy seems particularly
realistic: if an earlier player makes it clear it is going after a
specific large prize, it can make others back off sooner and
allow the player to stop and collect additional smaller prizes
along the way, rather than racing by them (as in the unreserved
policy) even though no other player is targeting the same prize.
This is seen in Figure 1, where the prize at node B is collected
in the turn-based policy but not the unreserved path policy,
resulting in a PoA of % for the unreserved case.

The main drawback to the turn-based policy is the compu-
tational complexity: The game tree is exponentially large and
while there is frequent similarity among branches to reduce
computations, it is still a problem. A one player PCMOP/TOP
is solved at each leaf node which is not recognized as already
solved, which, although likely a smaller problem (since much
of the graph is already traversed), is NP-Hard.

The advantage of the reserved path policy is that it is
relatively easy to compute, as it allows earlier players to
completely ignore the actions of later players, and every player
after the first can remove prizes from the network and pretend
that it is the first player (for computation). Then each agent
only has to solve the single player PCMOP/TOP which, while
still NP-Hard, is more tractable than the other versions. While
it can cause unbalanced prize distributions in general, it is
unlikely to do so when agent ranges divides the workload
approximately evenly between agents.

The unreserved path policy seeks to reduce the computa-
tional effort of the turn-based policy by considering the best
paths first: while computation tends to be longer when there
are a number of paths with the same value in prizes, such as
when the range is relatively large, in most cases the runtime is
shorter than in the turn-based policy. It also appears to produce
a more even distribution of prizes than the reserved path policy.
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APPENDIX A
INTEGER PROGRAM FORMULATIONS, ALGORITHMS, AND
NUMERICAL RESULTS
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Algorithm 1 Algorithm 1: ReservedSolution(G, k, prizes)
Require: G.k,prizes
Initialize sum <+ 0;
Initialize Paths as a size k array;
for i =1 to k do
path, score < SolvelP1(G, k <+ 1,prizes);
for j in path do
prizes[j] < 0;
sum < sum + score, Paths[i] < path;
return Paths, sum

Algorithm 2 UnreservedSolution(G, prizes)

Initialize scorel <— 0, score2 < 0, pathl, path2;
Initialize model <— TOP(G, k = 1,prizes)
while T'rue do
pl, s1 < SolvelP1(model);
if s1 < scorel then
return scorel, pathl, score2, path2
else
p2 < SolvelP2(G, p1,prizes);
s1, s2 < ComputeScores(G, pl, p2,prizes);
if s1 > scorel then
scorel < sl, score2 <— s2, pathl < pl, path2 < p2;

model.AddConstraint(p1 is infeasible)

Algorithm 3 TurnSolution(G, prizes)

Initialize hashset Space < 0;

Initialize nCur < 1, nNext < 1, rCur < r, rNext < r, colBetween <+ 0;
Initialize stateQ <— (nCur, nNext, rCur, rNext, colBetween);

run SolveState(stateQ)

return ConstructPaths(Space)
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