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a b s t r a c t

We consider persistent monitoring of a finite number of inter-connected geographical nodes by a
group of heterogeneous mobile agents. We assign to each geographical node a concave and increasing
reward function that resets to zero after an agent’s visit. Then, we design the optimal dispatch policy
of which nodes to visit at what time and by what agent by finding a policy set that maximizes a utility
that is defined as the total reward collected at visit times. We show that this optimization problem
is NP-hard and its computational complexity increases exponentially with the number of the agents
and the length of the mission horizon. By showing that the utility function is a monotone increasing
and submodular set function of agents’ policy, we propose a suboptimal dispatch policy design with a
known optimality gap. To reduce the time complexity of constructing the feasible search set and also
to induce robustness to changes in the operational factors, we perform our suboptimal policy design
in a receding horizon fashion. Then, to compensate for the shortsightedness of the receding horizon
approach we add a new term to our utility, which provides a measure of nodal importance beyond
the receding horizon. This term gives the policy design an intuition to steer the agents towards the
nodes with higher rewards on the patrolling graph. Finally, we discuss how our proposed algorithm
can be implemented in a decentralized manner. A simulation study demonstrates our results.

© 2020 Elsevier Ltd. All rights reserved.
s

1. Introduction

In recent years, coordinating the movement of mobile sensors
o cover areas that have not been adequately sampled/observed
as been explored in controls, wireless sensors, and robotic com-
unities with problems related to coverage, exploration, and
eployment. Many of the proposed algorithms strive to spread
ensors to desired positions to obtain a stationary configuration
uch that the coverage is optimized, see e.g., Bullo, Carli, and
rasca (2012), Carron, Todescato, Carli, Schenato, and Pillonetto
2015), Chung and Kia (2020), Cortes, Martinez, Karatas, and Bullo
2004), Krause and Guestrin (2007), Krause, Singh, and Guestrin
2008), Schwager, Rus, and Slotine (2009) and Todescato, Carron,
arli, Pillonetto, and Schenato (2017). Some sensor placement
roblems such Carron et al. (2015), Chung and Kia (2020), Schwa-
er et al. (2009) and Todescato et al. (2017) are context-aware
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and include also a period of exploration and observation to in-
crease the knowledge used to find the optimal residing position
of the sensors. In this paper, instead of aiming to achieve an
improved stationary network configuration as the end result of
the sensors’ movement, our objective is to explore context-aware
mobility strategies that dynamically re-position the mobile sen-
sors to maximize their utilization and contribution over a mission
horizon. Motivating applications include persistent monitoring to
discover forest fires (Yuan, Zhang, & Liu, 2015) or oil spillage in its
early stages (Henry & Henry, 2015), locating endangered animals
in a large habitat (Engler, Guisan, & Rechsteiner, 2004) and event
detection in urban environments (Thomas & van Berkum, 2009).
Specifically, we consider persistent monitoring of a set of finite
V inter-connected geographical nodes via a set of finite A mobile
ensors/agents, where |V| > |A|. The mobile agents are confined
to a set of pre-specified edges E ⊂ V × V , e.g., aerial or ground
corridors, to traverse from one node to another, see Fig. 1. De-
pending on their vehicle type, agents may have to take different
edges to go from one node to another. Also, they may have
different travel times along the same edge. We study dispatch
policy that orchestrates the topological distribution of the mobile
agents such that an optimized service for a global monitoring task
is provided with a reasonable computational cost. To quantify
the service objective we assign to each node v ∈ V the reward
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mailto:nrezazad@uci.edu
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Fig. 1. Examples of a set of geographical nodes of interest and the edges
between them. Finite number of nodes to monitor in a city can be restricted to
some particular scanning zones (the picture on the left) or the cell partitioned
map of the city (the picture on the right).

function,

Rv(t) =
{
0, t = t̄v,
ψv(t − t̄v), t > t̄v,

(1)

where ψv(t) is a nonnegative concave and increasing function of
time and t̄v is the latest time node v is visited by an agent. For
example, in the data harvesting or health monitoring, ψv(.) can
be the weighted idle time of the node v, or in event detection,
it can be the probability of at least one event taking place at
inter-visit times. Optimal patrolling designs a dispatch policy
(what sequence of nodes to visit at what times by which agents)
to score the maximum collective reward for the team over the
mission horizon. However, as we explain below, this problem is
NP-hard. Our aim then is to design a suboptimal solution that has
polynomial time complexity.

Related work: Dispatch policy design for patrolling/monitoring
of geographical nodes can be divided into two categories: the
edges to travel between the nodes are not specified (design in
continuous edge space) or otherwise (design in discrete edge
space). When there are no prespecified inter-node edges, the
optimal patrolling policy design includes also finding the optimal
inter-node trajectories that the agents should follow without
violating their mobility limits. In some applications, however,
the mobile agents are confined to travel through pre-specified
known edges between the nodes. For example, in a smart city
setting, regulations can restrict the admissible routes between the
geographical nodes. In the dispatch policy design in discrete edge
space, the complexity of finding the optimal policy for a single
patrolling agent is the same as the complexity of solving the Trav-
eling Salesman problem, where the computational complexity
grows exponentially with the number of the nodes (Karp, 1972).
In the case of multiple patrolling agents, the problem is even
more complex, since each agent’s policy design depends on the
other agents’ policy. This problem is formalized in earlier studies
such as Almeida et al. (2004) and Machado, Ramalho, Zucker,
and Drogoul (2002). Generally, when there are multiple edges to
travel between every two nodes or when each node is connected
to multiple other nodes, finding an optimal long term patrolling
scheme is not tractable. Constraining the agents to travel through
specific edges to traverse among the geographical nodes allows
seeking optimal solutions for the problem. For example, when
the connection topology between the geographical nodes is a
path or a cyclic graph, optimal solutions for the problem are
proposed in Chevaleyre (2004), Donahue, Rosman, Kotowick, Rus,
and Baykal (2016), Pasqualetti, Franchi, and Bullo (2012) and
Yu, Karaman, and Rus (2015). To overcome the complexity issue
on generic graphs, Asghar, Smith, and Sundaram (2019) explore
2

Fig. 2. An agent has two possible routes to take over the designated receding
horizon. The nodes’ color intensity shows their reward value. The blue route
offers a higher reward over the receding horizon but it puts the agent close to
an area with a lower amount of reward, while the red route results in lower
total reward over the receding horizon but puts the agent near an area with
higher amount of reward. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

forming different cycles in the graph and assigning agents to
these cycles to patrol the nodes periodically and seeks to mini-
mize the time that a node stays un-visited. Alternatively, Farinelli,
Iocchi, and Nardi (2017) propose agents to move to the most
rewarding neighboring node based on their current location.

Statement of contribution: In this paper, we propose a robust
and suboptimal solution to the long term patrolling problem
that we stated earlier. Instead of using the customary idle time,
ψv(t) = t , as a reward function, which reduces the optimal
ispatch policy design to the minimum latency problem (Blum
t al., 1994), we consider reward functions described by an in-
reasing concave function. This allows modeling a wider class of
atrolling problems such as patrolling for event detection. We let
he utility function to be the sum of the rewards collected over
he mission horizon by the mobile agents. We discuss that the
esign of an optimal patrolling policy to maximize this utility
ver the mission horizon is an NP-hard problem. Specifically, we
how that the complexity of finding the optimal policy increases
xponentially with the mission horizon and number of agents.
ext, we show that the utility function is a monotone increasing
nd submodular set function. To establish this result, we develop
set of auxiliary lemmas, presented in the appendix, based on
aramata’s inequality (Kadelburg, Dukic, Lukic, & Matic, 2005).
iven the submodularity of the utility function, we propose a
eceding horizon sequential greedy algorithm to compute a sub-
ptimal dispatch policy with a polynomial computation cost and
uaranteed bound on optimality. The receding horizon nature of
ur solution induces robustness to uncertainties of the environ-
ent. Our next contribution is to add a new term to our utility

unction to compensate for the shortsightedness of the receding
orizon approach, see Fig. 2. When agents patrol a large set of
nterconnected nodes, this added term becomes useful by giving
hem an intuition of the existing reward in the farther nodes.
n recent years, submodular optimization has been widely used
n sensor and actuator placement problems (Clark, Bushnell, &
oovendran, 2014; Clark, Lee, Alomair, Bushnell, & Poovendran,
018; Krause & Guestrin, 2007; Krause et al., 2008; Liu et al.,
018; Summers, Cortesi, & Lygeros, 2016). In comparison to the
ensor/actuator placement problems, the challenge in our work
s that the assigned policy per each mobile agent over the re-
eding horizon is a dynamic scheduling problem rather than a
tatic sensor placement. To deal with this challenge, we use the
atroid constraint (Fisher, Nemhauser, & Wolsey, 1978) approach

o design our suboptimal submodular-based policy. Finally, we
iscuss how our algorithm can be implemented in a decentralized
anner. A simulation study demonstrates our results. Our nota-

ion is standard, though to avoid confusion, certain concepts and
otation are defined as the need arises. This paper extends our
reliminary work (Rezazadeh & Kia, 2019a) in detailed technical
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reatment including all the proofs, introducing the notion of
ocal importance to compensate for the shortsightedness of the
eceding horizon approach, decentralized implementation of our
lgorithm, and a new simulation study. Also, we consider a more
eneralized case of reward functions.

. Problem formulation

To formalize our objective, we first introduce our notations
nd state our standing assumptions. For any node v ∈ V , Nv

s a set consisting node v and all the neighboring nodes that
are connected to node v via an edge in E . If there exists a path
connecting node v ∈ V to node w ∈ V , we let τ iv,w ∈ R>0 be the
shortest travel time of agent i ∈ A from node v to w.

Assumption 1. Upon arrival of any agent i ∈ A at any time
t̄ ∈ R>0 at node v ∈ V , the agent immediately scans the node
and the reward Rv(t̄) is scored for the patrolling team A and t̄v of
node v in (1) is set to t̄ . If more than one agent arrives at node
v ∈ V and scans it at the same time t̄ , the reward collected for
the team is still Rv(t̄). If an agent i ∈ A needs to linger over each
node for δi ∈ R≥0 amount of time to complete its scan, during
this time the agent cannot scan the node again to score a reward
for the team.

Let the tuple p = (Vp, Tp, ap) be a dispatch policy of agent ap ∈
A over the given mission time horizon, where Vp and Tp are the
vectors that specify the nodes and the corresponding visit times
assigned to agent ap. Moreover, we let np be the total number of
nodes visited by agent ap, i.e., np = dim(Vp). We refer to np as the
ength of the policy p. We refer to (Vp(l), Tp(l)), l ∈ {1, 2, . . . , np},
s the lth step of policy p. Furthermore, for any agent i ∈ A, we
et P i be the set of all the admissible policies p over the mission
orizon such that ap = i.

ssumption 2. For any policy p, we have Vp(l+ 1) ∈ NVp(l), for
ll l ∈ {1, 2, . . . , np − 1}.

We let P =
⋃

i∈A P i. Then, given any P̄ ⊂ P , the utility
function R : 2P

→ R>0 is

R(P̄) =
∑
∀p∈P̄

np∑
l=1

RVp(l)(Tp(l)). (2)

Given (2), the optimal policy to maximize the utility over a given
mission horizon is given by

P⋆ = argmax
P̄⊂P

R(P̄), s.t. (3a)

|P̄ ∩ P i
| ≤ 1 i ∈ A, (3b)

here | . | returns the cardinality of a set. The constraint condi-
ion (3b) is in the so-called partition matroid form (Fisher et al.,
978) and restricts the choice of the optimal solution to be a
et that contains of at most one member from each disjoint sets
i, i ∈ A. A set value optimization problem of the form (3) is
nown to be NP-hard (Lovász, 1983). Lemma 3, whose proof is
iven in the appendix, gives the cost of constructing the feasible
et P and time complexity of solving optimization problem (3).

emma 3 (Time complexity of Problem (3a)). The cost of con-
tructing the feasible set P of optimization problem (3a) is of order
O(

∑
i∈A Dn̄i ), where D = maxv∈V (|Nv|) and n̄i

= max{np}∀p∈P i .
Furthermore, the time complexity of solving optimization prob-
lem (3a) is O(

∏
Dn̄i ).
i∈A

3

If the system parameters, such as the number of the mobile
agents or the nodes, or the parameters of ψv(.) of the reward
unction at any node v, change after the optimal policy design,
he optimization problem (3) should be solved again over the
emainder of the mission horizon under the new conditions.
ur objective in this paper is to construct a suboptimal solution
o solve the persistent monitoring problem given by (3) with
olynomial time complexity. Moreover, we seek a solution that
as intrinsic robustness to changes that can happen during the
ission horizon.
We close this section by introducing some definitions and

otations used subsequently. For any set function g : 2Q
→ R,

e let ∆g (q|Q̄) = g(Q̄ ∪ q) − g(Q̄), for ∀Q̄ ∈ 2Q and ∀q ∈ Q,
here ∆g shows the increase in value of the set function g going

rom set Q̄ to Q̄∪ q. Recall that g : 2Q
→ R is submodular if and

only if for two sets Q1 and Q2 satisfying Q1 ⊂ Q2 ⊂ Q, and for
q ̸∈ Q2 we have ∆g (q|Q̄1) ≥ ∆g (q|Q̄2) (Fisher et al., 1978). Thus
ubmodularity is a property of set functions that shows diminish-
ng reward as new members are being introduced to the system.
e say g : 2Q

→ R is monotone increasing if for all Q1,Q2 ⊂ Q
e have Q1 ⊂ Q2 if and only if g(Q1) ≤ g(Q2) (Fisher et al.,
978). We denote a sequence of m real numbers (t1, . . . , tm) by
t)m1 . Given two increasing (resp. decreasing) sequences (t)n1 and
v)m1 , (t)

n
1⊕(v)m1 is their concatenated increasing (resp. decreasing)

equence, i.e., for (u)n+m1 = (t)n1⊕ (v)m1 , any uk, k ∈ {1, . . . , n+m}
s either in (t)n1 or (v)m1 or is in both. We assume that (u)n+m1
reserves the relative labeling of (t)n1 or (v)m1 , i.e., if tk and tk+1,
∈ {1, . . . , n − 1} (resp. vk and vk+1, k ∈ {1, . . . ,m − 1})

orrespond to up and uq in (u)n+m1 , then p < q.

. Suboptimal policy design

According to Lemma 3, the time complexity of finding an
ptimal patrolling policy in (3) increases exponentially by the
aximum length, n̄i, of the admissible policies of any agent i ∈ A
nd also by the number of the exploring agents M . In light of this
bservation, to reduce the computational cost, we propose the
ollowing suboptimal policy design. Since the maximum policy
ength n̄i is proportional to the length of the mission horizon, we
irst propose to trade-off optimality and divide the planning hori-
on into multiple shorter horizons so that the policy design can be
arried out in a consecutive manner over these shorter horizons.
hen, to reduce the optimality gap and also to induce robustness
o the online changes that can occur during the mission time, we
ropose to implement this approach in a receding horizon fashion
here we calculate the policy over a specified shorter horizon
ut execute only some of the initial steps of the policy, and then
e repeat the process. However, a receding horizon approach
uffers from what we refer to as shortsightedness. That is, over
arge inter-connected geographical node sets, a receding horizon
esign is oblivious to the reward distribution of the nodes that are
ot in the feasible policy set in the planning horizon. Then, the
ptimal policy over the planning horizon can inadvertently steer
he agents away from the distant nodes with a higher reward,
ee Fig. 2. To compensate for this shortcoming, we introduce the
otion of nodal importance and augment the reward function (2)
ver the design horizon with an additional term that given an
dmissible policy, provides a measure of how close an agent at
he final step of the policy is to a cluster of geographical nodes
ith a high concentration of reward.
Let the augmented reward, whose exact form will be intro-

uced below, over the planning horizon be R̄. Then, the optimal
olicy design over each receding horizon is
⋆
= argmax R̄(P̄), s.t. |P̄ ∩ P i

| ≤ 1 i ∈ A, (4)

P̄⊂P
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Algorithm 1 Sequential Greedy Algorithm
1: procedure SGOpt(P i, i ∈ A)
2: Init: P̄ ← ∅, i← 0, {t̄0v}v∈V
3: for i ∈ A do
4: pi⋆ = argmax

p⊂Pi
∆R̄(p|P̄).

5: P̄ ← P̄ ∪ pi⋆ .
6: end for
7: Return P̄ .
8: end procedure

where hereafter P =
⋃

i∈A P i is the set of the union of the
dmissible policies of the agents P i, i ∈ A, over the planning
orizon. Hereafter, we let t̄v0 be the last time node v ∈ V was
isited before a planning horizon starts.
Next, to reduce the computational burden further, we propose

o use Algorithm 1, which is a sequential greedy algorithm with a
olynomial cost in terms of the number of the agents to obtain a
uboptimal solution for (4). In what follows, we show that since
he objective function (4) is a submodular set function, Algorithm
comes with a known optimality gap. We also show that with
roper inter-agent communication coordination, Algorithm 1 can
e implemented in a decentralized manner.
For v ∈ V , let N r

v be the set consisted of node v itself and its
-hope neighbors. This set can be computed using the Breadth-
irst search in time O(|E| + |V|) (Thomas, Leiserson, Rivest, &
tein, 2009). Then, for every node v ∈ V , we define the nodal
mportance with radius r at time τ as L(v, τ , r) =

∑
w∈N r

v
Rw(τ ).

ext, given an agent i ∈ A that is at node w ∈ V at time t̂ ∈ R≥0,
e define the relative nodal importance of a node v ∈ V with

respect to agent i as

L(v,w, t̂, i) = L(v, t̂ + τ iw,v, r)
/
τ iw,v.

Here, τ iw,v can be computed via A⋆ algorithm in time O(|E|)
(Duchoň et al., 2014). Then, L(v,Vp(np), Tp(np), ap) is a measure
f the relative size of the awards concentration around any node
∈ V that takes into account also the travel time of agent ap from

he final step of policy p = (Vp, Tp, ap) ∈ P to v. Let L(v, p) be
he shorthand notation for L(v,Vp(np), Tp(np), ap). To compensate
or the shortsightedness of the receding horizon design, then we
evise the utility function to

¯ (P̄) = R(P̄)+ α
∑
∀p∈P̄

max
∀v∈V̄

L(v, p), α ∈ R≥0. (5)

he weighting factor α ∈ R≥0 defines how much significance we
ant to assign to the distribution of the reward beyond the reced-

ng horizon. We should note that using a large α can gravitate the
gents to move towards the nodes close to the anchor nodes, and
ake them oblivious to the rest of the nodes. For computational
fficiency, instead of incorporating the relative nodal importance
f all the nodes, which can be achieved by setting V̄ equal to
, we propose to use only V̄ subset of the nodes. We refer to
odes in V̄ as anchor nodes. The anchor nodes can be selected to
e the nodes with higher reward return or to be a set of nodes
hat are scattered uniformly on the graph. It is interesting to note
hat the relative nodal importance term in (5) is reminiscent of
erminal cost used in the model predictive control (MPC). In MPC,
terminal cost that is used to achieve an infinite horizon control
ith closed-loop stability guarantees (Garcia, Prett, & Morari,
989) in some way also compensates for the shortsightedness of
he design over a finite planning horizon. Next, we show that the
eward function (5) is submodular over any given feasible policy
et P in every planning horizon.
4

heorem 4 (Submodularity of the Reward Function (5)). For any
eighting factor α ∈ R≥0, the reward function R̄ : 2P

→ R>0
in (5) is a monotone increasing and submodular set function over P .

Proof. Let c(v,Q) : V × 2Q
→ Z>0 be the total number of

visits to the geographical node v, and IQ ⊂ V be the set of
the nodes that are visited when a policy set Q ⊂ P is imple-
mented. Furthermore, let the increasing sequence (tv(Q))c(v,Q)

1 =

(tv1(Q), tv2(Q), . . . , tvc(v,Q)(Q)) be the sequence of time that node
v ∈ IQ was visited when agents implement Q. Now consider the
eward function R̄ in (5). Then, the first summand of R̄ expands
s R(P̄) =

∑
v∈IP̄

(∑c(v,P̄)
j=1 ψv(∆tvj (P̄))

)
, where ∆tvj (P̄) = tvj (P̄)−

v
j−1(P̄) is the time between two consecutive visits of node v, and
v
0(P̄) = t̄v0 . Next, consider the monitoring policy sets Q1, Q2 and
onitoring policy q with Q1 ⊂ Q2 ⊂ P , q ∈ P , q ̸∈ Q1, and q ̸∈

2. Because (tv(Q1))
c(v,Q1)
1 is a sub-sequence of (tv(Q2))

c(v,Q2)
1 , us-

ng Lemma A.8 and the fact that ψ(.)v is a normalized increasing
oncave function, we conclude that

∑c(v,Q1∪q)
j=1 ψv(∆(tvj (Q2 ∪ q)))−

c(v,Q1)
j=1 ψl(∆(tvj (Q2)))≥ 0 for ∀v ∈ IP̄ . Therefore, ∆R(p|Q1) ≥ 0
hich shows that R(P̄) is a monotone increasing set function. Fur-
hermore, using Lemma A.9 we can write

∑c(v,Q2∪q)
j=1 ψv(∆(tvj (Q2∪

))) −
∑c(v,Q2)

j=1 ψv(∆(tvj (Q2))) ≤
∑c(v,Q1∪q)

j=1 ψv(∆(tvj (Q1 ∪ q))) −
c(v,Q1)
j=1 ψv(∆(tvj (Q1))). Hence, ∆R(q|Q1) ≥ ∆R(q|Q2) which

hows that R(P̄) is a submodular set function. Then, since the
econd summand of R̄,

∑
∀p∈P̄ max

∀l∈V̄
L(l, p), is trivially positive and

odular, the proof is concluded. □

Due to Theorem 4, the suboptimal dispatch policy of Algorithm
, which has a polynomial computational complexity, has the
ollowing well-defined optimality gap.

heorem 5 (Optimality gap of Algorithm 1). Let P⋆ be an optimal
olution of (4) and P̄ be the output of Algorithm 1. Then, R̄(P̄) ≥
1
2 R̄(P

⋆).

Proof. Since the objective function of (4) is monotone increasing
and submodular over P , the proof follows by invoking (Fisher
et al., 1978, Theorem 5.1).

3.1. Comments on decentralized implementations of Algorithm 1

To implement Algorithm 1, given the current position of each
agent and {t̄0v}v∈V at the beginning of each planning horizon,
the admissible set of policies P i for each agent i ∈ A should
be calculated. Let every agent know {ψv(t)}v∈V . A straightfor-
ard decentralized implement of Algorithm 1 then is a multi-
entralized solution. In this solution, agents transmit the feasible
olicy sets across the entire network until each agent knows all
he policy sets P i, ∀i ∈ A (flooding approach). Then, each agent
cts as a central node and runs a copy of Algorithm 1 locally.
lthough reasonable for small-size networks, the communication
nd storage costs of this approach scale poorly with the network
ize. The sequential structure of Algorithm 1 however, offers an
pportunity for a communicationally and computationally more
fficient decentralized implementation, as described in steps 1 to
of Algorithm 2. Step 10 of Algorithm 2 is included for receding
orizon implementation purpose, where the execution plan can
e for example one or all of the agents visit at least one node. To
mplement Algorithm 2, we assume that the agents A can form
a bidirectional connected communication graph Ga

= (A, Ea),
i.e., there is a path from every agent to every other agent on
Ga. Then, there always exists a route SEQ = s1 → · · · →

si → · · · → sK , sk ∈ A, k ∈ {1, . . . , K }, K ≥ |A|, that visits
ll the agents (not necessarily only one time), see Fig. 3(a). The
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Algorithm 2 Decentralized Implementation of Sequential Greedy
Algorithm
1: Init: P̄ ← ∅, i← 1, {t̄0v}v∈V
2: while i ≤ K do
3: if si is being called for the first time then
4: agent si computes psi⋆ = argmax

p⊂Psi
∆R̄(p|P̄).

5: P̄ ← P̄ ∪ psi⋆ .
6: end if
7: agent si pass P̄ to si+1 .
8: i← i+ 1.
9: end while
0: agent sK based on the execution plan of the receding horizon operation updates
{t̄0v}v∈V and communicates it to the team

agents follow SEQ to share their information while implementing
lgorithm 2. The communication cost to execute Algorithm 2 can
e optimized by picking SEQ to be the shortest path (Lawler,

Lenstra, Kan, & Shmoys, 1985) that visits all the agents over
graph Ga. If Ga has a Hamiltonian path, the optimal choice for
SEQ is a Hamiltonian path. Recall that a Hamiltonian path is
a path that visits every agent on Ga only once (Thomas et al.,
2009). When, there is a SEQ that visits every agent on Ga, the
directed information graph GI

= (A, E I ) of Algorithm 2, which
shows the information access of each agent while implementing
Algorithm 2, is full, see Fig. 3. That is, each agent in SEQ is aware
of the previous agents’ decision. Therefore, the solution obtained
by Algorithm 2 is an exact sequential greedy algorithm and its
optimality gap is 1/2. Recall that the labeling order of the mobile
agents does not have an effect on the optimality gap guaranteed
by Theorem 5 (Gharesifard & Smith, 2018). If an agent i ∈ A
appears repeatedly in SEQ (e.g., the blue agent in Fig. 3), with a
slight increase in computation cost, we can modify Algorithm 2
to allow agent i to redesign and improve its sub-optimal policy
pi⋆ by re-executing step 4 of Algorithm 2.

Another form of decentralized implementation of Algorithm 1,
which may be more relevant in urban environments, is through
a client–server framework implemented over a cloud. In this
framework, agents (clients) connect to shared memory on a cloud
(server) to download or upload information or use the cloud’s
computing power asynchronously. Let {T i

}, i ∈ A, be the set of
isjoint time slots that is allotted respectively to agents A, see
ig. 4. To implement Algorithm 1, agent i ∈ A connects to the
erver at the beginning of T i to check out P̄ and {t̄0v}v∈V . Then, it
ompletes steps 4 and 5 of Algorithm 1, and checks in the updated
¯ to the server before T i elapses fully. The last agent based on
he execution plan of the receding horizon operation updates
t̄0v}v∈V and checks it in the cloud memory for the next receding
orizon planning. Since the time slots assigned to the agents do
ot overlap, agent i has access to policy pk⋆ of all agents k which
as already communicated to the cloud. Thus, the information
raph GI is full, and the optimality gap of 1/2 holds.
If there is a message dropout while executing Algorithm 2

r in the decentralized server–client based operation an agent
takes a longer time than T j to complete and check-in P̄ to
he cloud, the information graph becomes incomplete, see for
xample Fig. 4. Then, the corresponding decentralized implemen-
ation deviates from the exact sequential greedy Algorithm 2.
or such cases, Gharesifard and Smith (2018) show that the
ptimality gap instead of 1/2 becomes 1

M−ω(GI )+2
, where ω(GI ) is

the clique number of GI (Gharesifard & Smith, 2018). Recall that
the clique number of a graph is equal to the number of the nodes
in the largest sub-graph such that adding an edge will cause a
cycle (Bondy, Murty, et al., 1976).
 h

5

Fig. 3. The plot on the left shows the bi-directional communication graph Ga in
lack along with an example SEQ path in red. The plot on the right shows the

complete information sharing graph GI if agents follow SEQ while implementing
Algorithm 2. Arrow going from agent i to agent j means that agent j receives
agent i’s information. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. {T i
}i∈A, A = {1, 2, 3, 4, 5} are the time slots allotted to each agent to

connect to the cloud. The arrows show the time each agent took to do their
calculations for an example scenario. Here, the associated information graph GI

is as the incomplete graph on the right with clique number of 3.

Fig. 5. Three agents patrol a field, divided into 20 by 20 cells. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4. Numerical example

We consider persistent monitoring using 3 agents for event
detection over an area that is divided into 20 by 20 grid map as
shown in Fig. 5(a). The geographical nodes of interest V are the
center of the cells in Fig. 5(a). The agents can travel from a cell to
the neighboring cells in the right, left, bottom, and top. The agents
are homogeneous and the travel time between any neighboring
nodes for all the agents are identical and equal to 1 second. The
agents start their patrolling task from the nodes where they are
depicted in Fig. 5(a). We model the event occurrence in each
geographical node as a Poisson process and define our reward
function at each node v ∈ V as (1) with ψv(t) = 1 − eλv t
where λv ∈ R>0 is the arrival rate of the event; for more details
see Rezazadeh and Kia (2019a). Fig. 5(a) shows the reward value
of the nodes at t = 120 seconds when there is no monitoring. The
color intensity of the cells in Fig. 5(a) is proportional to λv; the
igher λ , the darker the color of node v. The region enclosed by
v
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he blue rectangle initially has a low reward but after 100 seconds
ts reward value is increased to a higher value by changing λv
f the corresponding cells. An animated depiction of the change
n the reward map because of the different dispatch policies we
iscuss below is available in Rezazadeh and Kia (2019b). We com-
are the performance of Algorithm 1, implemented in a receding
orizon fashion, and a conventional greedy algorithm where each
gent always moves to the neighboring node that has the instan-
aneous highest reward value. In implementing Algorithm 1 in a
eceding horizon fashion, we assume that the planning horizon
s 4 seconds and the execution horizon is 1 second. We consider
oth the case of including (α = 0.1) and excluding (α = 0) the
odal importance measure in the reward function (5). Fig. 5(b)
hows that the traditional greedy cell selection performs poorly
ompared to the other two planning algorithms. The reason is
hat the three agents’ decision becomes the same after a while,
.e., they start choosing the same cell after a while and moving
ogether, therefore all three agents act as if one agent is patrolling
recall Assumption 1). The performance of Algorithm 1 is better
han a standard greedy cell selection because the effect of agent
’s patrolling policy is taken into account when agent i + 1 is
esigned. Therefore, the chances that all three agents go to the
ame cell together and move together is narrow. Furthermore, we
an note that implementing Algorithm 1 by considering the effect
f nodal importance delivers a better outcome. The reason is that
n the case that there is no nodal importance, the agents are
rawn to the region of high importance near them and stay there
s Fig. 5(c) shows. However, there are other important regions
ith higher values that are farther away, especially the area on
he left top corner which is separated by a low rate stripe from
here agents start. Incorporating nodal importance, as Fig. 5(d)
hows steers the agents to the regions with a higher rate of
eward that are beyond the receding horizon’s sight.

. Conclusion

We presented a multi-agent dispatch policy design for per-
istent monitoring of a set of finite inter-connected geographical
odes. Our design relied on assigning an increasing and concave
eward function of time to each node that reset to zero after
visit by an agent. We defined our design utility function as

he sum of the rewards scored for the team when agents visit
he geographical nodes. By showing that the utility function is
monotone increasing and submodular set function, we laid the
round to propose a suboptimal solution with a known optimality
ap for our dispatch policy design, which was NP-hard. To in-
uce robustness to the changes in the problem parameters, we
roposed our suboptimal solution in a receding horizon setting.
ext, to compensate for the shortsightedness of the receding
orizon approach, we added a new term, called the relative nodal
mportance, to the utility function as a measure to incorporate
notion of the importance of the regions beyond the feasi-

le solution set of the receding horizon optimization problem.
ur numerical example demonstrated the benefit of introducing
his term. Lastly, we discussed how our suboptimal solution can
e implemented in a decentralized manner. Our future work
s to investigate decentralized algorithms that allow agents to
ommunicate synchronously with each other in order to have a
onsensus on a policy with a known optimality gap.

ppendix

roof of Lemma 3. The time complexity of constructing the
dmissible policy set P i is of order of the number of possible

paths that agent i ∈ A can traverse over the mission horizon
6

while respecting Assumption 2, which is of order Dn̄i . Thus, the
time complexity of constructing the feasible set P =

⋃
i∈A P i

is O(
∑

i∈A Dn̄i ). Next, let P̄ be any subset of P that satisfies
constraint (3b). Due to Assumption 1, the reward scored by im-
plementing policy p = (Vp, Tp, ap) ∈ P̄ cannot be calculated
independent from the all the other policies in P̄\{p}. Hence, to
solve optimization problem (3a), we need to evaluate all the
possible policy sets P̄ satisfying the constraint (3b). Since P̄ can
have at most one policy from the policy set P i of i ∈ A and P i

has O(Dn̄i ) members, then O(
∏

i∈A Dn̄i ) different possibilities of P̄
exist which determines the time complexity of solving (3a). □

We develop the auxiliary results below to use in the proof of
Theorem 4. These results show some of the properties of the sum
of evaluation of a concave and increasing function over increasing
sequences and their concatenation. The decreasing sequence (δt)n1
majorizes the decreasing sequence (δv)n1, if δt1 ≥ δt2 ≥ · · · ≥ δtn,
δv1 ≥ δv2 ≥ · · · ≥ δvn, δt1 + · · · + δti ≥ δv1 + · · · + δvi for
i∈{1, . . . , n− 1} and δt1 + · · · + δtn = δv1 + · · · + δvn hold.

Lemma A.6. Let f : R→ R be a concave and increasing function
with f (0) = 0. If sequences (δt)n1 and (δv)m1 with n ≤ m satisfy
δt1 + · · · + δti ≥ δv1 + · · · + δvi, ∀i ∈ {1, . . . , n − 1} and
δt1 + · · · + δtn = δv1 + · · · + δvm then f (δt1) + · · · + f (δtn) ≤
f (δv1)+ · · · + f (δvm) holds.

Proof. We note that the sequence (δu)m1 defined as δui = δui for
i ∈ {1, . . . , n} and δui = 0 for i ∈ {n+1, . . . ,m}majorizes any se-
quence (δv)m1 defined in the lemma statement. Then, since f (0) =
, the proof follows from the Karamata’s inequality (Kadelburg
t al., 2005).

orollary A.7. Let f : R≥0 → R≥0 be a monotone increasing and
oncave function. Then for any a, b, c, d ∈ R≥0 such that 0 ≤ a ≤ c
and 0 ≤ b ≤ d, then f (c)+ f (d)− f (c + d) ≤ f (a)+ f (b)− f (a+ b)
olds.

roof. Note that since a ≤ c and b ≤ d, we have a+ b ≤ c + d.
et (δt)31 = (c, d, a+ b) and (δv)31 = (a, b, c + d). Then, the proof
follows from Lemma A.6. □

Lemma A.8. For any (q)l1, let g((q)l1) =
∑l−1

i=1 f (∆qi), where
∆qi = qi+1 − qi and f be a concave and increasing function with
f (0) = 0. Now, consider two increasing sequences (t)n1 and (u)l1, and
their concatenation (a)n+l1 = (t)n1⊕(u)l1. Then, g((a)

n+l
1 )−g((t)n1) ≥ 0.

holds.

Proof. If ap = t1 and aq = tn, then since (a)n+l1 is an increasing
sequence, p<q. Let the sub-sequence of (a)n+l1 ranging from index
p to q be (v)m1 where m ≥ n. Letting ∆vi = vi+1 − vi and ∆ti =
ti+1 − ti, we rearrange ∆vi’s and ∆ti’s in a descending order to
form the sequences (δv)l−11 and (δt)n−11 . Since ap = t1 and aq = tn,
we have

∑m−1
i=1 ∆vi =

∑m−1
i=1 δvi =

∑n−1
i=1 δti =

∑n−1
i=1 ∆ti =

tn − t1. Because (a)n+l1 = (t)n1 ⊕ (u)l1, then ∀i ∈ {1, . . . , n}
there exists Si ⊂ {1, . . . ,m} such that

∑
j∈Si

δvj = δti, where
Si ∩ Sk = ∅, i ̸= k. Consequently, for r ∈ {1, . . . ,m}, we have∑r

i=1 δvi=
∑

j∈S δtj for S⊂{1, . . . , n} and |S| ≤ r . Since (δt)n−11 is
a decreasing sequence, we can write

∑r
i=1 δvi ≤

∑r
i=1 δti. Thus,

f (δt1)+· · ·+ f (δtn−1) ≤ f (δv1)+· · ·+ f (δvm−1) holds as a result
of Lemma A.6. Given that f (δt1)+ · · · + f (δtn−1) =

∑n−1
i=1 f (∆ti)

and f (δv1)+· · ·+f (δvm−1)=
∑m−1

i=1 f (∆vi) ≤
∑n+1−1

i=1 f (∆ai), then∑n−1
i=1 f (∆ti)≤

∑n+1−1
i=1 f (∆ai), which concludes the proof. □

Lemma A.9. For any (q)l1, let g((q)l1) =
∑l

i=1 f (∆qi) where

∆qi = qi+1 − qi and f is a concave and increasing function with
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(0) = 0. Now, consider three increasing sequences (t)n1 and (v)m1 and
u)l1 and concatenations (a)n+l1 = (t)n1⊕(u)l1 and (b)m+l1 = (v)m1 ⊕(u)l1
where (v)m1 is a sub-sequence of (t)n1, then

(
g((b)m+l1 ) − g((v)m1 )

)
−(

g((a)n+l1 )− g((t)n1)
)
≥ 0.

Proof. Let the sequence (u)p1 be the first p elements of (u)l1.
Then, we can form ∆Sp =

(
g((v)m1 ⊕ (u)p1) − g((v)m1 ⊕ (u)p−11 )

)
−(

g((t)n1 ⊕ (u)p1) − g((t)n1 ⊕ (u)p−11 )
)
, where (u)01 to be an empty

sequence with no members. Since (v)m1 is a sub-sequence of (t)n1
and (u)p1 having one member more over (u)p−11 , then we have
∆Sp = (f (∆S1) + f (∆S2) − f (∆S1 + ∆S2)) − (f (∆S3) + f (∆S4) −
f (∆S3 + ∆S4)) with 0 ≤ ∆S3 ≤ ∆S1 and 0 ≤ ∆S4 ≤ ∆S2.
From Corollary A.7, we can conclude that ∆Sp ≥ 0. Then, given∑l

p=1∆Sp=
(
g((b)m+l1 )−g((v)m1 )

)
−

(
g((a)n+l1 )− g((v)m1 )

)
, the proof is

concluded. □
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