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Abstract—We propose a continuous-time dynamic active
average consensus algorithm in which the agents can alter-
nate between active and passive modes depending on their
ability to access to their reference input. The objective is to
enable all the agents, both active and passive, to track the
average of the reference inputs of the active agents. The
algorithm is modeled as a switched linear system whose
convergence properties are carefully studied considering
the agents’ piece-wise access to the reference signals. We
also study the discrete-time implementation of this algo-
rithm. Next, we show how a containment control problem in
which a group of followers should track the convex hull of
a set of observed leaders, can be cast as an active average
consensus problem, and solved efficiently by our proposed
dynamic active average consensus algorithm. Numerical
examples demonstrate our results.

Index Terms—Multi-agent coordination, average consen-
sus, containment control, switched systems.

I. INTRODUCTION

WE PROPOSE a distributed solution for the dynamic
active average consensus problem and study its use in

solving a distributed containment control problem. In dynamic
active average consensus problem, at any time, only a sub-
set of the agents are active, meaning that only a subset of
agents collects measurements. The objective then is to enable
all the agents, both active and passive, to obtain the aver-
age of the collected measurements without knowing the set
of active agents. The well-known average consensus problem,
extensively studied in the literature for both static [1] and
dynamic [2] reference signals, is in fact a special case of this
problem with all the agents being active at all times.

The active average consensus problem can be viewed as a
weighted average consensus problem [3], in which the weights
are 1 for active agents and 0 for passive agents. However, the
solutions for weighted average consensus (see, e.g., [3]–[5])
use the notation of the ‘equivalent’ Laplacian matrix, which
is the multiplication of the inverse of the weight matrix and
the Laplacian matrix. Therefore, the weights should be non-
zero, and thus these solutions cannot solve the active average
consensus problem. Solutions specifically addressing the active
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average consensus problem are proposed in [6]–[8], but, they
require both the reference signals and their derivatives to be
bounded to guarantee bounded error tracking. References [6]
and [7] also assume that the active and passive roles of the
agents are fixed and agents cannot alternative between modes.
On the other hand, [8] allows the agents to change mode but
requires the change of the modes to be done smoothly.

In this letter, we propose a continuous-time solution for
dynamic active average consensus over connected graphs that
requires only the rate of the change of the reference signals
to be bounded. Also, the agents can switch between active
and passive modes instantaneously, as long as a dwell time
exists between the switching incidences. Abrupt switching
is usually the case for practical problems where agents are
observing dynamic activities that can enter or leave the obser-
vation zone of the agents and thus change the agents’ role
from active to passive or vice versa in a non-smooth fashion.
We model our algorithm as a switched linear system and study
its convergence properties carefully by taking into account the
piece-wise access of the agents to the reference signals. Our
study employs the concept of distributional derivatives [9] to
model the derivative of piece-wise continuous functions and
characterize the transient error at the switching times.

Our next contribution in this letter is studying the discrete-
time implementation of our proposed dynamic active average
consensus algorithm and using it to solve a containment con-
trol problem where a group of followers should track the
convex hull of a set of leaders that they observe. We show
that the average of the geometric centers of the observed
leaders at each active agent is a point in the convex hull
of the leaders. Thus, the containment problem can be formu-
lated and solved as an active average consensus problem, see
Fig. 1. Continuous-time solutions for containment problems
can be found in [10]–[12]. But, the requirement for contin-
uous inter-agent information sharing can be of concern for
practical problems where agents communication bandwidth
is limited. Discrete-time containment control solutions where
agents communicate with each other in a finite rate are given
in [13], [14]. To provide perfect tracking, [10]–[14] assume
that the leaders are static or if they are dynamic they either
follow a certain dynamics that is known to the followers or
the leaders’ motions have to be coordinated with the fol-
lowers. In this letter, we consider a tracking problem where
the states of the leaders are only measured online, and we
make no assumption about the dynamics of the leaders except
that the changes of the states of the leaders are bounded.
This relaxation however, as known in dynamic consensus lit-
erature, is attained by trading off perfect tracking, as the
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Fig. 1. A containment control scenario where a set of six followers
should track the convex hull of a set of the dynamic leaders that they
observe: Followers Va = {1, . . . , 5} are active agents that each observes
a subset of the leaders, while follower 6 is the passive agent that should
still follow the convex hull of the leaders despite having no measurement.

online time-varying information takes some time to propagate
through the network [2]. A preliminary version of our work
appeared in [15]. There, we used two parallel conventional
dynamic average consensus algorithms, one to generate the
sum of the measurements divided by the size of the network
and the other to obtain the sum of the active agents divided
by the size of the network. Then, the average of the active
measurements is obtained from dividing the output of the first
algorithm by that of the second one. This letter is offering a
computationally more efficient algorithm, which has a lower
communication complexity and avoids zero-crossing problem
observed in our initial work [15] for its approach to solve
dynamic active average consensus problem.

II. NOTATIONS AND PRELIMINARIES

We let R, R>0, R≥0, Z, Z>0 and Z≥0 denote the set of real,
positive real, non-negative real, integer, positive integer, and
non-negative integer, respectively. For s ∈ R

d, ‖s‖ = √
s�s

denotes the standard Euclidean norm. We let 1n (resp. 0n)
denote the vector of n ones (resp. n zeros), and In denote
the n × n identity matrix. When clear from the context, we

do not specify the matrix dimensions. H(t) =
{

0, t < 0

1, t ≥ 0
is

the Heaviside step function. δ(t) =
{

∞, t = 0

0, t 	= 0
such that∫ ∞

−∞ δ(t)dt = 1 is the Dirac Delta function. In a network
of N agents, the aggregate vector of local variables pi ∈ R,
i ∈ {1, . . . , N}, is denoted by p = (p1, . . . , pN)� ∈ R

N .
Consider the piece-wise continuous function

v(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v0(t), t0 ≤ t < t1,
v1(t), t1 ≤ t < t2,
...

vk̄(t), tk̄ ≤ t

, (1)

where vi ∈ C1, i ∈ {1, . . . , k̄}. Using the Heaviside step func-
tion, (1) reads as v(t) = v0 +∑k̄

k=1(vk −vk−1) H(t− tk). Then,
following [9], the distributional derivative of v(t) is

d

dt
v = ˙̃v +

k̄∑
k=1

(v(t+k ) − v(t−k )) δ(t − tk), (2)

where ˙̃v = v̇0 + ∑k̄
k=1(v̇k − v̇k−1) H(t − tk) or equivalently

˙̃v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̇0(t), t0 ≤ t < t1,
v̇1(t), t1 ≤ t < t2,
...

v̇k̄(t), tk̄ ≤ t.

We assume that the piece-wise continuous signals are right-
continuous, i.e., v(tk) = v(t+k ). Hereafter, we use the notation

‘̇̃ ’ to represent ˙̃v(t) =
{

v̇(t) t 	= tk
v̇(t+k ) t = tk

.

An undirected graph is a triplet G = (V, E, A), where V =
{1, . . . , N} is the node set and E ⊆ V × V is the edge set,
and A ∈ R

N×N is a adjacency matrix such that aij = aji > 0
if (i, j) ∈ E and aij = 0, otherwise. An edge (i, j) from i to
j means that agents i and j can communicate. A connected
graph is an undirected graph in which for every pair of nodes
there is a path connecting them. The degree of a node i is
di = �N

j=1aij. The Laplacian matrix is L = D−A, where D =
Diag(d1, . . . , dN) ∈ R

N×N . For connected graphs, L1N = 0
and 1T

NL = 0. Moreover, L has one eigenvalue λ1 = 0, and
the rest of the eigenvalues {λi}N

i=2 are positive. T = [r R] ∈
R

N×N is an orthonormal matrix, where r = 1√
N

1N and R ∈
R

N×(N−1) is any matrix that makes T�T = TT� = I. For a
connected graph, T�LT = [ 0 0

0 L+ ], where L+ = R�LR, is
a positive definite matrix with eigenvalues {λi}N

i=2 ⊂ R>0.
Lemma 1: Suppose the nonzero matrix E ∈ R

N×N is a diag-
onal matrix whose diagonal elements are either 0 or 1, and L
is the Laplacian matrix of a connected graph. Then, −(E+L)

is Hurwitz.
Proof: Consider the system ẋ = −(E + L)x. Now consider

Lyapnov function V = 1
2 x�x. Then, V̇ = −x�Ex − x�Lx ≤

0, because −x�Ex ≤ 0 and −x�Lx ≤ 0. However, V̇ ≡
0 happens when −x�Ex = 0 and −x�Lx = 0. But, since
−x�Lx = 0 if and only if x = α1, α ∈ R then V̇ ≡ 0 if
x ≡ 0. Therefore, invoking [16, Th. 4.11], we conclude that
the system ẋ = −(E + L)x is uniformly exponentially stable.
Thus, −(E + L) is Hurwitz.

III. PROBLEM DEFINITION

Consider a network of N single integrator agents ẋi = ui,
i ∈ V , interacting over a connected undirected graph G.
Suppose each agent i ∈ V has access to a measurable locally
essentially bounded reference signal ri : R≥0 → R in a pos-
sibly intermittent fashion. For every agent i ∈ V , we let ηi(t)
be the indicator function for the agent i ∈ V , which returns 1
if agent i is active and has access to ri(t) at time t ∈ R≥0, and
0 otherwise. Let Va(t) ⊂ V be the set of active agents at time
t ∈ R≥0, i.e., Va(t) = {i ∈ V | ηi(t) = 1}. In what follows,
we assume that Va(t) 	= ∅ for all t ∈ R≥0 and |Va(t)| is a
piece-wise constant function of time. We refer to an agent in
V\Va(t) as the passive agent at time t.

Problem 1 (Active Average Consensus Problem): The
active average consensus problem over G is defined as design-
ing a distributed control input ui such that the agreement state
xi(t) ∈ R of every agent i ∈ V tracks

avga(t) =
∑

i∈Va(t) ri(t)

|Va(t)| =
∑N

i=1 ηi(t)ri(t)∑N
i=1 ηi(t)

.
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In what follows, we first propose a distributed continuous-
time algorithm to solve Problem 1. Then, we present a
discrete-time implementation of this active average consensus
algorithm in which the agents sample the reference inputs with
a rate of 1/δs in a zero-order fashion. Lastly, we show how
a containment problem can be cast as dynamic active average
consensus problem and solved using our proposed algorithm.

IV. CONTINUOUS-TIME DYNAMIC ACTIVE

AVERAGE CONSENSUS

Our solution to solve Problem 1 over a connected undirected
graph G is

ẋi(t) = −ηi(t)(xi(t) − ri(t)) −
N∑

j=1

aij(x
i(t) − xj(t))

−
N∑

j=1

aij(v
i(t) − vj(t)) + ηi(t)ṙi(t), (3a)

v̇i(t) =
N∑

j=1

aij(x
i(t) − xj(t)), (3b)

with xi(0), vi(0) ∈ R, i ∈ V . Here, vi(t) ∈ R is an internal state
that acts as an integral action. Next, we study the convergence
properties of (3) by modeling it as a switched system and ana-
lyzing the collective response of the agents. In what follows,
we let E(t) = Diag(η1(t), . . . , ηN(t)). E(t) can be consid-
ered as switching in the class of non-zero diagonal matrices
{Ep}p∈P , P = {1, . . . , 2N − 1}, whose elements are either
1 or 0. That is E(t) = Eσ(t) 	= 0 with the switching sig-
nal σ(t) : R≥0 → P . We let Nσ (0, t) denote the number of
switchings of σ(t) on the interval [0, t). In our problem of
interest, the following common assumption for switch linear
systems holds [17], [18].

Assumption 1: There exist some N0 ∈ Z≥0 and τD ∈ R>0
such that, Nσ (0, t) ≤ N0 + t

τD
, t ∈ R>0, where τD is called

the average dwell time and N0 is the chatter bound.
We let avga = avga1, 	avga

k = avga(t+k ) − avga(t−k ),
w(t) = Eσ(t)(r(t) − avga(t)), and 	wk = w(t+k ) − w(t−k ),
where tk, k ∈ Z≥0 is the kth switching time of the switching
signal σ(t). Throughout this letter we assume t0 = 0. Lastly,
given a time t ∈ R≥0, k̄ ∈ Z≥0 is the largest integer such that
tk̄ ≤ t.

For convenience in the correctness analysis of algorithm (3),
we use the change of variables e = T�(x − avga), q =
[q1 q�

2:N]� = T�(Lv − w) to write the equivalent compact
form of (3) as

q̇1 = 0, (4a)[
ė

q̇2:N

]
= Aσ(t)

[ e
q2:N

] + B
[

E ṙ− ˙̃avga

− ˙̃w
]

− B
k̄∑

k=1

[
	avga

k
	wk

]
δ(t − tk). (4b)

where Aσ(t) =
[

−T�(Eσ(t)+L)T −[ 0
IN−1

]

[ 0 L+L+ ] 0

]
and B =[

T� 0
0 R�

]
. Here, we used the facts that r� ˙̃w = 0 and

r�	wk = 0. Also, we used RR�L = L to write R�LLR =

Fig. 2. A network of 6 agents with a ring interaction topology executes
the active average consensus algorithm (3). In time interval t ∈[0, 50),
the observing agents Va(t) = {1, 2, 4, 6} all have dynamic inputs. The
observing agents at t ∈ [50, 70) and t ∈ [70, 120] are, respectively,
Va(t) = {2,3,5,6} Va (t) = {3, 6} and their observations are static sig-
nals. Agent 1 (black line) leaves the network at t = 90. The gray thick
line represents avga(t). The agents can track the dynamic avga(t) with
bounded error in t ∈ [0, 50), while their tracking error is close to zero for
the rest of the time as the reference signals are constant after t = 50.
The transient tracking error at time t = 70 is due to switching of some of
agents to the passive mode. This error is captured by the second term in
the right-hand side of (8). Lastly, agent 1’s leaving causes perturbations
at t = 90 but the network still converge to avga(t).

L+L+. Lastly, note that since avga and w are piece-wise
continuous functions, we used (2) to compute their deriva-
tives that appear in ė and q̇. Using standard results for linear
time-varying systems we can write

[
e(t)

q2:N (t)

]
= 
(t, 0)

[
e(0)

q2:N (0)

]
+

∫ t

0

(t, τ )B

⎛
⎝[

E ṙ− ˙̃avga

− ˙̃w
]

−
k̄∑

k=1

[
	avga

k
	wk

]
δ(τ − tk)

⎞
⎠dτ, (5)

where 
(t, τ ) is the transition matrix of linear system (4b).
The next result shows that the internal dynamics of (4b) is
uniformly exponentially stable. Therefore, there always exists
κs, λs such that

‖
(t, τ )‖ ≤ κse
−λs(t−τ), t ≥ τ ≥ 0. (6)

Lemma 2: Let G be a connected undirected graph. Then,
every subsystem matrix Ap, p ∈ P of (4b) is Hurwitz.
Furthermore, under Assumption 1 the internal dynamics
of (4b) is uniformly exponentially stable, i.e., (6) holds.

Proof: Consider the radially unbounded quadratic Lyapunov
function V = 1

2 q�
2:N(L+L+)−1q2:N + 1

2 e�e (a common
Lyapunov function for all the subsystems Ap∈P of the
switched system Aσ(t)). Here, note that since L+ > 0, then
L+L+ > 0. The Lie derivative of V along the trajectories of
internal dynamics of (4b) is

V̇ = −e�T�(Ep + L)T e ≤ 0, p ∈ P . (7)

To establish negative semi-definiteness of V̇ , we invoke
Lemma 1. So far we have established that V is a weak
Lyapunov function. Next, we use the LaSalle invariant prin-
ciple and [19, Th. 4] to establish exponential stability of the
internal dynamics of (4b). Let Sp = {(e, q2:N) ∈ R

N ×
R

N−1|V̇ ≡ 0} for all p ∈ P . Given (7), we then have
Sp = {(e, q2:N) ∈ R

N × R
N−1|e = 0}, for all p ∈ P .

Then, it is straightforward to observe that the trajectories of
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the internal dynamics of (4b) that belong to Sp∈P , should
also satisfy q2:N ≡ 0. Therefore, the largest invariant set
of the internal dynamics of (4b) in Sp∈P is the origin.
Thus, using [16, Th. 4.4] all the subsystems Ap∈P of the
switched system Aσ(t) are globally asymptotically stable.
Moreover, because the all subsystems of the switched system
share the common weak quadratic Lyapunov function and the
largest invariant set of Sp∈P contains only the origin, given
Assumption 1, by virtue of [19, Th. 4] the internal dynamics
of (4b), which is a switched system, is uniformly exponentially
stable. Here, we note that according to [20, Th. 2.1] the origin
being the largest invariant set of Sp, for all p ∈ P , ensures
that the observability condition in [19, Th. 4] is satisfied.

Given (5) and (6), we can characterize the tracking
performance of active average consensus algorithm (3) as
follows.

Theorem 1: Let G be a connected undirected graph and
suppose Assumption 1 holds. Then, starting from any
xi(0), vi(0) ∈ R, i ∈ V the trajectories of dynamic active
average consensus algorithm (3) satisfy

|xi(t) − avga(t)| ≤ κs e−λst
∥∥∥[

x(0)−avga(0)

Lv(0)−w(0)

]∥∥∥
+ κs

k̄∑
k=1

e−λs(t−tk)
∥∥∥[

	avga
k

	wk

]∥∥∥ H(t − tk)

+ κs

λs
sup

0≤τ≤t

∥∥∥[
Eσ(τ) ṙ(τ )− ˙̃avga(τ )

− ˙̃w(τ )

]∥∥∥. (8)

Proof: We note that ‖B‖ ≤ 1. Then, given (5) and (6), we
can write∥∥∥[

e(t)
q2:N (t)

]∥∥∥ ≤ κs e−λst
∥∥∥[

e(0)
q2:N (0)

]∥∥∥ + κs

∫ t

0
e−λs(t−τ)

∥∥∥[
E ṙ− ˙̃avga

− ˙̃w
]∥∥∥dτ

+ κs

k̄∑
k=1

∫ t

0
e−λs(t−τ)

∥∥∥[
	avga

k
	wk

]
δ(τ − tk)

∥∥∥dτ.

Then, the Hölder inequality is used to bound the second term
of the right hand side to arrive at∥∥∥[

e(t)
q2:N (t)

]∥∥∥ ≤ κs e−λst
∥∥∥[

e(0)
q2:N (0)

]∥∥∥
+ κs

λs
sup

0≤τ≤t

∥∥∥[
Eσ(τ) ṙ(τ )− ˙̃avga(τ )

− ˙̃w(τ )

]∥∥∥
+ κs

k̄∑
k=1

∫ t

0
e−λs(t−τ)

∥∥∥[
	avga

k
	wk

]
δ(τ − tk)

∥∥∥dτ.

Consequently, with integration by parts, the last term is equiva-
lent to κs

∑k̄
k=1 e−λs(t−tk) ‖[ 	avga

k
	wk

]‖ H(t− tk). Then, since T is

an orthonormal matrix, we have ‖[ e(0)
q2:N (0) ]‖ = ‖[ x(0)−avga(0)

Lv(0)−w(0)
]‖

and ‖x − avga‖ = ‖e‖. Finally, (8) is derived along with the
relation |xi − avga| ≤ ‖[ e� q�

2:N ]�‖.
We note that the first summand of the tracking error

bound (8) is the transient response, which vanishes over time.
The second summand is due to the agents alternating between
active and passive sets. If the average dwell time τD is large,
this error also disappears after a while. The third summand
can result in a steady-state error. This error that is expected
in dynamic average consensus algorithms, as tracking an arbi-
trarily fast average signal with zero error is not feasible unless

agents have some priori information about the dynamics gen-
erating the signals [2]. However, the size of this error is
proportional to the rate of change of the signals and can
be limited by limiting the rate. We recall that to provide
bounded tracking, previous work in [6]–[8] require both the
reference input signals and their rate of change to be bounded.
If the local reference signals are static and the agents do
not switch, the agents exponentially converge to avga without
steady-state error. Lastly, algorithm (3) does not require spe-
cific initialization. In other words, the convergence property of
algorithm (3) uniformly holds for any initialization. Therefore,
as long as the graph stays connected, agents can leave and
join the network without effecting the convergence guaran-
tees. Figure 2 demonstrates the performance of algorithm (3)
in a numerical example.

V. DISCRETE-TIME DYNAMIC ACTIVE

AVERAGE CONSENSUS

We consider a scenario where active agents sample their
reference inputs at sampling times tsl = lδs ∈ R≥0, l ∈ Z≥0,
δs ∈ R>0. The agents can communicate at discrete-times
tck = kδc ∈ R≥0, k ∈ Z≥0, δc ∈ R>0. The objective of every
agent i ∈ V is to track avga(k) (where k is the shorthand
for tck). To solve the active average consensus problem under
this scenario, we propose that every agent i ∈ V implements

xi(k) = zi(k) + ηi(k)ri(k), (9a)

zi(k + 1) = zi(k) − δcη
i(k)(xi(k) − ri(k)) (9b)

− δc

N∑
j=1

aij(x
i(k) − xj(k)) − δc

N∑
j=1

aij(v
i(k) − vj(k)),

vi(k + 1) = vi(k) + δc

N∑
j=1

aij(x
i(k) − xj(k)). (9c)

which is an Euler discretized implementation of the active
average algorithm (3) with stepszie δc. Here, we assume that
if δs 	= δc, the agents perform a zero-order hold sampling, so
that ri(k) = ri(l̄), i ∈ V , where l̄ is the latest sampling time step
such that ts

l̄
≤ tck. We let σ(k) : Z≥0 → P = {1, . . . , 2N − 1}

be the switching signal of E(k), i.e., E(k) = Eσ(k). Then, we
implement the same change of variable as for the continuous-
time algorithm (3) to write the compact form of (9) as

q1(k + 1) = q1(k), (10a)[
e(k+1)

q2:N (k+1)

]
= (I + δcAσ )

[
e(k)

q2:N (k)

]
+ B

[
	Er(k)−	avga(k)

−	w(k)

]
, (10b)

where Aσ and B are defined in (4b), 	Er(k) = 	E(k +
1)r(k + 1) − 	E(k)r(k), 	avga(k) = avga(k + 1) − avga(k),
and 	w(k) = w(k + 1) − w(k). Then, given |xi − avga| ≤
‖[ e� q�

2:N ]�‖, the tracking performance of (9) can be under-
stood by studying the convergence properties of (10b). The
first result below shows that with a proper choice for δc
every subsystem (I + δcAp), p ∈ P is Schur. However,
this is not enough to guarantee that the internal dynamics
of (10b) is exponentially stable. To provide such guarantee,
following [21, Corollary 1], we impose the following standard
assumption.
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Assumption 2: The average dwell time τD of the switching
signal σ(k) satisfies τD ≥ τ ∗

D, where τ ∗
D is a stable average

dwell time of the switched system (10b).
Note that τ ∗

D of the switched system (10b) can be computed
using the methods introduced in [21], [22].

Lemma 3: Let G be a connected undirected graph. Then,
every subsystem matrix (I + δcAp), p ∈ P of (10b) is Schur
provided δc ∈ (0, d̄), where d̄ = min{{−2 Re(μi,p)

|μi,p|2 }2N−1
i=1 }p∈P

and {μi,p}2N−1
i=1 are the set of eigenvalues of Ap. Furthermore,

under Assumption 2 the internal dynamics of (10b) is uni-
formly exponentially stable, i.e., there always exists κd ∈ R>0
and ωd ∈ (0, 1), such that, the state transition matrix 
(k, j)
of (10b) satisfies

‖
(k, j)‖ ≤ κd ω
(k−j)
d , k ≥ j ≥ 0, k, j ∈ Z≥0. (11)

Proof: Lemma 2 ensures that every Ap, p ∈ P is a
Hurwitz matrix. Then, it follows from [2, Lemma S1] that
(I + δc,pAp), p ∈ P is Schur if δc,p ∈ (0, d̄p), where
d̄p = min{−2 Re(μi,p)

|μi,p|2 }2N−1
i=1 . As a result, (I + δcAp), p ∈ P

is Schur if δc ∈ (0, d̄), where d̄ = min{d̄p}p∈P . Then,
given Assumption 2, it follows from [21, Corollary 1] that the
zero input dynamics of switched system (10b) is uniformly
exponentially stable.

The next result characterizes the tracking performance
of (9).

Theorem 2: Let G be a connected undirected graph and sup-
pose Assumption 2 holds. Then, for any δc ∈ (0, d̄), starting
from any xi(0), vi(0) ∈ R, i ∈ V , the trajectories of dynamic
active average consensus algorithm (9) satisfy

|xi(k) − avga(k)| ≤ κdω
k
d

∥∥∥[
x(0)−avga(0)

Lv(0)−w(0)

]∥∥∥
+ κd(1 − ωk

d)

1 − ωd
sup

0≤l≤k−1

∥∥∥[
	Er(l)−	avga(l)

−	w(l)

]∥∥∥. (12)

Proof: Using standard results for linear systems, trajectories
of (10b) are given by[

e(k)
q2:N (k)

]
= 
(k, 0)

[
e(0)

q2:N (0)

]

+
k−1∑
j=0


(k, j + 1)B
[

	Er(j)−	avga(j)
−	w(j)

]
.

Then, given that ‖B‖ ≤ 1 and (11) we can write∥∥∥[
e(k)

q2:N (k)

]∥∥∥ ≤ κd ωk
d

∥∥∥[
e(0)

q2:N (0)

]∥∥∥
+ κd

k−1∑
j=0

ω
j
d sup

0≤l≤k−1

∥∥∥[
	Er(l)−	avga(l)

−	w(l)

]∥∥∥.

By the sum of geometric sequence, κd
∑k−1

j=0 ω
j
d = κd(1−ωk

d)

1−ωd
.

Then, given that ‖[ e(0)
q2:N (0) ]‖ = ‖[ x(0)−avga(0)

Lv(0)−w(0)
]‖ and |xi −

avga| ≤ ‖[ e� q�
2:N ]�‖, tracking error (12) is established.

VI. DISTRIBUTED CONTAINMENT CONTROL VIA

DYNAMIC ACTIVE AVERAGE CONSENSUS MODELING

In this section, we use the discrete-time dynamic active
average consensus algorithm to solve a containment control
problem. Consider a group of M (M can change with time)

mobile leaders that are moving with a bounded velocity on
a R

2 or R
3 space. xL,j(t) represents the position vector of

leader j ∈ {1, . . . , M} at time t ∈ R≥0. A set of networked
follower agents V = {1, . . . , N} interacting over a connected
graph G monitors the leaders. The agents can communicate at
discrete-times tck = kδc ∈ R≥0, k ∈ Z≥0, δc ∈ R>0. The agents
sample the leaders at sampling times tsl = lδs ∈ R≥0, l ∈ Z≥0,
δs ∈ R>0. We let V i

L(tsl ) be the set of leaders observed by agent
i ∈ V at sampling time tsl . Between each sampling time, agent
i ∈ V uses xL,j(t) = xL,j(tsl ) and V i

L(t) = V i
L(tsl ), t ∈ [tsl , tsl+1),

l ∈ Z≥0, j ∈ V i
L(tsl ). At every sampling time tsl ∈ R≥0, we

let VL(tsl ) be the set of the mobile leaders that are observed
jointly by the agents V , i.e., VL(tsl ) = ∪N

i=1V i
L(tsl ) (see Fig. 1).

We let Va(tsl ) ⊂ V be the set of the active agents that observe
at least one leader at tsl , k ∈ Z≥0; we assume that Va(tsl ) 	= ∅.
In what follows, the objective is to design a distributed con-
trol that enables each follower i ∈ V to derive its local state xi

to asymptotically track Co(VL(tsl )), the convex hull of the set
of the location of the observed leaders VL(tsl ), with a bounded
error e ≥ 0. To simplify notation, we wrote Co({xL,j(t)}j∈VL(t))

as Co(VL(t)). We state the objective of the containment con-
trol as ‖xi(tck)−x̄L(tck)‖ ≤ e, i ∈ V , where x̄L(tck) ∈ Co(VL(tck)).
The agents have no knowledge about the motion model of the
leaders. Since followers observe the dynamic leaders collabo-
ratively, the tracking error e is expected as the measurement
of each active follower needs time to propagate through the
network to the rest of the followers.

Our solution builds on the key observation that we make
below about the convex hull of a set of points {xi}m

i=1 in an
Euclidean space.

Lemma 4: Consider a set of points {xi}m
i=1 in R

2 or R
3.

Let Sj 	= ∅, j ∈ {1, . . . , s}, be a subset of {1, . . . , m}. Let

x̄j =
∑

k∈Sj
xk

|Sj| , j ∈ {1, . . . , s}. Then, the point x̄ =
∑s

i=1 x̄i
s is a

point in Co({xj}m
j=1).

Proof: It is straightforward to confirm that x̄j ∈ Co({xi}i∈Sj),
j ∈ {1, . . . , s} and x̄ ∈ Co({x̄i}s

i=1) (recall the definition of
the convex hull). Moreover, since Co({xk}m

k=1) is a convex
set, we note that Co({xi}i∈Sj) ⊂ Co({xk}m

k=1), j ∈ {1, . . . , s}.
Thus, for i ∈ {1, . . . , s}, x̄i ∈ Co({xj}m

j=1), and Co({x̄i}s
i=1) ⊂

Co({xi}m
i=1). As a result, x̄ ∈ Co({xj}m

j=1).
With the right notation at hand, and the observation made in

Lemma 4, we are now ready to present in the Lemma below
our solution for the containment problem stated above.

Lemma 5: In a containment control problem, let the
interaction topology G of the followers be a connected graph
and suppose that the agents communicate at tck = kδc ∈ R≥0,
k ∈ Z≥0. Assume that at each sampling time tsl = lδs ∈ R≥0,
l ∈ Z≥0, we have Va(tsl ) 	= ∅, and the followers are observing
the leaders in a zero-order hold fashion, i.e., xL,j(t) = xL,j(tsl ),
j ∈ V i

L(tsl ) and i ∈ Va(tsl ) for t ∈ [tsl , tsl+1). Let

ri(tsl ) =
⎧⎨
⎩

∑
j∈V i

L(tsl )
xL,j(tsl )

|V i
L(tsl )|

, i ∈ Va(tsl ),

0, i ∈ V\Va(tsl ).
(13)

Then, x̄L(tsl ) =
∑

i∈Va(tsl ) ri(tsl )

|Va(tsl )| is a point in the convex hull
of the leaders Co(VL(tsl )). Moreover, assume ‖xL,j(tsl+1) −
xL,j(tsl )‖, j ∈ {1, . . . , M}, is bounded. If the followers imple-
ment active average consensus algorithm (9) with inputs (13),
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Fig. 3. The containment tracking performance of the follower agents
while implementing the distributed algorithm (9): the solid curves show
the trajectory of xi vs. time, while “+” show the location of x̄L(tc

k ) of the
leaders. The red polygons indicate the convex hull formed by the moving
leaders.

and ηi(t) = 1 if i ∈ Va(tsl ), otherwise, ηi(t) = 0 for t ∈
[tsl , tsl+1), then the tracking error ‖xi(tck) − xL(tck)‖ is bounded.

Proof: x̄L(tsl ) ∈ Co(VL(tsl )) is true by virtue of Lemma 4.
The boundedness of the tracking error ‖xi(tck)−xL(tck)‖ follows
from the guarantees that Theorem 2 provides.

Our solution in Lemma 5 applies to scenarios like in Fig. 1
where the observation sets of the followers have overlap. It
is interesting to note that in case of overlapping observations,
xL is not the centroid of the leaders. Next, note that by virtue
of Theorem 2, if the leaders are static or move towards a
static configuration, the algorithm convergences exactly to xL.
Otherwise, to ensure that the followers stay in the convex hull
while tracking xL with some error, we may have to require
that the convex hull of the leaders should be sufficiently large.

For demonstration, consider a case that 6 followers with
a ring interaction graph aim to follow the convex hull of 10
leaders in a two dimensional space. The followers observe
the leaders at 1 Hz according to the scenario described below
where the set of active followers changes at tsl = 5 and tsl = 10
seconds:

- 0 ≤ tsl < 5: V1
L(tsl ) = {1, 4, 6, 8}, V2

L(tsl ) = {2, 4, 7, 8, 10},
V3

L(tsl ) = {3, 4, 5, 9}, V4
L(tsl ) = ∅, V5

L(tsl ) = {1, 3, 9} and
V6

L(tsl ) = ∅,
- 5 ≤ tsl < 10: V1

L(tsl ) = {3, 5, 6, 8}, V2
L(tsl ) =

{1, 2, 7, 9, 10}, V3
L(tsl ) = {3, 4, 5, 9}, V4

L(tsl ) = ∅,
V5

L(tsl ) = {1, 3, 9} and V6
L(tsl ) = {2, 5, 7, 9},

- 10 ≤ tsl ≤ 20: V1
L(tsl ) = {1, 2, 5, 8}, V2

L(tsl ) =
{2, 3, 6, 7, 10}, V3

L(tsl ) = {3, 4, 5, 9}, V4
L(tsl ) = {3, 10},

V5
L(tsl ) = {1, 3, 9} and V6

L(tsl ) = {2, 5, 7, 9}.
The communication frequency of the followers is 5 Hz.
Figure 3 shows that the proposed distributed containment con-
trol of Lemma 5 results in a bounded tracking of the convex
hull of the observed leaders. The interested reader can also
find an application study of use of our solution in Lemma 5 in
solving containment control for a group of unicycle followers
with continuous-time dynamics in our preliminary work [15].
There, the algorithm in Lemma 5 is used as an observer to
generate the tracking points for the followers.

VII. CONCLUSION

We proposed a dynamic active average consensus algorithm
that makes both active and passive agents track the average

of the collected reference signals. The stability and tracking
performance were analyzed in both continuous- and discrete-
time implementations. We also showed that a containment con-
trol can be formulated as an active average consensus problem
and solved using our proposed discrete-time algorithm.
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