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a b s t r a c t

This paper considers a leader-following problem for a group of heterogeneous linear time invariant
(LTI) followers that are interacting over a directed acyclic graph. Only a subset of the followers has
access to the state of the leader in specific sampling times. The dynamics of the leader that generates
its sampled states is unknown to the followers. For interaction topologies in which the leader is a
global sink in the graph, we propose a distributed algorithm that allows the followers to arrive at
the sampled state of the leader by the time the next sample arrives. Our algorithm is a practical
solution for a leader-following problem when there is no information available about the state of the
leader except its instantaneous value at the sampling times. Our algorithm also allows the followers
to track the sampled state of the leader with a locally chosen offset that can be time-varying. When
the followers are mobile agents whose state or part of their state is their position vector, the offset
mechanism can be used to enable the followers to form a transnational invariant formation about
the sampled state of the leader. We prove that the control input of the followers to take them from
one sampled state to the next one is minimum energy. We also show in case of the homogeneous
followers, after the first sampling epoch the states and inputs of all the followers are synchronized
with each other. Numerical examples demonstrate our results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization of multi-agent systems (MASs) is an impor-
tant component of many cooperative control problems, such as
rendezvous [2], formation control [3], flocking control [4], con-
tainment control [5] and sensor networks [6]. Synchronization
problems can be roughly categorized into leaderless and leader-
following. In the leaderless synchronization, which is closely re-
lated to the consensus problem, the agents aim to reach to a
static or dynamic agreement on a common value [7–9]. On the
other hand, in the leader-following synchronization, agents aim
to make the agreement on the states generated by a leader. In this
paper, we focus on the design of a distributed leader-following
algorithm when the only information available about the leader is
its sampled state, which is only available to a subset of followers.

Literature review: The leader-following algorithms for single inte-
grator and double integrator dynamics are presented in [10], and
for homogeneous LTI systems are proposed in [11] and [12]. For
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systems constituted of heterogeneous LTI followers, [13] and [14]
propose the algorithms to synchronize with a passive zero-input
LTI leader. [15] and [16] develop the controls for the single and
double integral system, respectively, to track an active leader
(active leader is a leader that has a control input). But their
works assume the leader’s control input is available to all the
followers. [17] and [18] propose a leader-following algorithm
respectively for homogeneous LTI and heterogeneous nonlinear
MASs in which the unknown input of the leader is bounded and
is not available to any follower. But the control inputs in [17]
and [18] have the sliding mode structure and suffer from the
well-known undesirable chattering behavior. We recall that from
a practical perspective, chattering is undesirable and leads to
excessive control energy expenditure [19]. [20] is the recent
result for the leader-following problem, which is based on the
result of [17] and develops a distributed observer to estimate the
leader’s state for each follower. Then, the output synchronization
of heterogeneous leader–follower linear systems is achieved by
optimal local tracking of the output of the observer. We note that
in both [17] and [20], the active leader is restricted to be linear
and have limited input. The work reviewed so far are all converge
to leader following in an asymptotic manner, i.e., the settling time
to reach an agreement is infinity. For fast convergence, [21,22]
and [23] propose the finite-time synchronization algorithms for
single and double integral MASs, where the upper bound of the
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settling time explicitly depends on the initial state of the MAS.
Therefore, to use these algorithms, the centralized knowledge of
the initial state of the MAS is essential to estimate the settling
time. [24] and [25] propose the fixed-time synchronization al-
gorithms, where the settling time is bounded and independent
of the initial state of the MAS. However, for both these finite
and fixed-time algorithms, the settling time is upper bounded
by a conservative estimation. [26] introduces the specified-time
synchronization control for the leaderless MASs in which one can
determine the settling time exactly in advance. Specified-time
synchronization can be useful to the applications that require
precise acting time, such as target attack at a specified time.

Statement of contributions: In this paper, we consider a leader-
following problem in which the only information available about
the leader is its instantaneous sampled state that is known only
to a subset of a group of heterogeneous LTI followers at the
sampling times. We make no assumptions about the input of the
leader or the structural form of its dynamics. That is, the state of
the leader is perceived by the followers as an exogenous signal.
The sampled states of the leader can be the states of a physical
system (e.g., in a pursuit–evasion problem) or a set of desired
reference states of a virtual leader (e.g., in a waypoint tracking
problem). Given the limited information about the leader, we
seek a practical solution that enables the followers to arrive at
the sampled state of the leader before the next sampling time.
That is, we design a distributed algorithm that steers a group
of heterogeneous LTI followers to be at the sampled states of
the leader at finite time just before the next sampled state is
obtained. We note that practical one step lagged tracking has
also been used in [27–29] for a set of dynamic average consensus
algorithms with asymptotic tracking behavior. Our solution is
inspired by the minimum energy controller design [30] in the
classical optimal control theory, and is proposed for problems
where the interaction topology of the followers plus the leader
is an acyclic digraph with the leader as the global sink. Directed
acyclic interaction topology can be interpreted as the agents only
obtaining information from those in front of them (see, [31,32]
for algorithms designed over acyclic graphs). Our algorithm also
allows the followers to track the sampled state of the leader
with a locally chosen offset, which can be time-varying. This
offset, when the followers are mobile agents and their whole
state or part of it is the position vector, can be used to enable
the followers to form a transnational invariant formation [33]
about the sampled state of the leader. For a special class of non-
homogeneous LTI MAS, we show that our results can be extended
to solve a leader-following problem where we want only an out-
put of the followers to follow the leader’s sampled state. Finally,
we show that if the followers are homogeneous, our algorithm
not only results in a leader following behavior, but also it makes
the states and inputs of the followers fully synchronized after
the first sampling epoch. We demonstrate our leader-following
results via three numerical examples. In the first example, we
show the application of our leader-following algorithm in fol-
lowing a nonlinear mass–spring–damper leader under a specific
formation structure for a group of heterogeneous linear mass–
spring–damper systems. In the second example, we demonstrate
the use of our algorithm for reference state tracking via a group
of second order integrator followers with bounded control. The
result shows the synchronization of the homogeneous followers
is realized. Moreover, using the intrinsic properties of our leader
following algorithm, we show that the arrival times at the ref-
erence states can be specified in such a way that the inputs of
the followers stay within the saturation bounds. Our last example
demonstrates an output-tracking scenario for a group of aircraft.

A preliminary version of this paper, which discusses the case of a
homogeneous group of the followers appeared in [1].

Organization: The rest of this parer is organized as follows.
Section 2 gathers basic notation and graph-theoretic notions.
Section 3 gives our problem definition and objective statement.
Section 4 proposes our distributed leader-following algorithm. In
Section 5, three applications are demonstrated. Section 6 con-
cludes the results of this paper. Appendix A contains the proof
of our main result, Theorem 4.1. Finally, Appendix B presents an
auxiliary result, which is invoke to support the feasibility of the
sampling time design in our second numerical example.

2. Notations

Notation: We let R, R>0, R≥0, Z, and Z≥0 denote the set of real,
positive real, non-negative real, integer, and non-negative integer
numbers, respectively. The transpose of a matrix A ∈ Rn×m is A⊤.

Graph theoretic notations and definitions: Here we review our
graph related notations and relevant definitions and concepts
from graph theory following [34]. A digraph, is a triplet G =

(V, E,A), where V = {1, . . . ,N} is the node set and E ⊆ V × V
is the edge set, and A = [aij] ∈ RN×N is the adjacency matrix of
the graph defined according to aij = 1 if (i, j) ∈ E and aij = 0,
otherwise. An edge (i, j) from i to j means that agent j can send
information to agent i. Here, i is called an in-neighbor of j and j is
called an out-neighbor of i. A directed path is a sequence of nodes
connected by edges. A directed path that starts and ends at the
same node and all other nodes on the path are distinct is called a
cycle. A digraph without cycles is called directed acyclic graph. The
out-degree of a node i is di

out = ΣN
j=1aij. The out-degree matrix of

a graph is Dout = Diag(d1
out, d

2
out, . . . , d

N
out). We denote the set of

in-neighbors of an agent i by N i
in and the out-neighbors of agent

i by N i
out. A node i ∈ V is called a global sink of G if it outdegree

di
out = 0 and for every node j ∈ V there is at least a path from j

to i.

3. Problem definition

We consider a group of N heterogeneous MAS whose dynam-
ics is described by

ẋi(t) = Ai xi(t) + Bi ui(t), i ∈ {1, . . . ,N}, (1)

where xi ∈ Rn is the state vector and ui
∈ Rmi

is the control
vector. Throughout the paper we assume that the agents’ dynam-
ics (1) is controllable, i.e., (Ai,Bi) for i ∈ {1, . . . ,N} is controllable.
These agents (referred hereafter as followers) aim to follow a
dynamic signal x0(t) : R≥0 → Rn with possibly a locally chosen
offset. This signal can be a dynamic reference signal of a virtual
leader or the state of an active physical leader with (possibly) a
nonlinear dynamics, e.g., ẋ0(t) = f 0(x0(t), u0(t), t). The dynamical
model and the input u0

∈ Rm0
of the leader is not known to

the followers. The interaction topology between the followers is
described by a acyclic digraph, denoted by G. Only a subset of
followers in G, denoted by N 0

in ̸= {}, has access to x0(t) at the
sampling times tk ∈ R, k ∈ Z≥0. Throughout the paper we assume
that Tk = tk+1−tk ∈ R>0 for any k ∈ Z≥0 with t0 = 0. We let Gl be
the digraph consisted of the leader andN 0

in and the directed edges
connecting N 0

in to the leader. In what follows, we assume that the
leader is the global sink of G = G ∪ Gl, so that its information
reaches all the agents in an explicit or implicit manner (see Fig. 1
for an example). We let N i

out be the set of the out-neighbors
of agent i ∈ {0, 1, . . . ,N} in graph G; we note the N 0

out = {}.
Finally, we call the followers homogeneous if (Ai,Bi) = (A,B), for
i ∈ {1, . . . ,N}.
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Fig. 1. A leader–follower network. The interaction topology of the follower
agents, G, shown via the network with solid edges, is an acyclic digraph. Agent
0 is the leader. The edges of Gl is shown by the dashed arrow. Here, the leader
is the global sink of the G ∪ Gl , therefore, its information reaches all the agents
in an explicit or implicit manner.

Give that we only have a limited information about the leader
(only the sampled states of the leader x0(tk) is available), we seek
a practical solution that enables the followers to arrive at the
sampled state of the leader before the next sampling time. There-
fore, our objective in this paper is to design a distributed control
rule for the input vector ui(t) of each follower i ∈ {1, . . . ,N} such
that

xi(tk+1) = x0(tk) − F i0(tk), i ∈ {1, . . . ,N}. (2)

That is, the follower i ∈ {1, . . . ,N} can steer itself to be in
F i0(tk) ∈ Rn offset with respect to the state x0(tk) of the leader
in time before the next sampling time tk+1. We note that the set
of offsets {F i0(tk)}Ni=1, when it is related to the position offsets
of the agents, defines the formation of the followers around the
leader. Here, the term formation refers to transnational invariant
formation [33, Section 6.1.1]. For scenarios where the objective
is to synchronize to the state of the leader, F i0(tk) is set to zero
for all i ∈ {1, . . . ,N}. To form the offset, we assume that at
each sampling time tk, follower i ∈ {1, . . . ,N} knows F ij(tk) =

F i0(tk) − F j0(tk) for j ∈ N i
out; either the follower is given F ij(tk)

with respect to its out-neighbor j or constructs it locally after
agent j sends its F j0(tk) to agent i. We note that if the leader is
a global sink of G, given x0(tk) and a set of F ij(tk), i ∈ {1, . . . ,N}

and j ∈ N i
out, we can show that the state offset F i0(tk) for follower

i with respect to the leader is unique.

4. Main result

In this section, we develop a novel distributed solution to solve
the leader-following problem stated in Section 3. To present this
result, we recall that

G(t) =

∫ t

0
eA(t−τ )BB⊤eA

⊤(t−τ )dτ , (3)

is the controllability Gramian of (A,B) for any finite time t ∈ R>0.
Since (A,B) is controllable, G(t) is full rank and invertible at each
time t ∈ R>0. We start by using a classical optimal control result
to make the following statement.

Lemma 4.1. Consider a leader-following with an offset problem
where each follower’s dynamics is given by (1) with (Ai,Bi) control-
lable. Suppose i is a follower in G that has access to x0(t) of the leader
at each sampling time tk, k ∈ Z≥0, i.e., i ∈ N 0

in. Also, F
i0(tk) ∈ Rn

is the desired state offset with respect to x0(tk). Starting at an initial
condition xi(t0) ∈ Rn with ui(t0) = 0, for any i ∈ N 0

in let

ui(t) = Bi⊤eA
i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk)),

t ∈ (tk, tk+1], (4)

where Tk = tk+1 − tk ∈ R>0, and

G i
k = G i(Tk) =

∫ Tk

0
eA

i(Tk−τ )BiBi⊤eA
i⊤ (Tk−τ )dτ . (5)

Then, for every i ∈ N 0
in we have xi(tk+1) = x0(tk) − F i0(tk) for all

k ∈ Z≥0. Moreover, at each time interval [tk, tk+1], the control input
ui(t) of i ∈ N 0

in satisfies

ui(t) = argmin
∫ tk+1

tk

ui(τ )⊤ui(τ )dτ , subject to (6a)

ẋi(t) = Ai xi(t) + Bi ui(t), (6b)

xi(tk) = xi(tk), xi(tk+1) = x0(tk) − F i0(tk). (6c)

Proof. The proof follows from the classical finite time minimum
energy optimal control design [30, page 138]. □

Lemma 4.1 essentially states that any follower that samples
the leader, in the inter-sampling time interval can use the classi-
cal minimum energy control to steer towards the latest sampled
state of the leader (with an offset if specified). Next, we show
that this idea can be extended to a distributed setting in which
only a subset of the followers have access to the leader’s sampled
state. To present our results we first introduce some notations.
We denote the adjacency matrix and out-degree matrix of the
followers’ interaction topology G, respectively, by A = [aij] and
Dout = Diag(d1

out, d
2
out, . . . , d

N
out). We let

1i =

{
1, i ∈ N 0

in,

0, otherwise,
(7)

be the indicator operator that defines the state of connectivity of
follower i to the leader. For i ∈ {1, . . . ,N}, we also define

P i(t) =

{
0 t = tk,

G
i−1

k (t) t ∈ (tk, tk+1],
where (8a)

G
i
k(t) =

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )dτ , t ∈ [tk, tk+1]. (8b)

We notice that G
i
k(t) = G i(t − tk) eA

i⊤ (tk+1−t), where G i is the
controllability Gramian (3). Therefore at each finite time t ∈ (tk,
tk+1], by virtue of controllability of (Ai,Bi), G

i
k(t) is invertible.

Moreover, note that using the classical control results we can
show that G

i
k(t) can be computed numerically from G

i
k(t) = W i(t)

Φi(t) where W i(t) = G i(t − tk) and Φi(t) = eA
i⊤ (tk+1−t) for t ∈ [tk,

tk+1] are obtained from

Ẇ i
(t) = AiW i(t) + W i(t)Ai⊤

+ BiBi⊤ , W i(tk) = 0n×n,

Φ̇i(t) = −Ai⊤Φi(t), Φi(tk) = eA
i⊤ Tk .

With the proper notations at hand, we present our distributed
solution to solve our leader-following problem of interest as
follows.

Theorem 4.1 (A Leader-following Algorithm for a Group of Hetero-
geneous LTI Followers). Consider a leader-following problem where
the followers’ dynamics are given by (1). Suppose the leader’s time-
varying state is x0 : R≥0 → Rn. Let the network topology G = G∪Gl
be an acyclic digraph with leader, node 0, as the global sink. Suppose
every follower i ∈ N 0

in has access to x0(t) at each sampling time tk,
k ∈ Z≥0. Let F i0(tk) ∈ Rn and F ij(tk) ∈ Rn be the desired state
offset (formation) with reference to x0(tk) and xj(tk+1), respectively.
Starting at an initial condition xi(t0) ∈ Rn with ui(t0) = 0, let for
t ∈ (tk, tk+1]

ui(t) = ωi
l

(
Bi⊤eA

i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))

)
+

ωi
f

(
Bi⊤eA

i⊤ (tk+1−t)G i−1

k

N∑
j=1

aijG
j
kP

j(t)(xj(t) − eA
j(t−tk)xj(tk))
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+ Bi⊤eA
i⊤ (tk+1−t)G i−1

k

N∑
j=1

aij(eA
jTkxj(tk)

− eA
iTkxi(tk) − F ij(tk))

)
, (9)

where P j(t) is given in (8a), ωi
l =

1i

1i+diout
, and ωi

f =
1

1i+diout
. Then,

the followings hold for t ∈ R≥0 and k ∈ Z≥0:

(a) xi(tk+1) = x0(tk) − F i0(tk), moreover, xj(tk+1) − xi(tk+1) =

F ij(tk) i, j ∈ {1, . . . ,N} and i ̸= j;
(b) the trajectory of every follower i ∈ {1, . . . ,N} is

xi(t) = eA
i(t−tk)xi(tk)+ G i

k(t)G
i−1

k (x0(tk)− F i0(tk)− eA
iTkxi(tk));

(10)

(c) the control input ui(t) of every agent i ∈ {1, . . . ,N} is equal
to (4). □

The proof of Theorem 4.1 is given in Appendix A. Several
observations and remarks are in order regarding the leader-
following algorithm of Theorem 4.1.

Remark 4.1 (Robustness to State Perturbations). We observe that
the leader-following algorithm of Theorem 4.1 has robustness to
state perturbations similar to the well-known Model Predictive
Control (MPC). Even though the controller implemented in each
epoch (tk, tk+1] is an open-loop control, since every follower
exerts its state at time tk as initial condition to the controller, the
algorithm can account for the slight perturbations in the follower
final state xi(tk+1) at the end of each epoch. □

Remark 4.2 (Implementation of Control Law (9)). To implement
(9), we note that the component of (9) that multiplies ωi

l is
computed using the local variables of follower i and the sampled
state of the leader if ωi

l is non-zero, i.e., i ∈ N 0
in. The component

of (9) that multiplies ωi
f is computed using the local variables of

follower i and variables of its out-neighbors if di
out ̸= 0. To com-

pute this term, if the follower i knows (Aj,Bj) of its out-neighbor
j (which is the case e.g., when the group is homogeneous), it can
implement control (9) by obtaining the state xj of its out-neighbor
j and computing P j and eA

j(t−tk) locally. Otherwise, each follower
needs to obtain z j(t) = G j

kP
j(t)(xj(t)−eA

j(t−tk)xj(tk)) and eA
jTkxj(tk)

of its each out-neighbor j. We note here that since the interval
(tk, tk+1] is open from the left and the dynamics of all the follow-
ers is controllable, P i(t) is well defined. However, for t → t+k from
the right, P i(t) goes to infinity. But, since (xj(t) − eA

j(t−tk)xj(tk))
goes to zero as t → t+k from the right, the product P j(t)(xj(t) −

eA
j(t−tk)xj(tk)) goes to zero as t → t+k from the right. The ‘‘high-

gain-challenge’’ observed here is often a common feature in any
approach that is geared towards regulation in prescribed finite
time. For example, finite-horizon optimal controls with a termi-
nal constraint inevitably yield gains that go to infinity (see e.g.,
[35–37]). In practice, the multiplication of very large and very
small values can create numerical problems. To address the prob-
lem, one way proposed in the literature is equivalent to employ
a deadzone on P j(t)(xj(t)− eA

j(t−tk)xj(tk)) at the beginning of each
time interval. Another approach is equivalent to using a large
interval (tk − δ, tk+1], where δ ∈ R>0 is small positive number, to
compute P j(t) such that P j(t) for t ∈ (tk, tk+1] is no longer goes
unbounded when t goes to t+k from the right. These approaches
of course result in somewhat sacrifices in the accuracy at each
arrival value at tk+1 at the end of time interval (tk, tk+1]. However,
as discussed in Remark 4.1, the errors will not accumulate. As
interestingly discussed in [35], the high-gain-challenge in the

finite-time control can be contrasted with non-smooth feedback
in the sliding mode control where the gain approaches infinity
near sliding surface x = 0 [38] (but the total control input is zero).
However, unlike the sliding mode control, where the practical
implementation of the high-gain leads to persistent chattering
on the sliding surface [38], in our case the concern arises only at
the start of each transition from one sampling time to the other.
The aforementioned practical measures to handle the high-gain-
challenge in our setting indeed can be compared to the boundary
layer approach [38] in the sliding mode control to eliminate
chattering. □

Remark 4.3 (Time-varying MAS Dynamics and Network Topology).
From the proof of Theorem 4.1, we can see that the follow-
ers dynamics can be allowed to be time-varying but piece-wise
constant over each time interval (tk, tk+1], i.e., Ai(t) = Āi

(tk)
and Bi(t) = B̄i

(tk), i ∈ {1, . . . ,N} for t ∈ (tk, tk+1]. Simi-
larly the network topology can be allowed to be time-varying as
long as between (tk, tk+1] the topology is fixed and satisfies the
connectivity condition of Theorem 4.1. □

Remark 4.4 (Minimum Energy Control in [tk, tk+1]). From state-
ment (c) of Theorem 4.1 it follows that at each time interval
[tk, tk+1], k ∈ Z≥0, the control input ui of each follower i ∈

{1, . . . ,N} is the minimum energy controller that transfers the
follower from its current state xi(tk) to its desired state xi(tk+1) =

x0(tk) − F i0
k (tk). □

Remark 4.5 (Tracking a Priori Known Desired States at Exact Sam-
pling Time and Design of Arrival Times). We note that if the leader
is virtual and the sampled states are some desired states that are
known a priori to N 0

in with desired arrival time in R>0, the fol-
lowers can arrive at the desired state of the leader at the desired
arrival time. Furthermore, for the homogeneous followers, in
cases that the arrival times are not specified, one of the followers
in N 0

in (we refer to it as super node that knows the initial state
of all the other followers) can design the arrival times to meet
other optimality conditions or to avoid violating constraints such
as input saturation. In case of input saturation, the fact that by
virtue of statement (c) of Theorem 4.1 the form of input vector
of the followers are known to be (4) can be instrumental to the
super node in design of arrival times. Our second demonstrative
example in Section 5 offers the details. □

Remark 4.6 (Extension of Results to Output Tracking for a Special
Class of MAS). The design methodology of the state offset (forma-
tion) algorithm of Theorem 4.1 can be used in output tracking for
a special class of MAS. Let the network topology be as described
in Theorem 4.1 and the system dynamics of the followers be (1)
where xi ∈ Rni and ui

∈ Rmi
(the state and input dimensions of

the followers are not necessarily the same). Let the objective be
that the output y i

= C ixi ∈ Rn, n ≤ ni, of each follower should
satisfy

y i(tk+1) = x0(tk) − F i0(tk), i ∈ {1, . . . ,N}. (11)

If C iBi is full row rank, we can use the control ui
= Bi⊤C i⊤

(C iBiBi⊤C i⊤ )−1
· (vi

− C iAixi), i ∈ {1, . . . ,N}, to write the output
dynamics of each follower i as ẏ i

= vi. Then the method of
Theorem 4.1 can be used to design vi

∈ Rn, which can then be
used to obtain the appropriate ui that will make the followers
meet (11). □

Finally, we note that if the followers are homogeneous, the
followers can achieve full synchronization in the sense stated in
the result below.
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Fig. 2. The state and control trajectories of followers of the first numerical example.

Corollary 4.1 (Full Synchronization for Homogeneous Followers). Let
the state offset be constant i.e., F i0(tk) = F i0

∈ Rn for all i ∈

{1, . . . ,N} or (equivalently F ij(tk) = F ij
∈ Rn for i, j ∈ {1, . . . ,N}),

and assume that the followers are homogeneous. Then, it follows
from statements (b) and (c) of Theorem 4.1 that the followers’
trajectories and inputs satisfy xj(t) = xi(t) + F ij for t ∈ [t1, ∞)
and ui(t) = uj(t) for t ∈ (t1, ∞), for every i, j ∈ {1, . . . ,N}. One
can easily verify this point by shifting the state coordinate with F ij.
Moreover, if the agents are initially in the specified offset i.e., xj(0) =

xi(0) + F ij for all i, j ∈ {1, . . . ,N}, then these qualities also hold for
t ∈ [0, t1]. □

Assume that there exists K i
∈ Rmi

×n, W i
∈ Rmi

×mi
for i ∈

{1, . . . ,N} and a controllable pair (A,B) known to all followers, such
that using ui

= K ixi + W ivi, i ∈ {1, . . . ,N}, makes the followers
dynamic homogeneous, i.e., ẋi = Axi + Bvi, A = Ai

+ BiK i and
B = BiW i, i ∈ {1, . . . ,N}. Then, it is also possible to achieve full
state synchronization by implementing (9) to vi for heterogeneous
followers. One sufficient condition for the existence of K i and W i,
i ∈ {1, . . . ,N}, is that Bi of each follower i ∈ {1, . . . ,N} is full row
rank. Then, K i

= Bi⊤ (BiBi⊤ )−1(A − Ai), W i
= Bi⊤ (BiBi⊤ )−1B and

(A,B) can be any controllable pair.

5. Demonstrative examples

In this section, we demonstrate our results via numerical
examples.

5.1. A nonlinear-leader following problem for a group of heteroge-
neous followers

Consider a group of 7 mass–spring–damper system (followers)

ẋi =

[
0 1

−
ki

mi −
bi

mi

]
  

Ai

xi +
[
0
1
mi

]


Bi

ui, i ∈ {1, . . . , 7} (12)

where xi = [xi ẋi] ∈ R2 is the state vector with xi ∈ R
and ẋi ∈ R representing the displacement and velocity of the

mass, ki, bi and mi are spring constant, damping constant and
mass, respectively, and ui

∈ R is the input force. The sys-
tem’s parameters (ki, bi,mi) for i ∈ {1, . . . , 7} are (1, 0.5, 5),
(2, 0.5, 15), (2.5, 1.5, 10), (3, 0.8, 8), (3.5, 1.5, 5), (1.2, 1.8, 12),
and (0.5, 1, 10), respectively. The leader denoted by 0 is a non-
linear mass–spring–damper system

ẋ0 =

[
ẋ0

1
m0 (u0

− b0ẋ0 − k0x0 − 0.6x0
3
)

]
, (13)

where the input u0 is unknown to the followers and the system
parameters (k0, b0,m0) = (1.2, 2, 5). The interaction topology of
the systems is shown in Fig. 1. Followers 1, 2 and 3 obtain the
state of the leader with a sampling rate of 1 ps, i.e., Tk = 1
s, k ∈ Z≥0. The followers start at x1(0) = [0 0]⊤, x2(0) =

[−0.5 0]⊤, x3(0) = [−1 0]⊤, x4(0) = [−1.5 0]⊤, x5(0) =

[−2 0]⊤, x6(0) = [−2.5 0]⊤, x7(0) = [−3 0]⊤. The objective
is for the followers to track the sampled state of the leader while
preserving the initial formation of the systems at every sampling
time tk. The follower i only knows the local formation, i.e., F ij(0)
for j ∈ N i

out. For example, follower 3 knows F 30(0) = [1 0]⊤,
F 31(0) = [1 0]⊤, and F 32(0) = [0.5 0]⊤.

The result of implementing the algorithm of Theorem 4.1 is
shown in Fig. 2. The ‘+’ represents the sampled leader’s states
and ‘×’ shows the followers track the sampled state in the desired
formation at the next sampled time. In this example interestingly
in the transition times similar to what is expected from homoge-
neous followers the state and input of all the followers are almost
offset-synchronized. However, this property is not necessarily
true in general for heterogeneous followers.

5.2. Reference state tracking for a group of second integrator dynam-
ics with bounded inputs

We consider a group of 6 followers with second order integra-
tor dynamics

ẋi =

[
0 1
0 0

]
  

A

xi +
[
0
1

]


B

ui, −5 ≤ ui
≤ 5, (14)
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Fig. 3. An interaction topology with 6 followers. Agent 0 is the virtual leader.

for i ∈ {1, . . . , 6}. The interaction topology of these followers is
shown in Fig. 3, where, agent 0 is the virtual leader that is de-
fined more precisely below. Starting at initial conditions x1(0) =

[0 0]⊤, x2(0) = [2 0]⊤, x3(0) = [−2 0]⊤, x4(0) = [5 0]⊤,
x5(0) = [10 0]⊤, x6(0) = [−10 0]⊤, the leader-following
mission for this team is to traverse through the sequence of de-

sired states xd = {xd1, x
d
2, x

d
3, x

d
4} =

{[
50
10

]
,

[
−50
10

]
,

[
20
10

]
,

[
0
0

]}
,

which for privacy reason are only known to follower 1. The ob-
jective is to meet the sequence of desired states without violating
any of the followers’ control bounds. In this problem setting,
follower 1 is the super node that knows the initial starting state
of all the followers in the team and has computational power to
compute the arrival times as follows to meet the team’s objective.
First, we note that by virtue of statement (c) of Theorem 4.1
the form of input vector of the followers are known to be (4).
Since follower 1 knows xi(t0) for i ∈ {1, . . . , 6}, follower 1 can
evaluate ui(t) of all the followers. Starting with td0 = 0, follower
1 computes the arrival time at desired state xd1 from the process
below

td,i1 = argmin
∫ td,i1

td0

dτ subject to − 5 ≤ ui(t) ≤ 5, (15)

where ui(t) = B⊤eA
⊤(td,i1 −t)G−1

0 (xd0 − eAT0xi(0)) with T0 = td,i1 − td0 .
Then, the arrival time so that the followers input do not saturate
over (td0 , t

d,i
1 ] is set to td1 = max{td,i1 }. (II) Due to Corollary 4.1, after

first epoch, the followers inputs are equal to each other. Then,

the remaining arrival time tdl , l ∈ {2, 3, 4} are computed from the
optimization problem

tdk+1 = argmin
∫ tdk+1

tdk

dτ subject to − 5 ≤ u(t) ≤ 5, (16)

where u(t) = B⊤eA
⊤(tdk+1−t)G−1

k (xdk+1 − eATkxdk ) with Tk = tdk+1 − tdk ,
for k ∈ {1, 2, 3}. The solution for this set of sequential optimal
control problem is td1 = 6.7178, td2 = 25.2061, td3 = 30.1592
and td4 = 40.4885 s. At the end of process, follower 1 broadcasts
the times to the network. Broadcasting the reference states is not
allowed due to privacy reasons. We note that the desired arrival
times can be done offline by the system operator. To match the
notation in (9), at the implantation stage, we set x0(tk−1) = xdk ,
Tk−1 = tdk −tdk−1, and tk = tk−1+Tk−1, k ∈ {1, . . . , 4}, where td0 = 0.
Fig. 4 shows that all the followers meet the desired reference
state of the virtual leader at the specified arrival times without
delay (the ‘+ ’ marks the reference states). Fig. 4 also shows the
control history of the agents. As seen, the control inputs respect
the saturation bounds 5 or −5. We can also observe that the
followers’ states and inputs, as predicted in Corollary 4.1, are all
synchronized after the first epoch. We should mention that by
virtue of Lemma B.1 in Appendix B, every Tk, k ∈ {0, 1, 2, 3},
designed as described above is guaranteed to be a finite value.

5.3. Output tracking for a group of aircraft

We consider a group of 7 aircraft whose short-period dynam-
ics is given by (taken from [39, Example 10.1])[
α̇

q̇

]


ẋi

=

[
−0.0115 1
−0.0395 −2.9857

]
  

A

[
α

q

]


xi

+

[
−0.1601
−11.0437

]
  

B

δie
ui

,

yi(t) =
[
0 1

]  
C

xi,

where αi, qi and δie are respectively, angle of attack, pitch rate
and elevator angle of aircraft i ∈ {0, . . . , 6}. The interaction
topology of these aircraft is shown in Fig. 3, where, agent 0 is the
leader. For this system CB = −11.0437, therefore the condition of
Remark 4.6 is satisfied and we can design a distributed algorithm

Fig. 4. The state and control trajectories of followers of the second numerical example.
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Fig. 5. The state and control trajectories of followers of the third numerical example.

to synchronize the pitch rate of the follower aircraft {1, . . . , 6} to
the pitch rate of the leader aircraft when only sampled pitch rate
of the leader at every 0.1 s is available to the follower aircraft 1.
Fig. 5 demonstrates the results.

6. Conclusion

In this paper, we have proposed a distributed leader-following
algorithm for heterogeneous multi-agent systems with an active
leader with unknown input. We have proved that our distributed
leader-following algorithm for the linear followers steers the
group to be at the sampled states of the leader at the specified
arrival times. We showed that the control input of each follower
agent between the sampling times is a minimum energy control.
We also showed that after the first sampling epoch, the states
of all the homogeneous follower agents are synchronized with
each other. We demonstrated our results via leader-following
problems of mass–spring–damper systems, mobile agents with
second order integrator dynamics, and a group of aircraft. Future
work will focus on extending our results to output following
problem.
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Appendix A

Proof of Theorem 4.1. For G∪Gl an acyclic digraph with 0 as the
global sink, the agents can be sorted into a series of hierarchical
subsets. Without loss of generality, we sort the agents as follows.
Recall that V = {1, . . . ,N} is the set of the followers. We let
V0 = {0}. Next, we let V1 to be the subset of agents in G that
are connected to the leader but they have no out-neighbor in G,
i.e., V1 = {i ∈ V| 1i = 1 and N i

out = {}}. We sequentially define

the lower subset as Vk = {i ∈ V\∪
k−1
j=1 Vj| N i

out ⊆ ∪
k−1
j=0 Vj}, where

k ∈ {2, . . . ,m}, such that ∪
m
j=1Vj = V . In short, in this hierarchy,

the agents in the lower subset only receive information from the
agents in the higher subsets.

We use mathematical induction over time intervals [t0, tk+1],
k ∈ Z>0 for our proof. That is we show that the theorem
statements hold for k = 0. Then assuming that the theorem
statements hold for k, we show the validity of the statement over
k+1. The proof of the case for k = 0 is very similar to the case of
k+1 and omitted here of brevity. Now let the theorem statements
be valid over [t0, tk] and we show the validity of the statements
at (tk, tk+1] and as a result the validity of the statement over
[t0, tk+1]. For our proof we use as the mathematical induction
over Vl where l ∈ {1, . . . ,m}.

Consider first the dynamics of the followers in Vl. For l = 1, the
control (9) reduces to (4), since ωi

l = 1 and
∑N

j=1 aij = 0. Hence
statement (c) holds. The trajectory of xi(t) after substituting for
the control input ui is

xi(t) = eA
i(t−tk)xi(tk) +

∫ t

tk

eA
i(t−τ )Biui(τ )dτ

= eA
i(t−tk)xi(tk) +

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )G i−1

k

· (x0(tk) − F i0(tk) − eA
iTkxi(tk))dτ

= eA
i(t−tk)xi(tk) + G i

k(t)G
i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk)).

Then given (8b), the trajectories of agents i ∈ V1 is given by (10)
for t ∈ R≥0, confirming Statement (b). Moreover, when t = tk+1,
the final state of the end of this period is

xi(tk+1) = eA
iTkxi(tk) + G i

k(tk+1)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))

= x0(tk) − F i0(tk).

Also, the relative state with respect to follower j ∈ N i
out, is

xj(tk+1) − xi(tk+1) = x0(tk) − F j0(tk) − x0(tk) + F i0(tk) = F ij(tk).
Therefore, statement (a) holds.
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Next, let statements (a), (b) and (c) be true for i ∈ Vs, s ∈

{1, . . . , l − 1}. Then, for the follower i ∈ Vl we have:

xi(t) = eA
i(t−tk)xi(tk) +

∫ t

tk

eA
i(t−τ )Biui(τ )dτ

= eA
i(t−tk)xi(tk) +

1i

1i + di
out

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )G i−1

k

· (x0(tk) − F i0(tk) − eA
iTkxi(tk))dτ

+
1

1i + di
out

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )G i−1

k

·

N∑
j=1

aijG
j
kP

j(τ )(xj(τ ) − eA
j(τ−tk)xj(tk))dτ

+
1

1i + di
out

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )G i−1

k

·

N∑
j=1

aij(eA
jTkxj(tk) − eA

iTkxi(tk) − F ij(tk))dτ

= eA
i(t−tk)xi(tk) +

1i

1i + di
out

G i
k(t)G

i−1

k

× (x0(tk) − F i0(tk) − eA
iTkxi(tk))

+
1

1i + di
out

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )G i−1

k

·

N∑
j=1

aijG
j
kP

j(τ )(xj(τ ) − eA
j(τ−tk)xj(tk))dτ

+
1

1i + di
out

G i
k(t)G

i−1

k

N∑
j=1

aij(eA
jTkxj(tk) − eA

iTkxi(tk) − F ij(tk)).

Since j ∈ Vs, where s < l, the trajectory xj(τ ) of agent j is assume
to follow (10). Therefore, we can put (10) into xj(τ ).

xi(t) = eA
i(t−tk)xi(tk) +

1i

1i + di
out

G i
k(t)G

i−1

k

× (x0(tk) − eA
iTkxi(tk) − F i0(tk))

+
1

1i + di
out

∫ t

tk

eA
i(t−τ )BiBi⊤eA

i⊤ (tk+1−τ )G i−1

k

×

N∑
j=1

aijG
j
kP

j(τ )(eA
j(τ−tk)xj(tk)

+ G
j
k(τ )G

j−1

k (x0(tk) − F j0(tk) − eA
jTkxj(tk))

− eA
j(τ−tk)xj(tk))dτ

+
1

1i + di
out

G i
k(t)G

i−1

k

N∑
j=1

aij(eA
jTkxj(tk)

− eA
iTkxi(tk) − F ij(tk))

=eA
i(t−tk)xi(tk) +

1i

1i + di
out

G i
k(t)G

i−1

k

× (x0(tk) − F i0(tk) − eA
iTkxi(tk))

+
1

1i + di
out

G i
k(t)G

i−1

k

N∑
j=1

aij(x0(tk) − F j0(tk) − eA
jTkxj(tk))

+
1

1i + di
out

G i
k(t)G

i−1

k

N∑
j=1

aij(eA
jTkxj(tk)

− eA
iTkxi(tk) − F ij(tk))

= eA
i(t−tk)xi(tk) +

1i

1i + di
out

G i
k(t)G

i−1

k

× (x0(tk) − F i0(tk) − eA
iTkxi(tk))

+
di
out

1i + di
out

G i
k(t)G

i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))

= eA
i(t−tk)xi(tk) + G i

k(t)G
i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk)).

xi(tk+1) = eA
iTkxi(tk) + G i

k(tk+1)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))

= x0(tk) − F i0(tk).

Similarly, the relative state with respect to agent j ∈ N i
out, is

xj(tk+1) − xi(tk+1) = x0(tk) − F j0(tk) − x0(tk) + F i0(tk) = F ij(tk).
Thereby, statement (a) and (b) also hold for the case l = l. Then
we show that control (9) is equivalent to (4) as follows

ui(t) =
1i

1i + di
out

[Bi⊤eA
i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))]

+
1

1i + di
out

[Bi⊤eA
i⊤ (tk+1−t)G i−1

k

N∑
j=1

aijG
j
kP

j(t)(xj(t)

− eA
j(t−tk)xj(tk))

+ Bi⊤eA
i⊤ (tk+1−t)G i−1

k

N∑
j=1

aij(eA
jTkxj(tk)

− eA
iTkxi(tk) − F ij(tk))]

=
1i

1i + di
out

[Bi⊤eA
i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))]

+
1

1i + di
out

[Bi⊤eA
i⊤ (tk+1−t)G i−1

k

N∑
j=1

aijG
j
kP

j(t)(eA
j(t−tk)xj(tk)

+ G
j
k(t)G

j−1

k (x0(tk) − F j0(tk) − eA
jTkxj(tk)) − eA

j(t−tk)xj(tk))

+ Bi⊤eA
i⊤ (tk+1−t)G i−1

k

N∑
j=1

aij(eA
jTkxj(tk) − eA

iTkxi(tk) − F ij(tk))]

=
1i

1i + di
out

[Bi⊤eA
i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))]

+
di
out

1i + di
out

[Bi⊤eA
i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk))]

= Bi⊤eA
i⊤ (tk+1−t)G i−1

k (x0(tk) − F i0(tk) − eA
iTkxi(tk)).

Therefore, statement (c) holds. Since both the base case l = 1 and
the inductive step have been proved, by mathematical induction
statement (a), (b) and (c) hold for all l ∈ {1, . . . ,m}. □

Appendix B

The result below ensures the feasibility of the arrival time
design of the second numerical example of Section 5.

Lemma B.1. Consider a second order integrator system initialized
at x(t0) = χ(t0) ∈ R2 at time t0 ∈ R≥0. This system implements the
minimum energy controller

u(t) = B⊤eA
⊤(tk+1−t)G(Tk)−1(χ(tk+1) − eATkx(tk)), t ∈ (tk, tk+1],

(B.17)

and u(t0) = 0 to traverse sequentially through a set of m+ 1 points
{χ(tk)}mk=0 ⊂ R2, where tk ∈ R≥0 is the arrival time at point χ(tk),
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Tk = tk+1 − tk ∈ R>0, A and B are given in (14), and G is defined
in (3). For this system, there always exists a set of finite arrival
times {tk}m0 such that |u(t)| ≤ |umax| for any t ∈ [t0, tm], where
umax ∈ R≥0 is the known bound on the control input.

Proof. To establish the proof, similar to the proof of
Theorem 4.1, we relay on the mathematical induction over time
intervals [t0, tk+1], k ∈ {0, . . . ,m − 1}. The proof of the case for
k = 0 is similar to the case of k+ 1 and omitted here for brevity.
Now let the statements be valid over [t0, tk]. Next, we show the
validity of the statements at (tk, tk+1], and as a result the validity
of the statement over [t0, tk+1]. Let χ(tk) = [χk,1 χk,2]

⊤
∈ R2,

k ∈ {0, . . . ,m}. Also, given t ∈ (tk, tk+1], let t ′ = t − tk ∈ (0, Tk].
Disregarding the control bounds, (B.17) results in x(tk) = χ(tk) for
k ∈ {0, . . . ,m−1}. Therefore, control (B.17) can also be expressed
as

u(t ′) =

[
12
T3k

(Tk − t ′) −
6
T2k

−
6
T2k

(Tk − t ′) +
4
Tk

]
×

[
χk+1,1 − χk,1 + Tkχk,2

χk+1,2 − χk,2

]
.

Since u(t ′) is an affine function of t ′, the maximum value of |u(t ′)|
is at either t ′ → 0+ or t ′ = Tk. That is, |u(t ′)| ≤ |u(t ′ → 0+)| or
|u(t ′)| ≤ |u(Tk)| where u(t ′ → 0+) = limt ′→0+ u(t ′). Next, we
show that there always exists a Tk that makes |u(t ′ → 0+)| ≤

|umax| and |u(Tk)| ≤ |umax|, which means that |u(t ′)| ≤ |umax|,

t ′ ∈ (0, Tk]. Note that
⏐⏐u(t ′ → 0+)

⏐⏐ =

⏐⏐⏐⏐ 6
T2k

(χk+1,1 − χk,1) −
2
Tk

(χk+1,2 − 2χk,2)
⏐⏐ ≤

⏐⏐⏐⏐ 6
T2k

(χk+1,1 − χk,1)
⏐⏐⏐⏐ +

⏐⏐⏐ 2
Tk
(χk+1,2 − 2χk,2)

⏐⏐⏐,
and |u(Tk)| =

⏐⏐⏐ −
6
T2k

(χk+1,1 − χk,1)+
2
Tk
(2χk+1,2 − χk,2)

⏐⏐⏐ ≤⏐⏐⏐⏐ 6
T2k

(χk+1,1 − χk,1)
⏐⏐⏐⏐+ ⏐⏐⏐ 2

Tk
(2χk+1,2 − χk,2)

⏐⏐⏐. Since the upper bounds

established for
⏐⏐u(t ′ → 0+)

⏐⏐ and |u(Tk)| monotonically decrease
when Tk increases, there always exists finite value of Tk such
that these upper bounds become equal to umax. Therefore, there
always exists a finite value of Tk for which control law (B.17) does
not violate the controller saturation bound. □
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