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Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary
scattering matrices that can also be viewed as representing nonequilibrium Floquet systems. The resulting
Floquet bands have zero Chern number, and are instead characterized by a chiral Floquet winding number.
This begs the question, How can a model without Chern number describe IQH systems? We resolve this
puzzle by showing that nonzero Chern number is recovered from the network model via the energy
dependence of network model scattering parameters. This relationship shows that, despite their
topologically distinct origins, IQH and chiral Floquet topology-changing transitions share identical
universal scaling properties.
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Disorder and localization often play a vital role in
stabilizing topological matter. In particular, these features
are essential for the experimental observation of quantized
Hall conductance in a variety of experimental systems such
as GaAs quantum wells [1,2], graphene [3], and magneti-
cally doped topological insulator thin films [4]. These
systems all allow tuning between Hall plateaus with
different quantized conductance via changing gate voltages
or external magnetic fields, resulting in a topological-phase
transition. This transition is marked by a jump in the Chern
number of the occupied electron states and a change in the
number of chiral edge states circulating around the peri-
meter of the sample. It is accompanied by a divergence in
the localization length at a critical value of the chemical
potential.
Disorder and localization can also stabilize driven

systems against drive-induced heating, giving access to
new regimes of quantum coherent dynamics. Recent
theoretical advances have shown that time-periodically
driven (Floquet) systems can exhibit new types of non-
equilibrium topological phases with inherently dynamical
properties that could not arise in the ground state of static
(time-independent) Hamiltonians [5–7]. Striking examples
include chiral Floquet (CF) phases [6], which exhibit chiral
edge states, despite having only topologically trivial
bulk bands.
Although CF edge states are reminiscent of those in

integer quantum Hall (IQH) systems, there are important
differences. Crucially, the number of CF edge states for a
given Floquet operator is the same at all values of the
(compact) quasienergy. By contrast, the number of edge
states for a (time-independent) IQH Hamiltonian is a
function of (noncompact) energy, and is given by the net
Chern number of all bulk states at lower energies. As a

corollary, CF phases differ from IQH phases in that they do
not exhibit charge pumping through bulk states upon
adiabatic insertion of magnetic flux, and hence have
vanishing Hall conductance and Chern number. Instead,
for noninteracting systems, the unitary time-evolution
operators for CF phases are characterized by an integer-
valued winding number χ, the chiral unitary invariant [6].
In this Letter, we explore a relation between these two

distinct types of topological phenomena via the network
model introduced by Chalker and Coddington [8]
to describe the scattering dynamics of electrons near the
quantum Hall plateau transition. The Chalker-Coddington
network (CCN) model is defined by a unitary matrix that
acts on a wave function sampled at discrete spatial lattice
points in a continuum IQH system. This unitary can also be
interpreted as the Floquet operator of a time-periodically
driven system [9], as previously discussed in the context of
photonic networks where it was found that these network
models could realize both CF phases and Chern bands for
appropriate network geometries and parameters [10–12].
We construct a periodically time-dependent Hamiltonian,
acting on the same lattice, whose Floquet operator
coincides with the CCN unitary, and demonstrate that this
Floquet system hosts a CF phase, and find vanishing
Chern number for all bands at all fixed network-model
parameters.
This correspondence uncovers a puzzle: IQH systems are

characterized by a Chern number, but the CF system has
Chern number zero. We resolve this puzzle by showing that
the Chern number of an IQH system is recovered by
properly accounting for energy dependence of scattering
phases and tunneling amplitudes in the model. This
relationship provides a fresh perspective on IQH systems,
building on the fact that the CF Floquet operator is
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characterized by the chiral unitary invariant. Since the CCN
is represented by the same unitary matrix as a CF system,
values of the chiral unitary invariant can be used to label
IQH phases within the CCN description.
These observations show that the network model

equally describes the fixed-energy scattering behavior of
a wave packet in an IQH system and the full dynamics of a
CF system. In particular, this implies that the topology-
changing phase transitions for disordered, noninteracting
IQH and CF phases share the same universal scaling
properties, in agreement with recent field-theoretic analysis
[13] relating σ models for CF and IQH phases.
Network model definition.—Consider a zero-temperature

noninteracting electron gas moving in a uniform magnetic
field and a disordered potential, with the lowest Landau
level partially occupied on average. If the potential is
smooth on the scale of the magnetic length and has
fluctuations smaller in amplitude than the cyclotron energy,
the system is divided into spatial regions around potential
minima where the Landau level is locally fully occupied
and regions around maxima where it is empty. Chiral
edge states at the chemical potential circulate along the
boundaries between these occupied and empty regions.
Tunneling between distinct edge segments occurs near
saddle points in the potential where their spatial separation
is small.
The network model [8] describes a simplified version of

this picture, in which the potential is chosen so that
occupied and empty regions form alternate plaquettes of
a regular square lattice. Edge states propagate on directed
links of this lattice, meeting at nodes that correspond to
potential saddle points. Consider an eigenstate ψðrÞ of the
usual single-particle Hamiltonian [14] for this continuum
problem. In the CCN this wave function is sampled at a
single point ri on each link and is represented by a current
amplitude ψ i. Amplitudes on incoming and outgoing links
at a node are related by a scattering matrix, so that (referring
to Fig. 1)

�
ψ3

ψ4

�
¼

�
eiφ3 0

0 eiφ4

��
cos θ sin θ

− sin θ cos θ

��
ψ1

ψ2

�
: ð1Þ

Here, θ parametrizes tunneling while φ3 and φ4

are Aharonov-Bohm phases. A similar S matrix with
θ → θ̄≡ π=2 − θ describes scattering at the θ̄ nodes.
Disorder is modeled by taking φi to be an independent
random variable on each link i, uniform in ½0; 2πÞ. The
CCN may be formulated either for an open system
consisting of a sample connected to leads [8] or for a
closed system [15]. In a closed system ofN links, the model
is specified by an N × N unitary matrix U, which is
composed of 2 × 2 submatrices, each having the form
of Eq. (1).
For an open system, the model defines a scattering

problem between asymptotic states supported in the leads.
Stationary states for this scattering problem exist at all
energies within the Landau level, and IQH physics may be
extracted by relating the scattering matrix to conductances
using the Landauer-Büttiker formula [16]. For a closed
system, stationary states exist only at discrete energies and
the model defines an eigenvalue problem. A standard way to
characterize the IQH for a closed system is via the Chern
numbers of eigenstates, which are at the focus of our
discussion.
The amplitudes ψ i of a stationary state satisfy (1) at

every node. As a result, in a closed system these amplitudes
form components of an eigenvector of the unitary matrixU,
with an eigenvalue of unity. To locate the discrete energies
at which one of the eigenvalues ofU is unity, it is necessary
to consider the dependence on energy of the parameters
θ and φi [17]. From the shape of equipotentials near a
saddle point, one sees that θ increases from 0 to π=2 as
energy is increased across the disorder-broadened Landau
level, as illustrated in Fig. 2. The accumulated link phase
around a plaquette is (2π times) the number of flux quanta
passing through this plaquette. Randomness in φi arises
from small random variations in the area of plaquettes, and
energy dependence of φi arises due to the change in area of
a plaquette with a change in the chemical potential.
The behavior of the model is simplest at the extreme

limits θ ¼ 0 and θ ¼ π=2. In the first case, the system
consists only of isolated plaquettes enclosing occupied
regions. In the second case, it is made up of isolated
plaquettes enclosing empty regions, together with a chiral
edge state at a boundary where the systemmeets an external
empty region. Detailed numerical studies show that the
edge state is present for all θ > π=4.
Floquet perspective.—The unitary matrix U for fixed θ

and φi may be viewed as the evolution operator for one time
step of a Floquet problem in which the N-component wave
function ΨðtÞ has the stroboscopic evolution

Ψðtþ 1Þ ¼ UΨðtÞ: ð2Þ

It can be shown that dynamics of ΨðtÞ in this Floquet
problem matches the dynamics of a wave packet with
small energy dispersion in the IQH system, under the

(a) (b)

FIG. 1. Network model and Floquet band structure. (a) Sche-
matic of Chalker-Coddington network model. (b) Floquet bands
εðkÞ of the clean network model evolution operator at criticality,
θ ¼ π=4.
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approximations that (i) all φi vary with energy linearly and
at the same rate and (ii) the energy dependence of θ may be
neglected.
Writing the eigenvalues of U as e−iε, the phases ε are

referred to in this context as quasienergies, located within a
compact Brillouin zone ε ∈ ð−π; π�. The fact that quasi-
energies lie on a circle rather than an open line changes the
topological classification of Floquet dynamics compared to
that of gapped ground states of static Hamiltonians [5–7].
Noninteracting Floquet bands in systems with conserved

particle number are exhaustively classified by two integer-
valued topological invariants: (1) the Chern number Cn,
defined separately for each Floquet band n, and
(2) the chiral unitary index, χðUÞ, defined for the full
Floquet unitary, which characterizes the number of chiral
edge states that wrap around the quasienergy Brillouin
zone [6].
The Chern numbers for the Floquet bands of U are

identically zero [10,11]. This can be verified by inspection
at the trivial and topological limiting points, θ ¼ 0 and
θ ¼ π=2. At these points, the bulk motion consists of short
loops around the elementary plaquettes of the network
model (Fig. 1), indicating that the Floquet bands admit a
strictly localized Wannier basis of orbitals, each having
support only on the four links of a single plaquette. For a
system on a torus such a localized Wannier basis implies
vanishing Chern number [18], immediately implying that
each individual eigenstate has zero Chern number. This
conclusion extends to all values of θ ≠ π=4, since Chern
number may only change at a delocalization transition,
which in this model occurs only at θ ¼ π=4. The regions
either side of this critical point inherit the vanishing
Chern number of their limiting points, at θ ¼ 0, π=2,
respectively.
This argument, valid for arbitrary disorder, can be

directly verified for the clean version of the model by
explicit computation of the Floquet band structure.
Introducing crystalline momenta k, the matrix U is block
diagonal with blocks of the form

Uðθ; kÞ ¼

0
BBBB@

0 0 sin θe−ikx cos θe−iky

0 0 − cos θeiky sin θeikx

cos θ sin θ 0 0

− sin θ cos θ 0 0

1
CCCCA:

ð3Þ

We denote the eigenvalues of Uðθ; kÞ by e−iεnðθ;kÞ for
n ∈ f0; 1; 2; 3g. At θ ¼ 0 and θ ¼ π=2, εn are independent
of k, taking the values εn ¼ π=4þ πn=2. As θ deviates
from these extreme values, the bands disperse, until they
touch at θ ¼ π=4 in a sequence of Dirac points at wave
vectors k ¼ ð0; 0Þ or k ¼ ðπ; πÞ (Fig. 1). Tuning away from
θ ¼ π=4, the Dirac points develop a mass gap with an
alternating sign mass for Dirac points separated in quasi-
energy by Δε ¼ π=2. Equivalently, viewed in the three-
dimensional parameter space ðθ; kÞ, these degenerate points
form monopole sources of Berry flux, with overall cancel-
ing monopole charge, resulting in vanishing net Chern
number for all θ.
Chiral Floquet invariant.—Viewing the network model

as a lattice Floquet system, since U has only topologically
trivial bulk bands, any nontrivial topological behavior must
emerge from a nontrivial chiral unitary invariant, χ ≠ 0. As
a first step, we compare behavior at θ ¼ 0 and θ ¼ π=2 for
a system with open boundaries, where χ can be computed
simply by counting the number of chiral edge states
wrapping the quasienergy Brillouin zone [6,10]. There is
no edge state in the first case, and one in the second case.
The eigenvectors of U corresponding to the edge state can
be given explicitly. Let integer j label links in order along
the boundary, and for simplicity set all φj ¼ 0. Then the
vector with ψ j ¼ eikj on edge links and ψ i ¼ 0 on all other
links is an (unnormalized) eigenvector of U with quasie-
nergy εedge ¼ k. This mode indeed wraps the quasienergy
Brillouin zone as k varies, and is manifestly absent in the
other phase of the model (θ ≈ 0), demonstrating that

FIG. 2. Chern bands from the scattering network. (a) Semiclassical orbits for an electron in a periodic potential and uniform magnetic
field and (b) corresponding energy dependence of scattering parameters (schematic). (c) Partial set of energy bands from the scattering
network with θðEÞ ¼ ðπ=4Þðtanhf½ðEþ π=4Þ=4π�g þ 1Þ and φðEÞ ¼ E. The horizontal axis is placed at the critical energy E ¼ Ec for
which θðEcÞ ¼ π=4. (d) Berry curvature for two bands near E ¼ 0 for which θ respectively crosses (lower) and does not cross (upper)
π=4, giving total Chern number 1 or 0. All other bands have Chern number zero.
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χ½UCCNðθÞ� ¼
�
0 0 ≤ θ < π=4

1 π=4 < θ ≤ π=2;
ð4Þ

and hence that the network model describes a Floquet chiral
unitary index changing phase transition.
Although inspection of the stroboscopic edge motion is

sufficient to give the value of bulk invariant χ via the
bulk-boundary correspondence established in Ref. [6], it is
also reassuring to compute χ directly from the network
model in the bulk by considering a system with periodic
boundary conditions. Here, we face an obstacle: to compute
χ from bulk behavior alone, it is not sufficient to examine
stroboscopic times (for which the bulk motion is always
trivial when all Cn ¼ 0). Instead, one must examine the
micromotion within a single period. The network model as
formulated is blind to this micromotion, and additional
choices are needed to define it (though the final result will
be independent of these choices).
Specifically, we seek a continuous path in the space of

unitary matrices, from the identity toU, that is generated by
a local, time-dependent Hamiltonian HðtÞ acting on the
Hilbert space of the network model lattice. That is, we
require UðtÞ ¼ T e−i

R
t

0
Hðt1Þdt1 (where T denotes time

ordering) such that UðTÞ ¼ U, the CCN unitary. This
relation does not uniquely fixHðtÞ. However, if we demand
that HðtÞ is spatially local, any such choice of HðtÞ will
produce the same value of χ. In Ref. [19], we construct a
specific example via a coupled-wire perspective, and
explicitly verify Eq. (4) via evaluation of the bulk chiral
Floquet winding number [6]. The completeness of the
Floquet classification for lattice models [6,21,22]
also implies that any such local generating HðtÞ must be
explicitly time dependent (in contrast to the static
Hamiltonian for continuum Landau levels).
Recovery of Chern bands.—These observations naturally

raise the question, How can a model with zero Chern
number describe the quantum Hall transition? We now
show that a nonzero Chern number for the Landau band of
the continuum Hamiltonian is correctly recovered from the
eigenvectors of U when the network model parameters are
allowed to vary with energy in a realistic manner.
For clarity, we use the clean model in this discussion

although the results are general. Without disorder, the
link phases obey φi ¼ φðEÞ for all i, where φðEÞ is a
monotonic function of energy E with an increment Φ
across the energy width of the disorder-broadened Landau
level. If there are many magnetic flux quanta per unit cell
(the natural regime for the network model), then Φ ≫ 1.
Including φðEÞ, the quasienergies ofU are εnðk; θÞ − φðEÞ.
Eigenenergies of the continuum problem form bands
defined by

φðEÞ ¼ εnðk; θÞ þ 2πm ð5Þ

for integer m. For large Φ there are many such bands.

Recalling that θ≡ θðEÞ is a (slowly varying) function of
E, the solution to Eq. (5) for each m, n defines a surface
θm;nðkÞ in the space ðθ; kÞ that was introduced following
Eq. (3). For all but one of these surfaces, both of the
oppositely charged ðθ; kÞ-space monopole sources of Berry
flux lie on the same side of the surface. The net Berry flux
through these surfaces is therefore zero, implying zero
Chern number for the associated band of eigenstates in the
continuum problem. However, there is one exceptional
pair ðm; nÞ for which θm;nðkÞ < π=4 at k ¼ ð0; 0Þ, but
θm;nðkÞ > π=4 at k ¼ ðπ; πÞ (or vice versa, depending on
the parity of n). For this exceptional pair, oppositely
charged monopoles lie on opposite sides of the surface,
which therefore has a full unit of Berry flux passing though
it. The associated band of eigenstates hence has unit
Chern number, and summing over all bands we recover
unit Chern number for the Landau level. A numerical
demonstration for a particular energy dependence is shown
in Fig. 2.
Discussion.—These two lines of analysis show that the

network model equally describes both chiral Floquet
topological insulators and quantum Hall phases and
transitions. Specifically, these results establish a precise
equivalence of the dynamics of a wave packet with near-
constant energy in these two settings. Since the critical
properties at topological phase transitions in both classes
arise from delocalization at a fixed critical energy, this
implies that these topologically distinct phenomena
share the same critical properties at their (disordered)
topological-phase transitions. We emphasize that, despite
sharing critical scaling properties, the CF and IQH systems
are sharply distinct. Beyond their distinct bulk-topology
and edge-state structure, they exhibit qualitatively different
dynamics of spatially localized wave packets, which
remain indefinitely localized in strongly disordered CF
phases [23], but instead spread subdiffusively in IQH
systems due to overlap with critically extended states [24].
In the absence of interactions, the equilibrium

classification and the Floquet classification have related
structure [7]: for each equilibrium class with phases
classified by group structure G ∈ fZ;Z2g, there is an
additional set of purely dynamical Floquet phases also
having the same classification G. Our results raise the
question, Are the critical properties of topological-phase
transitions equivalent for all of these equilibrium-Floquet
phase pairs? We conjecture that the answer is affirmative.
For example, closely related 2D network models can be
used to establish a similar relation between topological
phase transitions in equilibrium and Floquet chiral super-
conductors with spin-rotation symmetry (spin-quantum
Hall effect, class C) whose critical properties correspond
to percolation [25–27]. Moreover, analogous 1D scattering
network constructions can be obtained by compactifying
2D examples to extend these results to all 1D classes [28],
leading us to conjecture a general equivalence of universal
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scaling structure of noninteracting equilibrium and Floquet
topological phase transitions.
The network model construction is special to non-

interacting systems with elastic scattering. In interact-
ing settings, the conjectured static-Floquet topological
quantum criticality correspondence likely continues to hold
for interacting MBL systems in 1d where phase transitions
are characterized by RG flow to infinite randomness and
have equivalent interacting and noninteracting scaling
properties [29]. By this route the 1d Floquet model studied
in Refs. [30,31] is related to an Ising model, which is
known to have a network model representation [32].
However, the correspondence will presumably fail for
interacting 2d systems, since in that context CF phases
are governed by rational-fractional-valued topological
invariants with a completely distinct structure from
Chern number [21,22], and because the noninteracting
CF-to-trivial critical point will broaden into an intervening
thermal phase upon including interactions [33].
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