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a b s t r a c t

We re-examine attempts to study the many-body localization
transition using measures that are physically natural on the
ergodic/quantum chaotic regime of the phase diagram. Using
simple scaling arguments and an analysis of various models for
which rigorous results are available, we find that these measures
can be particularly adversely affected by the strong finite-size
effects observed in nearly all numerical studies of many-body
localization. This severely impacts their utility in probing the
transition and the localized phase. In light of this analysis, we
discuss a recent study (Šuntajs et al., 2020) of the behaviour
of the Thouless energy and level repulsion in disordered spin
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chains, and its implications for the question of whether MBL is
a true phase of matter.

© 2021 Published by Elsevier Inc.

1. Introduction

The investigation of non-equilibrium phenomena in quantum systems and their relevance
o applications such as quantum computing is now an active research front in physics. Much
heoretical and experimental work over the last decade has focused on the phenomenon of many-
ody localization (MBL) and its implications [1–3]. MBL, which generally requires strong quenched
isorder, allows isolated quantum systems to evade thermalization. This frees MBL systems from
ertain limitations imposed by equilibrium statistical mechanics, opening a number of exciting
pportunities. For example, MBL can protect quantum coherence and order in static and periodically
riven systems, thereby extending the notion of phase structure to new, far-from-equilibrium
egimes [4–7]. Theoretically, MBL has been understood as a new phase of matter which exhibits
obust emergent integrability [8–11] that underpins its other unusual properties, such as absence
f thermalization [12–14], area-law entanglement of eigenstates [12,13], and logarithmic growth of
ntanglement in quantum quenches [14–16].
A recent paper by Šuntajs, Bonča, Prosen, and Vidmar [17] (henceforth SBPV) has examined the

BL transition using a finite-size-scaling analysis of exact diagonalization (ED) studies of small
L ≤ 20) one-dimensional (1D) spin models using diagnostics from quantum chaos — the physical
icture characterizing the ergodic, delocalized regime. They observe that such an analysis suggests
hat MBL might not be a phase of matter, but rather a finite-size regime that yields to ergodic
ehaviour in the thermodynamic limit, i.e., when the system size L → ∞. Although this initial claim
as revised in light of further assessment of the adverse effects of small finite sizes on the scaling
nalysis, it inspired several subsequent attempts to perform similar scaling analyses using different
easures of localization, raising debate over the issue of whether a true MBL phase exists [18–20].
otivated by this recent activity, which rests primarily on numerical analysis of finite systems, here
e review and examine existing theoretical and experimental work on MBL, focusing in particular
n the finite-size scaling of various diagnostics used to probe the MBL transition.
The rest of the paper is organized as follows: in Section 2 we summarize the evidence for

BL, and clarify the nature of perturbative and non-perturbative mechanisms for destabilizing
he localized phase, and their manifestations in finite-size scaling. (Readers familiar with MBL or
ho wish to go straight to numerical results may skip this section.) In Section 3, we then turn
o a discussion of existing numerical probes of MBL in microscopic models, focusing in particular
n two diagnostics — the Thouless energy and the energy level statistics — whose behaviour in
haotic systems is well understood. While these or closely related quantities have been studied
reviously, the relevant scaling analyses have mostly been rooted in expectations on the localized
ide of the transition. Such approaches necessarily presuppose the existence of a localized phase
hose properties can be well-captured by numerical studies as long as the system size is larger
han the localization length. We complement those previous analyses with an approach from the
rgodic side, espoused by SBPV as the correct perspective from which to view the putative transition
ithout assuming the existence of MBL at the outset.
In doing so, in Section 3 we are inevitably led to focus on the strong finite-size effects char-

cteristic of numerical studies of MBL, which are particularly pronounced in the ergodic phase.
e explain how these effects greatly exacerbate the usual dangers of extrapolating small-scale
umerics to the thermodynamic limit. In order to illustrate these dangers, we demonstrate how
caling collapses based on extrapolating ergodic behaviour (diffusion) to the strong-disorder regime
an lead to demonstrably incorrect conclusions in exactly solvable models that share some features
ith the MBL transition.
2
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Fig. 1. Level statistics for the Anderson model on a random regular graph (RRG) with branching ratio K = 2 and local
onnectivity K + 1 = 3 (see Eq. (2)), plotted against disorder strength W for different ‘system sizes’ N = 2L . (a) The
ependence on the disorder- and spectrally-averaged ratio ⟨r⟩ of the minimum to the maximum of consecutive energy
evel spacings of 32 states in the middle of the spectrum changes from the ergodic (‘GOE’) value rGOE ≈ 0.53 to the
ocalized (‘Poisson’) value rP = 2 ln 2 − 1 ≈ 0.38 as disorder is increased, capturing the Anderson localization transition
nown to occur in this model at WAT = 18.1 ± 0.1. (b) Plotting the same data with disorder scaled by system size (as
or the model studied in Ref. [17]) seems to suggest that the phase boundary drifts linearly with L, incorrectly ruling out
transition in the thermodynamic limit. We average over 1000(500) disorder realizations for L ≤ 14 (L = 16).

As we discuss in detail in Section 3.2, such extrapolations can incorrectly suggest that localization
is absent even in examples where it is firmly established. This is vividly captured by Fig. 1, which
shows the r-parameter — the ratio of the minimum to the maximum of consecutive energy level
spacings — as a function of disorder strength W for the problem of Anderson (single-particle)
localization on the random regular graph (RRG) [21–28]. The unscaled data, Fig. 1(a), shows a
transition from rGOE ≈ 0.53 indicating the level repulsion characteristic of ergodic systems, to
rP = 2 ln 2 − 1 ≈ 0.38 which is the value for the Poisson-distributed levels (with no repulsion)
expected in the localized phase.

Simply scaling the disorder strength by the system size (taken as L = log2 N with N the number
f sites) à la SBPV’s analysis, Fig. 1(b), suggests that there is a finite-size crossover at W ∗(L) ∼ 0.9L
eyond which the level statistics deviates from predictions of RMT. This leads to the conclusion that
he transition shifts inexorably to stronger disorder with increasing system size, suggesting that a
ocalized phase is absent and that the system remains ergodic for arbitrary W in the thermodynamic
imit. This is clearly erroneous given the fact that for L → ∞ the RRG converges to a Bethe lattice,
n which the self-consistent theory of Abou-Chacra, Thouless and Anderson [29] becomes exact and
eveals a metal–insulator transition at a finite disorder strength WAT .

In Section 3 we present similar results for other observables and other solvable or well-studied
odels, to underline the subtleties of extrapolating to the thermodynamic limit. Afterwards, having
ummarized the current understanding of numerics near the MBL transition, and exemplified some
f the unusual scaling behaviours reported, we turn to the discussion of the SBPV [17] results in
ection 4. We briefly summarize their results, examine them in light of the preceding analysis, and
iscuss possible ways in which the two may be reconciled.
Of course we must remain open to the possibility that an extremely subtle effect, missed by all

revious studies, leads to quantum chaos destabilizing MBL even at strong disorder. Note that such
n effect must also stem from a loophole in proposed proofs of MBL [11]. However, as shown by the
xamples studied in this paper, addressing this question requires a more careful analysis of finite-
ize scaling than has hitherto been attempted, in order to avoid arriving at incorrect conclusions.
3
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Our analysis thus injects a note of caution into the use of new diagnostics from the ergodic regime
to address the MBL transition using numerical studies at small system sizes.

2. Theoretical background

2.1. Evidence for MBL

Although the possibility of MBL was already envisioned in Anderson’s pioneering work [30], and
entatively explored in the 1980s [31], its existence has only been firmly established over the past
ecade. A key first step was the analytical work of Refs. [32,33], which employed perturbative,
ocator-type expansions [30] to demonstrate the stability of localization to sufficiently weak short-
ange interactions between particles. These conclusions have received support from extensive
umerical studies [8,12–16,34–43], the majority of which relied on the exact diagonalization of
isordered spin chains of size up to L = 24 [35]. At sufficiently strong disorder, key expected
roperties of MBL have been observed, including: (i) Poisson level statistics [12,35] indicating the
bsence of level repulsion (which is a diagnostic of chaos); (ii) area-law entanglement of excited
igenstates [5,8,34]; (iii) logarithmic spreading of entanglement following a quantum quench
14–16]; and (iv) localization of conserved charges and hence absence of transport [14,34,44,45].
everal early studies [12,35,37] noted that simulations of MBL suffer from especially pronounced
inite-size effects, necessitating extreme caution when extrapolating numerical results to the
hermodynamic limit (L → ∞). Although finite-size studies are believed to be reliable either deep
n the MBL phase, where the localization length ξ is much smaller than the system size,2 or deep in
he ergodic phase, where the eigenstate thermalization hypothesis (ETH) [46–48] is well-satisfied,
xtrapolating from either of these regimes to the transition region is challenging.
Perhaps the most concrete piece of theoretical evidence for MBL is the work of Imbrie [11], who

emonstrated the existence of the MBL phase in a particular spin model subject to sufficiently strong
isorder. More precisely, this work establishes the existence of a complete set of local integrals
f motion. This proof is non-perturbative and apparently3 rigorous, up to a physical assumption
f ‘limited level attraction’, but is limited to one dimension in contrast to locator expansions
hich work in arbitrary dimension. (It is perhaps worth noting here that proving localization is
challenging enterprise: the first proof of 1D Anderson localization [49,50] appeared nearly two
ecades after Anderson’s original work.)
Following these theoretical developments, experiments with ultracold atoms [51–53], trapped

ons [54], nuclear spins [55], and superconducting qubits [56,57] have probed the dynamics of
solated systems with tuneable disorder and interactions. Experiments have been able to probe large
ystems well beyond ED (e.g., up to L = 200 ultracold atoms in dimensions d = 1, 2), but only over
a finite timescale naturally limited by external dephasing and atom loss. The observed dynamics
was found to be consistent with the existence of an MBL phase, but the finite observation time
does not allow one to make statements about the eventual fate of the system at extremely long
times.

2.2. Possible destabilizing mechanisms and ‘avalanches’

The combined evidence (locator expansions, rigorous results, numerical simulations, and exper-
iments), gives strong support for the existence of a ‘fully’ MBL phase in one-dimensional systems
with short-range interactions. While locator expansions demonstrate the perturbative stability of
MBL in all dimensions, they fail to account for non-perturbative rare-region effects which could

2 We note that there are multiple ways of defining localization length in the MBL phase. The localization length ξ

iscussed here controls locality of the quasi-local unitary transformation that relates eigenstates and product states, see
ec. II.C.2 of Ref. [3]. This localization length is expected to diverge at the MBL transition.
3 Our assessment of the level of rigour of Ref. [11] simply reflects that while there is no obvious logical fallacy in its
rguments, its assumptions are more subtle than those invoked in proofs of Anderson localization and hence may admit
et-unforeseen loopholes.
4
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potentially destabilize MBL in other contexts. De Roeck and Huveneers [58] proposed that rare
locally thermal inclusions (regions with atypically weak disorder) can drive an ‘avalanche’: by ther-
malizing nearby spins, such inclusions can grow and become more efficient, eventually thermalizing
the whole system. Such rare thermal inclusions are not included in the locator expansions and
are in this sense non-perturbative. A central feature of Ref. [11]’s proof of MBL in 1D is to treat
such rare regions on special footing and demonstrate rigorously that they do not ‘proliferate’ and
drive thermalization for sufficiently strong disorder. In this sense, while Ref. [11] uses perturbative
arguments in typical regions, it accounts for non-perturbative effects in rare regions. (We remark
in passing that the controversy around MBL in d ≥ 2 centres on the severity of these rare region
effects, although this is not our focus here.)

To understand avalanche-driven delocalization, let us first consider a rare region consisting of
ℓ consecutive sites whose on-site energies εi are all within the hopping amplitude J of each other.
Assuming the εi fluctuate on scale W , the probability of occurrence of such a region is

p(ℓ) ≈

(
J
W

)ℓ

.

The typical size of such a region in a system of size L is set by taking Lp(ℓtyp) ∼ 1, yielding

ℓtyp(W ) ∼
ln L

ln(W/J)
.

et us suppose for a moment that there was a critical size ℓc of rare region, such that regions with
> ℓc trigger an avalanche and restore ergodicity (e.g., in terms of level repulsion) in the whole

ystem. It is natural to assume that ℓc ≫ 1; this is also supported by recent numerical studies [59].
aking ℓtyp(W ) ∼ ℓc , gives an estimate for the scaling of critical disorder strength with system size
s Wc(L) ∼ JL1/ℓc . If such ‘typical’ avalanches caused thermalization, then (given ℓc ≫ 1) we would
xpect a strongly sub-linear finite-size drift in Wc(L), and hence absence of the MBL phase in the
hermodynamic limit. However, the proof in Ref. [11] considers precisely such ‘typical’ avalanches,
nd in effect demonstrates that they do not actually drive thermalization unless the localization
ength is above a critical value. This effective localization length is, in turn, enhanced by the presence
f rare regions.
The interplay of these two effects was first considered in Ref. [60], and its implications further

xplored in Refs. [61–63], where it was argued that avalanches would lead to Kosterlitz–Thouless
KT)-like scaling behaviour. However, such avalanche-induced delocalization leads to a finite-size
caling of the critical disorder strength Wc − Wc(L) ∼ (ln L)−2. To date this KT scaling has only
een directly observed in phenomenological models, and indirectly in one numerical study [64].
his suggests that rare regions are not effective in driving the transition on the small system sizes
ccessible to exact numerics. A concrete alternative scenario for such a small-system-size transition
as proposed very recently [65].
A separate route to delocalization might be a loophole in Imbrie’s proof [11]. The most obvious

ssumption that could break down is that of limited level attraction (LLA). While at present we do
ot have a clear picture of how the failure of the LLA assumption would manifest in scaling, we note
hat there is no clear physical mechanism that appears to violate this assumption: ergodic systems
how level repulsion while localized systems show its absence (Poisson level statistics). Level
ttraction would appear to require some additional symmetry, but the simplest MBL systems (such
s the model in Ref. [11]) do not enjoy any symmetries beyond energy conservation. Level attraction
s physically implausible, and in any case, if the LLA assumption were false, the consequent strong
evel attraction would lead to starkly different spectral statistics from the conventional chaos that
ll existing numerical studies (including SBPV) observe. Hence, we do not explore this possibility
urther.

. Finite-size scaling and its challenges in MBL systems

.1. Spectral diagnostics from exact numerics

We first discuss diagnostics of the MBL phase which can be extracted from exact finite-size
pectra of models proposed to show an MBL transition. Two related signatures of ergodicity familiar
5



D.A. Abanin, J.H. Bardarson, G. De Tomasi et al. Annals of Physics 427 (2021) 168415

d
i

t
—
m

t
d

c
c
i
t
c

s
i

w
c
t
s
r
o
(

s
i
a
r
W
t
e

d
I
i
o
n
c
i
s
s
o
s
g
u
T

from studies of chaotic systems are the appearance of level repulsion and the diffusive transport
of energy and other conserved quantities. The first is probed by the level statistics parameter ⟨r⟩
efined in the introduction, averaged over the spectrum. This quantity was first studied numerically
n Refs. [12,35], which found that, as a function ofW , ⟨r⟩ exhibited a smeared step between the value
expected for the Gaussian Orthogonal Ensemble (GOE) rGOE ≈ 0.53 (at weak disorder) and a Poisson
value rP ≈ 0.39 (at strong disorder). This step sharpened with increasing L, indicative of a phase
ransition. A crossing point was present, but drifted to strong disorder with increasing system size
a first sign of the severe finite-size effects at the MBL transition. Similar drift was seen in other
easures, including the scaling of eigenstate entanglement and its fluctuations [34,35,66].
A second measure is the diffusive transport in the ergodic regime. This can be characterized by

he Thouless energy ETh ∼ D/L2, which is the inverse of the time needed for a conserved charge to
iffuse across a system of linear scale L (also called the Thouless time). The Thouless energy ETh can

be extracted from the energy spectrum in various ways. In the single-particle problem ETh can be
omputed by placing the system on a ring subject to twisted boundary conditions and examining the
urvature of the energy spectrum [67,68]. For many-body systems such as disordered spin chains,
t can be extracted by studying the spectral functions of local operators [69]. In this setting ETh is
aken as the energy scale at which the spectral function becomes approximately constant, as this
orresponds to the inverse of the transport time through the system [39].
Another way to extract Thouless energy, used by SBPV, is to study the time dependence of the

pectral form factor (SFF), which is defined as the Fourier transform of the two-point correlations
n the energy spectrum,

K (τ ) =

∑
i̸=j

ei(Ei−Ej)τ , (1)

here the Ei are the many-body eigenenergies. In chaotic many-body systems the SFF exhibits a
haracteristic linear increase, K (τ ) ∝ τ for τ ∈ [τTh, τH] [70] i.e. for times between the Thouless
ime τTh ∼ 1/ETh and the Heisenberg time τH ∼ 1/∆, here taken to be the inverse of the mean level
pacing, ∆ = ⟨Ei+1 − Ei⟩, which grows as ∼ 2L for spin-1/2 systems without U(1) symmetry. This
amp indicates the scales between which the energy levels display the level repulsion characteristic
f random-matrix theory (RMT) behaviour expected of chaotic systems — here, the Wigner–Dyson
WD) statistics of the Gaussian orthogonal ensemble (GOE).

Note, however, that in Hamiltonian systems this requires a ‘smoothing’ procedure to eliminate
pectral edge effects and an unfolding procedure needed to eliminate the effect of smooth changes
n the many-body density of states — see, e.g., Ref. [17]. These procedures potentially introduce
dditional subtleties beyond those intrinsically present in the problem. Such concerns are less
elevant in Floquet systems since there is no spectral edge and the density of states is uniform.
e also observe that K (τ ) in Eq. (1) is in general not a self-averaging quantity [71–75]. As such,

he disorder average of the SFF could be dominated by rare events, making it difficult to reliably
xtrapolate numerical results.
It is expected — and well-known in single-particle systems [76] — that the Thouless energy

efined via matrix elements and that extracted from the SFF carry the same physical information.
n the context of many-body systems, this connection has been recently established in Ref. [77]
n a solvable Floquet model. It is also worth noting that in d = 1, several numerical simulations
f transport have observed apparently subdiffusive behaviour at finite times in the delocalized,
ear-critical regime [78–87]. This has been interpreted as a Griffiths phenomenon [79,88–90]
aused by the appearance of ‘bottlenecks’ — exponentially rare regions through which transport
s exponentially slow — that leads to an effective time-dependent diffusion constant D(t) ∼ t2/z−1,
o that in time t a conserved charge travels a distance x(t) ∼

√
D(t)t ∼ t1/z . Within the Griffiths

cenario, as disorder is increased, z increases continually until its divergence signals the onset
f localization. Whether subdiffusion truly exists in large systems, and whether the observed
ubdiffusion has to do with Griffiths effects [91], are not rigorously established. However, it is
enerally seen in small-size numerical studies, even at weak disorder, where it is theoretically
nexpected and appears to cross over to diffusion in the largest systems studied [81,83,92–94].
his evidently complicates the task of extrapolating from the diffusive regime.
6
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Fig. 2. Finite-size effects in the matrix element-to-level-spacing measure G. Note the strong non-monotonicity, indicating
hat estimates of the critical disorder strength would drift upward with increasing system size.

Both the spectral function and SFF methods have a crucial limitation: they only provide infor-
ation on ETh in the ergodic regime. This is because the onset of localization is accompanied by

he absence of level repulsion, as originally discussed by Thouless [67]. Thus, both these methods
ffectively measure the energy window in which level repulsion exists. In the localized phase, the
houless energy becomes much smaller than the level spacing ∆, scaling as ETh ∝ e−L/κ , where κ

s a localization length (see footnote 2 in Section 2.1). The spectral function and SFF methods only
llow one to estimate (with significant errors) when ETh becomes of the order of level spacing ∆,
ut do not give insight into the properties of the MBL phase.
An approach that gives similar information as the Thouless energy on the ergodic side but

emains useful in the MBL phase is to study the behaviour of matrix elements of local operators,
onveniently captured by G = ln(Vtyp/∆) [37]. This quantity has a simple physical interpretation:
t gives the (log of the) probability that a typical local perturbation Vtyp induces resonances by
hybridizing many-body states differing in energy by ∆ ∼ e−L. G is expected to show linear decay
(L) ∝ −L above the MBL transition, consistent with the stability of MBL; such decay was indeed
bserved in numerics [37].
However these studies found very strong finite-size effects in the vicinity of the MBL transition:
evolves non-monotonically with L, showing an initial decay (as in the MBL phase) followed by

n upturn and then the linear growth expected in the ergodic phase (Fig. 2). When cut off by a
mall system size, this non-monotonic behaviour can lead to an incorrectly small estimate of the
ritical disorder strength Wc , given its drift with L. We note that such non-monotonicity is also
haracteristic of KT-like renormalization group (RG) flows for the MBL transition, where trajectories
nitially appear localized before eventually flowing to an ergodic fixed point [61–63]. It is also
bserved in studies of localization on random regular graphs [95].
Such strong finite-size corrections are inevitable in numerical studies, even in the localized

egime. Consequently, attempts to analyse the details of the MBL-ergodic transition (e.g., extracting
ritical exponents) based solely on ED studies have met with limited success. Phenomenological RG
tudies, including of solvable models, suggest that accessing the scaling regime requires very large
ystem sizes. Evidence for this is bolstered by the fact that (unlike phenomenological RG studies)
D studies often yield exponents [35,37] inconsistent with general bounds [96–99]. Furthermore,
iven the strong finite-size effects, even a seemingly innocuous change to a model (e.g., adding a

onger-range hopping as in SBPV) can slow the rate at which non-universal contributions vanish as

7
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L → ∞ and thus worsen the scaling properties accessible via ED. Given these concerns it is natural
o view numerical evidence for MBL with some caution, particularly near the transition. However,
s we now show, this issue is more fundamental: even in models with a well-established localized
egime, an approach to scaling motivated from the ergodic side shows strong finite-size corrections
hat, interpreted naively, would indicate that a localized phase is absent.

.2. Scaling in related problems: ‘Missing’ localized phases

We now change gears and consider three related problems, all of which share the feature that
he existence of the localized phase is firmly established.

(i) The Anderson model on the RRG (as reported in the introduction), given by

H = −

∑
x∼y

|x⟩⟨y| +

∑
x

ϵx|x⟩⟨x|. (2)

Here, |x⟩ denotes a site on the RRG, the sums range over N = 2L sites, and ‘∼’ denotes
sites that are adjacent on the RRG, which is taken to have a fixed branching number K = 2,
corresponding to a local connectivity of K+1 = 3. The {ϵx} are independent random variables
distributed uniformly between [−W/2,W/2]. Although there remains some debate over the
existence of a non-ergodic but delocalized phase in this model [21,24–27,95,100–104], it
is known to have an Anderson localization transition at WAT ≈ 18.1 ± 0.1 [22,28,29,100,
105,106]. This is consistent with the expectation, as noted in the introduction, that the self-
consistent theory of localization [29] becomes exact for the RRG in the thermodynamic limit,
where it predicts such a transition.

(ii) The ‘Imbrie model’, described by the Hamiltonian

H =

L−1∑
i=1

Jiσ z
i σ z

i+1 +

L∑
i=1

(
hiσ

z
i + γiσ

x
i

)
, (3)

We fix γi = 1, and choose the remaining couplings from uniform distributions, Ji ∈ [0.8, 1.2],
hi ∈ [−W ,W ], and study L-site chains with open boundary conditions . The existence of
MBL in this model has been established rigorously (under the assumption of limited level
attraction) in Ref. [11].

(iii) A family of phenomenological classical models with an infinite randomness critical point
introduced to model the phenomenology of the MBL transition via RG [89,107]. In particular,
we consider a recently introduced solvable model [108] which is a deformation of a coars-
ening model that allows controlled access to a critical point. This one-dimensional model
implements simple rules for how to merge adjacent ‘thermal’ and ‘insulating’ regions of
randomly distributed lengths in a manner that can be studied via a real-space renormalization
group approach.

Models (i) and (ii) are microscopic and so it is possible to extract and characterize the energy
spectrum as a function of disorder strength. The simplest quantity to compute is the r-ratio. The
ehaviour of this quantity for the RRG problem was illustrated in Fig. 1 in the introduction (and
as previously studied in Ref. [21]) and for the Imbrie model is shown in Fig. 3. In the RRG case,
he role of the system size is played by the logarithm of the number of sites N: L = log2 N . In
he spirit of SBPV, we use the data to define the extent of the ergodic region by determining the
isorder strength Werg(L) where ⟨r⟩ first deviates from the value predicted by RMT. In each case,
he extent of the ergodic regime appears to grow with increasing system size, and a naive collapse
ith data yields Werg ∝ L. This is despite the fact that the existence of localized phase is well-
stablished [22,28,29,100,105]. We therefore conclude that the apparent unbounded growth of the
rgodic regime with system size for L ≤ 20 is consistent with localization at W > Wc with Wc
inite in the thermodynamic limit as necessary for a localized phase to exist.

For the Imbrie model, it is useful to also compare the behaviour of the r-ratio with the scaling of
he bipartite, half-system eigenstate entanglement entropy. For a 1D system of length L in eigenstate
8
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Fig. 3. Level statistics for the ‘Imbrie model’. Similar finite-size effects to the RRG case reported in the Introduction (Fig. 1)
and also studied in SBPV for the random-field XXX and XXZnnn spin chains are observed: scaling the disorder strength
by system size suggest a crossover moving to infinite disorder in the thermodynamic limit rather than a true phase
transition. Localization has been proved in this model at strong disorder under the assumption of limited level attraction
in Ref. [11]. We average over 1000 disorder realizations and over 32 eigenstates in the middle of the spectrum.

|Ψ ⟩, this is given by S = −Trρ1/2 ln ρ1/2 where ρ1/2 = Trx>L/2|Ψ ⟩⟨Ψ | is the reduced density matrix
f the left half of the system. We may average this quantity over eigenstates and over disorder
ealizations. The eigenstate average will be dominated by ‘infinite temperature’ states near the
iddle of the many-body spectrum, which for ergodic systems satisfy ‘volume law’ scaling S(L) ∝ L.
n the localized side, MBL implies an area law for all but a measure-zero set of states in the
pectrum, and so we expect S̄ to scale as a constant with system size S(L) ∼ O(L0). Fig. 4(a) clearly
hows a crossover from volume- to area-law scaling with increasing disorder strength, that sharpens
or increasing L consistent with a transition in the thermodynamic limit. Fig. 4(b) shows that the
luctuations δS2 = S2 − S

2
of entanglement (the average is over both disorder and eigenstates)

re maximal near the putative transition between the two scaling behaviours, underscoring the
ole played by entanglement in developing theories of the MBL transition. However, as shown in
ig. 4(c)–(d), plotting the rescaled entanglement and entanglement fluctuations against the scaled
isorder W/L shows similar finite-size drift as the r-ratio, again indicating that this drift is an
pparently inevitable feature of numerical studies of a transition. As we have seen from the study
f the RRG, such drifts exist even in systems with a well-defined localized phase.
The RG models do not admit as direct a comparison as models (i) and (ii), since (being classical

n nature) they do not have a notion of an eigenspectrum. However, the model introduced in
ef. [108] has an analytical solution in the thermodynamic limit, which ensures the existence of
phase transition. This analytical solution also allows one to obtain both its critical exponents as
ell as other physical characteristics, such as the probability that the system thermalizes. Though
he model is analytically tractable, we can also numerically access the finite-size behaviour of
ifferent quantities for artificially small systems. The probability that the system is in the thermal
metallic’ phase, pmetal(L), is shown in Fig. 5. This quantity shows a transition from pmetal(L) ∼ 1
o pmetal(L) → 0 as a function of a parameter that tunes transition and that can be interpreted as
disorder strength. Interestingly, the step is highly asymmetric: there is a broad range of disorder
values where the system originally appears critical at smaller sizes (0 < p < 1), but then drifts
to an ergodic/metallic regime at larger L. This asymmetry in this RG model is parametrized by a
parameter β; the limit β → ∞ leads to a KT-type RG flow [108]. However, even for finite values of
β the numerical data indicates that relatively large systems of L ≤ 80 suffer from strong finite-size
effects. The apparent collapse of pmetal as a function of W/L for L ≤ 18 breaks down for larger
system sizes L ∼ 80.
9
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Fig. 4. Entanglement entropy scaling in the ‘Imbrie model’ [cf. Eq. (3)]. (a) The disorder-and eigenstate-averaged half-chain
entanglement entropy S = −Trρ1/2 ln ρ1/2 where ρ1/2 = Trx>L/2|Ψ ⟩⟨Ψ | is the reduced density matrix of the left half of
n L-site chain in eigenstate |Ψ ⟩, plotted against disorder strength W . This shows a transition from ‘volume law’ scaling

S ∝ L expected in the ergodic phase, to the area law behaviour S ∝ const. characteristic of MBL systems. The dashed lines
indicate the averaged entanglement entropy for random pure states SPage = L/2 ln 2−1/2. (b) Fluctuations δS2 in S, again
lotted against W . The peak sharpens with increasing system size and can be taken as a proxy for locating the transition

(vertical dashed line). Panels (c)–(d) show the same data as in (a)–(b) but now plotted against the scaled variable W/L
nd with y-axis rescaled by Page value of entropy for (c). Note the finite-size drift in the data, which is consistent with
he drift reported in the r-ratio for this model. We average over 1000 disorder realizations and over 32 eigenstates in
he middle of the spectrum.

.3. Challenges of finite-size scaling in the localized phase

For completeness, we briefly remark on finite-size effects on the localized side of the putative
BL transition. Naively, one could expect the finite-size effects to be much weaker at strong
isorder, essentially since they are cut off by the localization length. Indeed, if a localized phase
oes exist, exact diagonalization studies of small systems can be extremely helpful in extracting
ts properties, and were instrumental in arriving at the phenomenological description of MBL
ystems in terms of ‘localized integrals of motion’. However, we emphasize that this assumes the
xistence of a localized phase in the first place. In particular, there are situations where numerics
an be misleading even in a putative localized regime — for example, certain systems with long-
10
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Fig. 5. Finite-size effects in the solvable, phenomenological RG model of Ref. [108] for the probability for the system to
thermalize, with the parameter choice α = 1/20, β = 20. At small system sizes these effects are similar to those seen in
D studies of microscopic MBL models. These sizes are far from the thermodynamic limit, as evident from in the figure
contrast data at L = 80 against the rest: the dashed horizontal line in the upper panel represents the exact probability
o thermalize at criticality). This model is known to exhibit two phases, but naive extrapolation along the lines of SBPV
ould predict only one phase in thermodynamic limit. Averaging is performed over at least 20000 disorder realizations.

ange interactions — where a localized phase can be ruled out on general grounds,4 but exact
iagonalization data looks very similar to that obtained on models thought to host genuine MBL
ransitions. This indicates that finite-size effects can be subtle even on the localized side.

. Does chaos challenge MBL?

We now discuss how scaling analyses and extrapolations of finite-size spectral data motivated
rom a perspective that is natural on the ergodic side can potentially lead to the conclusion that
BL is absent at L → ∞ and any disorder W . We take as our test cases two measures used in this
anner by SBPV [17]. They studied two models with random on-site fields: the isotropic Heisenberg
pin chain (XXX), discussed above, and a XXZ chain with added next-nearest neighbour interactions
denoted as XXZnnn in what follows). The strength of random field required for MBL behaviour at
inite L differs in the two models: for the former model, MBL characteristics (such as Poisson level
statistics) set in at W ≳ 3.5, while for the latter model disorder needs to be stronger, W ≳ 8. This
ifference stems from the fact that the latter model has longer-range hopping, and kinetic energy
s therefore larger, so stronger disorder is needed to localize the system.

Let us first discuss the better-explored measure, namely the r-ratio. SBPV computed the be-
aviour of the r-ratio deep in the ergodic phase, and as discussed above measured the size of the

region W < Werg, where ⟨r⟩ ≈ rWD ≈ 0.53. SBPV found (in agreement with previous studies,

4 We note that there is work suggesting that long-range interactions and MBL may be mutually compatible, but these
typically do not account for rare-region effects; there are other situations, however, where a direct perturbative calculation
indicates that MBL is unstable even at the level of the locator expansion.
11
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and with the models discussed above) that Werg(L) grows with L, and fitted it with Werg(L) ∝ L
or L = 12–20.5 Extrapolation of this dependence to L → ∞ is interpreted as an instability of
BL. As we have demonstrated above, such behaviour of the r-ratio is also observed in models
here a localized phase is well-established (for instance, compare Figs. 1 and 3 with Fig. 4 of SBPV).
onsequently, it cannot be taken as evidence that an ergodic phase persists to arbitrarily strong
isorder in the thermodynamic limit.
Second, SBPV also considered the relatively less-explored SFF, see Eq. (1). They used this to

etermine the Thouless energy, which they then fit to the form

ETh(W , L) ∼ e−W/ΩL−2, for L ∈ [12, 20], (4)

here Ω is some characteristic energy scale, in the range of W where the system at accessible
ystem sizes is well in the ergodic regime. This scaling ansatz corresponds to assuming diffusive
ransport with conductivity scaling as σ (W ) ∼ e−W/Ω .

There are several noteworthy points to make about this procedure. First, note that for both
odels studied ansatz (4) really only works deep in the ergodic phase. For example, for the XXZnnn
odel, this ansatz works for 1 < W < 3.5, whereas MBL behaviour is well-developed only at
> 8 at the sizes accessible by ED. The behaviour for the random-field XXX model is similar.

xtrapolating this ansatz to the strong-disorder regime is therefore formally unjustified. If we were
o nevertheless assert that it is possible to extrapolate (4) to arbitrary disorder and any system size
→ ∞, we would conclude that there is diffusive transport and an exponentially small but finite
onductivity for sufficiently large system sizes L > L∗(W ). Now, it could be argued that perturbative
alculations as in Refs. [32,33] might miss contributions to the conductivity that depend on disorder
s e−W/Ω as they are non-perturbative in the expansion parameter 1/W of the locator expansions
n which such calculations are based. However, as we have shown, the class of non-perturbative
rocesses considered in Ref. [11] and further studied by various works on avalanches—and, more
enerally, any nonperturbative effects based on rare regions—do not give scaling consistent with a
ritical disorder strength Wc(L) ∝ L. If the conclusions arrived at by extrapolations of (4) are valid,
t seems that they must rely on some hitherto unsuspected nonperturbative instability in typical
egions. It is difficult to see exactly how to explain these results.

We therefore conclude that while scaling analysis of Ref. [17] provides yet another striking
xample of the severe finite-size corrections experienced across all extant microscopic numerical
nvestigations of MBL, it does not appear to provide strong evidence against the existence of MBL,
articularly when viewed in light of the existing numerical studies and theoretical approaches to the
ransition. We do note that for both models studied the above scaling analysis in SBPV is consistent
ith a transition at higher disorder strength (Wc ≳ 3.5 for the XXX model, and Wc ≳ 8 for the

XXZnnn model), again consistent with previous scaling analyses [12,35,36,43]. Ref. [17] also reports
a different scaling analysis motivated by a Kosterlitz–Thouless ansatz, which indicates that a finite-
disorder ergodicity breaking transition can be consistent with the apparent divergence of the critical
disorder strength with system size based on an analysis of spectral statistics. The apparent conflict
between the two approaches has been conjectured to be linked to the subdiffusive scaling near
criticality on the ergodic side — a point we have also mentioned above, and one that is an interesting
avenue for future studies.

5. Summary and outlook

In conclusion, we have demonstrated that several different models for localization transitions,
including Anderson localization on RRG, phenomenological models of MBL, and Imbrie-type spin
chains, exhibit qualitatively similar finite-size effects to the XXZnnn and isotropic Heisenberg chains
used to probe the MBL transition. In particular, the extent in disorder strength Werg(L) of the well-
rgodic region grows approximately linearly with L at system sizes of up to L ≈ 20. This behaviour
oes not imply the absence of an MBL phase — indeed, in all three types of models considered here,

5 We note that recent work involving two of the present authors [109] suggested the upper bound Werg(L) ≤ A
√
L log L

110] that rules out linear scaling of W with system size.
erg

12
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the existence of a localized phase can be established by analytical means. Extrapolating this scaling
to W , L → ∞ is unjustified and can lead to wrong conclusions.

This assessment is also supported by two complementary studies. Ref. [111] has reached similar
conclusions as to the subtleties of finite-size scaling near the MBL transition also for the random-
field isotropic Heisenberg spin chain, which is one of the limiting cases considered by SBPV [17].
Ref. [112] has found that the scaling of the Thouless time (as extracted from the SFF) at the long-
established Anderson transition in d = 3, 5 also shows strong finite-size effects that qualitatively
resemble those observed at the 1D MBL transition.

The striking similarity of finite-size effects in the — a priori quite different — models that
e study in this paper is notable in itself. It would be interesting to find models of MBL which
xhibit less severe finite-size effects. A promising direction is to further investigate experimentally
ealized models with quasi-periodic potential [113]. These were hypothesized to have a different
inite-size scaling due to the absence of rare regions, and possibly a distinct universality class of
ransition [114].

We have compared different diagnostics of ergodicity and localization, including the recently-
roposed SFF. We note that this quantity suffers from necessary additional data processing, and
rom being tailored to the ergodic phase. This measure breaks down with the onset of localization,
hen ETh becomes of the order of the level spacing. We note that in the single-particle problems

there are many other ways to define Thouless energy, which work in both delocalized and localized
phases. In the many-body problem, statistics of matrix elements provides one possibility [39]. In
the future, it would be interesting to develop and compare alternative methods for extracting the
Thouless energy in many-body systems. Further investigating curvature of levels in response to an
external flux (as in [67]) may be a promising direction [115].

Another lesson from our discussion, derived from the results of many previous works, is that
t is very difficult to estimate the exact position or critical properties of the MBL transition based
olely on numerical studies. Developing a complete theory of the MBL transition therefore inevitably
equires a combination of rigorous quantum-information bounds, perturbative expansions, and
umerics beyond ED.
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