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Fractal non-Fermi liquids from moiré Hofstadter phonons
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We theoretically explore two-dimensional (2D) moiré heterostructures in lattice-commensurate magnetic
fields as platforms for quantum simulation of a paradigmatic model of non-Fermi-liquid physics: a Fermi
surface coupled to a fluctuating gauge field. In these moiré Hofstadter (MH) systems, long-wavelength acoustic
phonons exhibit singular interactions with electrons analogous to those of electrons with 2D gauge fields. This
leads to a breakdown of Fermi-liquid theory at low temperatures. We show that a combination of large moiré
unit-cell size, tunable Fermi-surface topology, and enhanced coupling to interlayer sliding modes enhances these
effects by over many orders of magnitude compared with bulk crystals, placing them within experimental reach.
Though we find that the asymptotic low-temperature non-Fermi-liquid regime remains at prohibitively low
temperatures, striking precursor non-Fermi-liquid signatures can be observed, and we propose surface acoustic
wave attenuation and quantum oscillation transport experiments. We also study the motion of MH acoustic
polarons, which we predict exhibit logarithmically diverging effective mass and unconventional magnetic field
scaling for scaling of cyclotron resonance frequency and quantum oscillation amplitude.
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I. INTRODUCTION

The problem of metallic electrons strongly coupled to
fluctuating gapless (bosonic) collective modes is believed to
underlie some of the least-understood quantum phenomena,
from strange-metal phases of high-temperature supercon-
ductors [1–3] to metallic quantum critical systems [4,5],
composite fermion liquids [6], and gapless spin liquids
[7–10]. These systems lack well-defined quasiparticles and
are not captured by the conventional Fermi-liquid-theory
paradigm. The detailed behavior of these non-Fermi-liquid
(NFL) systems remains poorly understood due to the ab-
sence of naturally controlled theoretical calculations [10–12]
or efficient numerical methods, complex materials chemistry,
relatively high impurity concentrations, and limited ability to
tune the electron density or interactions in the underlying host
materials. To this end, alternative platforms to explore NFL
behavior in simpler, cleaner, and more tunable materials are
highly desirable.

A common and reliable source of gapless bosonic col-
lective modes is the Nambu-Goldstone modes (NGM), such
as acoustic phonons and magnons, arising due to sponta-
neously broken continuous symmetries. However, the same
mechanism that ensures their masslessness ordinarily causes
NGM to decouple from electrons at low temperatures, pro-
ducing conventional Fermi-liquid behavior. Exceptions occur
for rotational NGM, including nematic NGM [13] and
magnons in spin-orbit-coupled metals [14,15], for which the
electron-NGM coupling does not freeze-out at low temper-
atures. However, these examples require continuous rotation
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symmetry, a situation that can be at best approximately real-
ized in crystalline materials.

Watanabe and Vishwanath [16] derived a general criterion
for exceptional NGM and pointed out another, rather surpris-
ing, example: phonons of a crystal in a magnetic field. The
noncommutative nature of translations in a magnetic field
results in electrons coupling to phonon fluctuations in much
the same way as they would couple to dynamically fluctuating
magnetic fields. An important caveat is that magnetic fields
tend to produce nondispersing Landau levels, destroying the
Fermi surface at the single-particle level. In a crystal, the
bandwidth of Landau levels, which sets an upper bound on
the energy scale for observing NFL behavior, scales as e−1/ν ,
where ν is the number of flux quanta per unit cell. Atomic-
scale lattices, reaching ν ∼ 1, would require an astronomical
B � 104 T. For this reason, the prediction of Ref. [16] has not
been experimentally tested.

In contrast, moiré superlattice potentials of small-angle
twisted structures can have sufficiently large unit cells to reach
ν ∼ O(1) with laboratory magnetic fields. In this paper, we
explore these systems as platforms for exploring NFL physics,
focusing on twisted bilayer graphene (TBG) as a particularly
promising example due to its large moiré potential.

II. MOIRÉ HOFSTADTER (MH) BANDS AND PHONONS

A. Electronic band structure

Our analysis begins from the continuum model of Bistritzer
and MacDonald (BM) for TBG [17–19], with the single-
electron Hamiltonian

H (r) =
(

h(−θ/2) T (r)
T †(r) h(θ/2)

)
, (1)
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FIG. 1. Magnetic band structure. (a), (b), and (c) Magnetic band structure of spin-up valence bands in the magnetic Brillouin zone for
θ = 1.5◦, ν = 1/3, B = 18.0 T; θ = 1.1◦, ν = 1/2, B = 14.5 T; and θ = 0.8◦, ν = 1, B = 15.4 T, respectively. In (a) and (b) there is a pair
of Dirac points at K, K ′ and an electron pocket at the � point, whereas in (c), Dirac points at K, K ′ smear out to oblong hole pockets near
M, M ′, forming a threefold Fermi surface. The magnetic Brillouin zone is shown as a blue hexagon. (d), (e), and (f) Band structure along the
high-symmetry path �-M-K-�-M ′-K for θ = 1.5◦, ν = 1/3; θ = 1.1◦, ν = 1/2; and θ = 0.8◦, ν = 1, respectively.

where h(θ ) = v(� + sgn(θ ) kθ

2 ) · σθ is the Hamiltonian for
a single graphene layer twisted by angle θ , � = p + eA is
the canonical momentum within magnetic field B = ∇ × A =
Bẑ, kθ = −kθ ŷ ≡ − 8π

3a sin θ
2 ŷ is the vector connecting the

Dirac points in the two layers, and a is the graphene lattice
spacing. T (r) represent interlayer tunneling with the (approx-
imate) spatial periodicity of the moiré lattice

T (r) = w
∑

j

e−ig j ·rTj . (2)

Here, g0 = 0 and g1,2 =
√

3kθ

2 (∓x̂ + √
3ŷ) are moiré

reciprocal-lattice vectors and Tj = η + σ2π j/3 are sublattice
matrices. The real-space lattice vectors for the moiré cell
are (for small twist angle, θ 	 1) a1,2 = a

2θ
(∓√

3x̂ + ŷ). For
the numerical results presented below, we take h̄v ≈ 610
meV nm, w ≈ 110 meV, and η ≈ 0.82, which accounts for
corrugation [20].

Varying B produces a fractal “Hofstadter butterfly” energy
spectrum [18,19,21,22]. Here, instead, we focus on fixed B
such that the number of magnetic flux quanta per moiré unit
cell is a rational fraction [18] (see also Appendix A):

ν =
√

3a2

4πθ2�2
B

= p

q
with p, q ∈ Z (3)

and magnetic length �B = 1/
√

eB. At these commensurate
fields, the Hamiltonian possesses a periodic magnetic-lattice
translation symmetry generated by {a1, qa2} and exhibits dis-
persive Bloch bands labeled by magnetic quasimomenta.

Figures 1(a) and 1(d) show the lowest two bands near
charge neutrality for θ = 1.5◦ and B = 18 T (ν = 1

3 ). Apart
from having lower bandwidth and spin splitting, the bands
resemble those of single-layer graphene (SLG) in zero field.
In particular, the conduction (valence) bands exhibit a pair of
Dirac points near charge neutrality at the moiré K, K ′ points,
which merge into a single �-centered hole (electron) pocket at
the top of the conduction band (bottom of the valence band),
crossing through a Van Hove (VH) singularity with nearly
nested hexagonal Fermi surface at intermediate filling along
the way. Bands at θ = 1.1◦ [shown in Figs. 1(b) and 1(e)]
exhibit a similar Fermi-surface evolution with doping and also
inherit the zero-magnetic-field property of having reduced
bandwidth near the magic angle [17]. In this case, because
of strong electron-electron interactions relative to the small
bandwidth, correlated insulating and superconducting behav-
iors have been observed [23]. However, at the magnetic fields
that we consider here, the superconductivity near the magic
angle is suppressed [23], and the correlated insulating behav-
ior arises only near integer fillings of the flat moiré bands
[24,25], which can be generically avoided [26]. Therefore
we expect that the correlated insulating and superconducting
behaviors do not necessarily obscure the non-Fermi-liquid
physics discussed in this paper.

At special flat-Fermi-surface (FFS) fillings, which occur
near (but not precisely at) VH fillings, the Fermi-surface cur-
vature vanishes at certain points on the Fermi surface and
remains small over extended patches, which will enhance
electron-phonon interaction effects. Taylor-expanding the dis-
persion in small momentum displacements from the center of
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these flat patches, the vanishing Fermi-surface curvature re-
quires a vanishing quadratic term for the tangential dispersion.
Due to mirror symmetry around the center of the flat patch,
the next leading term is quartic. Near the flat patches both the
quadratic and the quartic terms contribute to the dispersion:

εk = vF k⊥ + 1

2m
k2
‖ + λk4

‖ , (4)

where k⊥ and k‖ are patch-momentum components perpen-
dicular and parallel to the Fermi surface, respectively. Away
from the FFS points, there is a crossover momentum scale
q∗ = 1√

2mλ
, below which the leading dependence on k‖ is

εk ∼ k2
‖ and above which it is εk ∼ k4

‖ .
In SLG, FFS fillings were predicted to enable correlated

insulators or superconductors [27] but occur at prohibitively
high electron density ∼1015 cm−2 above charge neutrality. In
moiré systems, the FFS occurs at much lower fillings and can
be experimentally explored. Moreover, the degree of Fermi-
surface nesting (alignment between antipodal flat patches),
which controls the competition between interaction-driven
orders, can be adjusted by twist engineering. For example, for
the parameters shown in Fig. 1(c), the FFS fillings exhibit a
non-nested FFS with threefold rotational symmetry.

B. Electron-phonon coupling

To describe phonons, we introduce displacement fields
u�(r) for each layer � = 1, 2, which are conveniently reex-
pressed in terms of the mean displacement of the bilayer,
ū = 1

2 (u1 + u2), and relative displacements of the layers, d =
u1 − u2. Both types of phonon displacements on the elec-
tronic Hamiltonian can be accounted for by displacing the
tunneling operators T (r) → T (r − u) with a single effective
displacement field [17,28,29]

u = ū − ẑ × d
2 tan θ/2

, (5)

since the relative sliding of the two graphene sheets is equiv-
alent to a translation of the moiré pattern perpendicular to the
sliding direction. This has two important consequences: First,
at small twist angles, the coupling to d is enhanced by a factor
of ≈ θ−1 [29]. Second, for a commensurate crystal, relative
displacements would be gapped optical modes. Instead, for
incommensurate twist angles, uniform d displacements have
no energy cost [30,31] and result in gapless acoustic modes
(in analogy to the sliding “phason” mode of incommensurate
charge density wave orders [32]).

The electron-phonon coupling is conveniently identified
by changing coordinates to a comoving frame of the lattice,
r ← (r − u(r)) [28], in which the lattice is restored to its
undistorted form. To properly account for the noncommuta-
tivity of magnetic translations, while manifestly preserving
gauge invariance, we implement this frame transformation
with the unitary operator

Wu = e−iu(R)·�, (6)

where R = r − �2
Bẑ × � is the guiding center coordinate

(whose components all commute with �). Neglecting sub-
leading terms of order O(∇u, u2), this transformation ef-
fectively restores the moiré tunneling potential, W †

u T (r −

u(r))Wu ≈ T (�r), while transforming the kinetic energy by
W †

u �Wu ≈ � − eB × u(R), yielding a direct (gradient-free)
electron-phonon interaction

He-ph = ev�u · �B ×
(

σ̂−θ/2 0
0 σθ/2

)
≡ ū · �m + d · �r. (7)

For future convenience, we define the electron-phonon ver-
tices

�n,α,λ(k, q) = 〈n, k + q|ε̂λ(q) · �α|n, k〉 (8)

for the nth magneto-Bloch band, with wave vector k state
|n, k〉, where α ∈ {m, r} labels the phonon type and λ labels
longitudinal (L) or transverse (T) polarizations corresponding
to polarization vector ε̂λ(q). In the following, we focus on the
relative (interlayer sliding) phonon mode since their coupling
to electrons is stronger by a factor ≈1/θ compared with the
layer-symmetric phonon mode. For notational simplicity we
omit the band index n and the phonon-type index α in subse-
quent expressions. Crucially, these vertices generically do not
vanish in the limit of zero momentum transfer [16] (q → 0),
as demonstrated numerically in Fig. 2.

At asymptotically low temperatures, this direct coupling
is expected to produce a complex non-Fermi-liquid state
[13–16], whose properties cannot be reliably calculated ex-
cept in artificial limits [11,12]. We will make predictions
based only on leading-order perturbative calculations, which
reliably predict the onset of the non-Fermi-liquid behavior
approached from higher temperatures or energy scales but are
merely suggestive of the possible asymptotic behavior at low
temperatures.

III. FRACTAL NON-FERMI LIQUID

A. Landau damping

In the presence of a Fermi surface, this direct coupling
causes phonons to decay into the electron-hole continuum
and become soft and overdamped. For simplicity we model
the phonon dispersion as isotropic with speed cs (∼104 m/s)
[30,33]. The effective action in a patch description is

S =
∫

dωd2k

(2π )3
ψ

†
ω,k(iω − εk)ψω,k

+
∑

λ

∫
d�d2q

(2π )3
ρ
(
�2 + c2

s q2)|uλ(�, q)|2 (9)

+
∑

λ

∫
dωd2kd�d2q

(2π )6
�λ(k, q)uλ(�, q)ψ†

ω+�,k+qψω,k,

where ψ and u are electron and phonon operators, respec-
tively, and ρ is the mass density for SLG. For the dispersion,
we use εk ≈ vF k⊥ + 1

2m k2
‖ away from the FFS patches and

εk ≈ vF k⊥ + λk4
‖ near the FFS patches. The dynamical crit-

ical exponents for the phonons (zb) and the electrons (z f ) that
we find below are also patch dependent. In the following, we
calculate these exponents individually near and away from the
FFS patches and further provide energy scales for crossovers
between these regimes. A self-consistent one-loop perturba-
tive calculation gives a singular Landau-damping (LD) form
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FIG. 2. Electron-phonon coupling. Electron-phonon coupling �m, for x-polarization phonons in the limit of zero momentum transfer for
(a) θ = 1.5◦, ν = 1/3, (b) θ = 1.1◦, ν = 1/2, and (c) θ = 0.8◦, ν = 1.

of the phonon self-energy

�1-loop(�, q; zb) =
{

γλ
|�|
|q‖| , zb = 3

γλq2
∗

|�|
|q3

‖|
, zb = 5,

(10)

where q‖ is the component of q parallel to the Fermi surface
and we define the LD parameters

γλ = |m|
πρvF

�2
λ(k, q̂)

∣∣
q̂‖FS. (11)

The expressions are labeled by the resulting dynamical critical
exponent zb = 3, 5 describing the low wave-vector depen-
dence of the phonon damping rate (∼qzb) at low temperatures,
with zb = 3 (� ∼ q3) behavior arising far from the FFS fill-
ings and zb = 5 (� ∼ q5) behavior occurring at the FFS.
Close to, but not precisely at the FFS fillings, there is a finite-
temperature crossover (see Fig. 3) between zb = 5 dynamics
at intermediate scales and zb = 3 at sufficiently low temper-
ature scales where the phonons “notice” the Fermi-surface
curvature, with crossover scale

E∗ ≈ c2
s q3

∗
γ

. (12)

Furthermore, at sufficiently high energies or temperatures
E , T � ELD, the phonon damping becomes unimportant, and
the phonons become sharp (underdamped) quasiparticles,

FIG. 3. Schematic showing crossover scales ELD, E∗, and ENFL.
�μ indicates the deviation in the chemical potential from FFS
fillings.

where

ELD(zb) ≈
{√

csγ , zb = 3

(E2
∗ c5

s γ
5)

1
12 , zb = 5.

(13)

For temperatures above ELD, the phonons recover their ordi-
nary zb = 1 (� ∼ q) dynamics.

The various dynamical scaling crossovers are depicted in
Fig. 3 and summarized by

zb =
⎧⎨
⎩

1, E > ELD

5, E∗ < E < ELD

3, E < E∗, ELD.

(14)

For our numerical estimates of ELD below, we give results for
the zb = 3 regime only, since the zb = 5 behavior arises only
in a very narrow window around the FFS fillings where m >
1
�

√
πρvF cs

2λ
.

The crossover scale, ELD, will play an important role in
the following discussion, and numerical results are shown in
Fig. 4 for representative parameters. ELD is generally deeply
sub-Kelvin except near FFS fillings where the vanishing
Fermi-surface curvature results in divergent effective mass
and Landau-damping coefficient for select directions along
the Fermi surface. This divergence will be rounded in practice
by disorder and higher-order terms in the electron dispersion,
as shown in Fig. 3. For θ = 0.8◦, ELD/kB exceeds 1 K over
appreciable ranges of chemical potential (±0.3 meV) and
density (±10−13 cm−2).

B. Anomalous surface acoustic wave attenuation signatures

This Landau-damped form can be probed by surface
acoustic wave (SAW) attenuation experiments. SAWs can be
injected and detected by piezoelectric contacts, which we
model as semi-infinite in the y direction and separated by finite
distance L in the x direction. We extract the SAW attenuation
length ξ by computing the fixed-frequency phonon propaga-
tor between source and detector,

∫
dyD(ω, x = L, y) ∼ e−L/ξ ,

and find (see Appendix C 2)

ξ =
{

2ω/γ , ω � ELD
2cs
ELD

(ELD
ω

)1/3
, ω 	 ELD,

(15)

with numerical results shown in Fig. 4. The FFS points
near VH fillings produce a singular suppression of SAW
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FIG. 4. Landau-damping energy and SAW attenuation length. (a) and (b) Landau-damping scale of relative-displacement phonon ELD,r

along path K-�-K ′ for twist angles θ = 1.5◦ and θ = 1.1◦ and flux fillings ν = 1/3 and ν = 1/2, respectively. (c) ELD,r along path M-�-M ′

for twist angle θ = 0.8◦ and flux filling ν = 1. (d) and (e) SAW attenuation length of relative-displacement phonon ξr along path K-�-K ′, for
twist angles θ = 1.5◦ and θ = 1.1◦ and flux fillings ν = 1/3 and ν = 1/2, respectively, and typical driving frequency ω/2π = 200 MHz ∼
0.96 × 10−2 K. (f) ξr along path M-�-M ′, for twist angle θ = 0.8◦, filling ν = 1, and driving frequency ω/2π = 200 MHz.

propagation, providing a characteristic fingerprint of the Lan-
dau damping in the doping dependence of ξ .

C. Transport properties

Strong coupling to MH acoustic (MHA) phonons is ex-
pected to result in unconventional non-Fermi-liquid scaling
for transport and thermodynamic properties with temperature
and frequency [1,2,6,34–36]. A one-loop analysis predicts
that below ELD, scattering by overdamped phonons with dy-
namical critical exponent zb results in (retarded) electron
self-energy

�R
f (ω; zb) = i(ENFL(zb))

1
zb |ω|

(zb−1)
zb , (16)

where

ENFL(zb) = E∗

(
q2

∗
(zb − 1) sin (π/zb)mE∗

)zb

. (17)

For asymptotically low energies [E 	 ENFL ≡
minzb=3,5ENFL(zb)], the phonon-scattering self-energy
dominates over the bare electron energy, resulting in a
destruction of Fermi-liquid quasiparticles. The electron
dynamical critical exponent gets modified from z f = 1
to z f = zb

zb−1 . However, in TBG, this occurs only at
inaccessibly low temperatures (in Appendix C, we estimate
ENFL/kB � 10−4 K over the range of parameters explored
in Fig. 1). Therefore, in the experimentally accessible
regime, the system will be in a “precursor” NFL state, where
electronic quasiparticles are ailing but not yet expired.

Non-Fermi-liquid behavior is often characterized through
scaling of resistivity with temperature. The precursor NFL
regime is divided into high-, intermediate-, and low-
temperature regimes by two important crossover scales: (i)
the Bloch-Grüneisen (BG) temperature TBG, above which
thermally activated phonons carry average momentum that
is larger than 2kF , so that phonon contributions to resistiv-
ity are dominated by large-momentum scattering by thermal
excitations, and (ii) the Landau-damping temperature TLD =
ELD/kB, below which the phonons become overdamped
and non-Fermi-liquid temperature dependence arises. Using
the Born approximation to compute the transport time, the
asymptotic temperature dependence of the electron-phonon
contributions to resistivity in each regime is summarized as
follows:

ρ(T ) ∼
⎧⎨
⎩

T, T > TBG

T 2, TBG > T > TLD

T 4/3, T < TLD.

(18)

The phonon mechanism for linear-T resistivity in the high-
temperature regime (T > TBG) is a standard effect that does
not rely on moiré Hofstadter physics and can be observed in
the absence of a B field [31,37].

By contrast, the phonon-induced ρ(T ) ∼ T 2 behavior in
the intermediate regime arises from the singular coupling
between electrons and MHA phonons and crucially relies
on the magnetic field producing a nonvanishing electron-
phonon coupling vertex in the limit of q → 0 (see Appendix
C 3 for detailed calculation and numerical results). This pro-
duces a strong enhancement of the electron-phonon-scattering
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contribution to resistivity compared with the conventional
T 4 behavior [37] expected in the absence of a magnetic
field. We remark that a different T 2 contribution to resistivity
arises from electron-electron interactions in a Fermi liquid,
and a quantitative and perhaps model-dependent comparison
will be required to distinguish the origin of this ρ(T ) ∼
T 2 scaling. For example, electron-electron-interaction con-
tributions to resistivity may be neglected in very clean
samples when umklapp processes required to relax momen-
tum are strongly suppressed by Fermi-surface geometry and
momentum-conservation requirements. Furthermore, as we
elaborate in the next section, the enhanced electron–MHA-
phonon scattering can have an impact on the scaling of
quantum oscillatory and cyclotron resonance phenomena that
is qualitatively different from standard electron-electron or
electron-phonon behavior.

Finally, in the low-temperature regimes for T < TLD,
scattering from overdamped phonons results in departures
from Fermi-liquid behavior, whose properties can only
be computed in artificial limits [11,12]. For example, a
potentially oversimplified scattering-rate calculation (neglect-
ing hydrodynamic effects and umklapp scattering) predicts
temperature-dependent resistivity ρ(T ) ∼ T 4/3 for T < ELD

[1,38]. We note that while flat patches experience a larger
scattering rate τ−1

tr,FFS ∼ T 8/5, their contribution to transport
is likely shorted out by the coexisting curved patches that
have lower, ∼T 4/3 scattering. Other signatures include spatial
decay of quasiparticle interference patterns, which expose the
anomalous dimension of the electrons in the NFL state [4,11].

D. MHA polarons

Even for energy and temperature scales above ELD, elec-
trons and MHA phonons are strongly coupled into unusual
polaronic degrees of freedom, which we dub “MHA po-
larons.” The dynamics of MHA polarons differs dramatically
from that of their counterparts in ordinary metals, since
accelerating MHA-polaron motion results in radiation of soft-
collinear phonons in direct analogy to cyclotron radiation. In
the intermediate-temperature regime, TBG > T > TLD, a tree-
level scattering-rate calculation using the undamped phonon
propagator (see Appendix C 3) shows that the rate of phonon
emission is logarithmically divergent in the infrared (though
the energy emitted is finite), in analogy to soft-collinear
divergences in quantum electrodynamics. We analyze the
MHA-polaron motion and phonon radiation within a semi-
classical framework (see Appendix D), which amounts to an
infinite-order resummation of soft-collinear divergences in the
eikonal approximation [39].

To physically probe the dynamics of the MHA polaron,
we consider detuning the magnetic field slightly away from
commensurate filling B = Bν + �B, with e�B 	 1/|�a1,2|2.
Without phonons, electrons would exhibit cyclotron motion
with effective cyclotron frequency ωc,0 = e�B

m set by the de-
tuning field �B rather than the full field B (as can be seen
by semiclassical motion of a wave packet made from Bloch
states of the bands at commensurate filling Bν moving in the
effective field �B). Oscillations with the reduced field �B,
rather than the full field B, could be measured by standard
Shubnikov–de Haas, cyclotron resonance, or current-focusing

[40] techniques, but to our knowledge have not yet been
explored.

1. Cyclotron motion

Numerical computation reveals that the electron-phonon
coupling is proportional to the band velocity, so that the
phonon fields couple to the electron velocity ṙ, where r is the
electron coordinate. This velocity coupling is directly anal-
ogous to the coupling between charged particles and gauge
fields. Incorporating this feature into a Schwinger-Keldysh
path-integral description of a single electron (or hole) coupled
to a zero-temperature bath of phonons, we obtain an effective
action

∫
C dtL[r, u] on the closed-time Keldysh contour C with

the Lagrangian

L[r, u] = Le[r] + Le-ph[r, u(r)] + Lph[u]

Le[r] = 1

2
mṙ2 − eṙ · A(r),

Lph[u] = ρ

2

[
(∂t u)2 − c2

s (∇u)2
]
,

Le-ph[r, u(r)] = αṙ · u(r). (19)

Here, the vector potential A(r) corresponds to the excess mag-
netic field [�B = ∇ × A(r)] and does not include the constant
field used to reach the MH regime, and α ≡ m ∂�(k,q=0)

∂k .
We now integrate out the phonon field by approximating

the change in the electron position to be slow compared with
the wavelengths of the phonons being integrated out [41],
which leads to a quadratic, nonlocal-in-time effective action
for the MHA-polaron coordinate r

Seff = S0 − α2

2πρc2
s

∫ ∞

−∞
dt

∫ ∞

t
dt ′ r

q(t ) · ṙcl (t ′)
(t − t ′)2 , (20)

where rcl and rq are the so-called “classical” and “quantum”
combinations of r(t ) on the two-time Keldysh contour, respec-
tively, and S0 is the bare action for an electron in the absence
of phonon degrees of freedom. Varying this effective action
[42], we find the following semiclassical equation of motion
(EOM) for r (see Appendix D 1):

r̈(t ) = Fext

m
− g2

∫ t

−∞
dt ′ ṙ(t ′)

(t − t ′)2
, (21)

where g =
√

m
2πρc2

s

∂�(k,q=0)
∂k is a dimensionless measure of

electron-phonon coupling strength and Fext represents the ex-
ternal force due to the excess magnetic field [43]. The second
term represents the non-Markovian effects due to the gapless
phonons.

The cyclotron motion of MHA polarons differs markedly
from that of bare electrons as we now show by solving the
polaron equation of motion in Eq. (21) for damped oscillatory
cyclotron motion r(t ) = r0e−�ct [cos(ωct )x̂ + sin(ωct )ŷ], in an
excess field �B. Defining an effective frequency-dependent
mass mp(ωc) ≡ eB/ωc, we find that the MHA polaron exhibits
a scale-dependent logarithmically diverging effective mass
mp(ωc) = m(1 + g2 ln �

ωc
). The cyclotron frequency scales

with an unconventional power of �B

ωc = ωc,0

(ωc,0

�

)g2

∼ (�B)1+g2
(22)
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and a �B-independent decay rate �c = g2�. Here, ωc,0 =
e�B

m is the bare (noninteracting) electron cyclotron frequency
of the MH bands. For TBG we find that g2 � 10−2 (even close
to the VH fillings), so these effects may be challenging to ob-
serve. We note, however, that these predictions equally apply
to a variety of analog non-Fermi-liquid systems [4,6,13–15]
where the polaron coupling constant would not be suppressed
by the electron-ion mass ratio and could potentially give ap-
preciable modifications to semiclassical electron motion.

2. Quantum oscillations

In addition to energy dissipation by phonon radiation,
MHA phonons cause characteristic dephasing of phase-
sensitive measurements such as periodic-in-(1/�B) quantum
oscillations in density of states and resistivity. As elec-
trons experience MHA-phonon fields u as an effective
electromagnetic vector potential, zero-point fluctuations of
MHA phonons give rise to quantum-fluctuating geomet-
ric (Aharonov-Bohm-like) phase, eiα

∫
dt ṙ·u(r(t )). Quantum

fluctuations in the phonon fields result in random geometric-
phase accumulation that suppresses the quantum oscillation
amplitude.

We compute the quantum oscillatory contribution to the
density of states, N (ε), at energy ε via a semiclassical sum of
the return amplitude for multiple classical cyclotron orbits of
the MHA polaron, averaged over fluctuating geometric phases
due to MHA phonons [44],

N (ε) ≈ − 1

π

∫ t

0
dt ImGR(r = r′; t )e−iεt

≈
〈∑

n

e−i 2πε
ωc

neiα
∫

dt ṙ·u(r(t ))

〉
u

, (23)

where 〈· · · 〉u indicates an average over quantum fluctuations
of u. We restrict our attention to zero temperature here,
as finite-temperature effects with T 	 ωc do not affect the
scaling form that we identify. These fluctuations are approx-
imately quenched on the time scale of the cyclotron motion
since the electrons are fast compared with the phonons; that
is, we may approximately replace

∫
dt ṙ · u(r(t )) by �(u),

the flux of a static effective magnetic field b = ∇ × u through
the cyclotron orbit. Within this approximation, applying the
Poisson-summation formula (see Appendix D 2) yields

N (ε) =
∑

n

e−i 2πε
ωc

ne−i 1
2 α2n2〈��〉

=
∑

n

Ac exp

[
− 1

2�2
(ε − nωc,0)2

]
. (24)

The resulting oscillator contribution to the density of states
takes the form of a comb of Gaussian peaks centered at integer
multiples of the cyclotron frequency ωc,0 with peak amplitude
Ac ∼ |�B| and width � ∼ (�B)2g2

. This contrasts with the
usual Ac ∼ √

�B scaling expected from impurity scattering,
providing a means to distinguish these two mechanisms.

IV. OUTLOOK

We have explored moiré superlattice structures in
high magnetic fields as potential platforms for simulating
non-Fermi-liquid (NFL) physics, due to unusually singu-
lar electron-phonon coupling. While the asymptotic low-
temperature NFL fixed point remains at inaccessibly low
temperature, intermediate-scale non-Fermi-liquid precursor
behavior and unconventional polaron dynamics can be ob-
served by tuning carrier density near a Van Hove singularity.
At or very close to the Van Hove filling, the NFL physics will
compete (or intertwine) with an enhanced tendency to order
with a nested Fermi surface. This competition appears to be
controllable by twist engineering [45–50], and a more detailed
study of the interplay between exotic interaction-driven orders
and non-Fermi-liquid physics in these systems would be a
compelling subject for future investigation.
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APPENDIX A: MOIRÉ HOFSTADTER BANDS

In this Appendix, we review the derivation of the mag-
netic Bloch bands for twisted bilayer graphene. Define the
magnetic-lattice translational operators

Ti = eiK·ai , (A1)

where i = 1, 2, which perform translation by moiré lattice
vectors a1 = a

θ
(−

√
3

2 , 1
2 ) and a2 = a

θ
(
√

3
2 , 1

2 ). Furthermore, de-
fine guiding-center momenta

Kx = �x + y

l2
B

, Ky = �y − x

l2
B

, (A2)

which satisfy [Kx, Ky] = i
l2
B
, [Kα,�β ] = 0, and [Ti, H] = 0.

Unlike ordinary lattice translations, magnetic translations
do not generically commute except at special commensurate
magnetic fields. Generically,

T1T2 = T2T1 exp

(
i

√
3a2

2θ2l2
B

)
, (A3)

which vanishes if and only if
√

3a2

2θ2l2
B

= 2π
p

q
or k2

θ l2
B = 4π

3
√

3

q

p
, (A4)

which gives the condition for commensuration of the moiré
lattice and magnetic field.

At commensurate filling, [T1, T q
2 ] = 0, so that we can con-

struct the magnetic Bloch states |αk〉 with band index α, as
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the simultaneous eigenstates of H , T1, and T q
2 :

H |αk〉 = Eα (k)|αk〉, (A5)

T1|αk〉 = eik·a1 |αk〉, (A6)

T q
2 |αk〉 = eiqk·a2 |αk〉. (A7)

An extended magnetic Brillouin zone (MBZ) is spanned
by magnetic-reciprocal-lattice vectors g1 and g2/q (where
gi are the original moiré reciprocal-lattice vectors). As we
now show, the commensurability integers (p, q) determine
the number of sub-bands and the size of the reduced MBZ.
The commutation relations for T1 and T2 give

T1T j
2 |αk〉 = ei(k+g1 j p/q)·a1T j

2 |αk〉, (A8)

implying a set of degenerate states T j
2 |αk〉 ∼ |α, k + j p

q g1〉
( j = 1, 2, . . . , q − 1), which have identical energy since
[H, T (a2)] = 0. Thus there is a q-fold degeneracy along the g1
direction. Equivalently, we can consider a reduced magnetic
Brillouin zone spanned by g1/q and g2/q with q-fold degener-
acy. In addition, Eq. (A8) implies Eα (k) = Eα (k + p

q g1); that
is, one period in a magnetic band extends over p MBZs in the
direction of g1. The reduction of energy bands to one MBZ
will yield p different sub-bands. For convenience, we ex-
tend Eα (k) to Eα (k + lg1) ≡ Eαl (k), where l = 0, 1, . . . , p −
1 represents sub-bands and k is restricted to the reduced MBZ.

Having identified the distinct magnetic sub-bands and re-
duced MBZ, we can label states of TBG by |τ, σ, n, l, k〉,
where τ = 1, 2 represents layers, σ = A, B represents sub-
lattices, n represents the Landau-level (LL) index, and l
represents sub-bands. For completeness we write the wave
function of the LL states in the Landau gauge: 〈r|n, k〉 ∼
eikyyHn(x + kył2

B)e−(x+kył2
B )/2l2

B . However, the expressions ob-
tained below are general and do not rely on fixing a particular

gauge. Under this basis, the single-layer Hamiltonian reads

h(θ/2) =
√

2v

lB
(eiθ/2

√
n + 1|2, B, n + 1, l, k〉

× 〈2, A, n, l, k| + H.c.). (A9)

To calculate matrix elements of the interlayer hopping term
under this basis, we first split e−ig j ·r as

e−ig j ·r = e−ig j ·ηe−ig j ·R, (A10)

where

R =
(

Rx

Ry

)
=

(
x − �yl2

B
y + �xl2

B

)
≡

(
x − ηx

y − ηy

)
= r − η. (A11)

Notice that R = l2
B(ẑ × K ) only acts on |l, k〉 and η =

−l2
B(ẑ × �) only acts on |n〉, so we have

〈n, l, k|e−ig j ·r|n′, l ′, k〉 = 〈n|e−ig j ·η|n′〉〈l, k|e−ig j ·R|l ′, k〉.
(A12)

The first term on the right-hand side of Eq. (A12) is given by
〈n|e−ig j ·η|n′〉 = Fnn′ (g j lB/

√
2), where

Fnn′ (z) =
⎧⎨
⎩

√
n′!
n! (−zx + izy)n−n′

e− z2

2 Ln−n′
n′ (z2), n � n′√

n!
n′! (zx + izy)n′−ne− z2

2 Ln′−n
n (z2), n < n′,

(A13)

with L being the associated Laguerre polynomial.
The second term on the right-hand side of Eq. (A12) can

be converted to matrix elements of magnetic translation oper-
ators by using e−ig j ·R = e−il2

BK·(g j×ẑ). Specifically,

e−ig1·R = T − q
p

2 and e−ig2·R = T
q
p

1 . (A14)

Considering T − q
p

2 |αk〉 ∼ |α, k − g1〉 and applying the com-
mutation relation between T1 and T2, we can obtain

T − q
p

2 |l + 1, k〉 = e−i q
p k·a2 |l, k〉, (A15)

T
q
p

1 |l, k〉 = ei q
p (k·a1+2π l )|l, k〉. (A16)

Hence the interlayer hopping term in the MBZ reads

T (k) = wT0|2, σ, n, l, k〉〈1, σ ′, n′, l, k| + wT1Fnn′ (g1lB/
√

2)e−i q
p k·a2 |2, σ, n, l + 1, k〉〈1, σ ′, n′, l, k|

+wT2Fnn′ (g2lB/
√

2)ei q
p (k·a1+2π l )|2, σ, n, l, k〉〈1, σ ′, n′, l, k|. (A17)

The numerical plots shown in the main text were obtained
by diagonalizing this interlayer hopping matrix truncated to
a sufficiently large range of Landau indices n to achieve well-
converged cutoff-independent results. Notice that the direct
truncation in the LL basis will introduce an artificial zero
mode in Eq. (A9). To remove it, we add a penalty term
EP|2, A, Ncutoff〉〈2, A, Ncutoff | with EP �

√
2Ncutoffv

lB
to Eq. (A9)

in the numerical calculation.

APPENDIX B: MHA ELECTRON-PHONON VERTEX

In this Appendix, we derive the MHA electron-phonon
coupling. For convenience, we can write the Hamiltonian

under the lattice distortion Hu as Hu = H0(�) + Ht(r − u(r)),
where

H0(�) =
(

h(−θ/2) 0
0 h(θ/2)

)
(B1)

and

Ht(r − u(r)) =
(

0 T (r − u(r))
T †(r − u(r)) 0

)
. (B2)

Then we implement the comoving frame transformation
with Wu = e−iu(R)·� on H0(�) and Ht(r − u(r)), respectively.
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Since [R,�] = 0, for small u we have

W †
u �iWu = �i + i[u(R) · �,�i]

= �i − eBεi ju j (R) + O(u2) (B3)

and corresponding transformed H0(�)

W †
u H0(�)Wu = H0(� − eB × u(R)) (B4)

= H0(�) + veu ·
(

B × σ−θ/2 0
0 B × σθ/2

)
+ O(u2), (B5)

where σθ/2 ≡ Rθ/2σ are rotated Pauli matrices.
Similarly, for the tunneling term, we have

W †
u T (r − u(r))Wu = T (r) + O(∇u, u2), (B6)

and therefore the transformed total Hamiltonian is

W †
u HuWu = Hu=0 + veu ·

(
B × σ−θ/2 0

0 B × σθ/2

)

+ O(∇u, u2), (B7)

which gives electron-phonon coupling for both the mean dis-
placement and the relative displacement in the transformed
coordinate:

He-ph = ū · �m + d · �r, (B8)

with

�m = veB

(
ẑ × σ−θ/2 0

0 ẑ × σθ/2

)
(B9)

and

�r = − veB

2 tan θ
2

(
σ−θ/2 0

0 σθ/2

)
. (B10)

APPENDIX C: COMPUTATION OF
NON-FERMI-LIQUID SCALES

In this Appendix, we estimate the relevant energy scales
for the onset of Landau damping (zb = 3) for the phonons, and
non-Fermi-liquid behavior of electrons, using self-consistent
one-loop propagators (random-phase approximation). While
uncontrolled at asymptotically low temperatures in the non-
Fermi-liquid regime, this approximation produces a reliable
estimate of the onset of non-Fermi-liquid behavior approach-
ing from the high-temperature perturbative regime. Unless
otherwise specified, all propagators are specified in imaginary
time (Matsubara frequency).

1. One-loop self-energies and propagators

The (imaginary time or Matsubara) bare phonon propaga-
tor and bare electron propagator are given by

D−1
0 (q,�) = −ρλ

(
�2 + ω2

q

)
, (C1)

respectively, where for the long-wave limit the phonon
dispersion is ωq ≈ cs|q| and where εk is the electron dis-
persion and λ = m/r is the label for mean-displacement
and relative-displacement phonon modes, respectively. With
electron-phonon interaction, the full phonon propagator de-
pends on the phonon self-energy as D−1 = D−1

0 − �. At
the lowest order of electron-phonon interaction, the one-loop

phonon self-energy can be calculated by

�(q,�) =
∫

d2kdω

(2π )3
G0(k, ω)G0(k + q, ω + �)�2

α,λ(k, q),

(C3)
where α = L/T is the label for longitudinal and transverse
mode, ρm = 2ρ, and ρr = ρ

2 (ρ is the mass density of single-
layer graphene). At the limit q → 0, only the nonvanished
coupling �2

α,λ(k, q̂) is left. After performing the integrals for

the patch dispersion εk = vF k⊥ + k2
‖

2m , we can obtain

�(q,�) = γα,λ

|�|
|q‖| , (C4)

where q‖ is the component parallel to the Fermi surface and
the Landau-damping coefficient γα,λ is given by

γα,λ(q̂) = |m|
2πρλvF

�2
α,λ(k, q̂)

∣∣
q̂‖FS

, (C5)

where m is the effective mass of the electron. Then, the full
phonon propagator reads

D(q,�) = − 1

ρλ

(
�2 + ω2

q + γα,λ
|�|
|q‖|

) . (C6)

Using � ∼ csq, the energy scale below which Landau-
damped modes dominate is

ELD,α,λ ∼ √
γα,λcs =

√
cs|m|

2πρλvF
�2

α,λ(k, q̂)
∣∣
q̂‖FS

. (C7)

On the other hand, using the Landau-damped phonon propa-
gator

D(q,�) ≈ − 1

ρλ

(
ω2

q + γα,λ
|�|
|q‖|

) , (C8)

we can obtain the one-loop electron self-energy at the Fermi
level defined by G−1 = G−1

0 − �,

�(ω) =
∫

d2qd�

(2π )3
D(q,�)G0(q + kF,� + ω)�2

α,λ(k, q̂)

= i

(
�4

α,λ

12
√

3π2ρ2
λv

2
F|m|c4

s

) 1
3

|ω| 2
3 sgn(ω), (C9)

which gives the non-Fermi-liquid energy scale

ENFL ∼ �4
α,λ

12
√

3π2ρ2
λv

2
F|m|c4

s

, (C10)

below which the quasiparticle lifetime goes as τ−1 ∝ ω
2
3 .

2. SAW attenuation length

In this section, we give the propagation intensity of a
surface acoustic wave on twisted bilayer graphene, which is
attenuated by the electron-phonon scattering and decaying as
e−r/ξ . Here, we consider the surface acoustic wave generated
by a line source, and the phonon propagator in the direction
perpendicular to the source is given by the retarded phonon
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propagator

DR(r, q̂, ω) = 1

ρλ

∫
dqeiqr 1

ω2 − c2
Sq2 − iγ (q̂) ω

|q|
(C11)

(where we have analytically continued from Matsubara to
retarded frequency: i� → ω + i0+). For further convenience,
we first define dimensionless quantities x ≡ qcS/ω, y ≡
rω/cS , and λ ≡ ELD/ω, and then the integral becomes

DR = 2i

ρλcsω

∫ ∞

0
dx

x sin(xy)

x − x3 − iλ2

= 2i

ρλcsω

∫ ∞

0
dx

(x2 − x4) sin(xy)

(x − x3)2 + λ4

− 2

ρλcsω

∫ ∞

0
dx

λ2x sin(xy)

(x − x3)2 + λ4
. (C12)

We focus on the first term I1, which is the imaginary part of D
and dictates the attenuation of SAWs,

I1 = i

ρλcsω
Im

∫ ∞

−∞
dx

(x2 − x4)eixy

(x − x3)2 + λ4
. (C13)

Note that for the larger imaginary part of the poles, the decay-
ing rate of the integral is larger; thus we want to find the pole
with the smallest positive imaginary part which dominates
the attenuation. Solving (x − x3)2 + λ4 = 0 gives six roots:
β ± iα, −β ± iα, and ±i2α, where

α = 2
1
3 η

2
3 − 2 · 3

1
3

2 · 6
2
3 η

1
3

, β = 2
1
3 3

1
2 η

2
3 + 2 · 3

5
6

2 · 6
2
3 η

1
3

, (C14)

with η = √
12 + 81λ4 + 9λ2. Hence the smallest positive

imaginary part of the poles is α, and correspondingly the
typical decaying length ξ is given by

ξ = r

yα
= cSλ

ELDα
. (C15)

When the energy scale of the acoustic wave is much larger
than the Landau-damping scale, i.e., λ 	 1, α = λ2

2 + O(λ6);
thus

ξ ≈ 2cS

ELDλ
= 2ω

γ
. (C16)

On the other hand, for an energy scale much smaller than the
Landau-damping scale, i.e., λ � 1, α = 1

2λ
2
3 + O(λ− 2

3 ); thus

ξ ≈ 2cS

ELD

(ELD

ω

) 1
3

. (C17)

3. Perturbative electron lifetime in the
intermediate-temperature regime

To compute the electronic lifetime for temperatures or fre-
quencies above the Landau-damping scale ELD, we compute
the tree-level electron-phonon quantum and transport scatter-
ing rates using the bare (undamped) phonon propagator and
focus on the relative (interlayer sliding) phonons, which have
two-orders-of-magnitude-stronger interactions with electrons.

We work in a patch description of the Fermi surface, which
captures the universal aspects of the leading-order singular-
ities in the electron-phonon scattering rate, while neglecting

smooth, nonsingular “background” scattering processes. We
consider an electron at initial momentum k = kx̂ above the
Fermi surface in a particular (x) direction (that is, k is mea-
sured relative to the Fermi momentum kF x̂). We linearize the
electron dispersion near the Fermi energy and neglect the
curvature of the Fermi surface, εp ≈ vF px. In this computa-
tion, the electron dispersion dominates the energetics in the
x direction parallel to the Fermi velocity, and the phonon
dispersion controls the energetics in the y (perpendicular)
direction, allowing us to neglect the dispersion of the phonons
along x: ωq ≈ cs|qy| (formally, this is justified for cs 	 vF ).
For tree-level scattering rates, we may consider the Fermi sea
as Pauli blocked, since at this order in perturbation theory,
additional virtual electron-hole pairs cannot be excited. These
approximations capture the leading singular behavior of scat-
tering rates in the perturbative intermediate-temperature-scale
regime.

Writing the relative-layer-displacement field d in terms of
annihilation operators aλ,q that destroy a phonon with polar-
ization λ and wave vector q,

d =
∑
λ,q

1√
2ρλcs|q|

(
ελ,qaλ,qeiq·r + H.c.

)
. (C18)

In the above-described setup, the electron couples only to a
single polarization of the phonons, so we may drop the polar-
ization indices and write the corresponding electron-phonon
coupling interaction coefficient as �r,λ,k := �.

We first compute the total electron scattering rate, which
enters the so-called “quantum” scattering rate that affects
quantum-coherent processes such as quantum oscillations:

τ−1
Q = 2π

∫ k

0

dqx

2π

∫
dqy

2π

�2

2ρrcs|qy|δ(vF qx − cs|qy|)

= �2

4πρrcsvF

∫ k

0

dqx

qx
, (C19)

where the δ function enforces energy conservation and the
integration limits [0, k] on qx reflect momentum conservation
and Pauli exclusion. The integral is logarithmically divergent
in the infrared (IR; small q). This effect is directly analo-
gous to similar infrared singularities arising in soft-photon
emission in quantum electrodynamics (QED), where the loga-
rithmic divergence is physically cut off by an external IR scale
such as the energy resolution of the detector. In this regime
we see that the quantum lifetime is dominated by very small
angle, low-energy scattering processes. To properly account
for this infrared divergence, in the following Appendix, we
implement a semiclassical treatment which is equivalent to
resumming the divergent soft-collinear radiation processes to
infinite order [39].

For transport, small-angle scatterings are ineffective at re-
laxing momentum. A standard cheap way of accounting for
this is to weight the scattering processes by the change in
angle, which for small-angle scattering can be approximated
by inserting a factor of ( qy

kF
)
2

into the above integrals. This
angle weighting results in a nondiverging transport scattering
rate

τ−1
tr = �2vF

8πρrc3
s

(
k

kF

)2

∼ T 2. (C20)
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FIG. 5. Prefactor of mean free path. l × T 2 versus electron filling for (a) θ = 1.5◦, ν = 1/3, (b) θ = 1.1◦, ν = 1/2, and (c) θ = 0.8◦, ν = 1.

At temperature T , electrons typically have momentum k ∼
T/vF relative to the Fermi surface, and we see that the above
expression gives a ρ(T ) ∼ T 2 contribution to resistivity.
Figure 5 shows the prefactor of the mean free path l ∼ T −2

versus electron filling. We emphasize that despite the Fermi-
liquid-like scaling of resistivity, the logarithmically divergent
quantum lifetime signals a breakdown of Fermi-liquid quasi-
particles.

APPENDIX D: MHA-POLARON DYNAMICS

In this Appendix, we study the problem of an electron di-
rectly coupled to MHA phonons for an intermediate-to-high-
energy regime where the phonons are not yet overdamped
(the analogous problem in the asymptotic low-temperature
non-Fermi-liquid regime was previously studied using a quan-
tum Boltzmann equation approach [51]). This situation not
only is relevant for MH-polaron problems involving a single
electron but also allows a nonperturbative effective resum-
mation of divergent radiative corrections due to emission of
soft-collinear phonons at energy scales exceeding ELD. By
numerical computation, we find that 〈n, k|σ̂i|n, k〉 ≈ β ki

kθ
for

small ki/kθ , with β being a constant. The electron-phonon
vertex is then

�n,m,λ(k, q = 0) = βevF B

kθ

ẑ × k, �n,r,λ(k, q = 0)

= βevF B

θkθ

k. (D1)

Because of its enhanced coupling by a factor of 1/θ , we focus
on the layer-antisymmetric phonon mode in the following.
The electron-phonon coupling, using first-quantized notation
for the electron coordinate r and momentum k and second-
quantized notation for the phonon field u, and keeping only
the leading term at small phonon momentum q (dropping
gradient coupling terms), is

He-ph(r, k) = α

m

∑
q

eiq·ru(q) · k = α

m
u(r) · k, (D2)

with α = βevF Bm
θkθ

. The coupling is analogous to the param-
agnetic coupling of the particle to a U(1) gauge field. Our
problem is therefore equivalent to that of a charged particle
coupled minimally to a fluctuating gauge field.

For simplicity, we consider the phonon spectrum to be
isotropic with a polarization-independent velocity, as it will
not affect the universal physics. The effective Feynman La-
grangian for the particle in the presence of a uniform excess
magnetic field discussed in the main text �B = ∇ × A(r) is
then

L[r, u] = Le[r] + Le-ph[r, u(r)] +
∫

d2rLph[u],

Le[r] = 1

2
mṙ2 − eṙ · A(r),

Lph[u] = ρ

2

[
(∂t u)2 − c2

s (∇u)2
]
,

Le-ph[r, u(r)] = αṙ · u(r). (D3)

The dynamics of the electron is naturally described in the
Schwinger-Keldysh path-integral formulation [42]. The corre-
sponding action on the closed-time Keldysh contour C is

S[r, u] =
∫
C

dtL[r, u]. (D4)

Decomposing the fields u(r, t ) and r(t ) in terms of fields
residing on the forward time contour [u+(r, t ) and r+(t )] and
the backward time contour [u−(r, t ) and r−(t )], we rewrite the
action:

S[r, u] =
∫ ∞

−∞
dt (L[r+, u+] − L[r−, u−]). (D5)

We now perform standard rotation for the fields,

rcl (t ) = 1
2 [r+(t ) + r−(t )], ucl (r, t ) = 1

2 [u+(r, t ) + u−(r, t )],

rq(t ) = 1
2 [r+(t ) − r−(t )], uq(r, t ) = 1

2 [u+(r, t ) − u−(r, t )], (D6)
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and obtain the following action:

S = Se[r] + Sph[u] + Se-ph[r, u],

Se[r] =
∫ ∞

−∞
dt

[−2mrq · r̈cl − (
ṙcl + ṙcl

) · A
(
rcl + rq

) + (
ṙcl − ṙcl

) · A
(
rcl − rq

)]
,

Sph[u] = 1

2

∫ ∞

−∞
dtd2r�uT D̂−1�u,

Se-ph[r, u] = α

∫ ∞

−∞
dt (ucl (r+) + uq(r+) ucl (r−) − uq(r−))

(
1 1

−1 1

)(
ṙcl

ṙq

)
, (D7)

where we express the field u by a vector in the Keldysh cl-q space,

�u(t ) =
(

ucl (t )
uq(t )

)
, D̂−1 =

(
0 [D−1]

A

[D−1]
R

[D−1]
K

)
. (D8)

Here, 1
2 [D−1]R(A) = ρ((∂t ± i0+)2 − c2

s ∇2). To study the motion of the electron coupled to the phonon bath, we first integrate
out the phonons and further obtain the classical equation of motion for the electron. Integrating out u, the effective action for the
electron is

Seff[r] = Se[r] + α2

2

∫ ∞

−∞
dtdt ′∂t �̃r(t )

×
(

(DK + DR + DA)(r+(t ) − r+(t ′), t − t ′) (DK − DR + DA)(r+(t ) − r−(t ′), t − t ′)
(DK + DR − DA)(r−(t ) − r+(t ′), t − t ′) (DK − DR − DA)(r−(t ) − r−(t ′), t − t ′)

)
∂t ′ �̃r(t ′), (D9)

where

�̃r(t ) ≡
(

1 1
−1 1

)(
rcl (t )
rq(t )

)
. (D10)

We now make two simplifying approximations on the effec-
tive action. Following Ref. [41], we are interested in electron
motion where its position is changing slowly compared with
the relevant wavelengths of the phonons being integrated out
(Lamb-Dicke approximation). This corresponds to replacing
e−iq·�r ≈ 1 in the following expression for the advanced and
the retarded Green’s function components:

DR/A(�r,�t ) = 1

ρ

∫
d�d2q

(2π )3

e−iq·�re−i��t

(� ± i0+)2 − c2
s q2

≈ ∓ 1

2πρc2
s

θ (±�t )

�t
, (D11)

with ��r = �r′ − �r and �t = t ′ − t . The effective action
[Eq. (D9)] is then quadratic in r:

Seff = Se[r] + α2

2

∫ ∞

−∞
dtdt ′ṙ(t )

(
0 DA

DR DK

)
ṙ(t ′). (D12)

Furthermore, we restrict ourselves to semiclassical dynamics
of the electron at zero temperature, thus ignoring the role of
thermally excited phonons. In this limit, we can ignore the
Keldysh component of the Green’s function DK , in which case
the effective action takes the form

Seff = Se[r] + α2

2πρc2
s

∫ ∞

−∞
dt

∫ ∞

t
dt ′ ṙ

cl (t ) · ṙq(t ′)
t − t ′ . (D13)

Expanding the vector potential A to first order in
rq and integrating the nonlocal-in-time term by parts,

we get

Seff =
∫ ∞

−∞
dt

[
−2mrq · r̈cl − 2rq ·

(
ṙcl

i ∇Ai(rcl ) − dA(rcl )

dt

)

− α2

2πρc2
s

rq(t ) ·
∫ ∞

t
dt ′ ṙcl (t ′)

(t − t ′)2

]
. (D14)

1. Polaron cyclotron motion

We obtain the classical equation of motion of the polaron
by integrating over rq and expanding dA(rcl )

dt = ṙcl
i ∂iA(rcl ):

∂2
t rcl = −eṙcl × �B

m
− g2

∫ t

−∞
dt ′ ṙcl (t ′)

(t − t ′)2 , (D15)

where the dimensionless coupling constant

g2 ≡ α2

2πρmc2
s

= β2

8
√

3π

m

M

(vF ν

cs

)2
. (D16)

We now solve for the cyclotron motion of the polaron: r(t ) =
r0[cos(ωt )x̂ + sin(ωt )ŷ], where we have suppressed the cl la-
bel for convenience. We take into account damping effects by
allowing ω to be complex. To solve for ω, we first express r(t )
as a complex variable with the x and y components denoting
the real and imaginary parts, respectively. Now, using the
polaron equation of motion [Eq. (D15)], we get

ω = ωc,0 − ig2
∫ ∞

t
dt ′ ieiω(t−t ′ )

(t − t ′)2
, (D17)

where ωc,0 ≡ eB
m . Defining an effective frequency-dependent

mass for the polaron mp(ω) ≡ eB
ω

and introducing a UV cutoff
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for small time differences, we obtain an expression for mp:

mp(ω) = m

(
1 + g2 ln

�

ω
− ig2 �

ω

)
, (D18)

which is enhanced at small frequencies and, furthermore,
diverges at ω = 0. A signature of this effect is seen in the
unconventional power-law dependence of the cyclotron fre-
quency of the polaron ωc on �B, discussed in the main text,
which we obtain by solving for ω using ω = eB

mp(ω) :

ω = ωc,0 − g2ω ln
�

ω
+ ig2�. (D19)

The real and imaginary solutions of ω give ωc and �c, respec-
tively, and have been stated in the main text.

2. Dephasing of quantum oscillations

The previous section focused on the energy damping of
oscillatory MHA-polaron motion due to radiation of soft-
collinear MHA phonons. The cyclotron linewidth computed
there is relevant for phase-insensitive transport and optics
cyclotron resonance measurements. For quantum oscillation
measurements [e.g., Shubnikov–de Haas (SdH) oscillations
in resistivity or related oscillations in tunneling density of
states], the phase coherence of the electronic orbit is also
important, and these phenomena are affected more strongly
by MHA phonons.

To analyze this effect, we employ a semiclassical com-
putation of the density of states for an MHA polaron in an
excess magnetic field �B away from commensurate filling,
by summing up the “return” amplitudes for a particle to start
at some position, returning to that position time t later, and
then Fourier transforming with respect to t .

For the cyclotron motion of an electron coupled to MHA
phonons, the electron picks up a Berry phase equal to

eiθB = eiα
∫

dt ṙ·u(r(t )). (D20)

This phase has quantum fluctuations due to the quantum fluc-
tuations of u, which give a suppression factor for the quantum

oscillation amplitude ∼e− α2

2 〈[∫ dt ṙ·u(r(t ))]2〉u , where the average
is taken over the thermal ensemble of phonons (we will restrict
our attention to zero temperature).

Since the phonons are much slower than the electrons, we
can approximate the phonon configuration during a cyclotron
orbit as being static (fluctuations of the phonon field are ap-
proximately quenched on the time scale of cyclotron motion).
In that limit, we can replace

∫
dt ṙ · u(r(t )) → �, where (by

Stokes theorem) � is the flux of the effective “magnetic field”

b = ∇ × u (D21)

through the cyclotron orbit. This approximation is valid for up
to n ∼ vF

cs
cyclotron orbits; on longer time scales than 2πvF

csωc
, we

would have to account for the dynamics of the phonons.
Let us begin by computing the 〈uu〉 correlator in real

space. We have a Matsubara action ρ

2 [(∂τ u)2 + c2
s (∇u)2], in

(2 + 1)-dimensional [(2 + 1)D] Euclidean time. At zero tem-
perature, the Green’s function of the phonon will just be the

3D Coulomb potential in (2 + 1)D spacetime:

DM (τ, r) = 1

2πρcs

√
c2

s τ
2 + r2

≈
τ	r

1

2πρcs

1

r
. (D22)

The 〈bb〉 correlator can be obtained by taking spatial
derivatives of this propagator, giving 〈bb〉 = −∇2〈uu〉 =

1
2πρcsr3 . Integrating over the cyclotron orbit, we get a flux-flux
correlator

〈��〉 = 1

2πρcs

∫
r,r′⊂cyc. orbit

1

|r − r′|3

≈ Ac

4πρcs
2π

∫ Rc

a

dδr

δr2
≈ Ac

ρcsa
, (D23)

where a is a short-distance (lattice scale) cutoff and

Ac = Sk

(e�B)2
(D24)

is the real-space area of the cyclotron orbit, where Sk is the
momentum-space area of the Fermi surface.

Inserting this expression into the semiclassical version of
the density of states, computed as a sum over return probabil-
ities for various numbers of cyclotron oscillations [44], gives

N (ε) = −1

π

∫ t

0
dt ImGR(r = r′; t )e−iεt

≈
〈∑

n

e−i 2πε
ωc

ne−iαn�(u)

〉
u

=
∑

n

e−i 2πε
ωc

ne−i 1
2 α2n2〈��〉

=
∑

n

√
2πρcsa

α2Ac
exp

[
−1

2

(
π2ρcsa

ω2
cAcα2

)
(ε − nωc)2

]
,

(D25)

where, in the last step, we have used the Poisson-summation
formula.

This result predicts a comb of Gaussian peaks centered
at integer multiples of the cyclotron frequency with peak
amplitude

Ac ≈
√

πρcsa

α2Ac
∝ �B (D26)

and width

� ∼ ω2
cAcα

2

π2ρcsa
∝ (�B)2g2

. (D27)

By contrast, for elastic impurity scattering, the return prob-
ability for n orbits is e−n2(ωcτ ), and the quantum oscillation
amplitude would scale as

√
1

1/(ωcτ ) ∼ √
�B. (Note that the

amplitude suppressions of multiple scattering mechanisms
combine in parallel, not in series, so that the linear-�B de-
pendence of the MHA-phonon dephasing would dominate
at small �B over impurity contributions.) Hence the above
linear-�B scaling provides a signature of the unconventional
MHA-polaron dynamics that is qualitatively distinct from
conventional contributions from impurities.

We also remark that essentially identical expressions apply
for analog systems of electrons coupled to emergent gaugelike
fields, such as the composite fermion liquid of the half-filled
Landau level, spinon Fermi surfaces in gapless U(1) spin liq-
uids, and zero-wave-vector quantum critical points in metals.
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