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We propose and analyze a new type of equilibrium, in which limited-trust exists between players with
long-term interactions. We assume heterogeneous interactions: players will engage in several games over
an undetermined period of time with payoffs for each game drawn from a distribution. As such, players
may not engage in the same game more than once. We define a Limited-Trust equilibrium to address
these heterogeneous games, show its existence in all finite simultaneous games, and analyze it in general
and in several common classes of games. We provide several interpretations of this equilibrium in leader-
follower games. We then numerically compare the social utility generated from these equilibria in both
simultaneous and leader-follower games to that generated by Nash and Stackelberg equilibria in the same
games: when players display a similar level of trust §, each sees an average gain of approximately § in
its utility each game over what it would achieve in traditional competitive/rational games, meaning for
each game a player loses §, there is another game it gains 36. Thus while players appear to play “non-
rationally” by giving something up, they actually gain more and are each able to come out ahead of what
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they would have received if playing rationally as in a Nash equilibrium.
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1. Introduction

One of the first things children learn is to “play nice” with oth-
ers. In order to get ahead and be a functioning member of soci-
ety, each individual must sometimes make choices which do not
appear to benefit them in the short term. Even though these ac-
tions cost the individual, they make up for it in benefit to soci-
ety; over time each individual will have these costs returned to it
in the form of unexpected favors. Under the rationality considered
in a Nash equilibrium (Nash (1950)), it makes sense to pay these
costs and only violate the social rules when the cost is too great.
This is particularly true if, after a certain amount of time, the rule
violation will be forgiven or forgotten. To that end, a great deal
of research has gone into the study of extensive form games in
general, and repeated games in particular. These games frequently
evince equilibrium behaviors which, when only considered for the
individual stages rather than the extensive game, are not rational
under the Nash definition. An explicit discussion of the work on
these games will be presented in Section 1.1.

However, when there are no formal consequences to avoiding
the costs of society, such as exile, why do individuals continue to
incur these costs? For example, why will most people give up a
seat on a bus to a stranger who is injured? In a Nash equilibrium,
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in which only the utility of the individual making a decision is con-
sidered, the seat is never given up unless keeping it incurs some
cost, such as damage to one’s reputation. However, even if no one
they know is present or will ever know of the decision, most peo-
ple still give up the seat.

Perhaps the simplest answer is that the individual in the seat
cannot know if their decision will ever make it back to others they
interact with regularly and so they are simply risk averse. Another
is that humans have some intrinsic degree of altruism. Evolution-
ary biology provides the best explanation of this in the form of
Hamilton’s rule for kin selection (Hamilton (1963, 1964a, 1964b))
which says that as humans are collections of genes, our genes seek
to help any of the same genes present in other humans. To quote
J. B. S. Haldane, “I would lay down my life for two brothers or
eight cousins”. This idea that we lend aid to others because they
are some proportion of ourselves has given rise to the concept of
o-altruism, which will be discussed in Section 1.1.

In this paper we introduce a new concept which we refer to
as a limited-trust equilibrium. In it, a player i attempts to max-
imize its long-term utility by trusting the other player(s) within
a hard trust limit §; that it is willing to give up when the other
player(s) will gain “significantly” more than it (they) would lose
if player i were to play “rationally”. The player does this with the
hope that the other player(s) will return the favor in a similar way,
as well as form lasting partnerships and attract new ones through
reputation. Given an opportunity, if an individual must choose be-
tween two agents of relatively equal capabilities to partner with
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Fig. 1. Heirarchy of equilibria. Intersection of all classes occurs in constant sum
games.

then the individual would prefer to interact with the more trust-
worthy agent. We show through numerical trials that in two player
games, when both players have a similar trust limit, §; = §, > 0,
both players come out significantly ahead in the long term com-
pared to if they had played solely to maximize their own utility: in
2-player numerical trials with 8; = §, = § we observe an average
personal utility increase of § for each player when § was modest
compared to the value of the variance in the utilities of randomly
generated games.

The limited-trust equilibrium provides a new answer to the
previous question of why someone would give up their seat on
the bus to an individual who is injured: they do so to establish
and contribute to a culture of “kindness”, which will increase the
likelihood of someone giving them a seat in the event that they
become ill or injured. This interpretation can be viewed as a per-
son avoiding the consequences of the Broken Windows Theorem
(Wilson & Kelling (1982)) which (loosely) states that evidence of
erosion of one norm leads to further erosion of that and similar
norms.

While it will be discussed more fully in Section 1.1, the idea of
non-rationality within repeated games has been extensively stud-
ied. Therefore we pause briefly to distinguish this concept from
other solution concepts which occur within repeated games: in
such situations, the same games are played repeatedly and so play-
ers arrive at a best way to handle that single game over time us-
ing methods such as future discounting and trigger strategies. In
limited-trust games, while players are assumed to be playing with
each other over time, they are not assumed to play the exact same
game continuously. In fact, they may never play the same game
twice. Because of this, it is necessary that one-off games be ana-
lyzed individually, as each game may be independent of previous
or later games played. This is something that other tools for re-
peated game analysis cannot do. If two players do interact again,
the game will most likely be different as it is assumed to be drawn
from some probability distribution.

The rest of this paper is organized as follows: In Section 1.1 we
provide a more detailed discussion of previous work into extended
form games as well as ¢-altruism. In Section 2 we fully detail the
properties of a limited-trust equilibrium (LTE): we show that it is
guaranteed to exist in finite n-player games, prove where it fits
within the hierarchy of equilibrium concepts (see Fig. 1 for these
results), and show that it results in higher net utility than Nash
equilibria on several common games. Section 3 provides a mathe-
matical program for LTE computation, and Section 4 discusses sev-

eral interpretations of limited-trust in the leader-follower setting.
In Section 5 we present the results of numerical trials in both the
simultaneous and leader-follower settings, in which we compare
the highest value Nash equilibria to the highest value LTE’s for ran-
domly generated games, before moving to our final discussion of
results and concluding remarks in Section 6.

1.1. Literature Review

Since the seminal work of Nash (1950) there has been a great
interest in Game Theory and equilibrium concepts. In particu-
lar, many papers have noted that the strict definition of ratio-
nality adhered to by Nash equilibria, that it is a state where no
player can unilaterally improve its own utility given the actions of
other players, is frequently not observed in empirical trials. One
circumstance in which this occurs is repeated games in which
players engage in multiple rounds of play. Various folk theorems
have been considered for these games which attempt to guaran-
tee various measures of fairness in the equilibria; detailed anal-
yses of these theorems and the conditions necessary for them
to apply has been the subject of papers such as Aumann and
Shapley (1994); Benoit and Krishna (1985); Fudenberg and Maskin
(1986); Rubinstein (1979), and Rubinstein (1980). In the more ap-
plied sense, there has been a great deal of work aimed at develop-
ing rational definitions of trust for repeated games: papers such as
Dasgupta (2000); Engle-Warnick and Slonim (2006b); Fudenberg
and Maskin (1986) and Gibbons (2001) provide theoretical anal-
ysis of various games and trust strategies while papers such as
Leopold-Wildburger, Schuetze, and Lafer (2002), Anderhub, Engel-
mann, and Gth (2002); Bapna, Qui, and Rice (2017); Berg, Dick-
haut, and McCabe (1995); Engle-Warnick and Slonim (2004), and
Engle-Warnick and Slonim (2006a) have focused on conducting
empirical studies on several of these trust strategies, particularly
in the context of reciprocity. In the business setting Morreale, Mit-
tone, and Nigro (2019) experimentally tests the real options games
approach put forward by lo Nigro, Morreale, Robba, and Roma
(2013) for trust in strategic alliances. Meanwhile in the context of
supply-chain relationships Chen and Wu (2010) empirically studies
the formation of partnerships in the automotive industry, Du, Nie,
Chu, and Yu (2014) derives a model for reciprocal-minded supplier-
retailer relationships, and Niederhoff and Kouvelis (2016) and Choi
and Messinger (2016) empirically show supply-chain relationships
tend to be more “fair” over time than predicted in standard game
theory. The recent survey Dal B6 and Frchette (2018) details many
of these as well as other empirical studies, all of which on average
show non-Nash behavior.

These trust papers, both theoretical and experimental, deal ex-
plicitly with repeated games or (as in Berg et al. (1995) and
Leopold-Wildburger et al. (2002)) one-off games in extensive form
(leader-follower). However, there is less work considering “non-
rational” behavior in simultaneous one-off games. Most such work
is done in the framework of o-altruism, as proposed by Ledyard
(1994). In this concept, each player i has a perceived utility of
uj(o) = (1 - apu(o) + aqzu(o) for a;€[0, 1] and thus takes the
total social utility into account as part of its personal “utility”.
This model is attractive for a number of reasons: it is supported
by Hamilton’s kin-selection rule in evolutionary biology (Hamilton
(1963, 1964a, 1964Db)), it allows for easy equilibrium computation
via Nash equilibria over perceived utilities, and it provides a broad
model which can be adapted to virtually any form of game in-
cluding simultaneous, extensive form, and repeated games. Chen,
Keijzer, Kempe, and Schdfer (2014) provides a thorough analysis
of this concept when applied to congestion, valid utility, and cost-
sharing games, building on the analysis of Caragiannis, Kaklamanis,
Kanellopoulos, Kyropoulou, and Papaioannou (2010) of this concept
and extending the definition of (A, @)-smoothness put forth in an
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earlier version of Roughgarden (2015) to «-altruistic games. How-
ever, this notion of altruism also has disadvantages, particularly
from a modeling perspective. First, the game is scale invariant. This
means that if player i would prefer not to collect € 1 so that player
j can collect an extra € 2 given «;, then it would prefer not to col-
lect € 100 so that player j can collect an extra € 200 for the same
«;. Second, in games between a large number of players, the play-
ers are likely to become completely self-sacrificing to increase the
total utility even for small «; > 0. To see this, consider a scenario
in which for every unit of utility player i gives up, all other play-
ers receive some small amount of utility ¢, where 0 <c« 1. As the
number of players grows, player i will seek to drive its personal
utility as low as possible so long as «; > 0.

In the next section we will propose a new concept of a limited-
trust equilibrium which applies to a similarly broad class of games,
but incorporates a hard trust-limit not present in «-altruism. Play-
ers behave in a manner which encourages reciprocity, provided it
is not to expensive for them personally in terms of a hard limit on
their current personal utility. They make this investment in recip-
rocation in order to increase their personal utilities in the long run
or in expectation. This concept places a “budget” on what players
spend toward encouraging reciprocity in any one game and thus
eliminates both the tendency of players in large games to become
self-sacrificing and the scale invariance which occur in «-altruistic
games.

2. Limited-Trust Equilibrium

We now define a new concept of equilibrium in which players,
while still selfish and concerned primarily with their own utility,
exhibit a limited interest in the common good and contribute to
it provided the cost is below some threshold. They do so in order
to encourage other players to do the same in order to benefit in
the long term. For comparison, we first review the definition of a
mixed Nash equilibrium (MNE) over a finite game:

Definition 1 (Strategy Profile of a Finite Game). Given a finite n-
player game in which each player i has m; pure strategies, a valid
strategy profile o; for player i is a probability distribution over the

m; pure strategies (o; = {p}, ph, ..., phy.}, pj. >0, ZT:"] pi=1).

Definition 2 (Mixed Nash Equilibrium). Given an n-player game
with strategy profiles o = (01, 03,...,0n) for each player where
for a given player i, o_; is the set of strategies played by all other
players, o is a mixed Nash equilibrium (MNE) if and only if for
any other valid strategy profiles o, u;(0;, 0_;) > u;(0/,0_;) for all
ie[n], where [n] ={1,2,...,n} and u;(0;, 0_;) is the expected util-
ity of the game for player i.

A related concept is the e-approximate Nash equilibrium (e-
equilibrium) defined as follows:

Definition 3 (e-Approximate Nash Equilibrium). For an n-player
game with strategy profiles o = (01,07, ..., op) for each player, o
is an e-equilibrium if and only if for any other valid strategy pro-
files o/, u;(0y, 0_;) > uj(0{,0_;) — ¢ for all ie|[n].

Definition 4 (Price of Anarchy). The Price of Anarchy (PoA) of a
utility maximization game is the ratio of the value of the socially
optimal solution, defined as the solution that maximizes the sum
of the utilities of all players (net utility), to the value of the equi-
librium with the lowest social utility.

Typically the equilibrium considered in the PoA is the Nash
equilibrium; in this paper we will explicitly state which equilib-
rium is being considered when using the term.

Note that the set of Nash equilibria is merely the set of e-
approximate equilibria for € = 0. It is also worth noting that the

conditions of an MNE can be defined in mathematical constraints.
For an n-player utility maximization game, any strategy profile o
comprises an MNE if and only if it satisfies the following con-
straints:

Ui(O'l-/, O'_i) - ui(Ui, U_i) <0 VUi/ € X, ie [n]

where ¥; is the set of valid strategy profiles for player i. We also
define

o (o) = argmax (0, o)
Oi

as the greedy best response of player i given o_;. We will
abuse notation to let aic € aiG(Gfi); while there may be multi-
ple elements of crl.G(a,,-), as it is a set-valued function, we will
only be concerned with al.G with regard to the value ui(aic,o_l-)
which is equal for all elements of aic(a,i). We say that an &-
equilibrium o € ¥ is well-supported if and only if for every player
i, uj(of. o) - uj(sﬁ.,a,i) < ¢ for every pure strategy 53. which is
played in o; with non-zero probability. Note that any MNE is a
well-supported e-equilibrium for all & > 0.

Having covered our preliminary definitions, we now propose a
new concept of equilibrium.

Definition 5 (Limited-Trust Equilibrium (LTE)). Consider a finite
n-player maximization game with strategy profiles 0 € ¥ = ¥ x
...x X and trust levels § = (61,...,8n) for each player i, where
8;>0. o is a limited-trust equilibrium if and only if u,v(al.G, o_i) —
ui(0y,0_;) <8 and u(oy, 0_;) > u(o/, o_;) for any other valid strat-
egy profiles o/ € ¥; such that u;(6°, 0_;) — u;(0/,0_;) < §;, where
u(o) =3I uj(o) is the net utility.

We will use LTE(S) to refer to an LTE for players with trust lev-
els § = {81,...,6n}. This definition is equivalent to saying that the
following two conditions are met:

1. Player i cannot alter its strategy profile to increase its payoff by
more than §;. In other words, it is not giving up more than J;
it could be making by changing its behavior to take advantage
of other players’ strategies.

2. Player i cannot alter its strategy profile to increase the net util-
ity without decreasing its own utility so that it loses more than
é; from its greedy best response. In other words, it cannot in-
crease the net utility without violating its cost threshold §;.

As for where § comes from, it can be viewed as the degree to
which an individual is willing to invest in the future, meaning the
cost they are willing to incur in order to benefit others and en-
courage them to reciprocate.

It is worth noting that we could equivalently write the net util-
ity u(oy,0_;) as

n
u(0i, o) = Y u(03,0.;) = (0, 0_;) + u_;(03, 0_;)
i=1

where u_j(0y, 0_;) = 3 j;u;(0;, 0_;). While there is no mathemat-
ical advantage in doing so, it helps to illustrate that if player i gives
up §; by playing o/ rather than o; and the net utility increases
by x <8;, the §; — x value is not simply lost. Rather, if u;(¢/,0_;) —
uj(0;,0_;) = —4; this means u_;(0/,0_;) —u_;(0;,0_;) = §; +x.
Because a limited-trust (LT) best response is concerned with
two values u(o) and u;(o) it makes sense to examine their rela-
tionship. In particular for a player i, if all other players are playing
o_; then player i can easily determine the results of all of its pure
strategies 55 in terms of u(oj, 0_;) and u;(o;, 0_;). Because of the

linearity of u and u; with respect to s{ given a fixed o_;, any u, u;
combination within the convex hull of the pure strategies can be
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achieved by player i. Therefore, player i can solve the following lin-
ear program LP1 to find its limited-trust best response o/ (0_;):

o (0_;) = argmaxu(o;, 0_;)
gieX;

subject to (LP1)

8 = ui(of, o) — u; (03, 0_).

When we take the limit §; — oo we find that player i becomes
completely self-sacrificing for the net utility. Thus by careful selec-
tion of §, players of any degree of trustworthiness from completely
self-interested (6 — 0) to completely selfless (§ — co), may be mod-
eled though players of the latter type may be quite uncommon.

We note that while the set 0¢(0) ={of(0_1).0{(0_2)....,
oY (o_n)} is the set of greedy best responses to the current strat-
egy set o, 0¢eco%0) is not generally a Nash equilibrium. Instead,
it is merely a set of greedy best responses to o for each player.
As such, the fact that O'l.G is a component of player i's limited-
trust best response does not imply that a limited-trust equilibrium
is dependent on a Nash equilibrium, merely that is dependent on
greedy best responses. As Nash equilibria are also heavily depen-
dent on greedy best responses, with o € 0%(o’) being a necessary
and sufficient condition for o to be a Nash equilibrium, this can
be a subtle point. To further emphasize this distinction, we show
in an example game in Table 4 that an LTE can exist independent
of any Nash equilibrium.

Lemma 1. Given an LTE(§) o*, if a constant ¢; is added to all payoffs
for player j, o* is still an LTE(3).

The proof is included in Appendix A.1.

Although Lemma 1 demonstrates that an LTE(S) is invariant un-
der the addition of a constant ¢; to all of player j's payoffs, the
same is not true for affine transformations. This is an intentional
feature of the limited-trust concept: while a player may be will-
ing to accept a loss of € 1 to ensure another player gains € 2, it
is not willing to accept a loss of € 100 to ensure another player
gains € 200, as would be required of an affine transformation of a
game. However, for a given affine transformation f(x) = ax + b the
equilibria are invariant if § is rescaled to §|al, for a#0.

Theorem 2. Every n-player finite game with trust levels § =
(81,682, ...,8¢) > 0 has an LTE(S).

Proof. This proof will follow the same pattern as Nash’s (Nash
(1950)) proof for the existence of MNE in an n player game by
making use of Kakutani’s Fixed Point Theorem (Kakutani (1941)).

To begin, let o € X be a set of strategy profiles for each player.
Let u;(0) = u;(0;, 0_;) be the payoff player i derives from strategy
profile o; given that all other players are playing o_;. Now we wish
to define a new utility function

u(oj, o_;)

(oG Y —u(o: . .
wi(0i, o) = {_M ul(oj ,0_) — U0}, 0_) < §;

otherwise,

where M is a large positive constant. Because the game is finite,
we can pick M greater than maximum of the absolute values of
the socially optimal solution and the most socially harmful so-
lution multiplied by n, and the w;(o;, 0_;) of any o; which vio-
lates ui(oic,a,i) —uj(0j,0_;) < & is strictly less than w;(o/,0_;)
for some o/ which does not. Therefore, maximizing w;(o;, 0_;) is
equivalent to maximizing u(o;, o_;) over the set of points which
satisfy the maximum cost constraint. We can then say that o* ¢ &
is a LTE(S) if and only if
w;(o}, %) > w;(o;, 0% Voie 2, Vie{1,2,...,n},

which means that o* is a LTE(S) if and only if o;* € B;(0*;) for all i,
where B;(c*;) is the set of best responses (with respect to w;) for
player i given that the other players are playing o*;. If we define

B(o) =B1(0_1) x By(0_3) x ... x By(0_p) then finding an LTE(8) is
equivalent to finding o € B(o'). Therefore, we must show the exis-
tence of a fixed point.

We now use Kakutani's Fixed Point Theorem to show such a
fixed point exists. The theorem states that given a nonempty fi-
nite dimensional Euclidean space A and f: A— A a set-valued corre-
spondence with x € A— fx)CA, a fixed point is guaranteed to exist
if the following conditions hold:

1. A is a compact and convex set.

2. flx) is nonempty for all x € A.

3. flx) is convex for all x € A.

4. fix) has a closed graph: if {x¥, y¥} - {x, y} with y* e fix) then
yefix).

In this case we have A= %, f(o)=B(o). We now wish to
show that all conditions hold.

1. ¥ is a compact and convex set: trivial, as X is the Cartesian
product of simplices X;.

2. B(o) is nonempty for all oex: Bi(o_j) =
arg Maxg,ex, Wi(o;, 0_;) and so must be nonempty for each
i. Therefore B(o) is nonempty for all o € X.

3. B(o) is convex for all o € X: It suffices to show that B;(o_;)
is convex for all i. We first note that any points x,y e
B;(0_;) must provide equal net utility u(x,o0_;) = u(y,o_;) and
must also provide i with a personal utility at most &§; less
than the greedy best response. Without loss of generality,
assume u;(x,0_;) > u;j(y,o_;). Then for any convex combina-
tion z=Ax+ (1 — A)y where A [0, 1], the linearity of u and
u; implies that u(x,o_;) = u(z,0_;) = u(y,o_;) and u;(x,0_;) >
u;(z,0_;) > u;(y, o_;) which means z € B;(o_;).

4. B(o) has a closed graph: While the previous three conditions
were shown to hold using the same arguments as in the proof
of existence for Nash equilibria, the use of a non-continuous
function w; introduces several complications to showing that
B(o) has a closed graph. We will show this by contradiction.
Suppose that B(o) does not have a closed graph. Then there
exists a sequence (0%, %) — (o, 6) such that 6% € B(c¥), but
6 ¢ B(0), meaning that &; ¢ B;(o_;) for some i. Then there is
some o/ € B(0_;) such that
wi(o{, o) > wi(6;,0_),
which means that
u(of, o) > u(é;,0).

By continuity of u; and u, we have that for k sufficiently
large u(o/.0%) > u(6k o). Because o/ ¢ Bi(ck)). we have
ui(of k) —ui(a/.o%) > 8; where 0% e 0f(c%) as other-
wise this would contradict the assumption that 6¥ € B;(o'%)).
Suppose that u;(0, ok ) —u;(6%, o*,) < §;. Then by the lin-
earity of u; and u there is a convex combination s of o/
and 6} such that u;(o°*, o*) —u;(s,0%) < & and u(s.0*) >
u(6k. ok,). which implies w;(s, o*) > w;(6¥. o¥,) and therefore
contradicts the assumption that 6* € Bi(c¥)).

Now suppose that u;(0% ok)—u;(6¥ o%)=35;. In order
for o/ to become a strategy in B;(o_;), it must be that
ui(oic,a,i) —ui(o/,0_;) =¢;, as if it became less than or
equal to §; for sufficiently high k, then it would con-
tradict 6} € Bi(ok,). Similarly, u;(c€. 0_;) —uj(6;.0_;) =§; as
if it is less than §;, then for sufficiently high k we
would have u;(0%, ok) —u;(6¥, %) < §; which we have al-
ready seen leads to a contradiction. However, this means
that there is a strategy o] = AaiG+ (1-21)o/ for some
value of Ae[0, 1] which has u(o/,0_;) >u(6;,0_;) and
ui(o/,0_;) > u;(6;,0_;), due to the assumption that §;>0
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Table 1 Table 2
Example game for LTE. Game with non-overlapping LTE([0.5,0.5]) and well-supported 0.5-equilibria.
Player 2 Player 2
B B2 B B2
Player 1 o 4,0 5,5 Player 1 o 2,4 3,5
[*23 51 6,2 oy 32 43

and the linearity of u and u;. This means that u(oi”,afi) >
u(6f.o*) and u;(a/, o*) > u;(6¥, ok, for sufficiently high k.
Given u;(of%, %) —u;(6% o*;) < 8;. this means w;(o}’, ok) >
w;(6F, o%.) which contradicts the assumption that 6} € B(o'*)).
Therefore B(o) must have a closed graph.

Therefore, Kakutani’s theorem implies the existence of a * e ¥
such that o* e B(o*), which proves the existence of an LTE(§). O

Having established the guaranteed existence of an LTE for § >0
we now want to compare it to a Nash equilibrium on a sim-
ple example, given in Table 1. This game has exactly one Nash
equilibrium, at o = {[0, 1],[0, 1]} with pure strategies «,, 8, be-
ing played. Now consider the LTE with § = {0.5,0.5}. LP1 shows
that for player 2, playing the pure strategy 8, (o, = [0, 1]) is still
the best choice, regardless of o ;. The same is not true for player
1: given oy =0, 1], solving LP1 gives the first player’s unique
best response as o = [0.5,0.5]. The net utility of the LTE(0.5) for
the game is then uq ({[0.5,0.5], [0, 1]}) + u5({[0.5,0.5],[0, 1]}) =9,
compared to the net utility of 8 which occurs in the Nash equilib-
rium.

The equilibrium in Table 1 highlights an important fact about
the limited-trust best response, that there may not be a pure strat-
egy best response. This is at odds with the greedy best response
where there is always a pure strategy best response. This implies
that there does not appear to be a straightforward transformation
of a limited-trust game into a Nash game.

Next, we wish to consider where the LTE fits within the hierar-
chy of standard solution concepts within game theory.

Theorem 3. For any finite n-player game G, the set of LTE(S) is a
subset of the set of e-equilibria of G, where & > max;5;.

Proof. Consider that in any LTE(§), no player can improve its own
payoff by more than §; by definition of an LTE. Therefore such an
LTE is also an e-equilibrium for & > max;§;. O

While each limited trust equilibrium is also a max;d; = -
equilibrium, the converse is not true, even when §; = §; for all Vi,
je[n]. This is because of the additional constraint on an LTE(§) that
no player i be able to improve the total utility without decreas-
ing its own utility below the §; level. Further, although the set of
LTE(8)'s is a subset of e-equilibria as described in Theorem 3, they
are important because they represent a state in which each player
is contributing to the net utility as much as they are able within
their limits, not merely a state where each player has decided it
is not worth the effort (or in the case of irrational-valued Nash
equilibria it is realistically infeasible) to change from their current
strategy to the optimal strategy, particularly if the current strategy
is pure.

In general, we say that an LTE(§) o is well-supported if it
is a well-supported e-equilibrium for & = max;§;. Although any
LTE(S) is an e-equilibrium for e as previously specified, it need not
be a well-supported g-equilibrium. The 2-player game in Table 2
demonstrates this for ; = §, = 0.5. From player 2's limited-trust
perspective, B, is a best response to any o as it offers both bet-
ter personal and better net utility. Player 1’s limited-trust best re-
sponse to B, is to play «; with probability 0.5, for i = {1, 2}. Given
that player 2 will only play B,, the only LTE([.5,.5]) is given by
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Fig. 2. Best response curves for game in Table 3, §; =8, =0.1.

Table 3
Game in which LTE(0.1) < MNE.
Player 2
B1 B2
Player 1 o 1,2 5,0
o 1.1,5.1 4,5

{[0.5, 0.5], [0, 1]}. This is not a well-supported 0.5-equilibrium:
G

oy =, and player 1 is playing o; with nonzero probability, de-
spite the fact that u;(6%, B;) — uj(er1, B2) = 1 > 0.5. As this is the
only LTE(]0.5,0.5]), this game also shows that the set of LTE(§) may
be entirely disjoint from the set of well-supported ¢-equilibria for
a game.

Despite the fact that players in a limited-trust game all at-
tempt to improve the net utility, it is possible for the highest value
LTE(8) (the LTE(8) which provides the highest net utility) to pro-
duce lower net utility than the highest value Nash equilibrium for
a game. We show this with an example game, given in Table 3,
which we consider with 8; = §, = 0.1. There is a pure Nash equi-
librium (PNE) which occurs for «;, 81. As B is a strongly domi-
nant strategy for player 2, and « is player 1’s best response to it,
this is the only Nash equilibrium. If we consider the limited-trust
best response curves in Fig. 2, we see that there is only one place
the curves intersect and hence there is one LTE(0.1). Using opti-
mization program MP1 from Section 3, we find this is at approx-
imately oy = {p}, pl} = {0.204,0.796}, o, = {p3, p3} = {.795, .205}
which has a total utility value of approximately 6.089, which is
less than 6.2, the utility generated by the pure Nash equilibrium
at o7 ={0,1}, 0, = {1,0}.

While it is non-intuitive that the value of the best LTE can be
less than a Nash equilibrium, given that each player is willing to
give something up in order to help its fellow players, we do see
analogues of this in the day-to-day social interactions which the
concept of limited-trust emulates. Consider two cars reaching an
intersection across from each other. Both need to turn left and the
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Table 4
Game with more LTE(8) than Nash equilibria.
Player 2
B1 B2
Player 1 o 33 2,3.1
o) 3.1,2 5,5

intersection is too narrow for both to go at once. Rather than at-
tempting to go through first, one driver tries to wave the other
through, only to realize that the other driver is doing the same.
Both drivers start to move, then stop as they realize the other is
moving as well. This then repeats back and forth until one driver
loses their patience (6 is reached) and makes it clear they are go-
ing. Meanwhile the whole interaction slowed down both drivers
more than if one had simply made this decision when they both
arrived at the intersection.

Although it is possible to find games in which there is a Nash
equilibrium better than any LTE, we will see in Section 5 that it
rarely occurs, particularly as & increases; it is more common to
find games in which there are more LTE(§) than Nash equilibria
and some of them are worse. Table 4 provides an example of this,
where («y, B2) is both an LTE(§) and a pure Nash equilibrium.
However, for 81, §,>0.1, (aq, B1) is also an LTE(S), independent
of a Nash equilibrium.

Further, the occurrence of less optimal solutions due to co-
operation is not unique to limited-trust games: Chen et al.
(2014) shows that while normal cost-sharing games have a PoA
of n for n players, cost-sharing games in which all players have
a uniform level of a-altruism have a PoA of %, becoming un-
boundedly inefficient for fully altruistic players. The remainder of
this section will be spent considering limited-trust versions of sev-
eral standard games, and we will see that these inefficiencies do
not apply to them.

2.1. LTE(§) in Common Games

In this section we examine the behavior and value of LTE(§) in
several common classes of games.

Theorem 4. For any constant sum game, {e-equilibria}<{LTE(5)}
where & = min; §;.

Proof. First, note that in a constant sum game the total utility is
equal for all o € ¥. Therefore, any strategy o played by player i
maximizes the total utility. Thus, player i's best response to any
o_; is any strategy which makes sure it receives at most §; less
than its maximum personal utility. This is exactly the definition of
a best response under g-equilibrium conditions for §; = ¢, and so
the set of LTE contains the set of e-equilibria for a constant sum
game where & = min; §;. O

Note that Theorem 3 states the LTE set is a subset of the ¢-
equilibria set for & =max;é;, so if §;=45;=4 for all i#j then
Theorem 4 implies the set of e-equilibria is equal to the set of
LTE(S) for & = 6.

Next we consider the public goods game from experimental
economics. In it, n players each receive an amount of money, m;,
and must decide how much to contribute to the public good. Any
contributed money is multiplied by a factor of ¢ such that 1 <c<n,
then divided evenly among all players. Therefore, if player i con-
tributes x; to the public good, it will receive back % < x; of its in-
vestment, plus £ of the other players’ investments. The only Nash
equilibrium for this game is for all players to contribute x; = 0, as
any contribution lowers player i's payoff regardless of contributions
made by other players. The PoA is therefore c.

A
\4

I I [
v X1 Xy X3 1

Fig. 3. Hotelling Game with n = 3 players.

Theorem 5. In a public goods game with &, the limited-trust PoA is

CZ?:] m; <
i mi+ (¢ — 1) min{2:8;, mi} ~

Proof. Consider the contribution player i should make: the so-
cial utility strictly increases with i’s contribution x;, therefore
player i would like to contribute as much as possible. i is will-
ing to lose at most §; and regardless of the value of x; for j#i,
if player i contributes x; then it loses =tx; it could be mak-
ing. Therefore, player i contributes x; = min{;"-4;, m;}. The total
amount contributed is "I ; x;, and the total uncontributed util-
ity is Y1 m; —x;, which means that the total utility generated
is iy m;+ (c — 1) min{;2.8;, m;}. This is the unique LTE(§) for
the public goods game. The socially optimal result occurs when all
players contribute m; and there is a total utility of ¢ 3"/ ; m;, so the
CZF:1 m;

ST ) min{ 2o 3m] that is at most c. O

limited-trust PoA is

Our next consideration is the Hotelling game, which does
not generally have a pure Nash equilibrium for any number
of players n We will consider the simplest form of the game,
in which each player has a continuous strategy space [0,1]
and all players have symmetric payoffs, meaning that for any
two players i, j and all other strategies o_;; fixed, if i and
j switched strategies they would also switch utilities (u;(o; =
X1,0j =X, O’,,’j) = Uj(Ui =X2,0; = Xq, U—ij) for all X1, Xp € [O, 1])
Given strategies {01, 03,..., o}, if we assume without loss of
generality that 0<o(<0,<...<0, <1 then for 0;_ < 0; < 0}
uj(o) = 2171 f there is a set of k strategies o; = 03,1 = ... =
Oirk—1. then uj(o) = %,Vi < j<i+k—1. Additionally, for
the purposes of computing o1 and op, let “of = —07 and “o,/ | =
1+ on.

This simple form of the Hotelling game can be viewed as each
player claiming a space on the interval [0, 1], with each player at-
tempting to maximize the portion of the interval which is closer
to them then all other players. Fig. 3 provides an example of this
for a 3-player Hotelling game, which does not have a pure Nash
equilibrium.

Theorem 6. The 3-player Hotelling game possesses a pure LTE(S) for
8> 15 foriefl, 2, 3).

Proof. This will be a proof by example, showing that o =
{3.3. &} is an LTE() for & > {5 for ie{l, 2, 3}. We begin by
noting that the Hotelling game is constant-sum, so any strategy
produces the same net utility. We first consider whether player 1
is at equilibrium. Observe that u;(o) = % so player 1 is at equi-
librium provided there is not some o] such that u;(o{,0_1) > %
As 0, = . there cannot be: o7 € [0, ), (3, 1] will result in utility
strictly less than }. and of = 1 will result in the same utility as
player 2 receives, which can be at most % as the net utility for the
game is 1. Therefore player 1 is at equilibrium, and similarly player
3 is at equilibrium as its position is symmetric to that of player 1.
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Table 5
Example Prisoner’s Dilemma Game.

Table 6
A game with Nash and limited-trust dominated strategies.

Player 2
B1 B2

Player 2
B B2 B3

Player 1 o dq, dq dy, 0
o) 0, d; ¢ c

This leaves player 2. u, (o) = % so it is at equilibrium if there is
no o3 such that uy(0},0_5) > 3. For o5 € [0, ). (3. 75). (. 11
uy(05,0.) is < .4, and < 3 respectively. For o) = 3. 45

uy(02.0_3) = § < £ as well, so player 2 is at equilibrium. O

Before moving on, it is worthwhile to note that although
Theorem 2 only implies the existence of the LTE(S) in finite normal
form games, players in both the public goods game and Hotelling
game possess a continuous rather than finite strategy set. This
helps to highlight that while non-finite games are outside the
scope of this paper, many classes of these games are also likely
to possess limited-trust equilibria.

Finally, we consider the 2 x 2 prisoner’s dilemma, though we
will focus on the utility maximization version rather than the cost
minimization version. Let (o5, 8,) be the socially optimal outcome,
and let (o1, B1) be the strategy in which each player betrays the
other. In a Nash game, the only equilibrium is (o1, 81), the worst
possible outcome. In the limited-trust game, limg_, o LTE(S) is (o1,
B1), but as § increases, it shifts to («y, 85). Table 5 shows the gen-
eral form of a symmetric version of the game, with 0 <d; <c<d,.
By noting the fact that both players will be playing the same
strategy o = {p;,1—p;} at equilibrium if §; =&,, we can find
the LTE(8) by solving the quadratic equation (1 — pq)(p1d; + (1 —
p1)dy — (1 — p1)c) = &; which yields

_2(dy-0)—dy +£/(d1 —2(dr —0))2 —4(d, —c—d1)(d, —c— &)
= 2(d, —c—dy)

81—dy—c

provided d) —c—dy #0. If d —c—d; =0 then p; = 2o

3. Computation of 2-Player LTE(§)

In this section we present a mathematical program for compu-
tation of an LTE(S) in 2-player games. However, before doing so
we consider the concept of a dominated strategy in a limited-trust
game. By removing strongly dominated strategies, we will make
the game smaller to aid in computation.

In a Nash game, a pure strategy s for player i is said to be
dominated if u;(s, 0_;) < u;(s’, o_;) Yo_; for some alternate feasible
strategy s’ which is a convex combination of player i's other pure
strategies. s’ is said to weakly dominate s if there is at least one o_;
for which there is equality and at least on for which there is strict
inequality. It is said to strictly dominate s if there is strict inequal-
ity for all o_;. In a limited-trust game with given &, s’ is said to
dominate s if u(s,o_;) <u(s’,o_;) Yo_; and u;(s,0_;) < u;(s’,o_;)
for all o_;. Weak dominance occurs if there is some o_; for which
u(s,o_;) =u(s’,0_;). As with Nash equilibria, no LTE will have a
player i playing a strictly dominated pure strategy s; with nonzero
probability. Also as in Nash equilibria, we can iteratively remove
dominated strategies by examining each strategy individually to
see if it is dominated by a convex combination of the other still
present strategies (this is done by using a linear program).

Having introduced the idea of dominance in the limited-trust
context, we now demonstrate it on the game in Table 6. From
a Nash perspective, it is clear that o, strictly dominates «3 and
oy and weakly dominates «q. Similarly, 8 strictly dominates S3.
Therefore, these strategies need not be considered when looking
for an MNE. From a limited-trust perspective this changes. oy no

Player 1 o 0,7 55 0,5
o) 3,2 5,4 7.1
o3 0,6 4,1 1,5
oy 2,1 3,10 1,0

Table 7
Equivalent to the game in Table 6 for MNE's (left) and LTE(8)'s (right).

Player 2
B1 B
Player 1«3 | 0,7 | 5,5
as | 3,2 | 5,4
ayg | 2,1 ] 3,10

Player 2
3] ,82

Player 1 oy | 0,7
(65 3,2
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Fig. 4. Image in which s; is part of limited-trust best response and s, is not.

longer dominates &4, o3, or o4 and B no longer dominates Ss.
Although no pure strategy dominates o3, consider o7 = [%, % 0,0].
u(o1, Bi)>ui(as, B;) and u(oq, Bi)>ulas, B;) for ie(1, 2, 3} so
o3 is still strictly dominated and can be dropped from the prob-
lem. However, o4 is part of the socially optimal o and therefore
cannot be strictly dominated unless 8, is strictly dominated first.
While 83 cannot be strictly or weakly dominated by a convex com-
bination of 8; and B, in the original problem, consider the prob-
lem after o5 is removed. For a mixed strategy o, = [1, 2, 0] we see
that U2(O[i, 02) > U2(O[i, ,33) and U(Oli, 0'2) > u(oz,-, ,33) for ié{l, 2, 4}
Therefore, while we cannot remove 83 immediately as in the Nash
case, we can still remove it through the iterated removal of other
dominated strategies. In the Nash case we then get the equivalent
game in the left side of Table 7, and for the limited-trust case we
get the equivalent game on the right side.

It is interesting to note that the value of § is not rele-
vant in determining whether a strategy is dominated in a game.
This is because we cannot say that s’ dominates s if u(s,o_;) <
u(s’,o_;) Yo_; and either u;(s,o_;) <u;(s’,o_;) or u,-(aic,cr,,-)—
u;(s',o_;) < é; for all o_;. If the second condition occurs, s may
still be part of a unique limited-trust best response. An example of
this is given in Fig. 4, in which, for a fixed o_;, player i has three
strategies sq, Sp, and s3: despite the fact that u(s,, o_;) > u(s1,0_;)
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and ui(aic, o_;) — ui(sy, 0_;) < §;, the limited-trust best response is
a convex combination of s; and s3, but not s,.

Having defined limited-trust dominance to reduce computa-
tional effort, we now introduce our solution method. Our math-
ematical program for finding an LTE in a 2-player bimatrix game
given by A, B e R™" will be loosely based on the linear program
used in the support enumeration algorithm for finding Nash equi-
libria, which determines if a given support pair S4, Sg admits an
MNE (i.e. there is an MNE in which only the pure strategies in
Sa, Sp are played with positive probability, and all such strategies
are played with positive probability). The mathematical program is
given by MP1 where

fy) = mxaxxT(A +B)y subject to x'Ay > ejAy — &1, Vje[m]

and fy(x) is similarly defined. MP1 constitutes a quadratically-

constrained program with a bilevel component from f(y) and fy(x).

A, B are the m x n payoff matrices for players 1 and 2, respectively,

and e; is the vector with the value 1 at index j and zero elsewhere.
MP1:

II)}EJ[/X 1
subject to

XAy > elAy — 8 Vje[m] M
XTBy > xTBej — 82 V] € [n] (2)
A (A+B)y = fu(¥) (3)
X'(A+B)y = fy(x) )
=1 5)

ieSy
ny =1 (6)

jeSp
xi=0 Vi ¢ Sy (7)
y;=0 Vj ¢ Sg ®)
x>0 Vie [m] 9
y; =0 Vje[n] (10)

The bilevel elements of constraints (3) and (4) are a necessary
portion of the program: without these constraints, which force the
total utility to be the greatest possible when each player is playing
within §; of its greedy best response to the other, the solutions of
MP1 would simply be a subset of the e-equilibria for & = max; §;,
regardless of whether they were also limited-trust equilibria. This
cannot be solved using the objective function to drive the program,
as the socially optimal e-equilibrium is not necessarily an LTE. We
also mentioned above that MP1 is loosely based on the Support
Enumeration algorthim for finding 2-player MNEs. However, due
to the fact that a general LTE(S) is not a well-supported equilib-
rium, we are unable to fully linearize the constraints as in the sup-
port enumeration algorithm for finding MNE'’s. As a consequence,
if S4<Sc and Sg<Sp, then any solution to MP1(S,, Sg) is also a so-
lution to MP1(Sc, Sp), which is not the case in the Nash support
enumeration. The same problem is observed in finding non-well-
supported approximate Nash equilibria as well, so this is not sur-
prising.

We now prove below any LTE(§) given by (x, y) is a solution to
MP1 for appropriate Sy, Sg.

Theorem 7. A strategy set (x, y) for a two player game is an LTE(S)
if and only if it is a feasible solution to MP1 for Sy = [m], Sg = [n].

The proof of this Theorem may be found in Appendix A.2.

Corollary 8. For any feasible solution to MP1, constraints (3) and (4)
are fulfilled with equality.

Proof. Follows from Theorem 7: any solution to MP1 is an LTE(S),
and any LTE(S) fulfills the constraints with equality as each player
is playing a limited-trust best response to the other. O

Given that MP1 was stated to have been loosely based on the
linear program used in the support enumeration algorithm for
Nash equilibria, it is natural to question why the program is not set
up to iterate over supports, as in that algorithm. This comes about
because in any greedy best response, every pure strategy which
player i plays against the other player is a best response, and so
the quadratic constraints (1) and (2) in MP1 can be transformed
into a larger set of linear constraints which enforce the condition
that every pure strategy in the support of a Nash equilibrium is
a greedy best response. There is no corresponding condition for
an LTE which allows us to consider the pure strategies of a sup-
port individually rather than the mixed strategy LTEs as a whole.
However, if we are looking for well-supported LTE's we can use a
support enumeration method be replacing constraints (1) and (2)
in MP1 with those below and then apply Algorithm 1.

el Ay > ejAy — &, YieS, Vje[m]
x"Be; > x"Be; — 8, VieSy Vjeln]
xi=0 Vi ¢ Sp
yj=0 Vj ¢ Sp.

Algorithm 1 will find at least one LTE for every support pair
Sa, Sg which admits a well-supported LTE. However, as we have
already seen well-supported LTE’s may not exist.

Algorithm 1 LTESupportEnumeration(A, B, 81, 85).
Initialize hashset LTESet <« @;
for S, € [m], S € [n] do
(x,y) < SolveMP1(S,, Sg);
if (x,y) ¢ LTESet then
LTESet[S,, Sg] < (x,¥)
return LTESet

4. Leader-Follower Equilibria

We have defined the concept of Limited-Trust equilibria in si-
multaneous games in a natural manner, and showed that at least
one LTE exists in any simultaneous game of n players. The next
natural extension to consider is LTE's in turn-based games, i.e.
leader-follower or Stackelberg games.

Consider a two-player turn-based game of complete informa-
tion, i.e. player 1 picks from m strategies and in response, player
2 picks from n strategies with full knowledge of the first player’s
choice. Such a game is akin to a bi-level optimization problem for
the first player: given full-knowledge by all players, the second
player’s response is deterministically dictated by the first player. As
such, this game always has a pure equilibrium known as the Stack-
elberg equilibrium and, assuming a fixed tie-breaking rule for play-
ers between multiple equivalent strategies, the Stackelberg equilib-
rium is unique. While this is true for n-player games, for the sake
of simplicity we will confine our discussion to n =2, as n> 2 fol-
lows naturally.

We now want to consider what happens when players have
trust levels 81, 8. Although this is a full knowledge deterministic
game with regard to the payoffs and the first player’s action being
known to the second player, unlike in the simultaneous game the
nature of the equilibrium changes sharply depending on the first
player’s knowledge of &, and the values from which each player
measures §;. Because of this, we will examine three policies which
represent different interpretations of a Limited-Trust Stackelberg
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Equilibrium (LTSE). We assume a bimatrix game with payoff ma-
trices A, B € R™" for players 1 and 2, respectively. Note that here
n is the number of pure strategies possessed by the second player.

1. Incomplete Knowledge: The first player does not know any-
thing about §, and, being risk averse, assumes the second
player is not trustworthy (&, = 0). The first player then de-
termines the second player’s response to each of its possible
actions under this assumption and finds strategy i such that
i =argmaxg.jy, ajrjy Where r(j) is player 2's best response
to j and a; and by are the first and second players’ payoff
if they play i and j, respectively. The first player then plays j
which maximizes aj,(jy + bj(j) subject to a;.;) — ajr(j, < 81, and
the second player plays | which maximizes aj + bj subject to
bjrjy = by = d2.

2. Complete Knowledge: The first player knows §,. It knows that
if it plays i, then player 2 will play its best response s(i) which
maximizes Qis(i +bi5(i) subject to bir(i) _bis(i) < 52. Player 1
then finds i such that i = argmaxg_j<m, ajs(j), and plays j which
maximizes ajs(jy + bjsjy subject to ajs(;) — ajsjy < 8. The sec-
ond player then plays s(j).

3. Cooperative Complete Knowledge: Let i, j be the regular Stack-
elberg Equilibrium. The players play k, | which maximizes aj; +
by subject to ay — a;; < §; and by — b;; < &,.

Of these policies, the first two seem like the most natural inter-
pretations of the LTE in the turn-based game: a player is willing to
forgo a payoff at most §; higher than what they could get, provided
that the other player gains at least that much. The only question is
whether or not player 1 knows §,: while the question was unim-
portant in the simultaneous setting as equilibrium was merely a
point where no player could unilaterally improve the total utility
without exceeding its maximum cost, here the leader-follower na-
ture of the game means the first player can determine exactly how
the second player will act and plan its strategy accordingly. The
only question for the first player is the value of §,, as if it’s not
sure then it must plan for the worst and assume §, = 0.

While the cooperative complete knowledge policy may seem
less natural, the confusion is a matter of perspective: with the first
player having full knowledge of §,, instead of measuring its payoffs
over the second player’s reactions to each strategy i it could play,
it instead measures them with respect to the Stackelberg equi-
librium. The second player makes the same choice: it is rational
and can determine the first player could have played according to
the Stackelberg equilibrium if it wished to, and so reacts accord-
ingly. This policy requires more coordination between players, but
can be interpreted as two players who regularly interact and strive
to maintain a good relationship. In this sense it is less suited for
one-off games. However, the same could be said of the complete
knowledge policy, as it is otherwise infeasible to expect the first
player to know &, a priori.

We have derived additional results in regard to the expectations
and probabilities for all three of these policies in random leader-
follower games. However, the details are somewhat involved and
do not provide any great insight to the reader. As such, these re-
sults and there derivations are available in Appendix B.

5. Numerical results

In this section we present a numerical comparison of the ef-
ficiencies of the LTE when compared to Nash equilbria in both
the simultaneous and leader-follower settings. LTE's are found for
randomly-generated games and compared with the maximum-
value Nash and Stackelberg PoA’s of these games. These represent
random repeated games, a set of games which, while not identical,
are all drawn from the same distribution. These games are of par-
ticular interest because while the LTE is explicitly created for ana-

lyzing one-off games, it is implicitly motivated by the expectation
that future games will be played. Day-to-day societal interactions
are a perfect example of this, and are well modeled by random re-
peated games: such interactions between players are not identical,
but will display a pattern over time so that they could be said to
come from some “typical” distribution.

Theoretical results related to random repeated games in the
leader-follower setting can be viewed in detail in B.3, but one
which we will state here is that the expected PoA of the Stack-
elberg equilibrium for a 2-player leader-follower bimatrix game. In
such a game with m x n payoff matrices where each entry gener-
ated is generated independently and from and identical distribu-
tion (iid) A or B for players 1 and 2, respectively, the expected PoA
is

E[(A+B)™]
E[A™] + E[B™]

where X(" is the maximum of n samples x; generated iid from dis-
tribution X.

We consider random repeated games in our numerical trials.
These are represented as bimatrix games where the payoff ma-
trices A, B for each player are generated according to some dis-
tribution. In particular, we consider matrices where each entry is
generated iid for each player, though A and B may not come from
the same distribution. The majority of games were generated as 2-
player 2 x 2 repeated games, with entries of player 1's payoff ma-
trix generated iid according to a distribution A and player 2’s pay-
off matrix generated iid according to a distribution B. One instance
of 2-player 3 x 3 games was generated, as unlike in the leader-
follower games we have a less precise bound on the PoA as a func-
tion of m and n. LTE’s of simultaneous games were computed us-
ing MP1 in Section 3, and LTSE's were computed for each leader-
follower policy using the methods given in their descriptions in
Section 4.

5.1. Simultaneous Games

We consider games where players’ payoffs are generated iid
from three distributions: geometric with p = }1, uniform over the
set of integers in [0,10], and Normal A/ (0, 1). 100 instances of 2 x 2
games are generated from each of these distributions, as well as
100 3 x 3 games drawn from the geometric distribution. We then
vary 8; =8, =48 from 0.01 to 1 for each game, to see how the
value of the LTE changes as a function of §. For each test case, we
use the support enumeration method to determine the MNE with
the highest net utility for comparison to the LTE with the highest
net utility. Because any MNE which provides the optimal level of
social utility is also an LTE, we ignored generated test cases where
the social optimum was also an MNE.

Because of the nonconvex and potentially disjoint nature of the
solution space, we include a constraint in MP1 that the value of
the net utility of the LTE must be greater than or equal to the util-
ity provided by the best MNE (net utility-maximizing MNE). As we
have already seen in Section 2, such an LTE may not exist for all
values of §. Therefore, if the solver fails to locate a feasible solution
to MP1 after 50 attempts on a particular test case, this constraint is
relaxed. It is not reintroduced until after § has increased to a level
where an LTE with better net utility than the MNE is discovered.
Additionally, while we compute an LTE which has higher net util-
ity than all MNE’s, it may not necessarily be the maximum value
LTE. This is due to the nonconvexity of the set of LTE's.

Figs. 5 through 8 detail the results of our numerical trials. Al-
though § is always varied from 0.01 to 1, in the figures it is rewrit-
ten as the percentage of the net utility generated by socially opti-
mal (net utility-maximizing) MNE so as to compare values across
different distributions. In all but Fig. 7, we see a very clear linear
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relationship between § as a percentage of the maximum-valued
MNE and LTE as a percentage of the MNE. In both the geometric
games, the curve has a slope of approximately 2, meaning that on
average, for every game a player has to give up &, there is a game
where it gains 36 over what it would receive by playing selfishly.
The uniform games in Fig. 8 show a similar result, with a slope of
approximately 1.3.

This brings us to Fig. 7, which unlike the others does not evince
an approximately linear curve. However, consider the variance of
the distributions: the geometric distribution with p = % has a vari-
ance of 12 and the discrete uniform distribution over [0,10] has
a variance of 10. In contrast, the variance of 1 possessed by the
Normal distribution is quite small. Now consider what the curves
in Figs. 5, 6, and 8 would look like if we continued to increase
8: the curves would eventually start to evince diminishing returns,
as increasing § past the point where many social optima start to
become LTE’s will produce very little additional social utility. This
explains the curve in Fig. 7: it is merely a curve in which the § is
already quite large compared to the variance of the distributions
from which the entries of A and B are generated, and thus is expe-
riencing diminishing returns. It also indicates that if we continue
to increase &, the other figures will come to resemble Fig. 7.
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5.2. Leader-Follower Games

We conduct numerical studies on 2 x 2 games with payoff ma-
trices generated from three distributions: U[-0.5,0.5], A(0, 1),
and exp(1). For each set of trials, we let A~B, and let §; =&, = 6.
We define the Stackelberg gap as the difference between the Stack-
elberg equilibrium and the social optimum. Figs. 9, 10, and 11 each
show the average PoA of 1000 games generated according to these
distributions and solved for § €[0, 1] in the first graphs, where as
mentioned in Section 4, § =0 indicates that there is no trust be-
tween the players. The second graph considers how much of the
Stackelberg gap is covered by each of the policies at the varying &
levels. Unlike in the simultaneous case, in the leader-follower set-
ting under the complete knowledge policy if the Stackelberg equi-
librium is the social optimum that does not guarantee it is also
the LTSE. For that reason we have not ignored games in which this
occurs.

Unsurprisingly, in all three distributions for all values of §, the
cooperative complete knowledge policy results in the best perfor-
mance. We even note that with § = 0 it still manages to recover an
average of approximately 20% or greater of the Stackelberg gap for
each tested set of games. This “Reward without Risk” comes from
the greater cooperation between players seen in this interpretation
of the LTE.
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Also unsurprisingly, the complete knowledge policy tends to
outperform the incomplete knowledge policy on average, for most
6 values. Fig. 9 provides an excellent demonstration of this: be-
cause the max and min possible payoffs have a gap of 1, by the
time § = 1 both players are trying only to maximize the social util-
ity. In particular, by the time & reaches approximately 0.75, the
complete knowledge game tends to result in the social optimum

being played virtually every time. This is because the entries of A
and B are drawn from U[-0.5,0.5] so the chance of the socially
optimal outcome having a utility for player 1 which is more than
0.75 less than the player’s greediest move is nearly 0. In contrast,
while the same is true in the incomplete knowledge case, the game
levels off to covering slightly over 80% of the Stackelberg gap even
at § = 1. This occurs due to the fact that although both players are
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effectively altruistic at this level of §, the first player does not be-
lieve that the second player is. This causes player 1 to attempt to
maximize the social utility around the assumption that §, = 0, de-
spite the fact this is not true. We can consider this gap between
the incomplete and complete knowledge cases as the cost of igno-
rance.

It is important to note that the cost of ignorance may not be
bad. Indeed Fig. 11 shows that for § between approximately 0.05
and 0.3, the cost of ignorance is negative. This occurs due to the
fact that the first player is unaware that the second player is will-
ing to give up &, and thus is unable to take advantage of that fact
for its own gain. This is identical to what happens for some values
of § in the game described in Table B.8 in Appendix B.1.

6. Discussion and summary

Throughout this paper we have been considering limited-trust
equilibria as a description of behavior which is not entirely self-
ish, provided the opportunity cost of the behavior for player i is
less than some bound §;. This idea of an LTE was expressed very
naturally in simultaneous games, where at equilibrium each player
does not care about the § values which are motivating other play-
ers, only that it plays its best response to what those players are
actually doing. The key managerial insight of the LTE is that while
the players in giving something up appear to be playing “non-
rationally” when games are considered in isolation, when con-
sidered as a whole both players actually achieve more than they
would have received if they had myopically played the “rational”
Nash equilibria in each game. We saw that while it was possible
for limited-trust games to have worse results than Nash games, it
will not happen in several common classes of games, and occurs
rarely in others: in 2-player numerical trials with §; =&, =& we
observed an average personal utility increase of § for each player
when § was modest compared to the variance in the utilities of
randomly generated games. When we consider the leader-follower
setting players can no longer ignore the § values of their fellows,

and we considered the effects of whether or not players knew each
other’s §’s or had to prepare for the worst (assume §_; = 0).

It is natural to question the method developed in this paper for
the computation of LTE’s in a simultaneous game. Given that such
LTE’s are a subset of ¢-equilibria, which are PPAD-hard to compute
for general ¢, we do not expect to derive an algorithm for the gen-
eral k-player case without going to a mathematical program sim-
ilar to MP1. However, readers may wonder why we have not pro-
vided a different algorithm for computing an LTE in the 2-player
game.

The Lemke-Howson algorithm (Lemke & Howson (1964)) is one
of the first algorithms for finding Nash equilibria in a 2-player bi-
matrix game and remains one of the most popular. It relies on
the observation that at equilibrium (0¥, o), if player i has m;
pure strategies then for a best response o = {p}, p}, ..., pl,} ei-
ther pg = 0 or playing the pure strategy s; is a best response to o_;.
With this observation, the Lemke-Howson algorithm is able to set
up a linear complementarity program (LCP) for which any feasible
solution is a Nash equilibrium. Unfortunately the definition of an
LTE does not lend itself well to this method. This is partially due
to the fact that we cannot make a similar observation about pure
strategies in an LTE. However, while this problem may be possible
to overcome, the larger difficulty comes from the fact that there is
an optimization problem embedded in each player’s best response
to the other. While this is also true of a greedy best response, that
optimization problem can be expressed solely as a set of linear
constraints with no objective function, i.e. o; is a best response
to o_; if and only if u;(0j, 0_;) > u;(ej, o_;) for all je[m;]. The op-
timization problem embedded in the limited-trust best-response
cannot be absorbed to a larger program due to having an objec-
tive function. This is reflected in the fact that the best response
function is explicitly brought into MP1 in constraints (3) and (4),
rather than bringing in constraint sets. Even the further general-
ization of the algorithm in Lemke (1965) is unlikely to adapt to
computing LTEs. Although the Lemke-Howson algorithm is nearly
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sixty years old and has since been shown to be a special case of
the Global Newton Method by Govindan and Wilson (2003), it re-
mains an extremely prevalent method for computing Nash equilib-
ria in 2-player finite games in practice. This is particularly true fol-
lowing the proof by Chen and Deng (2006) that e-equilibria (and
Nash equilibria) are PPAD-complete to compute even for 2-player
finite games. It is worth noting that as a consequence, LTE(S) is
also PPAD-hard to compute.

We also considered several natural interpretations of the LTE in
a leader-follower game, which vary drastically depending on how
much knowledge players have of each other. More definite theoret-
ical probabilities for the likelihood of a social optimum occurring
in a random game in the leader-follower context, as these equilib-
ria are significantly easier to compute. We then moved onto nu-
merical testing of the LTE, comparing how the social utility varied
over random repeated games as a function of §, particularly when
compared to Nash and Stackelberg equilibria. One of the more sur-
prising results of our numerical trials in simultaneous games was
how strong the linear relationship was between the net utility and
8, prior to the onset of diminishing returns as § continues to in-
crease. In our leader-follower games we observed the differences
in the utility of each of our interpretations, noting that the coop-
erative complete knowledge case produced significant gains at the
no risk level of § = 0, and also that the gap between complete and
incomplete knowledge effectively measured the price of ignorance.
Perhaps more surprising was that the price of ignorance was some-
times negative on average, rather than just occasionally, with pa-
rameters existing for which player 1 assuming the worst of player
2 resulted in higher average total utility.

As noted earlier in this section, while many traditional equi-
librium computation methods such as the Lemke-Howson algo-
rithm are unlikely to adapt well to the LTE computation, we would
still like to put more study into the computation of simultane-
ous game LTE’s. Additionally, we are interested in considering how
LTE’'s model behavior in larger systems such as social networks.
Perhaps the most exciting line of inquiry is that of learning: the
LTE is positioned as a tool for non-Nash analysis of repeated game
that can also solve one-off simultaneous games, something for
which there are few existing tools. As such each player should be
trying to set their §; in order to maximize their utility over time.
We are very interested in the potential dynamics of shifts in § val-
ues as players interact with each other, particularly if they take
each other’s playing history into account. Also of interest is the re-
lationship between talented but relatively selfish individuals as op-
posed to trustworthy individuals without specialized skills, and the
resulting “diva” behavior often exhibited by the former. We will fo-
cus on these areas of study in our future research.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Proof. Consider that

o = arg max u(oj, o))

o€
subject to

G
8 > ui(U,‘ ﬂUji — u;(oy, Uf,‘

prior to the constant ¢; being added. Each player i#j now has to
solve
o} = argmax (u(oy, 0% +¢;)
gieX;
subject to
8 = ui(of, 0%) — w0y, 0
which has the same solution, and player j has to solve
o} =argmax(u(o;,0*;) +c;
= arg max (u(@.0°) + )

subject to
8 > (Uj(U]-G,Ufj) +¢j) — (uj(oj,0%;) +¢j)

which also has the same solution. Therefore, o* is still an
LTE(S). O

A.2. Proof of Theorem 7

Proof. First, suppose that we have a feasible solution (x, y). Given
that it is a feasible solution, the last four constraints will not be
violated as x and y are valid strategy profiles. The first two con-
straints ensure that neither player is giving up more than §; that it
could be making by playing the greedy best response to the other
player’s strategy. The next two ensure that the social utility from
the players actions is at least the amount which would be pro-
vided if each player played its limited trust best response to the
other. Therefore, since each player is providing as much social util-
ity as if it had been playing its limited trust best response (more
is impossible without violating constraint 1 or 2) and is not giving
up more than §; of what it could be making, (x, y) is an LTE(S).

Now, consider an LTE(§) given by (x, y), which we will show to
be a feasible solution. Because (x, y) is an LTE, x and y are both
valid strategy profiles and thus do not violate constraints (5-10),
particularly as constraints (7) and (8) are disabled for S, =[m],
Sg = [n]. (x, y) is an LTE, so neither player is giving up more than &;
and therefore constraints (1) and (2) are fulfilled. Finally, because it
is an LTE, x is a limited-trust best response to y and y is a limited-
trust best response to x, which means that constraints (3) and (4)
are fulfilled with equality. O

Appendix B. Additional Results: Leader-Follower Games
B.1. Demonstration of Policies

Given the interpretation of the policies in Section 4, we now
provide a practical demonstration of each on the 2 x 2 game given
in Table B.8. The Stackelberg equilibrium in this game occurs when
the first player plays 2 and the second player plays 1. We first con-
sider the incomplete knowledge policy: for §; <1, the first player
will play 2, as it otherwise stands to lose 5 —4 =1 if it plays 1.
If the first player plays 1, then for §, <1, the second player plays
2, but for §,>1, the second player plays 1 as well. If the first
player plays 2, then the second player plays 1 for §, <1.5 and 2
for §, > 1.5. Thus for the socially optimal policy (1,1) to be played,
we must have §¢, §, > 1.

Table B.8
A 2-Player 2 x 2 Game.
b2
1 2
D1 1 6, 4 4,5
2 53 8,15
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We next consider the complete knowledge policy. The second
player’s behavior is the same: if the first player plays 1 the second
plays 1 for §,>1 and if the first player plays 2 the second plays
2 for 8, > 1.5. Suppose §, <1, then the first player is selecting be-
tween (2,1) and (1,2): if §; >1 then it plays 1, and otherwise it
plays 2. Suppose 1 <38, < 1.5, then the first player is choosing be-
tween (1,1) and (2,1) and so plays 1 regardless of §;. Finally, sup-
pose 8, > 1.5. Here, the first player is selecting between (1,1) and
(2,2). If §1 <2, the first player plays 2 to receive 8 after the second
player also plays 2. If §; >2 it plays 1 instead.

The complete knowledge policy has the property that if we
have (8], 4/) > (81.8), that does not mean that the net utility for
the (87,8}) game is greater than or equal to that of the (81, ;)
game: the §; = §; = 1 game results in a greater net utility than the
81 = 6, = 1.5 game over the utility above. This is interpreted as the
first player taking advantage of the second player’s trustworthi-
ness. If (81, 8%) > (81.8,) then we can say that at least one of the
following is true: player 1 receives higher utility under (87, 85), or
the net utility is greater under (87, 85). This is because had player
1 selected the same strategy as it would with (84, §5), it would
have achieved at least as much utility for &) > §,. The fact that
it did not select the same strategy indicates that it selected one
which increases either its own utility or the net utility.

Finally, we consider the cooperative complete knowledge policy.
This policy is especially interesting as for any &1, 6, >0, the social
optimum of (1,1) will be played: as stated earlier, the Stackelberg
equilibrium in this game occurs when the first player plays 2 and
the second player plays 1. The social optimum occurs at (1,1), with
a net payoff of 10, and at the social optimum both players are re-
ceiving strictly more than they would in the Stackelberg equilib-
rium. This is the only policy which has the possiblity of reward
without risk: for any game in which §; = §, =0, each player is
guaranteed a minimum of what they would achieve in the Stack-
elberg equilibrium and the possibility of more. For the other two
policies, §; = §, = 0 guarantees that they will play the Stackelberg
equilibrium, meaning no risk, no reward.

Because the behavior of games under the cooperative com-
plete knowledge policy is different from traditional leader-follower
games even when §; =38, =0, we will use the term zero-trust
game to refer to the traditional leader-follower game.

B.2. Playing Social Optima

In this subsection we will examine what the structure of a 2-
player bimatrix game must be in order for the Socially Optimal
(greatest net payoff) strategy combination to be played. We will
confine our discussion to 2 x 2 games, but the result generalizes to
m x n games.

Let A, B be the payoff matrices for the first and second play-
ers, respectively. Without loss of generality, assume that the social
optimum occurs when (1,1) is played.

First, we consider what must happen for the Stackelberg equi-
librium to be the social optimum. An immediate requirement is
b1y <bq1, as otherwise even if the first player plays 1, the sec-
ond player will play 2. Without loss of generality, assume by; > by»
so that if the first player plays 2, the second player will play
1. In order for the first player to play 1 rather than 2 we must
have aq; > ay;. More formally, (1,1) is the social optimum and gets
played if and only if Eq, E;, E3, E4 are satisfied where

Ei = (a1 + by = {a12 + b1z, @21 + ba1, a2z + o))
Ey = (byi = {ba1, b2 })

E3 = (az < an)

E4 = (by = byp).

and i is player 2's best response to the first player playing 2.
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Fig. B.12. Geometric Leader-Follower Representation.

Geometrically, we can determine the outcome of a game by
plotting its entries in R2 in terms of the utility for each player,
as in Fig. B.12 where the horizontal axis a is the utility for the first
player and the vertical axis b is the utility for the second player.

From the figure, we can see that (1,1) is the social optimum. It
is also the Stackelberg equilibrium: by, < by;, so the second player
will play 1 if the first plays 1. by; > by,, so the second player will
play 1 if the first plays 2, and ay; < ayq, so the first player will play
1. In terms of the geometry, we can say that (1,1) is the Stackelberg
equilibrium and the social optimum if and only if (1,2) is not in
area 1 and whichever is larger out of by, or by, that point is not in
area 3. Then the first player will prefer 1 to 2 and the second will
prefer (1,1) to (1,2). This is true for all complete knowledge 2 x 2
leader-follower games, and is easily generalized to m x n games.

Now consider the incomplete knowledge policy. If the social
optimum occurs at (1,1), what must occur for it to be played?
If byy >byy and by; > byq, by, the first player will play 1 if ay; <
ay; + 61, and the second player will also play 1. If by; <bq; and
by; > by1, byy, then the first player will play 1 if ap; < a;; — 8 or
if ay; < dgpp + 8] and ay; + b2i < a2 +b12 or ap; > dqp + 8]. If the
first player plays 1, the second player will play 1 as well if by <
bq1 + 85. We can therefore say that (1,1) is the social optimum and
getS played if and Only if E], Ez, F3, E4, E], Ez, F5, FG' F7, or E], E2,
Fs, —Fg, Fg are satisfied where

B = (ay < an +461)
F5 = (b11 <biy <bu +62)
Fs = (ay; + byj < a2 + b1z)
F = (ay < aiz +61)
Fy = (ay < aiz — &1)

As with the Stackelberg game, we geometrically model these con-
straints by plotting the payoffs in R2, with both possible constraint
sets seen in Figs. B.13 and B.14. On both figures, given the points
(1,1) and (1,2), the social optimum is played if whichever is greater
of byq, by is in the shaded blue area.

We next consider the complete knowledge policy. Again we as-
sume, without loss of generality, that (1,1) is the social optimum.
Let by; > by, byy > byj. We want to consider when the second player
would play j given that the first player plays 2. This only occurs
if ay + by < ayzj+byj and by; < byj+8,. Now we can determine
that the first player will only choose 2 (given the second player
would play the social optimum if the first chose 1) if ay; > a; + 6,
or 612]' > a1 + 81 and ay; + bZi < azj + b2] and b2i < b2] +52. There-
fore, the social optimum gets played if and only if E;, E;, F3, Fs
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AND (Gg OR Gjg OR Gyq) is satisfied where

Go = (ap; < an + 1)
Gio = (ayi + by = ayj + byj)

Gi1 = (byi = byj+ 63).

Suppose by; > by,. If the geometric representation of the incom-
plete knowledge policy primarily depended on (2,1) and was dic-
tated by (1,2), here it is dependent on (2,2) and dictated by (2,1).
Fig. B.15 displays this: given the (1,1), (1,2), and (2,1) the red region
represents where the point (2,2) cannot be in order for the social
optimum to be played. Additionally, we must have by < bq; + 8,
and az;1 < dan +81.

Finally, we consider the cooperative complete knowledge policy.
It is easy to write the requirements for the social optimum to be
played in terms of the Stackelberg equilibrium: if (1,1) is the social
optimum and (i, j) is the Stackelberg equilibrium, (1,1) is played if
and only if Gij < an + 1 and b;j < byy + 8,. Fig. B.16 demonstrates
this: if (1,1) is the social optimum, it is played if and only if the
Stackelberg equilibrium occurs in the red shaded area.

B.3. Leader-Follower Random Repeated Games

While the LTE is capable of analyzing one-off games, it is also
a suitable tool for repeated games with a particular emphasis
placed on day-to-day societal interactions. Such interactions be-
tween players are not identical, but will likely display a pattern
over time so that they could be said to come from some “typi-

by —

Fig. B.15. Geometric Complete Knowledge Leader-Follower Representation.

b1 + &,

a; + o

v

Fig. B.16. Geometric Cooperative Complete Knowledge Leader-Follower Representa-
tion.

cal” distribution. Because of this, we now consider games where
the payoff matrices A, B for each player are generated according to
some distribution. In particular, we consider matrices where each
entry is generated iid for each player, though A and B may not
come from the same distribution. Let f; and f;, be the probability
distribution functions of A and B, respectively.

Theorem 9. In a 2 x 2 leader-follower game with zero trust where all
of player 1's payoffs are aj iid and are independent from player 2’s
payoffs by which are iid, the probability that Stackelberg equilibrium
of the game is the social optimum is

400 p+oo
P(5.0.) = 8/ / M(ai1, bit) fa(an )day fp(b11)dbyy
where

aq1+bqq—a
M(allsb11)7</ </ e G(an:bn,bzl)fb(b21)db21>fa(021)d021>

by ”11“’11 —byp
( / ( fa(alz)dau)fb(blz)dblz)

b1 ﬂ11+b11 by
G(an, b1, bar) = (/ < fa(azz)dazz)fb(bzz)db22>
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Proof. Given that every entry in the payoff matrix is equally likely
to be the social optimum, and equally likely to be played if it is
the social optimum, we will approach this problem by finding the
probability that 1,1 is the social optimum, and is played. This oc-
curs if Eq, E, E3, and E,4 are satisfied. Because E, and E3 are equally
likely to be fulfilled by i=1 or i =2 and each is equally likely
to occur, we can pick i =1 and multiply by two. While it is easy
to evaluate if any given game results in the social optimum be-
ing played, it is difficult to organize the integrals necessary to con-
struct the probability of it occurring. To help visualize the integrals,
we consider the graphical representation of a 2 x 2 game given in
Fig. B.12. For a fixed ay;, b1y, we have

P(ay + b1 > a1 + by, ax + by, Ex, Eslaiy, bi1) = Q(an, bi)

an an+bn—an
=/ </ G(ay, bn, b21)fb(b21)db21>fa(a21)da21

00 00

where

by a1 +bn—by
G(an, b, bxn) =/ / fa(ax)day; | fy(b2)dbyy

For 1,1 to be the social optimum and be played by player 2 if
player 1 plays 1, it is necessary and sufficient that by; <b;; and
ay + by > agp + byp. Since

P(an + b1 = a2 + b1z, bin > bazlay, bn) = H(an, biy)
by ar+by—byz
H(ap, b)) = / </ fa(au)da]z) fo(b12)dbyy

—00 —00

is independent of P(ay; + b1y > ay1 + byy, agp + byy, Ez|aq, byp), we
then have

P(Ey, Ez, Eslayr, bu1)
=P(an +bn > a2 + b2, by = brzlay, bun)
-P(an + by > az1 + ba1, ax + by, Exlan, bir)
=Q(an. bn) -H(an. bn)
= M(an. bn)

Since P(Eq, E, E3, Eslair, byy) = P(Ey, E, E3, —E4layg, byy),  this
tells us the probability that 1,1 is a Stackelberg equilibrium and
the social optimum is

400 p+o0
P=2 / M(an. bu) fa(an )dax fy (brr)dbyy

Since all 4 entries in a 2 x 2 game are equally likely to be the
social optimum and be played, this gives us

400 p+oo0
P(S0.) =8 / / M(an. bir) fa(@n )dan fy (brr )dbi,
O

We see from Theorem 9 that although we have a method to ex-
actly compute the probabilities of the social optimum being played
in a zero-trust game, it is already quite complex for even a 2 x 2
game. Further, introducing the §; values for either the incomplete
or complete knowledge policies vastly complicates the geometry of
the space over which our probability distributions are computed.
Therefore, assuming that f, and f, have finite expectation and vari-
ance, it will be generally more cost effective to use sampling meth-
ods to estimate the probability of playing the social optimum as
well as related properties due to the relative ease of solving leader-
follower games. Before we move on to Section 5 to do exactly that,
we will first briefly discuss the expectation of zero trust leader-
follower games, as a metric against which to measure the effec-
tiveness of our policies.

Theorem 10. The
my XMy X ... XMy

expected payoff of each player i in a
zero-trust n-player Stackelberg game where

each player i's payoffs for each entry in the probability tensor are
generated iid from a distribution A; is

ELulAr. . Aul = m [~ 0y G0 By, ()™

where f. is the probability density function for A; and Fy, is the cu-
mulative distribution function.

Proof. Consider player i’s choice: player 1 makes its choice based
on all other players’ responses, however player 1’s payoff is inde-
pendent of these players. Players 2 through i — 1 have also made
choices based on all later players responses, but again each of their
payoffs is independent of these later players. Thus, after players 1
through i — 1 have made their choices, player i chooses between
m; possible responses, each with an iid payoff and each indepen-
dent of the other n — 1 players’ payoffs despite the fact that previ-
ous players factored i's action into their choices, and i will factor
later players into its choices. Player i will therefore be choosing
the maximum of m; iid variables and its payoff is distributed as
the maximum of m; samples from its payoff distribution A;.

Let X be a random variable and let X(X) be the maximum of k iid
samples of X. For its CDF we have FX(") (x) = (F (x))* which gives us

a PDF of f)gk) (x) = kfyx (x) (Fx (x))*=1. Therefore, the expected value
of XK is

EX®) = k_/oo Xfi (%) (Fx (x))*dx

which means the expected value of the game for player i is

E@lAr .. A0 = EA™) =my [~ 6, G0 F, ()™ dx
O

Theorem 11. The social optimum of a my x my x ... x My zero-trust
n-player game with each player’s payoffs generated iid from A; is

M / " % f () (B (0 Y1 dx

where X is distributed as Y[, A; for independent A; and M =
[Tits my.

Proof. The social optimum is defined as the maximum value of
ZL] u;(o) across all strategies o € X, and is always a pure strat-
egy profile. There are M such pure-strategy o, all iid. By the same
reasoning as in the proof of Theorem 10, this means the expected
value of the social optimum is

M / " % f () (B (0 M1 dx

for X ~ Y01 A. O

Given the results of Theorems 10 and 11, we can conclude that
the expected PoA of a zero-trust 2-player m x n leader-follower
maximization game is

E[(A+B)™)]
E[A™] + E[B™]

where X(™ is the maximum of n iid samples of a distribution X.
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