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a b s t r a c t 

We propose and analyze a new type of equilibrium, in which limited-trust exists between players with 

long-term interactions. We assume heterogeneous interactions: players will engage in several games over 

an undetermined period of time with payoffs for each game drawn from a distribution. As such, players 

may not engage in the same game more than once. We define a Limited-Trust equilibrium to address 

these heterogeneous games, show its existence in all finite simultaneous games, and analyze it in general 

and in several common classes of games. We provide several interpretations of this equilibrium in leader- 

follower games. We then numerically compare the social utility generated from these equilibria in both 

simultaneous and leader-follower games to that generated by Nash and Stackelberg equilibria in the same 

games: when players display a similar level of trust δ, each sees an average gain of approximately δ in 

its utility each game over what it would achieve in traditional competitive/rational games, meaning for 

each game a player loses δ, there is another game it gains 3 δ. Thus while players appear to play “non- 

rationally” by giving something up, they actually gain more and are each able to come out ahead of what 

they would have received if playing rationally as in a Nash equilibrium. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

One of the first things children learn is to “play nice” with oth-

ers. In order to get ahead and be a functioning member of soci-

ety, each individual must sometimes make choices which do not

appear to benefit them in the short term. Even though these ac-

tions cost the individual, they make up for it in benefit to soci-

ety; over time each individual will have these costs returned to it

in the form of unexpected favors. Under the rationality considered

in a Nash equilibrium ( Nash (1950) ), it makes sense to pay these

costs and only violate the social rules when the cost is too great.

This is particularly true if, after a certain amount of time, the rule

violation will be forgiven or forgotten. To that end, a great deal

of research has gone into the study of extensive form games in

general, and repeated games in particular. These games frequently

evince equilibrium behaviors which, when only considered for the

individual stages rather than the extensive game, are not rational

under the Nash definition. An explicit discussion of the work on

these games will be presented in Section 1.1 . 

However, when there are no formal consequences to avoiding

the costs of society, such as exile, why do individuals continue to

incur these costs? For example, why will most people give up a

seat on a bus to a stranger who is injured? In a Nash equilibrium,
∗ Corresponding author. 
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n which only the utility of the individual making a decision is con-

idered, the seat is never given up unless keeping it incurs some

ost, such as damage to one’s reputation. However, even if no one

hey know is present or will ever know of the decision, most peo-

le still give up the seat. 

Perhaps the simplest answer is that the individual in the seat

annot know if their decision will ever make it back to others they

nteract with regularly and so they are simply risk averse. Another

s that humans have some intrinsic degree of altruism. Evolution-

ry biology provides the best explanation of this in the form of

amilton’s rule for kin selection ( Hamilton (1963, 1964a, 1964b) )

hich says that as humans are collections of genes, our genes seek

o help any of the same genes present in other humans. To quote

. B. S. Haldane, “I would lay down my life for two brothers or

ight cousins”. This idea that we lend aid to others because they

re some proportion of ourselves has given rise to the concept of

-altruism, which will be discussed in Section 1.1 . 

In this paper we introduce a new concept which we refer to

s a limited-trust equilibrium. In it, a player i attempts to max-

mize its long-term utility by trusting the other player(s) within

 hard trust limit δi that it is willing to give up when the other

layer(s) will gain “significantly” more than it (they) would lose

f player i were to play “rationally”. The player does this with the

ope that the other player(s) will return the favor in a similar way,

s well as form lasting partnerships and attract new ones through

eputation. Given an opportunity, if an individual must choose be-

ween two agents of relatively equal capabilities to partner with

https://doi.org/10.1016/j.ejor.2020.07.009
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Fig. 1. Heirarchy of equilibria. Intersection of all classes occurs in constant sum 

games. 
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hen the individual would prefer to interact with the more trust-

orthy agent. We show through numerical trials that in two player

ames, when both players have a similar trust limit, δ1 = δ2 > 0 ,

oth players come out significantly ahead in the long term com-

ared to if they had played solely to maximize their own utility: in

-player numerical trials with δ1 = δ2 = δ we observe an average

ersonal utility increase of δ for each player when δ was modest

ompared to the value of the variance in the utilities of randomly

enerated games. 

The limited-trust equilibrium provides a new answer to the

revious question of why someone would give up their seat on

he bus to an individual who is injured: they do so to establish

nd contribute to a culture of “kindness”, which will increase the

ikelihood of someone giving them a seat in the event that they

ecome ill or injured. This interpretation can be viewed as a per-

on avoiding the consequences of the Broken Windows Theorem

 Wilson & Kelling (1982) ) which (loosely) states that evidence of

rosion of one norm leads to further erosion of that and similar

orms. 

While it will be discussed more fully in Section 1.1 , the idea of

on-rationality within repeated games has been extensively stud-

ed. Therefore we pause briefly to distinguish this concept from

ther solution concepts which occur within repeated games: in

uch situations, the same games are played repeatedly and so play-

rs arrive at a best way to handle that single game over time us-

ng methods such as future discounting and trigger strategies. In

imited-trust games, while players are assumed to be playing with

ach other over time, they are not assumed to play the exact same

ame continuously. In fact, they may never play the same game

wice. Because of this, it is necessary that one-off games be ana-

yzed individually, as each game may be independent of previous

r later games played. This is something that other tools for re-

eated game analysis cannot do. If two players do interact again,

he game will most likely be different as it is assumed to be drawn

rom some probability distribution. 

The rest of this paper is organized as follows: In Section 1.1 we

rovide a more detailed discussion of previous work into extended

orm games as well as α-altruism. In Section 2 we fully detail the

roperties of a limited-trust equilibrium (LTE): we show that it is

uaranteed to exist in finite n -player games, prove where it fits

ithin the hierarchy of equilibrium concepts (see Fig. 1 for these

esults), and show that it results in higher net utility than Nash

quilibria on several common games. Section 3 provides a mathe-

atical program for LTE computation, and Section 4 discusses sev-
ral interpretations of limited-trust in the leader-follower setting.

n Section 5 we present the results of numerical trials in both the

imultaneous and leader-follower settings, in which we compare

he highest value Nash equilibria to the highest value LTE’s for ran-

omly generated games, before moving to our final discussion of

esults and concluding remarks in Section 6 . 

.1. Literature Review 

Since the seminal work of Nash (1950) there has been a great

nterest in Game Theory and equilibrium concepts. In particu-

ar, many papers have noted that the strict definition of ratio-

ality adhered to by Nash equilibria, that it is a state where no

layer can unilaterally improve its own utility given the actions of

ther players, is frequently not observed in empirical trials. One

ircumstance in which this occurs is repeated games in which

layers engage in multiple rounds of play. Various folk theorems

ave been considered for these games which attempt to guaran-

ee various measures of fairness in the equilibria; detailed anal-

ses of these theorems and the conditions necessary for them

o apply has been the subject of papers such as Aumann and

hapley (1994) ; Benoit and Krishna (1985) ; Fudenberg and Maskin

1986) ; Rubinstein (1979) , and Rubinstein (1980) . In the more ap-

lied sense, there has been a great deal of work aimed at develop-

ng rational definitions of trust for repeated games: papers such as

asgupta (20 0 0) ; Engle-Warnick and Slonim (20 06b) ; Fudenberg

nd Maskin (1986) and Gibbons (2001) provide theoretical anal-

sis of various games and trust strategies while papers such as

eopold-Wildburger, Schuetze, and Lafer (2002) , Anderhub, Engel-

ann, and Gth (2002) ; Bapna, Qui, and Rice (2017) ; Berg, Dick-

aut, and McCabe (1995) ; Engle-Warnick and Slonim (2004) , and

ngle-Warnick and Slonim (2006a) have focused on conducting

mpirical studies on several of these trust strategies, particularly

n the context of reciprocity. In the business setting Morreale, Mit-

one, and Nigro (2019) experimentally tests the real options games

pproach put forward by lo Nigro, Morreale, Robba, and Roma

2013) for trust in strategic alliances. Meanwhile in the context of

upply-chain relationships Chen and Wu (2010) empirically studies

he formation of partnerships in the automotive industry, Du, Nie,

hu, and Yu (2014) derives a model for reciprocal-minded supplier-

etailer relationships, and Niederhoff and Kouvelis (2016) and Choi

nd Messinger (2016) empirically show supply-chain relationships

end to be more “fair” over time than predicted in standard game

heory. The recent survey Dal Bó and Frchette (2018) details many

f these as well as other empirical studies, all of which on average

how non-Nash behavior. 

These trust papers, both theoretical and experimental, deal ex-

licitly with repeated games or (as in Berg et al. (1995) and

eopold-Wildburger et al. (2002) ) one-off games in extensive form

leader-follower). However, there is less work considering “non-

ational” behavior in simultaneous one-off games. Most such work

s done in the framework of α-altruism, as proposed by Ledyard

1994) . In this concept, each player i has a perceived utility of

 
′ 
i 
(σ ) = (1 − αi ) u i (σ ) + αi u (σ ) for αi ∈ [0, 1] and thus takes the

otal social utility into account as part of its personal “utility”.

his model is attractive for a number of reasons: it is supported

y Hamilton’s kin-selection rule in evolutionary biology ( Hamilton

1963, 1964a, 1964b) ), it allows for easy equilibrium computation

ia Nash equilibria over perceived utilities, and it provides a broad

odel which can be adapted to virtually any form of game in-

luding simultaneous, extensive form, and repeated games. Chen,

eijzer, Kempe, and Schäfer (2014) provides a thorough analysis

f this concept when applied to congestion, valid utility, and cost-

haring games, building on the analysis of Caragiannis, Kaklamanis,

anellopoulos, Kyropoulou, and Papaioannou (2010) of this concept

nd extending the definition of ( λ, μ)-smoothness put forth in an
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c  
earlier version of Roughgarden (2015) to α-altruistic games. How-

ever, this notion of altruism also has disadvantages, particularly

from a modeling perspective. First, the game is scale invariant. This

means that if player i would prefer not to collect € 1 so that player

j can collect an extra € 2 given αi , then it would prefer not to col-

lect € 100 so that player j can collect an extra € 200 for the same

αi . Second, in games between a large number of players, the play-

ers are likely to become completely self-sacrificing to increase the

total utility even for small αi > 0. To see this, consider a scenario

in which for every unit of utility player i gives up, all other play-

ers receive some small amount of utility c , where 0 < c �1. As the

number of players grows, player i will seek to drive its personal

utility as low as possible so long as αi > 0. 

In the next section we will propose a new concept of a limited-

trust equilibrium which applies to a similarly broad class of games,

but incorporates a hard trust-limit not present in α-altruism. Play-

ers behave in a manner which encourages reciprocity, provided it

is not to expensive for them personally in terms of a hard limit on

their current personal utility. They make this investment in recip-

rocation in order to increase their personal utilities in the long run

or in expectation. This concept places a “budget” on what players

spend toward encouraging reciprocity in any one game and thus

eliminates both the tendency of players in large games to become

self-sacrificing and the scale invariance which occur in α-altruistic

games. 

2. Limited-Trust Equilibrium 

We now define a new concept of equilibrium in which players,

while still selfish and concerned primarily with their own utility,

exhibit a limited interest in the common good and contribute to

it provided the cost is below some threshold. They do so in order

to encourage other players to do the same in order to benefit in

the long term. For comparison, we first review the definition of a

mixed Nash equilibrium (MNE) over a finite game: 

Definition 1 (Strategy Profile of a Finite Game) . Given a finite n -

player game in which each player i has m i pure strategies, a valid

strategy profile σ i for player i is a probability distribution over the

m i pure strategies ( σi = { p i 
1 
, p i 

2 
, . . . , p i m i 

} , p i 
j 
≥ 0 , 

∑ m i 
j=1 

p i 
j 
= 1 ). 

Definition 2 (Mixed Nash Equilibrium) . Given an n -player game

with strategy profiles σ = (σ1 , σ2 , . . . , σn ) for each player where

for a given player i , σ−i is the set of strategies played by all other

players, σ is a mixed Nash equilibrium (MNE) if and only if for

any other valid strategy profiles σ ′ 
i 
, u i (σi , σ−i ) ≥ u i (σ

′ 
i 
, σ−i ) for all

i ∈ [ n ], where [ n ] = { 1 , 2 , . . . , n } and u i (σi , σ−i ) is the expected util-

ity of the game for player i . 

A related concept is the ε-approximate Nash equilibrium ( ε-
equilibrium) defined as follows: 

Definition 3 ( ε-Approximate Nash Equilibrium) . For an n -player

game with strategy profiles σ = (σ1 , σ2 , . . . , σn ) for each player, σ
is an ε-equilibrium if and only if for any other valid strategy pro-

files σ ′ 
i 
, u i (σi , σ−i ) ≥ u i (σ

′ 
i 
, σ−i ) − ε for all i ∈ [ n ]. 

Definition 4 (Price of Anarchy) . The Price of Anarchy (PoA) of a

utility maximization game is the ratio of the value of the socially

optimal solution, defined as the solution that maximizes the sum

of the utilities of all players (net utility), to the value of the equi-

librium with the lowest social utility. 

Typically the equilibrium considered in the PoA is the Nash

equilibrium; in this paper we will explicitly state which equilib-

rium is being considered when using the term. 

Note that the set of Nash equilibria is merely the set of ε-
approximate equilibria for ε = 0 . It is also worth noting that the
onditions of an MNE can be defined in mathematical constraints.

or an n -player utility maximization game, any strategy profile σ
omprises an MNE if and only if it satisfies the following con-

traints: 

 i (σ
′ 
i , σ−i ) − u i (σi , σ−i ) ≤ 0 ∀ σ ′ 

i ∈ �i , i ∈ [ n ] 

here �i is the set of valid strategy profiles for player i . We also

efine 

G 
i (σ−i ) = arg max 

σi 

u i (σi , σ−i ) 

s the greedy best response of player i given σ−i . We will

buse notation to let σ G 
i 

∈ σ G 
i 
(σ−i ) ; while there may be multi-

le elements of σ G 
i 
(σ−i ) , as it is a set-valued function, we will

nly be concerned with σ G 
i 

with regard to the value u i (σ
G 
i 

, σ−i )

hich is equal for all elements of σ G 
i 
(σ−i ) . We say that an ε-

quilibrium σ ∈ � is well-supported if and only if for every player

 , u i (σ
G 
i 

, σ−i ) − u i (s 
i 
j 
, σ−i ) ≤ ε for every pure strategy s i 

j 
which is

layed in σ i with non-zero probability. Note that any MNE is a

ell-supported ε-equilibrium for all ε ≥0. 

Having covered our preliminary definitions, we now propose a

ew concept of equilibrium. 

efinition 5 (Limited-Trust Equilibrium (LTE)) . Consider a finite

 -player maximization game with strategy profiles σ ∈ � = �1 ×
. . . × �n and trust levels δ = (δ1 , . . . , δn ) for each player i , where

i > 0. σ is a limited-trust equilibrium if and only if u i (σ
G 
i 

, σ−i ) −
u i (σi , σ−i ) ≤ δi and u (σi , σ−i ) ≥ u (σ ′ 

i 
, σ−i ) for any other valid strat-

gy profiles σ ′ 
i 

∈ �i such that u i (σ
G 
i 

, σ−i ) − u i (σ
′ 
i 
, σ−i ) ≤ δi , where

 (σ ) = 

∑ n 
i =1 u i (σ ) is the net utility. 

We will use LTE( δ) to refer to an LTE for players with trust lev-

ls δ = { δ1 , . . . , δn } . This definition is equivalent to saying that the
ollowing two conditions are met: 

1. Player i cannot alter its strategy profile to increase its payoff by

more than δi . In other words, it is not giving up more than δi 
it could be making by changing its behavior to take advantage

of other players’ strategies. 

2. Player i cannot alter its strategy profile to increase the net util-

ity without decreasing its own utility so that it loses more than

δi from its greedy best response. In other words, it cannot in-

crease the net utility without violating its cost threshold δi . 

As for where δ comes from, it can be viewed as the degree to

hich an individual is willing to invest in the future, meaning the

ost they are willing to incur in order to benefit others and en-

ourage them to reciprocate. 

It is worth noting that we could equivalently write the net util-

ty u (σi , σ−i ) as 

 (σi , σ−i ) = 

n ∑ 

i =1 

u i (σi , σ−i ) = u i (σi , σ−i ) + u −i (σi , σ−i ) 

here u −i (σi , σ−i ) = 

∑ 

j 	 = i u j (σi , σ−i ) . While there is no mathemat-

cal advantage in doing so, it helps to illustrate that if player i gives

p δi by playing σ
′ 
i 
rather than σ i and the net utility increases

y x < δi , the δi − x value is not simply lost. Rather, if u i (σ
′ 
i 
, σ−i ) −

u i (σi , σ−i ) = −δi this means u −i (σ
′ 
i 
, σ−i ) − u −i (σi , σ−i ) = δi + x . 

Because a limited-trust (LT) best response is concerned with

wo values u ( σ ) and u i ( σ ) it makes sense to examine their rela-

ionship. In particular for a player i , if all other players are playing

−i then player i can easily determine the results of all of its pure

trategies s i 
j 
in terms of u (σi , σ−i ) and u i (σi , σ−i ) . Because of the

inearity of u and u i with respect to s 
j 
i 
given a fixed σ−i , any u , u i

ombination within the convex hull of the pure strategies can be
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chieved by player i . Therefore, player i can solve the following lin-

ar program LP1 to find its limited-trust best response σ ∗
i 
(σ−i ) : 

σ ∗
i (σ−i ) = arg max 

σi ∈ �i 

u (σi , σ−i ) 

subject to (LP1) 

δi ≥ u i (σ
G 
i , σ−i ) − u i (σi , σ−i ) . 

hen we take the limit δi → ∞ we find that player i becomes

ompletely self-sacrificing for the net utility. Thus by careful selec-

ion of δ, players of any degree of trustworthiness from completely

elf-interested ( δ → 0) to completely selfless ( δ → ∞ ), may be mod-

led though players of the latter type may be quite uncommon. 

We note that while the set σ G (σ ) = { σ G 
1 
(σ−1 ) , σ

G 
2 
(σ−2 ) , . . . ,

G 
n (σ−n ) } is the set of greedy best responses to the current strat-
gy set σ , σ G ∈ σ G ( σ ) is not generally a Nash equilibrium. Instead,

t is merely a set of greedy best responses to σ for each player.

s such, the fact that σ G 
i 

is a component of player i ’s limited-

rust best response does not imply that a limited-trust equilibrium

s dependent on a Nash equilibrium, merely that is dependent on

reedy best responses. As Nash equilibria are also heavily depen-

ent on greedy best responses, with σ ∈ σ G ( σ ) being a necessary

nd sufficient condition for σ to be a Nash equilibrium, this can

e a subtle point. To further emphasize this distinction, we show

n an example game in Table 4 that an LTE can exist independent

f any Nash equilibrium. 

emma 1. Given an LTE( δ) σ ∗, if a constant c j is added to all payoffs
or player j , σ ∗ is still an LTE( δ). 

The proof is included in Appendix A.1 . 

Although Lemma 1 demonstrates that an LTE( δ) is invariant un-
er the addition of a constant c j to all of player j ’s payoffs, the

ame is not true for affine transformations. This is an intentional

eature of the limited-trust concept: while a player may be will-

ng to accept a loss of € 1 to ensure another player gains € 2, it

s not willing to accept a loss of € 100 to ensure another player

ains € 200, as would be required of an affine transformation of a

ame. However, for a given affine transformation f (x ) = ax + b the

quilibria are invariant if δ is rescaled to δ| a |, for a 	 = 0. 

heorem 2. Every n-player finite game with trust levels δ =
(δ1 , δ2 , . . . , δk ) > 0 has an LTE ( δ) . 

roof. This proof will follow the same pattern as Nash’s ( Nash

1950) ) proof for the existence of MNE in an n player game by

aking use of Kakutani’s Fixed Point Theorem ( Kakutani (1941) ). 

To begin, let σ ∈ � be a set of strategy profiles for each player.

et u i (σ ) = u i (σi , σ−i ) be the payoff player i derives from strategy

rofile σ i given that all other players are playing σ−i . Now we wish

o define a new utility function 

 i (σi , σ−i ) = 

{
u (σi , σ−i ) u i (σ

G 
i 

, σ−i ) − u i (σi , σ−i ) ≤ δi 
−M otherwise , 

here M is a large positive constant. Because the game is finite,

e can pick M greater than maximum of the absolute values of

he socially optimal solution and the most socially harmful so-

ution multiplied by n , and the w i (σi , σ−i ) of any σ i which vio-

ates u i (σ
G 
i 

, σ−i ) − u i (σi , σ−i ) ≤ δi is strictly less than w i (σ
′ 
i 
, σ−i )

or some σ ′ 
i 
which does not. Therefore, maximizing w i (σi , σ−i ) is

quivalent to maximizing u (σi , σ−i ) over the set of points which

atisfy the maximum cost constraint. We can then say that σ ∗ ∈ �

s a LTE( δ) if and only if 

 i (σ
∗
i , σ

∗
−i ) ≥ w i (σi , σ

∗
−i ) ∀ σi ∈ �i , ∀ i ∈ { 1 , 2 , . . . , n } , 

hich means that σ ∗ is a LTE( δ) if and only if σ ∗
i 

∈ B i (σ
∗
−i 

) for all i ,

here B i (σ
∗
−i 

) is the set of best responses (with respect to w i ) for

layer i given that the other players are playing σ ∗
−i 
. If we define
 (σ ) = B 1 (σ−1 ) × B 2 (σ−2 ) × . . . × B n (σ−n ) then finding an LTE( δ) is
quivalent to finding σ ∈ B ( σ ). Therefore, we must show the exis-

ence of a fixed point. 

We now use Kakutani’s Fixed Point Theorem to show such a

xed point exists. The theorem states that given a nonempty fi-

ite dimensional Euclidean space A and f : A → A a set-valued corre-

pondence with x ∈ A → f ( x ) ⊆A , a fixed point is guaranteed to exist

f the following conditions hold: 

1. A is a compact and convex set. 

2. f ( x ) is nonempty for all x ∈ A . 

3. f ( x ) is convex for all x ∈ A . 

4. f ( x ) has a closed graph: if { x k , y k } → { x , y } with y k ∈ f ( x k ) then

y ∈ f ( x ). 

In this case we have A = �, f (σ ) = B (σ ) . We now wish to

how that all conditions hold. 

1. � is a compact and convex set: trivial, as � is the Cartesian

product of simplices �i . 

2. B ( σ ) is nonempty for all σ ∈ �: B i (σ−i ) =
arg max σi ∈ �i 

w i (σi , σ−i ) and so must be nonempty for each

i . Therefore B ( σ ) is nonempty for all σ ∈ �. 

3. B ( σ ) is convex for all σ ∈ �: It suffices to show that B i (σ−i )

is convex for all i . We first note that any points x, y ∈
B i (σ−i ) must provide equal net utility u (x, σ−i ) = u (y, σ−i ) and

must also provide i with a personal utility at most δi less
than the greedy best response. Without loss of generality,

assume u i (x, σ−i ) ≥ u i (y, σ−i ) . Then for any convex combina-

tion z = λx + (1 − λ) y where λ∈ [0, 1], the linearity of u and

u i implies that u (x, σ−i ) = u (z, σ−i ) = u (y, σ−i ) and u i (x, σ−i ) ≥
u i (z, σ−i ) ≥ u i (y, σ−i ) which means z ∈ B i (σ−i ) . 

4. B ( σ ) has a closed graph: While the previous three conditions

were shown to hold using the same arguments as in the proof

of existence for Nash equilibria, the use of a non-continuous

function w i introduces several complications to showing that

B ( σ ) has a closed graph. We will show this by contradiction.

Suppose that B ( σ ) does not have a closed graph. Then there

exists a sequence (σ k , ˆ σ k ) → (σ, ˆ σ ) such that ˆ σ k ∈ B (σ k ) , but

ˆ σ / ∈ B (σ ) , meaning that ˆ σi / ∈ B i (σ−i ) for some i . Then there is

some σ ′ 
i 

∈ B (σ−i ) such that 

w i (σ
′ 
i , σ−i ) > w i ( ̂  σi , σ−i ) , 

which means that 

u (σ ′ 
i , σ−i ) > u ( ̂  σi , σ−i ) . 

By continuity of u i and u , we have that for k sufficiently

large u (σ ′ 
i 
, σ k 

−i 
) > u ( ̂  σ k 

i 
, σ k 

−i 
) . Because σ ′ 

i 
/ ∈ B i (σ

k 
−i 

) , we have

u i (σ
Gk 
i 

, σ k 
−i 

) − u i (σ
′ 
i 
, σ k 

−i 
) > δi where σ Gk 

i 
∈ σ G 

i 
(σ k 

−i 
) as other-

wise this would contradict the assumption that ˆ σ k 
i 

∈ B i (σ
k 
−i 

) . 

Suppose that u i (σ
Gk 
i 

, σ k 
−i 

) − u i ( ̂  σ
k 
i 
, σ k 

−i 
) < δi . Then by the lin-

earity of u i and u there is a convex combination s of σ ′ 
i 

and ˆ σ k 
i 

such that u i (σ
Gk 
i 

, σ k 
−i 

) − u i (s, σ
k 
−i 

) ≤ δi and u (s, σ
k 
−i 

) >

u ( ̂  σ k 
i 
, σ k 

−i 
) , which implies w i (s, σ

k 
−i 

) > w i ( ̂  σ
k 
i 
, σ k 

−i 
) and therefore

contradicts the assumption that ˆ σ k 
i 

∈ B i (σ
k 
−i 

) . 

Now suppose that u i (σ
Gk 
i 

, σ k 
−i 

) − u i ( ̂  σ
k 
i 
, σ k 

−i 
) = δi . In order

for σ ′ 
i 

to become a strategy in B i (σ−i ) , it must be that

u i (σ
G 
i 

, σ−i ) − u i (σ
′ 
i 
, σ−i ) = δi , as if it became less than or

equal to δi for sufficiently high k , then it would con-

tradict ˆ σ k 
i 

∈ B i (σ
k 
−i 

) . Similarly, u i (σ
G 
i 

, σ−i ) − u i ( ̂  σi , σ−i ) = δi as
if it is less than δi , then for sufficiently high k we

would have u i (σ
Gk 
i 

, σ k 
−i 

) − u i ( ̂  σ
k 
i 
, σ k 

−i 
) < δi which we have al-

ready seen leads to a contradiction. However, this means

that there is a strategy σ ′′ 
i 

= λσ G 
i 

+ (1 − λ) σ ′ 
i 

for some

value of λ∈ [0, 1] which has u (σ ′′ 
i 

, σ−i ) > u ( ̂  σi , σ−i ) and

u i (σ
′′ 
i 

, σ−i ) > u i ( ̂  σi , σ−i ) , due to the assumption that δi > 0
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Table 1 

Example game for LTE. 

Player 2 

β1 β2 

Player 1 α1 4,0 5,5 

α2 5,1 6,2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Game with non-overlapping LTE([0.5,0.5]) and well-supported 0.5-equilibria. 

Player 2 

β1 β2 

Player 1 α1 2,4 3,5 

α2 3,2 4,3 

Fig. 2. Best response curves for game in Table 3 , δ1 = δ2 = 0 . 1 . 

Table 3 

Game in which LTE(0.1) < MNE. 

Player 2 

β1 β2 

Player 1 α1 1,2 5,0 

α2 1.1,5.1 4,5 

{  
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and the linearity of u and u i . This means that u (σ ′′ 
i 

, σ k 
−i 

) >

u ( ̂  σ k 
i 
, σ k 

−i 
) and u i (σ

′′ 
i 

, σ k 
−i 

) > u i ( ̂  σ
k 
i 
, σ k 

−i 
) for sufficiently high k .

Given u i (σ
Gk 
i 

, σ k 
−i 

) − u i ( ̂  σ
k 
i 
, σ k 

−i 
) ≤ δi , this means w i (σ

′′ 
i 

, σ k 
−i 

) >

w i ( ̂  σ
k 
i 
, σ k 

−i 
) which contradicts the assumption that ˆ σ k 

i 
∈ B (σ k 

−i 
) .

Therefore B ( σ ) must have a closed graph. 

Therefore, Kakutani’s theorem implies the existence of a σ ∗ ∈ �

such that σ ∗ ∈ B ( σ ∗), which proves the existence of an LTE( δ). �

Having established the guaranteed existence of an LTE for δ > 0

we now want to compare it to a Nash equilibrium on a sim-

ple example, given in Table 1 . This game has exactly one Nash

equilibrium, at σ = { [0 , 1] , [0 , 1] } with pure strategies α2 , β2 be-

ing played. Now consider the LTE with δ = { 0 . 5 , 0 . 5 } . LP1 shows

that for player 2, playing the pure strategy β2 ( σ2 = [0 , 1] ) is still

the best choice, regardless of σ 1 . The same is not true for player

1: given σ2 = [0 , 1] , solving LP1 gives the first player’s unique

best response as σ1 = [0 . 5 , 0 . 5] . The net utility of the LTE(0.5) for

the game is then u 1 ({ [0 . 5 , 0 . 5] , [0 , 1] } ) + u 2 ({ [0 . 5 , 0 . 5] , [0 , 1] } ) = 9 ,

compared to the net utility of 8 which occurs in the Nash equilib-

rium. 

The equilibrium in Table 1 highlights an important fact about

the limited-trust best response, that there may not be a pure strat-

egy best response. This is at odds with the greedy best response

where there is always a pure strategy best response. This implies

that there does not appear to be a straightforward transformation

of a limited-trust game into a Nash game. 

Next, we wish to consider where the LTE fits within the hierar-

chy of standard solution concepts within game theory. 

Theorem 3. For any finite n-player game G , the set of LTE( δ) is a
subset of the set of ε-equilibria of G , where ε ≥max i δi . 

Proof. Consider that in any LTE( δ), no player can improve its own

payoff by more than δi by definition of an LTE. Therefore such an
LTE is also an ε-equilibrium for ε ≥max i δi . �

While each limited trust equilibrium is also a max i δi = ε-
equilibrium, the converse is not true, even when δi = δ j for all ∀ i ,

j ∈ [ n ]. This is because of the additional constraint on an LTE( δ) that
no player i be able to improve the total utility without decreas-

ing its own utility below the δi level. Further, although the set of
LTE( δ)’s is a subset of ε-equilibria as described in Theorem 3 , they

are important because they represent a state in which each player

is contributing to the net utility as much as they are able within

their limits, not merely a state where each player has decided it

is not worth the effort (or in the case of irrational-valued Nash

equilibria it is realistically infeasible) to change from their current

strategy to the optimal strategy, particularly if the current strategy

is pure. 

In general, we say that an LTE( δ) σ is well-supported if it

is a well-supported ε-equilibrium for ε = max i δi . Although any
LTE( δ) is an ε-equilibrium for ε as previously specified, it need not

be a well-supported ε-equilibrium. The 2-player game in Table 2

demonstrates this for δ1 = δ2 = 0 . 5 . From player 2’s limited-trust

perspective, β2 is a best response to any σ 1 as it offers both bet-

ter personal and better net utility. Player 1’s limited-trust best re-

sponse to β2 is to play αi with probability 0.5, for i = { 1 , 2 } . Given
that player 2 will only play β , the only LTE([.5,.5]) is given by
2 
[0.5, 0.5], [0, 1]}. This is not a well-supported 0.5-equilibrium:
G 
1 

= α2 and player 1 is playing α1 with nonzero probability, de-

pite the fact that u i (σ
G 
i 

, β2 ) − u i (α1 , β2 ) = 1 > 0 . 5 . As this is the

nly LTE([0.5,0.5]), this game also shows that the set of LTE( δ) may

e entirely disjoint from the set of well-supported ε-equilibria for
 game. 

Despite the fact that players in a limited-trust game all at-

empt to improve the net utility, it is possible for the highest value

TE( δ) (the LTE( δ) which provides the highest net utility) to pro-

uce lower net utility than the highest value Nash equilibrium for

 game. We show this with an example game, given in Table 3 ,

hich we consider with δ1 = δ2 = 0 . 1 . There is a pure Nash equi-

ibrium (PNE) which occurs for α2 , β1 . As β1 is a strongly domi-

ant strategy for player 2, and α2 is player 1’s best response to it,

his is the only Nash equilibrium. If we consider the limited-trust

est response curves in Fig. 2 , we see that there is only one place

he curves intersect and hence there is one LTE(0.1). Using opti-

ization program MP1 from Section 3 , we find this is at approx-

mately σ1 = { p 1 
1 
, p 1 

2 
} = { 0 . 204 , 0 . 796 } , σ2 = { p 2 

1 
, p 2 

2 
} = { . 795 , . 205 }

hich has a total utility value of approximately 6.089, which is

ess than 6.2, the utility generated by the pure Nash equilibrium

t σ1 = { 0 , 1 } , σ2 = { 1 , 0 } . 
While it is non-intuitive that the value of the best LTE can be

ess than a Nash equilibrium, given that each player is willing to

ive something up in order to help its fellow players, we do see

nalogues of this in the day-to-day social interactions which the

oncept of limited-trust emulates. Consider two cars reaching an

ntersection across from each other. Both need to turn left and the
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Table 4 

Game with more LTE( δ) than Nash equilibria. 

Player 2 

β1 β2 

Player 1 α1 3,3 2,3.1 

α2 3.1,2 5,5 
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Fig. 3. Hotelling Game with n = 3 players. 
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ntersection is too narrow for both to go at once. Rather than at-

empting to go through first, one driver tries to wave the other

hrough, only to realize that the other driver is doing the same.

oth drivers start to move, then stop as they realize the other is

oving as well. This then repeats back and forth until one driver

oses their patience ( δ is reached) and makes it clear they are go-

ng. Meanwhile the whole interaction slowed down both drivers

ore than if one had simply made this decision when they both

rrived at the intersection. 

Although it is possible to find games in which there is a Nash

quilibrium better than any LTE, we will see in Section 5 that it

arely occurs, particularly as δ increases; it is more common to

nd games in which there are more LTE( δ) than Nash equilibria
nd some of them are worse. Table 4 provides an example of this,

here ( α2 , β2 ) is both an LTE( δ) and a pure Nash equilibrium.

owever, for δ1 , δ2 ≥0.1, ( α1 , β1 ) is also an LTE( δ), independent
f a Nash equilibrium. 

Further, the occurrence of less optimal solutions due to co-

peration is not unique to limited-trust games: Chen et al.

2014) shows that while normal cost-sharing games have a PoA

f n for n players, cost-sharing games in which all players have

 uniform level of α-altruism have a PoA of n 
1 −α , becoming un-

oundedly inefficient for fully altruistic players. The remainder of

his section will be spent considering limited-trust versions of sev-

ral standard games, and we will see that these inefficiencies do

ot apply to them. 

.1. LTE( δ) in Common Games 

In this section we examine the behavior and value of LTE( δ) in
everal common classes of games. 

heorem 4. For any constant sum game, { ε-equilibria} ⊆{LTE( δ)}
here ε = min i δi . 

roof. First, note that in a constant sum game the total utility is

qual for all σ ∈ �. Therefore, any strategy σ played by player i

aximizes the total utility. Thus, player i ’s best response to any

−i is any strategy which makes sure it receives at most δi less
han its maximum personal utility. This is exactly the definition of

 best response under ε-equilibrium conditions for δi = ε, and so

he set of LTE contains the set of ε-equilibria for a constant sum
ame where ε = min i δi . �

Note that Theorem 3 states the LTE set is a subset of the ε-
quilibria set for ε = max i δi , so if δi = δ j = δ for all i 	 = j then

heorem 4 implies the set of ε-equilibria is equal to the set of
TE( δ) for ε = δ. 

Next we consider the public goods game from experimental

conomics. In it, n players each receive an amount of money, m i ,

nd must decide how much to contribute to the public good. Any

ontributed money is multiplied by a factor of c such that 1 < c < n ,

hen divided evenly among all players. Therefore, if player i con-

ributes x i to the public good, it will receive back 
cx i 
n < x i of its in-

estment, plus c 
n of the other players’ investments. The only Nash

quilibrium for this game is for all players to contribute x i = 0 , as

ny contribution lowers player i ’s payoff regardless of contributions

ade by other players. The PoA is therefore c . 
heorem 5. In a public goods game with δ, the limited-trust PoA is 

c 
∑ n 

i =1 m i ∑ n 
i =1 m i + (c − 1) min { n 

n −c 
δi , m i } ≤ c. 

roof. Consider the contribution player i should make: the so-

ial utility strictly increases with i ’s contribution x i , therefore

layer i would like to contribute as much as possible. i is will-

ng to lose at most δi and regardless of the value of x j for j 	 = i ,

f player i contributes x i then it loses 
n −c 
n x i it could be mak-

ng. Therefore, player i contributes x i = min { n 
n −c δi , m i } . The total

mount contributed is 
∑ n 

i =1 x i , and the total uncontributed util-

ty is 
∑ n 

i =1 m i − x i , which means that the total utility generated

s 
∑ n 

i =1 m i + (c − 1) min { n 
n −c δi , m i } . This is the unique LTE( δ) for

he public goods game. The socially optimal result occurs when all

layers contribute m i and there is a total utility of c 
∑ n 

i =1 m i , so the

imited-trust PoA is 
c 
∑ n 

i =1 m i ∑ n 
i =1 m i +(c−1) min { n 

n −c δi ,m i } that is at mos t c . �

Our next consideration is the Hotelling game, which does

ot generally have a pure Nash equilibrium for any number

f players n We will consider the simplest form of the game,

n which each player has a continuous strategy space [0,1]

nd all players have symmetric payoffs, meaning that for any

wo players i , j and all other strategies σ−i j fixed, if i and

 switched strategies they would also switch utilities ( u i (σi =
 1 , σ j = x 2 , σ−i j ) = u j (σi = x 2 , σ j = x 1 , σ−i j ) for all x 1 , x 2 ∈ [0, 1]).

iven strategies { σ 1 , σ 2 ,…, σ n }, if we assume without loss of

enerality that 0 ≤σ 1 ≤σ 2 ≤…≤σ n ≤1 then for σi −1 < σi < σi +1 

 i (σ ) = 

σi +1 −σi −1 
2 . If there is a set of k strategies σi = σi +1 = . . . =

i + k −1 , then u j (σ ) = 

σi + k −σi −1 

2 k 
, ∀ i ≤ j ≤ i + k − 1 . Additionally, for

he purposes of computing σ 1 and σ n , let “ σ ′′ 
0 

= −σ1 and “ σ
′′ 
n +1 

=
 + σn . 

This simple form of the Hotelling game can be viewed as each

layer claiming a space on the interval [0, 1], with each player at-

empting to maximize the portion of the interval which is closer

o them then all other players. Fig. 3 provides an example of this

or a 3-player Hotelling game, which does not have a pure Nash

quilibrium. 

heorem 6. The 3-player Hotelling game possesses a pure LTE( δ) for

i ≥ 1 
10 for i ∈ {1, 2, 3} . 

roof. This will be a proof by example, showing that σ =
 
3 
10 , 

1 
2 , 

7 
10 } is an LTE( δ) for δi ≥ 1 

10 for i ∈ {1, 2, 3}. We begin by

oting that the Hotelling game is constant-sum, so any strategy

roduces the same net utility. We first consider whether player 1

s at equilibrium. Observe that u 1 (σ ) = 
2 
5 , so player 1 is at equi-

ibrium provided there is not some σ ′ 
1 
such that u 1 (σ

′ 
1 
, σ−1 ) > 

1 
2 .

s σ2 = 
1 
2 , there cannot be: σ

′ 
1 ∈ [0 , 1 2 ) , ( 

1 
2 , 1] will result in utility

trictly less than 1 
2 , and σ

′ 
1 

= 
1 
2 will result in the same utility as

layer 2 receives, which can be at most 1 2 as the net utility for the

ame is 1. Therefore player 1 is at equilibrium, and similarly player

 is at equilibrium as its position is symmetric to that of player 1. 
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Table 5 

Example Prisoner’s Dilemma Game. 

Player 2 

β1 β2 

Player 1 α1 d 1 , d 1 d 2 , 0 

α2 0, d 2 c , c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

A game with Nash and limited-trust dominated strategies. 

Player 2 

β1 β2 β3 

Player 1 α1 0,7 5,5 0,5 

α2 3,2 5,4 7,1 

α3 0,6 4,1 1,5 

α4 2,1 3,10 1,0 

Table 7 

Equivalent to the game in Table 6 for MNE’s (left) and LTE( δ)’s (right). 

Fig. 4. Image in which s 1 is part of limited-trust best response and s 2 is not. 
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This leaves player 2. u 2 (σ ) = 
1 
5 , so it is at equilibrium if there is

no σ ′ 
2 such that u 2 (σ

′ 
2 , σ−2 ) > 

3 
10 . For σ

′ 
2 ∈ [0 , 3 10 ) , ( 

3 
10 , 

7 
10 ) , ( 

7 
10 , 1] ,

u 2 (σ
′ 
2 , σ−2 ) is < 

3 
10 , 

1 
5 , and < 

3 
10 respectively. For σ ′ 

2 = 
3 
10 , 

7 
10 

u 2 (σ2 , σ−2 ) = 
1 
4 < 

3 
10 as well, so player 2 is at equilibrium. �

Before moving on, it is worthwhile to note that although

Theorem 2 only implies the existence of the LTE( δ) in finite normal

form games, players in both the public goods game and Hotelling

game possess a continuous rather than finite strategy set. This

helps to highlight that while non-finite games are outside the

scope of this paper, many classes of these games are also likely

to possess limited-trust equilibria. 

Finally, we consider the 2 ×2 prisoner’s dilemma, though we

will focus on the utility maximization version rather than the cost

minimization version. Let ( α2 , β2 ) be the socially optimal outcome,

and let ( α1 , β1 ) be the strategy in which each player betrays the

other. In a Nash game, the only equilibrium is ( α1 , β1 ), the worst

possible outcome. In the limited-trust game, lim δ → 0 LTE( δ) is ( α1 ,

β1 ), but as δ increases, it shifts to ( α2 , β2 ). Table 5 shows the gen-

eral form of a symmetric version of the game, with 0 < d 1 < c < d 2 .

By noting the fact that both players will be playing the same

strategy σ = { p 1 , 1 − p 1 } at equilibrium if δ1 = δ2 , we can find

the LTE( δ) by solving the quadratic equation (1 − p 1 )(p 1 d 1 + (1 −
p 1 ) d 2 − (1 − p 1 ) c) = δ1 which yields 

p 1 = 

2(d 2 − c) − d 1 ±
√ 

(d 1 − 2(d 2 − c)) 2 − 4(d 2 − c − d 1 )(d 2 − c − δ1 ) 

2(d 2 − c − d 1 ) 

provided d 2 − c − d 1 	 = 0 . If d 2 − c − d 1 = 0 then p 1 = 

δ1 −d 2 −c 

d 1 −2(d 2 −c) 
. 

3. Computation of 2-Player LTE( δ) 

In this section we present a mathematical program for compu-

tation of an LTE( δ) in 2-player games. However, before doing so

we consider the concept of a dominated strategy in a limited-trust

game. By removing strongly dominated strategies, we will make

the game smaller to aid in computation. 

In a Nash game, a pure strategy s for player i is said to be

dominated if u i (s, σ−i ) ≤ u i (s 
′ , σ−i ) ∀ σ−i for some alternate feasible

strategy s ′ which is a convex combination of player i ’s other pure

strategies. s ′ is said to weakly dominate s if there is at least one σ−i 

for which there is equality and at least on for which there is strict

inequality. It is said to strictly dominate s if there is strict inequal-

ity for all σ−i . In a limited-trust game with given δ, s ′ is said to
dominate s if u (s, σ−i ) ≤ u (s ′ , σ−i ) ∀ σ−i and u i (s, σ−i ) ≤ u i (s 

′ , σ−i )

for all σ−i . Weak dominance occurs if there is some σ−i for which

u (s, σ−i ) = u (s ′ , σ−i ) . As with Nash equilibria, no LTE will have a

player i playing a strictly dominated pure strategy s i with nonzero

probability. Also as in Nash equilibria, we can iteratively remove

dominated strategies by examining each strategy individually to

see if it is dominated by a convex combination of the other still

present strategies (this is done by using a linear program). 

Having introduced the idea of dominance in the limited-trust

context, we now demonstrate it on the game in Table 6 . From

a Nash perspective, it is clear that α2 strictly dominates α3 and

α4 and weakly dominates α1 . Similarly, β1 strictly dominates β3 .

Therefore, these strategies need not be considered when looking

for an MNE. From a limited-trust perspective this changes. α no
2 
onger dominates α1 , α3 , or α4 and β1 no longer dominates β3 .

lthough no pure strategy dominates α3 , consider σ1 = [ 3 5 , 
2 
5 , 0 , 0] .

 1 ( σ 1 , β i ) > u 1 ( α3 , β i ) and u ( σ 1 , β i ) > u ( α3 , β i ) for i ∈ {1, 2, 3} so

3 is still strictly dominated and can be dropped from the prob-

em. However, α4 is part of the socially optimal σ and therefore

annot be strictly dominated unless β2 is strictly dominated first.

hile β3 cannot be strictly or weakly dominated by a convex com-

ination of β1 and β2 in the original problem, consider the prob-

em after α3 is removed. For a mixed strategy σ2 = [ 1 5 , 
4 
5 , 0] we see

hat u 2 ( αi , σ 2 ) > u 2 ( αi , β3 ) and u ( αi , σ 2 ) > u ( αi , β3 ) for i ∈ {1, 2, 4}.

herefore, while we cannot remove β3 immediately as in the Nash

ase, we can still remove it through the iterated removal of other

ominated strategies. In the Nash case we then get the equivalent

ame in the left side of Table 7 , and for the limited-trust case we

et the equivalent game on the right side. 

It is interesting to note that the value of δ is not rele-

ant in determining whether a strategy is dominated in a game.

his is because we cannot say that s ′ dominates s if u (s, σ−i ) ≤
 (s ′ , σ−i ) ∀ σ−i and either u i (s, σ−i ) ≤ u i (s 

′ , σ−i ) or u i (σ
G 
i 

, σ−i ) −
u i (s 

′ , σ−i ) ≤ δi for all σ−i . If the second condition occurs, s may

till be part of a unique limited-trust best response. An example of

his is given in Fig. 4 , in which, for a fixed σ−i , player i has three

trategies s 1 , s 2 , and s 3 : despite the fact that u (s 2 , σ−i ) > u (s 1 , σ−i )
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nd u i (σ
G 
i 

, σ−i ) − u i (s 2 , σ−i ) < δi , the limited-trust best response is

 convex combination of s 1 and s 3 , but not s 2 . 

Having defined limited-trust dominance to reduce computa-

ional effort, we now introduce our solution method. Our math-

matical program for finding an LTE in a 2-player bimatrix game

iven by A, B ∈ R 
m ×n will be loosely based on the linear program

sed in the support enumeration algorithm for finding Nash equi-

ibria, which determines if a given support pair S A , S B admits an

NE (i.e. there is an MNE in which only the pure strategies in

 A , S B are played with positive probability, and all such strategies

re played with positive probability). The mathematical program is

iven by MP1 where 

f x (y ) = max 
x 

x T (A + B ) y subject to x T Ay ≥ e T j Ay − δ1 , ∀ j ∈ [ m ] 

nd f y ( x ) is similarly defined. MP1 constitutes a quadratically-

onstrained program with a bilevel component from f x ( y ) and f y ( x ).

 , B are the m ×n payoff matrices for players 1 and 2, respectively,

nd e j is the vector with the value 1 at index j and zero elsewhere.

MP1: 

max 
x,y 

1 

subject to 

x T Ay ≥ e T j Ay − δ1 ∀ j ∈ [ m ] (1)

x T By ≥ x T Be j − δ2 ∀ j ∈ [ n ] (2)

 
T (A + B ) y ≥ f x (y ) (3)

 
T (A + B ) y ≥ f y (x ) (4)∑ 

i ∈ S A 
x i = 1 (5)

∑ 

j∈ S B 
y j = 1 (6)

x i = 0 ∀ i / ∈ S A (7) 

y j = 0 ∀ j / ∈ S B (8) 

x i ≥ 0 ∀ i ∈ [ m ] (9) 

y j ≥ 0 ∀ j ∈ [ n ] (10) 

The bilevel elements of constraints (3) and (4) are a necessary

ortion of the program: without these constraints, which force the

otal utility to be the greatest possible when each player is playing

ithin δi of its greedy best response to the other, the solutions of
P1 would simply be a subset of the ε-equilibria for ε = max i δi ,

egardless of whether they were also limited-trust equilibria. This

annot be solved using the objective function to drive the program,

s the socially optimal ε-equilibrium is not necessarily an LTE. We

lso mentioned above that MP1 is loosely based on the Support

numeration algorthim for finding 2-player MNEs. However, due

o the fact that a general LTE( δ) is not a well-supported equilib-

ium, we are unable to fully linearize the constraints as in the sup-

ort enumeration algorithm for finding MNE’s. As a consequence,

f S A ⊆S C and S B ⊆S D , then any solution to MP1( S A , S B ) is also a so-

ution to MP1( S C , S D ), which is not the case in the Nash support

numeration. The same problem is observed in finding non-well-

upported approximate Nash equilibria as well, so this is not sur-

rising. 

We now prove below any LTE( δ) given by ( x , y ) is a solution to
P1 for appropriate S A , S B . 

heorem 7. A strategy set ( x , y ) for a two player game is an LTE( δ)
f and only if it is a feasible solution to MP1 for S A = [ m ] , S B = [ n ] . 

The proof of this Theorem may be found in Appendix A.2 . 

orollary 8. For any feasible solution to MP1, constraints (3) and (4)

re fulfilled with equality. 
roof. Follows from Theorem 7 : any solution to MP1 is an LTE( δ),
nd any LTE( δ) fulfills the constraints with equality as each player

s playing a limited-trust best response to the other. �

Given that MP1 was stated to have been loosely based on the

inear program used in the support enumeration algorithm for

ash equilibria, it is natural to question why the program is not set

p to iterate over supports, as in that algorithm. This comes about

ecause in any greedy best response, every pure strategy which

layer i plays against the other player is a best response, and so

he quadratic constraints (1) and (2) in MP1 can be transformed

nto a larger set of linear constraints which enforce the condition

hat every pure strategy in the support of a Nash equilibrium is

 greedy best response. There is no corresponding condition for

n LTE which allows us to consider the pure strategies of a sup-

ort individually rather than the mixed strategy LTEs as a whole.

owever, if we are looking for well-supported LTE’s we can use a

upport enumeration method be replacing constraints (1) and (2)

n MP1 with those below and then apply Algorithm 1 . 

e T i Ay ≥ e T j Ay − δ1 ∀ i ∈ S A ∀ j ∈ [ m ] 

 
T Be i ≥ x T Be j − δ2 ∀ i ∈ S B ∀ j ∈ [ n ] 

x i = 0 ∀ i / ∈ S A 

y j = 0 ∀ j / ∈ S B . 

Algorithm 1 will find at least one LTE for every support pair

 A , S B which admits a well-supported LTE. However, as we have

lready seen well-supported LTE’s may not exist. 

lgorithm 1 LTESupportEnumeration( A , B , δ1 , δ2 ). 

Initialize hashset LTESet ← ∅ ; 
for S A ∈ [ m ] , S B ∈ [ n ] do 

(x, y ) ← SolveMP1( S A , S B ); 

if (x, y ) / ∈ LTESet then 

LTESet[ S A , S B ] ← (x, y ) 

return LTESet 

. Leader-Follower Equilibria 

We have defined the concept of Limited-Trust equilibria in si-

ultaneous games in a natural manner, and showed that at least

ne LTE exists in any simultaneous game of n players. The next

atural extension to consider is LTE’s in turn-based games, i.e.

eader-follower or Stackelberg games. 

Consider a two-player turn-based game of complete informa-

ion, i.e. player 1 picks from m strategies and in response, player

 picks from n strategies with full knowledge of the first player’s

hoice. Such a game is akin to a bi-level optimization problem for

he first player: given full-knowledge by all players, the second

layer’s response is deterministically dictated by the first player. As

uch, this game always has a pure equilibrium known as the Stack-

lberg equilibrium and, assuming a fixed tie-breaking rule for play-

rs between multiple equivalent strategies, the Stackelberg equilib-

ium is unique. While this is true for n -player games, for the sake

f simplicity we will confine our discussion to n = 2 , as n > 2 fol-

ows naturally. 

We now want to consider what happens when players have

rust levels δ1 , δ2 . Although this is a full knowledge deterministic

ame with regard to the payoffs and the first player’s action being

nown to the second player, unlike in the simultaneous game the

ature of the equilibrium changes sharply depending on the first

layer’s knowledge of δ2 and the values from which each player

easures δi . Because of this, we will examine three policies which

epresent different interpretations of a Limited-Trust Stackelberg
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Equilibrium (LTSE). We assume a bimatrix game with payoff ma-

trices A, B ∈ R 
m ×n for players 1 and 2, respectively. Note that here

n is the number of pure strategies possessed by the second player.

1. Incomplete Knowledge: The first player does not know any-

thing about δ2 and, being risk averse, assumes the second

player is not trustworthy ( δ2 = 0 ). The first player then de-

termines the second player’s response to each of its possible

actions under this assumption and finds strategy i such that

i = arg max 0 ≤ j≤m 
a j r( j ) where r ( j ) is player 2’s best response

to j and a ij and b ij are the first and second players’ payoff

if they play i and j , respectively. The first player then plays j

which maximizes a j r( j ) + b j r( j ) subject to a ir(i ) − a j r( j ) ≤ δ1 , and
the second player plays l which maximizes a jl + b jl subject to

b j r( j ) − b jl ≤ δ2 . 
2. Complete Knowledge: The first player knows δ2 . It knows that

if it plays i , then player 2 will play its best response s ( i ) which

maximizes a is (i ) + b is (i ) subject to b ir(i ) − b is (i ) ≤ δ2 . Player 1
then finds i such that i = arg max 0 ≤ j≤m 1 

a j s ( j ) , and plays j which

maximizes a j s ( j ) + b j s ( j ) subject to a is (i ) − a j s ( j ) ≤ δ1 . The sec-
ond player then plays s ( j ). 

3. Cooperative Complete Knowledge: Let i , j be the regular Stack-

elberg Equilibrium. The players play k , l which maximizes a kl +
b kl subject to a kl − a i j ≤ δ1 and b kl − b i j ≤ δ2 . 

Of these policies, the first two seem like the most natural inter-

pretations of the LTE in the turn-based game: a player is willing to

forgo a payoff at most δi higher than what they could get, provided

that the other player gains at least that much. The only question is

whether or not player 1 knows δ2 : while the question was unim-

portant in the simultaneous setting as equilibrium was merely a

point where no player could unilaterally improve the total utility

without exceeding its maximum cost, here the leader-follower na-

ture of the game means the first player can determine exactly how

the second player will act and plan its strategy accordingly. The

only question for the first player is the value of δ2 , as if it’s not
sure then it must plan for the worst and assume δ2 = 0 . 

While the cooperative complete knowledge policy may seem

less natural, the confusion is a matter of perspective: with the first

player having full knowledge of δ2 , instead of measuring its payoffs

over the second player’s reactions to each strategy i it could play,

it instead measures them with respect to the Stackelberg equi-

librium. The second player makes the same choice: it is rational

and can determine the first player could have played according to

the Stackelberg equilibrium if it wished to, and so reacts accord-

ingly. This policy requires more coordination between players, but

can be interpreted as two players who regularly interact and strive

to maintain a good relationship. In this sense it is less suited for

one-off games. However, the same could be said of the complete

knowledge policy, as it is otherwise infeasible to expect the first

player to know δ2 a priori . 
We have derived additional results in regard to the expectations

and probabilities for all three of these policies in random leader-

follower games. However, the details are somewhat involved and

do not provide any great insight to the reader. As such, these re-

sults and there derivations are available in Appendix B . 

5. Numerical results 

In this section we present a numerical comparison of the ef-

ficiencies of the LTE when compared to Nash equilbria in both

the simultaneous and leader-follower settings. LTE’s are found for

randomly-generated games and compared with the maximum-

value Nash and Stackelberg PoA’s of these games. These represent

random repeated games, a set of games which, while not identical,

are all drawn from the same distribution. These games are of par-

ticular interest because while the LTE is explicitly created for ana-
yzing one-off games, it is implicitly motivated by the expectation

hat future games will be played. Day-to-day societal interactions

re a perfect example of this, and are well modeled by random re-

eated games: such interactions between players are not identical,

ut will display a pattern over time so that they could be said to

ome from some “typical” distribution. 

Theoretical results related to random repeated games in the

eader-follower setting can be viewed in detail in B.3 , but one

hich we will state here is that the expected PoA of the Stack-

lberg equilibrium for a 2-player leader-follower bimatrix game. In

uch a game with m ×n payoff matrices where each entry gener-

ted is generated independently and from and identical distribu-

ion (iid) A or B for players 1 and 2, respectively, the expected PoA

s 

E[(A + B ) (mn ) ] 

E[ A (m ) ] + E[ B (n ) ] 

here X ( n ) is the maximum of n samples x i generated iid from dis-

ribution X . 

We consider random repeated games in our numerical trials.

hese are represented as bimatrix games where the payoff ma-

rices A , B for each player are generated according to some dis-

ribution. In particular, we consider matrices where each entry is

enerated iid for each player, though A and B may not come from

he same distribution. The majority of games were generated as 2-

layer 2 ×2 repeated games, with entries of player 1’s payoff ma-

rix generated iid according to a distribution A and player 2’s pay-

ff matrix generated iid according to a distribution B . One instance

f 2-player 3 ×3 games was generated, as unlike in the leader-

ollower games we have a less precise bound on the PoA as a func-

ion of m and n . LTE’s of simultaneous games were computed us-

ng MP1 in Section 3 , and LTSE’s were computed for each leader-

ollower policy using the methods given in their descriptions in

ection 4 . 

.1. Simultaneous Games 

We consider games where players’ payoffs are generated iid

rom three distributions: geometric with p = 
1 
4 , uniform over the

et of integers in [0,10], and Normal N (0 , 1) . 100 instances of 2 ×2

ames are generated from each of these distributions, as well as

00 3 ×3 games drawn from the geometric distribution. We then

ary δ1 = δ2 = δ from 0.01 to 1 for each game, to see how the

alue of the LTE changes as a function of δ. For each test case, we

se the support enumeration method to determine the MNE with

he highest net utility for comparison to the LTE with the highest

et utility. Because any MNE which provides the optimal level of

ocial utility is also an LTE, we ignored generated test cases where

he social optimum was also an MNE. 

Because of the nonconvex and potentially disjoint nature of the

olution space, we include a constraint in MP1 that the value of

he net utility of the LTE must be greater than or equal to the util-

ty provided by the best MNE (net utility-maximizing MNE). As we

ave already seen in Section 2 , such an LTE may not exist for all

alues of δ. Therefore, if the solver fails to locate a feasible solution
o MP1 after 50 attempts on a particular test case, this constraint is

elaxed. It is not reintroduced until after δ has increased to a level

here an LTE with better net utility than the MNE is discovered.

dditionally, while we compute an LTE which has higher net util-

ty than all MNE’s, it may not necessarily be the maximum value

TE. This is due to the nonconvexity of the set of LTE’s. 

Figs. 5 through 8 detail the results of our numerical trials. Al-

hough δ is always varied from 0.01 to 1, in the figures it is rewrit-

en as the percentage of the net utility generated by socially opti-

al (net utility-maximizing) MNE so as to compare values across

ifferent distributions. In all but Fig. 7 , we see a very clear linear



T. Murray, J. Garg and R. Nagi / European Journal of Operational Research 289 (2021) 364–380 373 

Fig. 5. 2 ×2 Geometric Games. 

Fig. 6. 3 ×3 Geometric Games. 
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Fig. 7. 2 ×2 Normal Games. 

Fig. 8. 2 ×2 Uniform Games. 
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elationship between δ as a percentage of the maximum-valued

NE and LTE as a percentage of the MNE. In both the geometric

ames, the curve has a slope of approximately 2, meaning that on

verage, for every game a player has to give up δ, there is a game

here it gains 3 δ over what it would receive by playing selfishly.

he uniform games in Fig. 8 show a similar result, with a slope of

pproximately 1.3. 

This brings us to Fig. 7 , which unlike the others does not evince

n approximately linear curve. However, consider the variance of

he distributions: the geometric distribution with p = 
1 
4 has a vari-

nce of 12 and the discrete uniform distribution over [0,10] has

 variance of 10. In contrast, the variance of 1 possessed by the

ormal distribution is quite small. Now consider what the curves

n Figs. 5, 6 , and 8 would look like if we continued to increase

: the curves would eventually start to evince diminishing returns,

s increasing δ past the point where many social optima start to

ecome LTE’s will produce very little additional social utility. This

xplains the curve in Fig. 7 : it is merely a curve in which the δ is

lready quite large compared to the variance of the distributions

rom which the entries of A and B are generated, and thus is expe-

iencing diminishing returns. It also indicates that if we continue

o increase δ, the other figures will come to resemble Fig. 7 . 
.2. Leader-Follower Games 

We conduct numerical studies on 2 ×2 games with payoff ma-

rices generated from three distributions: U[ −0 . 5 , 0 . 5] , N (0 , 1) ,

nd exp (1). For each set of trials, we let A ∼B , and let δ1 = δ2 = δ.
e define the Stackelberg gap as the difference between the Stack-

lberg equilibrium and the social optimum. Figs. 9 , 10 , and 11 each

how the average PoA of 10 0 0 games generated according to these

istributions and solved for δ ∈ [0, 1] in the first graphs, where as

entioned in Section 4 , δ = 0 indicates that there is no trust be-

ween the players. The second graph considers how much of the

tackelberg gap is covered by each of the policies at the varying δ
evels. Unlike in the simultaneous case, in the leader-follower set-

ing under the complete knowledge policy if the Stackelberg equi-

ibrium is the social optimum that does not guarantee it is also

he LTSE. For that reason we have not ignored games in which this

ccurs. 

Unsurprisingly, in all three distributions for all values of δ, the
ooperative complete knowledge policy results in the best perfor-

ance. We even note that with δ = 0 it still manages to recover an

verage of approximately 20% or greater of the Stackelberg gap for

ach tested set of games. This “Reward without Risk” comes from

he greater cooperation between players seen in this interpretation

f the LTE. 
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Fig. 9. Leader-Follower Numerical Results, A ∼ B ∼ U[ −0 . 5 , 0 . 5] . 

Fig. 10. Leader-Follower Numerical Results, A ∼ B ∼ N (0 , 1) . 
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Also unsurprisingly, the complete knowledge policy tends to

outperform the incomplete knowledge policy on average, for most

δ values. Fig. 9 provides an excellent demonstration of this: be-

cause the max and min possible payoffs have a gap of 1, by the

time δ = 1 both players are trying only to maximize the social util-

ity. In particular, by the time δ reaches approximately 0.75, the

complete knowledge game tends to result in the social optimum
eing played virtually every time. This is because the entries of A

nd B are drawn from U[ −0 . 5 , 0 . 5] so the chance of the socially

ptimal outcome having a utility for player 1 which is more than

.75 less than the player’s greediest move is nearly 0. In contrast,

hile the same is true in the incomplete knowledge case, the game

evels off to covering slightly over 80% of the Stackelberg gap even

t δ = 1 . This occurs due to the fact that although both players are
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Fig. 11. Leader-Follower Numerical Results, A ∼ B ∼ e −x . 
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ffectively altruistic at this level of δ, the first player does not be-
ieve that the second player is. This causes player 1 to attempt to

aximize the social utility around the assumption that δ2 = 0 , de-

pite the fact this is not true. We can consider this gap between

he incomplete and complete knowledge cases as the cost of igno-

ance. 

It is important to note that the cost of ignorance may not be

ad. Indeed Fig. 11 shows that for δ between approximately 0.05

nd 0.3, the cost of ignorance is negative. This occurs due to the

act that the first player is unaware that the second player is will-

ng to give up δ, and thus is unable to take advantage of that fact
or its own gain. This is identical to what happens for some values

f δ in the game described in Table B.8 in Appendix B.1 . 

. Discussion and summary 

Throughout this paper we have been considering limited-trust

quilibria as a description of behavior which is not entirely self-

sh, provided the opportunity cost of the behavior for player i is

ess than some bound δi . This idea of an LTE was expressed very

aturally in simultaneous games, where at equilibrium each player

oes not care about the δ values which are motivating other play-

rs, only that it plays its best response to what those players are

ctually doing. The key managerial insight of the LTE is that while

he players in giving something up appear to be playing “non-

ationally” when games are considered in isolation, when con-

idered as a whole both players actually achieve more than they

ould have received if they had myopically played the “rational”

ash equilibria in each game. We saw that while it was possible

or limited-trust games to have worse results than Nash games, it

ill not happen in several common classes of games, and occurs

arely in others: in 2-player numerical trials with δ1 = δ2 = δ we

bserved an average personal utility increase of δ for each player

hen δ was modest compared to the variance in the utilities of

andomly generated games. When we consider the leader-follower

etting players can no longer ignore the δ values of their fellows,
nd we considered the effects of whether or not players knew each

ther’s δ’s or had to prepare for the worst (assume δ−i = 0 ). 

It is natural to question the method developed in this paper for

he computation of LTE’s in a simultaneous game. Given that such

TE’s are a subset of ε-equilibria, which are PPAD-hard to compute

or general ε, we do not expect to derive an algorithm for the gen-

ral k -player case without going to a mathematical program sim-

lar to MP1. However, readers may wonder why we have not pro-

ided a different algorithm for computing an LTE in the 2-player

ame. 

The Lemke-Howson algorithm ( Lemke & Howson (1964) ) is one

f the first algorithms for finding Nash equilibria in a 2-player bi-

atrix game and remains one of the most popular. It relies on

he observation that at equilibrium (σ G 
1 

, σ G 
2 
) , if player i has m i 

ure strategies then for a best response σ G 
i 

= { p i 
1 
, p i 

2 
, . . . , p i m i 

} ei-
her p i 

j 
= 0 or playing the pure strategy s i 

j 
is a best response to σ−i .

ith this observation, the Lemke-Howson algorithm is able to set

p a linear complementarity program (LCP) for which any feasible

olution is a Nash equilibrium. Unfortunately the definition of an

TE does not lend itself well to this method. This is partially due

o the fact that we cannot make a similar observation about pure

trategies in an LTE. However, while this problem may be possible

o overcome, the larger difficulty comes from the fact that there is

n optimization problem embedded in each player’s best response

o the other. While this is also true of a greedy best response, that

ptimization problem can be expressed solely as a set of linear

onstraints with no objective function, i.e. σ i is a best response

o σ−i if and only if u i (σi , σ−i ) ≥ u i (e j , σ−i ) for all j ∈ [ m i ]. The op-

imization problem embedded in the limited-trust best-response

annot be absorbed to a larger program due to having an objec-

ive function. This is reflected in the fact that the best response

unction is explicitly brought into MP1 in constraints (3) and (4),

ather than bringing in constraint sets. Even the further general-

zation of the algorithm in Lemke (1965) is unlikely to adapt to

omputing LTEs. Although the Lemke-Howson algorithm is nearly
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Table B.8 

A 2-Player 2 ×2 Game. 

p 2 

1 2 

p 1 1 6, 4 4, 5 

2 5, 3 8, 1.5 
sixty years old and has since been shown to be a special case of

the Global Newton Method by Govindan and Wilson (2003) , it re-

mains an extremely prevalent method for computing Nash equilib-

ria in 2-player finite games in practice. This is particularly true fol-

lowing the proof by Chen and Deng (2006) that ε-equilibria (and
Nash equilibria) are PPAD-complete to compute even for 2-player

finite games. It is worth noting that as a consequence, LTE( δ) is
also PPAD-hard to compute. 

We also considered several natural interpretations of the LTE in

a leader-follower game, which vary drastically depending on how

much knowledge players have of each other. More definite theoret-

ical probabilities for the likelihood of a social optimum occurring

in a random game in the leader-follower context, as these equilib-

ria are significantly easier to compute. We then moved onto nu-

merical testing of the LTE, comparing how the social utility varied

over random repeated games as a function of δ, particularly when

compared to Nash and Stackelberg equilibria. One of the more sur-

prising results of our numerical trials in simultaneous games was

how strong the linear relationship was between the net utility and

δ, prior to the onset of diminishing returns as δ continues to in-

crease. In our leader-follower games we observed the differences

in the utility of each of our interpretations, noting that the coop-

erative complete knowledge case produced significant gains at the

no risk level of δ = 0 , and also that the gap between complete and

incomplete knowledge effectively measured the price of ignorance.

Perhaps more surprising was that the price of ignorance was some-

times negative on average, rather than just occasionally, with pa-

rameters existing for which player 1 assuming the worst of player

2 resulted in higher average total utility. 

As noted earlier in this section, while many traditional equi-

librium computation methods such as the Lemke-Howson algo-

rithm are unlikely to adapt well to the LTE computation, we would

still like to put more study into the computation of simultane-

ous game LTE’s. Additionally, we are interested in considering how

LTE’s model behavior in larger systems such as social networks.

Perhaps the most exciting line of inquiry is that of learning: the

LTE is positioned as a tool for non-Nash analysis of repeated game

that can also solve one-off simultaneous games, something for

which there are few existing tools. As such each player should be

trying to set their δi in order to maximize their utility over time.

We are very interested in the potential dynamics of shifts in δ val-

ues as players interact with each other, particularly if they take

each other’s playing history into account. Also of interest is the re-

lationship between talented but relatively selfish individuals as op-

posed to trustworthy individuals without specialized skills, and the

resulting “diva” behavior often exhibited by the former. We will fo-

cus on these areas of study in our future research. 
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Appendix A. Proofs 

A.1. Proof of Lemma 1 

Proof. Consider that 

σ ∗
i = arg max 

σi ∈ �i 

u (σi , σ
∗
−i ) 

subject to 

δi ≥ u i (σ
G 
i , σ

∗
−i ) − u i (σi , σ

∗
−i ) 
rior to the constant c j being added. Each player i 	 = j now has to

olve 

σ ∗
i 

′ = arg max 
σi ∈ �i 

(u (σi , σ
∗
−i ) + c j ) 

ubject to 

δi ≥ u i (σ
G 
i , σ

∗
−i ) − u i (σi , σ

∗
−i ) 

hich has the same solution, and player j has to solve 

σ ∗
j 
′ = arg max 

σ j ∈ � j 

(u (σ j , σ
∗
− j ) + c j ) 

ubject to 

δi ≥ (u j (σ
G 
j , σ

∗
− j ) + c j ) − (u j (σ j , σ

∗
− j ) + c j ) 

hich also has the same solution. Therefore, σ ∗ is still an

TE( δ). �

A.2. Proof of Theorem 7 

roof. First, suppose that we have a feasible solution ( x , y ). Given

hat it is a feasible solution, the last four constraints will not be

iolated as x and y are valid strategy profiles. The first two con-

traints ensure that neither player is giving up more than δi that it
ould be making by playing the greedy best response to the other

layer’s strategy. The next two ensure that the social utility from

he players actions is at least the amount which would be pro-

ided if each player played its limited trust best response to the

ther. Therefore, since each player is providing as much social util-

ty as if it had been playing its limited trust best response (more

s impossible without violating constraint 1 or 2) and is not giving

p more than δi of what it could be making, ( x , y ) is an LTE( δ). 
Now, consider an LTE( δ) given by ( x , y ), which we will show to

e a feasible solution. Because ( x , y ) is an LTE, x and y are both

alid strategy profiles and thus do not violate constraints (5-10),

articularly as constraints (7) and (8) are disabled for S A = [ m ] ,

 B = [ n ] . ( x , y ) is an LTE, so neither player is giving up more than δi
nd therefore constraints (1) and (2) are fulfilled. Finally, because it

s an LTE, x is a limited-trust best response to y and y is a limited-

rust best response to x , which means that constraints (3) and (4)

re fulfilled with equality. �

ppendix B. Additional Results: Leader-Follower Games 

.1. Demonstration of Policies 

Given the interpretation of the policies in Section 4 , we now

rovide a practical demonstration of each on the 2 ×2 game given

n Table B.8 . The Stackelberg equilibrium in this game occurs when

he first player plays 2 and the second player plays 1. We first con-

ider the incomplete knowledge policy: for δ1 < 1, the first player

ill play 2, as it otherwise stands to lose 5 − 4 = 1 if it plays 1.

f the first player plays 1, then for δ2 < 1, the second player plays

, but for δ2 ≥1, the second player plays 1 as well. If the first

layer plays 2, then the second player plays 1 for δ2 < 1.5 and 2

or δ2 ≥1.5. Thus for the socially optimal policy (1,1) to be played,

e must have δ , δ ≥1. 
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Fig. B.12. Geometric Leader-Follower Representation. 
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We next consider the complete knowledge policy. The second

layer’s behavior is the same: if the first player plays 1 the second

lays 1 for δ2 ≥1 and if the first player plays 2 the second plays

 for δ2 ≥1.5. Suppose δ2 < 1, then the first player is selecting be-

ween (2,1) and (1,2): if δ1 ≥1 then it plays 1, and otherwise it

lays 2. Suppose 1 ≤ δ2 < 1.5, then the first player is choosing be-

ween (1,1) and (2,1) and so plays 1 regardless of δ1 . Finally, sup-
ose δ2 ≥1.5. Here, the first player is selecting between (1,1) and

2,2). If δ1 < 2, the first player plays 2 to receive 8 after the second

layer also plays 2. If δ1 ≥2 it plays 1 instead. 

The complete knowledge policy has the property that if we

ave (δ′ 
1 
, δ′ 

2 
) ≥ (δ1 , δ2 ) , that does not mean that the net utility for

he (δ′ 
1 
, δ′ 

2 
) game is greater than or equal to that of the ( δ1 , δ2 )

ame: the δ1 = δ2 = 1 game results in a greater net utility than the

1 = δ2 = 1 . 5 game over the utility above. This is interpreted as the

rst player taking advantage of the second player’s trustworthi-

ess. If (δ′ 
1 
, δ′ 

2 
) ≥ (δ1 , δ2 ) then we can say that at least one of the

ollowing is true: player 1 receives higher utility under (δ′ 
1 , δ

′ 
2 ) , or

he net utility is greater under (δ′ 
1 
, δ′ 

2 
) . This is because had player

 selected the same strategy as it would with ( δ1 , δ2 ), it would

ave achieved at least as much utility for δ′ 
2 ≥ δ2 . The fact that

t did not select the same strategy indicates that it selected one

hich increases either its own utility or the net utility. 

Finally, we consider the cooperative complete knowledge policy.

his policy is especially interesting as for any δ1 , δ2 ≥0, the social

ptimum of (1,1) will be played: as stated earlier, the Stackelberg

quilibrium in this game occurs when the first player plays 2 and

he second player plays 1. The social optimum occurs at (1,1), with

 net payoff of 10, and at the social optimum both players are re-

eiving strictly more than they would in the Stackelberg equilib-

ium. This is the only policy which has the possiblity of reward

ithout risk: for any game in which δ1 = δ2 = 0 , each player is

uaranteed a minimum of what they would achieve in the Stack-

lberg equilibrium and the possibility of more. For the other two

olicies, δ1 = δ2 = 0 guarantees that they will play the Stackelberg

quilibrium, meaning no risk, no reward. 

Because the behavior of games under the cooperative com-

lete knowledge policy is different from traditional leader-follower

ames even when δ1 = δ2 = 0 , we will use the term zero-trust

ame to refer to the traditional leader-follower game. 

.2. Playing Social Optima 

In this subsection we will examine what the structure of a 2-

layer bimatrix game must be in order for the Socially Optimal

greatest net payoff) strategy combination to be played. We will

onfine our discussion to 2 ×2 games, but the result generalizes to

 ×n games. 

Let A , B be the payoff matrices for the first and second play-

rs, respectively. Without loss of generality, assume that the social

ptimum occurs when (1,1) is played. 

First, we consider what must happen for the Stackelberg equi-

ibrium to be the social optimum. An immediate requirement is

 12 ≤ b 11 , as otherwise even if the first player plays 1, the sec-

nd player will play 2. Without loss of generality, assume b 21 ≥ b 22 
o that if the first player plays 2, the second player will play

. In order for the first player to play 1 rather than 2 we must

ave a 11 ≥ a 21 . More formally, (1,1) is the social optimum and gets

layed if and only if E 1 , E 2 , E 3 , E 4 are satisfied where 

 1 = (a 11 + b 11 ≥ { a 12 + b 12 , a 21 + b 21 , a 22 + b 22 } ) 
 2 = (b 2 i ≥ { b 21 , b 22 } ) 
 3 = (a 2 i ≤ a 11 ) 

 4 = (b 11 ≥ b 12 ) . 

nd i is player 2’s best response to the first player playing 2. 
Geometrically, we can determine the outcome of a game by

lotting its entries in R 
2 in terms of the utility for each player,

s in Fig. B.12 where the horizontal axis a is the utility for the first

layer and the vertical axis b is the utility for the second player. 

From the figure, we can see that (1,1) is the social optimum. It

s also the Stackelberg equilibrium: b 12 < b 11 , so the second player

ill play 1 if the first plays 1. b 21 > b 22 , so the second player will

lay 1 if the first plays 2, and a 21 < a 11 , so the first player will play

. In terms of the geometry, we can say that (1,1) is the Stackelberg

quilibrium and the social optimum if and only if (1,2) is not in

rea 1 and whichever is larger out of b 22 or b 21 , that point is not in

rea 3. Then the first player will prefer 1 to 2 and the second will

refer (1,1) to (1,2). This is true for all complete knowledge 2 ×2

eader-follower games, and is easily generalized to m ×n games. 

Now consider the incomplete knowledge policy. If the social

ptimum occurs at (1,1), what must occur for it to be played?

f b 11 ≥ b 12 and b 2 i ≥ b 21 , b 22 the first player will play 1 if a 2 i ≤
 11 + δ1 , and the second player will also play 1. If b 11 < b 12 and

 2 i ≥ b 21 , b 22 , then the first player will play 1 if a 2 i < a 12 − δ1 or
f a 2 i ≤ a 12 + δ1 and a 2 i + b 2 i < a 12 + b 12 or a 2 i ≥ a 12 + δ1 . If the
rst player plays 1, the second player will play 1 as well if b 12 ≤
 11 + δ2 . We can therefore say that (1,1) is the social optimum and

ets played if and only if E 1 , E 2 , F 3 , E 4 , E 1 , E 2 , F 5 , F 6 , F 7 , or E 1 , E 2 ,

 5 , ¬F 6 , F 8 are satisfied where 

 3 = (a 2 i ≤ a 11 + δ1 ) 

 5 = (b 11 < b 12 ≤ b 11 + δ2 ) 

 6 = (a 2 i + b 2 i < a 12 + b 12 ) 

 7 = (a 2 i ≤ a 12 + δ1 ) 

 8 = (a 2 i ≤ a 12 − δ1 ) 

s with the Stackelberg game, we geometrically model these con-

traints by plotting the payoffs in R 
2 , with both possible constraint

ets seen in Figs. B.13 and B.14 . On both figures, given the points

1,1) and (1,2), the social optimum is played if whichever is greater

f b 21 , b 22 is in the shaded blue area. 

We next consider the complete knowledge policy. Again we as-

ume, without loss of generality, that (1,1) is the social optimum.

et b 2 i ≥ b 21 , b 22 ≥ b 2 j . We want to consider when the second player

ould play j given that the first player plays 2. This only occurs

f a 2 i + b 2 i < a 2 j + b 2 j and b 2 i < b 2 j + δ2 . Now we can determine

hat the first player will only choose 2 (given the second player

ould play the social optimum if the first chose 1) if a 2 i > a 11 + δ1 
r a 2 j > a 11 + δ1 and a 2 i + b 2 i < a 2 j + b 2 j and b 2 i ≤ b 2 j + δ2 . There-
ore, the social optimum gets played if and only if E , E , F , F 
1 2 3 5 
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Fig. B.13. E 1 , E 2 , F 3 , E 4 . 

Fig. B.14. E 1 , E 2 , F 5 , F 6 , F 7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.15. Geometric Complete Knowledge Leader-Follower Representation. 

Fig. B.16. Geometric Cooperative Complete Knowledge Leader-Follower Representa- 

tion. 
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AND ( G 9 OR G 10 OR G 11 ) is satisfied where 

G 9 = (a 2 j ≤ a 11 + δ1 ) 

G 10 = (a 2 i + b 2 i ≥ a 2 j + b 2 j ) 

G 11 = (b 2 i ≥ b 2 j + δ2 ) . 

Suppose b 21 ≥ b 22 . If the geometric representation of the incom-

plete knowledge policy primarily depended on (2,1) and was dic-

tated by (1,2), here it is dependent on (2,2) and dictated by (2,1).

Fig. B.15 displays this: given the (1,1), (1,2), and (2,1) the red region

represents where the point (2,2) cannot be in order for the social

optimum to be played. Additionally, we must have b 12 ≤ b 11 + δ2 
and a 21 ≤ a 11 + δ1 . 

Finally, we consider the cooperative complete knowledge policy.

It is easy to write the requirements for the social optimum to be

played in terms of the Stackelberg equilibrium: if (1,1) is the social

optimum and ( i , j ) is the Stackelberg equilibrium, (1,1) is played if

and only if a i j ≤ a 11 + δ1 and b i j ≤ b 11 + δ2 . Fig. B.16 demonstrates

this: if (1,1) is the social optimum, it is played if and only if the

Stackelberg equilibrium occurs in the red shaded area. 

B.3. Leader-Follower Random Repeated Games 

While the LTE is capable of analyzing one-off games, it is also

a suitable tool for repeated games with a particular emphasis

placed on day-to-day societal interactions. Such interactions be-

tween players are not identical, but will likely display a pattern

over time so that they could be said to come from some “typi-
al” distribution. Because of this, we now consider games where

he payoff matrices A , B for each player are generated according to

ome distribution. In particular, we consider matrices where each

ntry is generated iid for each player, though A and B may not

ome from the same distribution. Let f a and f b be the probability

istribution functions of A and B , respectively. 

heorem 9. In a 2 ×2 leader-follower game with zero trust where all

f player 1’s payoffs are a ij iid and are independent from player 2’s

ayoffs b ij which are iid, the probability that Stackelberg equilibrium

f the game is the social optimum is 

 (S.O. ) = 8 

∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

M(a 11 , b 11 ) f a (a 11 ) da 11 f b (b 11 ) db 11 

here 

M(a 11 , b 11 ) = 

(∫ a 11 
−∞ 

(∫ a 11 + b 11 −a 21 

−∞ 

G (a 11 , b 11 , b 21 ) f b (b 21 ) db 21 

)
f a (a 21 ) da 21 

)

·
(∫ b 11 

−∞ 

(∫ a 11 + b 11 −b 12 

−∞ 

f a (a 12 ) da 12 

)
f b (b 12 ) db 12 

)

 (a 11 , b 11 , b 21 ) = 

(∫ b 21 
−∞ 

(∫ a 11 + b 11 −b 22 

−∞ 

f a (a 22 ) da 22 

)
f b (b 22 ) db 22 

)
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B  
roof. Given that every entry in the payoff matrix is equally likely

o be the social optimum, and equally likely to be played if it is

he social optimum, we will approach this problem by finding the

robability that 1,1 is the social optimum, and is played. This oc-

urs if E 1 , E 2 , E 3 , and E 4 are satisfied. Because E 2 and E 3 are equally

ikely to be fulfilled by i = 1 or i = 2 and each is equally likely

o occur, we can pick i = 1 and multiply by two. While it is easy

o evaluate if any given game results in the social optimum be-

ng played, it is difficult to organize the integrals necessary to con-

truct the probability of it occurring. To help visualize the integrals,

e consider the graphical representation of a 2 ×2 game given in

ig. B.12 . For a fixed a 11 , b 11 , we have 

P (a 11 + b 11 ≥ a 21 + b 21 , a 22 + b 22 , E 2 , E 3 | a 11 , b 11 ) = Q(a 11 , b 11 ) 

= 

∫ a 11 
−∞ 

(∫ a 11 + b 11 −a 21 

−∞ 

G (a 11 , b 11 , b 21 ) f b (b 21 ) db 21 

)
f a (a 21 ) da 21 

here 

 (a 11 , b 11 , b 21 ) = 

∫ b 21 
−∞ 

(∫ a 11 + b 11 −b 22 

−∞ 

f a (a 22 ) da 22 

)
f b (b 22 ) db 22 

For 1,1 to be the social optimum and be played by player 2 if

layer 1 plays 1, it is necessary and sufficient that b 12 ≤ b 11 and

 11 + b 11 ≥ a 12 + b 12 . Since 

 (a 11 + b 11 ≥ a 12 + b 12 , b 11 ≥ b 12 | a 11 , b 11 ) = H(a 11 , b 11 ) 

(a 11 , b 11 ) = 

∫ b 11 
−∞ 

(∫ a 11 + b 11 −b 12 

−∞ 

f a (a 12 ) da 12 

)
f b (b 12 ) db 12 

s independent of P (a 11 + b 11 ≥ a 21 + b 21 , a 22 + b 22 , E 2 | a 11 , b 11 ) , we

hen have 

P (E 1 , E 2 , E 4 | a 11 , b 11 ) 
= P (a 11 + b 11 ≥ a 12 + b 12 , b 11 ≥ b 12 | a 11 , b 11 ) 

·P (a 11 + b 11 ≥ a 21 + b 21 , a 22 + b 22 , E 2 | a 11 , b 11 ) 
= Q(a 11 , b 11 ) · H(a 11 , b 11 ) 

= M(a 11 , b 11 ) 

Since P (E 1 , E 2 , E 3 , E 4 | a 11 , b 11 ) = P (E 1 , E 2 , E 3 , ¬ E 4 | a 11 , b 11 ) , this

ells us the probability that 1,1 is a Stackelberg equilibrium and

he social optimum is 

 = 2 

∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

M(a 11 , b 11 ) f a (a 11 ) da 11 f b (b 11 ) db 11 

Since all 4 entries in a 2 ×2 game are equally likely to be the

ocial optimum and be played, this gives us 

 (S.O. ) = 8 

∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

M(a 11 , b 11 ) f a (a 11 ) da 11 f b (b 11 ) db 11 

�

We see from Theorem 9 that although we have a method to ex-

ctly compute the probabilities of the social optimum being played

n a zero-trust game, it is already quite complex for even a 2 ×2

ame. Further, introducing the δi values for either the incomplete

r complete knowledge policies vastly complicates the geometry of

he space over which our probability distributions are computed.

herefore, assuming that f a and f b have finite expectation and vari-

nce, it will be generally more cost effective to use sampling meth-

ds to estimate the probability of playing the social optimum as

ell as related properties due to the relative ease of solving leader-

ollower games. Before we move on to Section 5 to do exactly that,

e will first briefly discuss the expectation of zero trust leader-

ollower games, as a metric against which to measure the effec-

iveness of our policies. 

heorem 10. The expected payoff of each player i in a

 ×m ×…×m n zero-trust n-player Stackelberg game where
1 2 
ach player i’s payoffs for each entry in the probability tensor are

enerated iid from a distribution A i is 

[ u i | A 1 , . . . , A n ] = m i 

∫ ∞ 

−∞ 

x f A i (x )(F A i (x )) 
m i −1 dx 

here f A i is the probability density function for A i and F A i is the cu-

ulative distribution function. 

roof. Consider player i ’s choice: player 1 makes its choice based

n all other players’ responses, however player 1’s payoff is inde-

endent of these players. Players 2 through i − 1 have also made

hoices based on all later players responses, but again each of their

ayoffs is independent of these later players. Thus, after players 1

hrough i − 1 have made their choices, player i chooses between

 i possible responses, each with an iid payoff and each indepen-

ent of the other n − 1 players’ payoffs despite the fact that previ-

us players factored i ’s action into their choices, and i will factor

ater players into its choices. Player i will therefore be choosing

he maximum of m i iid variables and its payoff is distributed as

he maximum of m i samples from its payoff distribution A i . 

Let X be a random variable and let X ( k ) be the maximum of k iid

amples of X . For its CDF we have F (k ) 
X 

(x ) = (F X (x )) 
k which gives us

 PDF of f (k ) 
X 

(x ) = k f X (x )(F X (x )) 
k −1 . Therefore, the expected value

f X ( k ) is 

(X (k ) ) = k 

∫ ∞ 

−∞ 

x f X (x )(F X (x )) 
k −1 dx 

hich means the expected value of the game for player i is 

(u i | A 1 , . . . , A n ) = E(A (m i ) 
i 

) = m i 

∫ ∞ 

−∞ 

x f A i (x )(F A i (x )) 
m i −1 dx . 

�

heorem 11. The social optimum of a m 1 ×m 2 ×…×m n zero-trust

-player game with each player’s payoffs generated iid from A i is 

 

∫ ∞ 

−∞ 

x f X (x )(F X (x )) 
M−1 dx 

here X is distributed as 
∑ n 

i =1 A i for independent A i and M =
 n 
i =1 m i . 

roof. The social optimum is defined as the maximum value of
 k 
i =1 u i (σ ) across all strategies σ ∈ �, and is always a pure strat-

gy profile. There are M such pure-strategy σ , all iid. By the same

easoning as in the proof of Theorem 10 , this means the expected

alue of the social optimum is 

 

∫ ∞ 

−∞ 

x f X (x )(F X (x )) 
M−1 dx 

or X ∼ ∑ n 
i =1 A i . �

Given the results of Theorems 10 and 11 , we can conclude that

he expected PoA of a zero-trust 2-player m ×n leader-follower

aximization game is 

E[(A + B ) (mn ) ] 

E[ A (m ) ] + E[ B (n ) ] 

here X ( n ) is the maximum of n iid samples of a distribution X . 
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