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We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact
strong coupling expansion. We find all sorts of interesting phases including a pair-density wave, a charge 4e
(and even a charge 6e) superconductor, regimes of phase separation, and a variety of distinct charge-density-
wave, spin-density-wave, and superconducting regimes. We chart the crossovers that occur as a function of
the degree of retardation, i.e., the ratio of characteristic phonon frequency to the strength of interactions.
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Typically, in strongly correlated materials, both direct
electron-electron interactions and electron-phonon inter-
actions are strong. Nonetheless, most theoretical studies
focus exclusively on one or the other. The most widely
studied model of the interplay between electron-electron
(e-e) and electron-phonon (e-ph) interactions is the
Holstein-Hubbard model [1–31]. The majority of existing
studies are numerical explorations, despite the fact that the
problem is complicated by the existence of multiple energy
scales and a large parameter space. Monte Carlo studies of
this problem are also generically rendered difficult by the
fermion minus sign problem [32]. In this Letter, we
systematically explore the “strong coupling” regimes in
which the interactions are larger than the bandwidth, and a
variety of results are derived from a theoretically well-
controlled perturbative expansion. Qualitative results are
summarized in the schematic phase diagram in Fig. 3.
The Holstein-Hubbard model is defined as
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where hi; ji signifies pairs of nearest-neighbor sites, ĉjσ
annihilates an electronwith spinpolarizationσ on site j, n̂j ¼P

σ ĉ
†
jσ ĉjσ is the number operator on site j, xj is an optical

phonon coordinate at site j, and pj is the conjugate momen-
tum. The dominant effects of strong electron-phonon cou-
pling can be accounted for by a unitary transformation Û≡Q

i exp ½iðα=kÞp̂in̂i� [33]. The transformed Hamiltonian is
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ðŜijĉ†i;σ ĉj;σ þ H:c:Þ − μ
X
j

n̂j

þ Ueff

2

X
i

n̂2i þ
X
i

�
p̂2
i

2m
þ kx̂2i

2

�
; ð2Þ

where Ŝij ≡ exp ½iðα=kÞðp̂j − p̂iÞ� is a product of two
phonon displacement operators on site i and j,
Ueff ≡ Ue-e − Ue-ph, andUe-ph ≡ α2=k. This transformation
is exact and can be alternatively derived by a path integral
representation tracking the phonon degrees of freedom in
momentum space [34].
In the strong coupling expansion, we treat the hopping

term in the transformed Hamiltonian as a perturbation, and
the sign of Ueff determines the relevant low-energy degrees
of freedom. The resulting theories are generic regardless of
lattice structure and dimensionality, but to have explicit
examples in mind, we will mainly consider the 2D square
and triangular lattices. We focus on the behavior of the
model at temperature T ¼ 0, although we also make
estimates of the parametric dependence of the critical
temperatures [39]. Without loss of generality, we will
consider the case in which the average number of electrons
per site n≡ N−1 PN

j hn̂ji ≤ 1, and will refer to x ¼ 1 − n
as the “concentration of doped holes.” (A particle-hole
transformation ĉ ↔ ĉ† relates this problem to an electron-
doped problem with n ¼ 1þ x and with opposite sign of
hopping t and e-ph coupling α.) Explicit calculations are
deferred to the Supplemental Material [34].
ForUeff > 0.—Theground-statemanifold to zeroth order

in t consists of all stateswith no doubly occupied sites and no
phonons. Performing degenerate perturbation theory up to
second order yields an effective Hamiltonian (leaving
implicit projection onto the space of no doubly occupied
sites andHermitian conjugation of quantumhopping terms):
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where t1 is the (renormalized)nearest-neighborhopping, t2 is
anext-nearest-neighborhoppingtermviaanintermediatesite
m, and hi; m; ji represents a triplet of sites such that m is a
nearest neighbor of two distinct sites i and j, ðτ þ 2t2Þ is a
singlet hopping termwhere ŝij ¼ ðĉi;↑ĉj;↓ þ ĉj;↑ĉi;↓Þ=

ffiffiffi
2

p
is

theannihilationoperatorofasingletCooperpaironbondhiji,
J is the antiferromagnetic exchange interaction, and V is the
repulsion between electrons on nearest-neighbor sites.
The values of these effective couplings can be computed

explicitly in terms of the dimensionless functions,
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of the dimensionless parameters X ≡Ue-ph=ωD and Y ≡
jUeff j=ωD as shown in the first column of Table I, where
ωD ¼ ffiffiffiffiffiffiffiffiffi

k=m
p

is the optical phonon frequency. Explicit
asymptotic expressions for these functions can be obtained
in the large and small ωD limit, as listed in the second and
third columns of the table. In Fig. 1, we show the
coefficients in Eq. (3), as functions of X for given values
of Ue-e, Ue-ph, and t. Increasing the e-ph coupling or
lowering the phonon frequency suppresses quantum
hopping and thus any tendency toward superconductivity.

This suppression is a manifestation of the self-trapping
crossover of the single polaron problem. Increasing the
e-ph coupling also enhances the spin fluctuations, which is
consistent with a previous study [17].
In the antiadiabatic limit ωD → ∞, the e-e and e-ph

interactions are simply additive, so the effective theory is
identical to the standard t-J model generated by a Hubbard
model with U ¼ Ueff > 0. In this limit, jt1j ≫ J and V as
usually considered. This hierarchy remains valid in a range
of smaller ωD. While this limit is interesting and has been
widely studied, there is no qualitatively new physics
associated with the presence of phonons.
As the phonon frequency is lowered, J and V approach

constants, but quantum hoppings are rapidly suppressed,
reflecting the effect of a Frank-Condon overlap factor [40].
In the adiabatic limit ωD → 0, the effective model is
realized in the limit jt1j ≪ J, V, which was previously
considered to be unphysical. The effective model is now
similar to the small t limit of the t-J-V model studied in
Ref. [41], with the difference that there can also be other
smaller hopping terms, t2 and τ. A schematic diagram of
possible phases that arise in this limit on the triangular
lattice can be seen in Fig. 2(a); a similar phase diagram was
discussed for the square lattice in Fig. 3 of Ref. [41]. The
nature of the resulting phases can be seen by neglecting the
hopping terms to zeroth order.
Insulating charge- and spin-density-wave phases.—

V=J ≪ 1 leads to two-phase phase coexistence of an
insulating antiferromagnet with x ¼ 0 and an electron-free
void with x ¼ 1, i.e., complete phase separation of the
doped holes. At larger values of V=J, the phase diagram is
more complicated. Generally, for most values of x smaller
than a critical value xc (which depends on both the lattice
geometry and the value of V=J), the doped holes form
various forms of commensurate hole crystals coexisting
with some form of antiferromagnetic order, likely forming
some form of two-phase coexistence between two such
phases. An example of this is the

ffiffiffi
5

p
×
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5

p
hole crystal

with x ¼ 1=5 discussed for the square lattice in Ref. [41],
and an analogous

ffiffiffi
7

p
×

ffiffiffi
7

p
hole crystal that likely arises on

the triangular lattice with x ¼ 1=7.
A variety of more unusual behaviors arise at lower

electron density. When x > xc, the system can be thought
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FIG. 1. An illustration of the coefficients as functions of the
degree of retardation 1=X ¼ ðωD=Ue-phÞ, with fixed Ue-e ¼ 30,
Ue-ph ¼ 20, and t ¼ 1.

TABLE I. The expressions and the limiting behaviors of the coefficients in the effective theory in Eq. (3).

ωD → 0 ωD → ∞

(X; Y → ∞) (X; Y → 0)

t1 ¼ te−X=2 te−X=2 t
t2 ¼ ð2t2=Ue-phÞe−X=2F0ðX=2Þ ð2t2=Ue-phÞe−X=2 t2X2=2Ue-ph

τ ¼ ð2t2=UeffÞe−X=2FðX=2; YÞ 4t2=ðUeff þ Ue-eÞe−X=2 2t2=Ueff

J ¼ ð4t2=UeffÞFðX; YÞ 4t2=Ue-e 4t2=Ueff

V ¼ ð2t2=Ue-phÞF0ðXÞ ð2t2=Ue-phÞ ð2t2X2=Ue-phÞ
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of as a dilute collection of electrons, which form small
disconnected clusters. The effect of the relatively smaller
hopping terms then resolves remaining ground-state degen-
eracy by degenerate perturbation theory.
Heavy Fermi liquid.—For large V=J > 1, monomers

are favored to the zeroth order. Extensively degenerate
ground states consist of all configurations where no pair of
nearest-neighbor sites is occupied. When the hopping terms
are included, these monomers can be treated as spin-1=2
fermions with a hard-core radius that extends to nearest-
neighbor sites and a highly renormalized hopping matrix
element t1. Typically, we would expect this system to form
a heavy Fermi liquid, although at various commensurate
values of x, via “order by disorder,” it may well exhibit
commensurate charge-density-wave (CDW) order with
some form of accompanying spin-density-wave (SDW)
order [42]. It also can have a very low T Kohn-Luttinger-
type instability to unconventional superconductivity [43].
Hard-core dimer fluid.—For ν2 < V=J < 1 (where

ν2 ¼ 0.5 and 0.43 for the square and triangular lattices,
respectively), singlet pairs of electrons on nearest-neighbor
bonds are energetically optimal. These dimers are elliptical
hard-core bosons [44], and the zeroth order ground states
can be labeled by dimer configurations where the dimers
satisfy both a hard-core constraint (no two dimers touch the
same site) and a nearest-neighbor exclusion (no pair of
nearest-neighbor sites is touched by distinct dimers).
The ground-state degeneracy is lifted when the effect of

hopping terms is included. While at special commensurate
densities, this could lead to an insulating CDW phase,
generically it leads to charge 2e singlet superfluid phases of
various sorts. To address the nature of these phases, we
write the effective model of hard-core dimers,

Ĥdimer ¼ −
X

hiji;hmni
ðτij;mnŝ

†
ijŝmn þ H:c:Þ; ð6Þ

where τij;mn is the effective pair hopping amplitude
between bond hiji and bond hmni. There are various

distinct types of hopping processes that can arise up to
second order in t and contribute to different sorts of dimer
hopping amplitudes. Generically, dimers can be moved by
the singlet-pair hopping ðτ þ 2t2Þ and next-nearest-neigh-
bor hopping t2. (Another virtual process with amplitude
ðt21=J − VÞ can also hop dimers, but it is unimportant in the
adiabatic limit since it is suppressed relative to the terms we
have kept by a factor of e−X=2.) These processes in the
second order of t all make positive contributions to τij;mn,
independent of the sign of t. When all τij;mn ≥ 0, the
−Ĥdimer satisfies the conditions of Perron-Frobenius
theorem [45], and hence, the Hamiltonian is minimized
by a Bloch state with  k ¼  0 and all positive amplitudes.
Since at finite dimer density, the system likely forms a Bose
condensate, this implies the pair field is spatially uniform
on square and most lattices.
However, on the triangular lattice (or other frustrated

geometries), dimers can hop via a first order process in t1.
This process contributes to the type of pair hopping labeled
τ∠ in Fig. 2(b), in which one end of a dimer pivots by 60°
about the other end, and it has much larger amplitude than τ
and t2. Consequently, τ∠ has the same sign as t, and is
larger in magnitude than the remaining terms τk, τ0k, and

. This opens the possibility of exotic condensation when
t < 0. On a triangular lattice, there are three possible dimer
states per unit cell, and correspondingly, three bands.
Taking into account only the largest pair-hopping term
τ∠, these consist of a flat band and two dispersing bands,
such that the flat band is the lowest if t < 0. Including the
effects of the smaller pair-hopping terms, we find the band
minima occur at the K and −K points in the Brillouin zone.
A dimer Bose condensate thus results in some form of a
PDW [46]. A state in which the condensed bosons have
momentum either K or −K breaks time-reversal symmetry
but has a spatially uniform magnitude of pair field. If time-
reversal symmetry is preserved, singlets equally condense
in�K, resulting in a translation symmetry breaking pattern
of the pair field, as shown in Fig. 2(c). Which form of
condensate is favored remains to be determined due to the
strongly interacting nature of bosons in the present prob-
lem, although it was shown that the plane-wave state is
favored for the case of weakly interacting bosons [47]. For
a Bose condensate at either the Γ or K point, the curvature
of the band bottom is set by terms to the second order in t,
and the superconducting transition temperature is para-
metrically small Tc ∼ t2e−X=2 in the adiabatic limit.

Polygonal fluid.—Further reducing V=J, different lat-
tices lead to different optimal clusters. On a square lattice, a
tetramer (square) minimizes the energy for ν4 < V=J <
ν2 ¼ 0.5, and phase separation occurs for V=J < ν4 ¼
0.418. On a triangular, honeycomb, or kagome lattice, a
hexamer minimizes the energy for ν6 < V=J < ν2 ¼
0.434, and phase separation occurs for V=J < ν6 ¼
0.290 (triangle), 0.390 (honeycomb), 0.215 (Kagome).

FIG. 2. For the triangular lattice, (a) a schematic phase diagram
for the t1 ≪ J, V model, (b) an illustration of various pair-
hopping terms appearing in Ĥdimer [Eq. (6)], and (c) a possible
PDW pattern, the thickened bonds have pair field proportional to
þϕ and others −ϕ=2, where ϕ is the amplitude.
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These clusters are hard-core bosons with nearest-neighbor
exclusion that can condense into charge 4e or 6e super-
conducting phases. The quantum hopping of these clusters
derives from a high order process, so the superconducting
transition temperature should be low and upper bounded by
tp1 , where p is the number of electrons in the cluster.
It is not always the case that the simple Holstein-Hubbard

model can realize all the interesting ranges of V=J. In
particular, in the adiabatic limit, V=J ¼ ðUe-e=2Ue-phÞ >
0.5. However, the introduction of weak dispersion of the
phonons or longer-ranged coupling to the electron densities
will introduce nearest-neighbor attraction in the zeroth order
that canbeeasily comparablewithJ anddrive the system into
the interesting cluster phases. As a concrete example,
adding weak phonon coupling to nearest-neighbor sites
Ĥ0 ¼ P

hi;ji α0ðn̂i þ n̂jÞðx̂i þ x̂jÞ introduces a small nearest-
neighbor attraction α02=k without modifying the hopping
terms.
For Ueff < 0.—The degenerate ground-state manifold in

the absence of hopping consists of states occupied by pairs
of electrons (on-site bipolarons) and no phonon. Including
hopping in degenerate perturbation theory yields

Ĥeff ¼ −tb
X
hi;ji

ðb̂†i b̂j þ H:c:Þ þ Vb

X
hi;ji

b̂†i b̂ib̂
†
j b̂j; ð7Þ

where b̂i ≡ ĉi;↑ĉi;↓ annihilates a hard-core boson on site i
(b̂†i b̂i ¼ 0, 1 is implicitly imposed). tb and Vb are,
respectively, the nearest-neighbor hopping and repulsion
whose values are listed in Table II. This is a standard hard-
core boson model (or equivalently, a spin-1=2 XXZmodel),
for which superfluidity and charge orders were investigated
on various lattices [48–52]. Below a Kosterlitz-Thouless
transition ∼tb, superfluidity is possible. This transition
temperature is also parametrically small, Tc ≲ ðt2=
jUeff jÞe−X. Particular interesting possibilities are supersolid
phases on frustrated lattices, where the predicted phase
region tb ≤ 0.1Vb for the triangular lattice [51] is clearly
accessible through tuning retardation. Indeed, coexisting
superconducting and charge orders were predicted theo-
retically [8] and have been seen in a recent study of the
triangular lattice Holstein model [53]. Above the superfluid
transition temperature, but below the binding energy jUeff j,
the system is essentially a classical bipolaron gas, where
various commensurate charge orders and phase separations
can exist below an Ising critical temperature ∼Vb [27].
Increasing the e-e repulsion can enhance charge and

especially superconducting order, in contrast to a previous
study on the weak coupling regime [6].
Range of validity of the effective theories.—The effective

models we have derived operate in reduced Hilbert spaces
with restricted site occupancies (determined by the sign of
Ueff ) and zero phonon excitations. These restrictions
become invalid when excitation energies in the unperturbed
Hamiltonian are no longer large compared with the
corresponding perturbation matrix elements. Specifically,
all possible site occupancies should be considered when
jUeff j≲ jt1j ¼ jtje−X=2, and phonon excitations should be
included if ωD ≲ jt1j

ffiffiffiffiffiffiffiffiffi
X=2

p
. These narrow regions are

enclosed with solid lines and hashed out in the schematic
phase diagram in Fig. 3.
Within the reduced Hilbert space, there remains the issue

of whether it is sufficient to compute the effective inter-
actions to low order in powers of jtj. This is controlled so
long as the longer-ranged interactions generated by higher
order terms are small compared with the terms we have
already considered. This sort of analysis was carried out for
the strong coupling limit of Holstein and Hubbard models

in Refs. [2,54]. For the mth order of the JðmÞ, VðmÞ, or VðmÞ
b

series, we have evaluated the amplitudes of virtual proc-
esses involving hopping around m sites and regard them as

TABLE II. The expressions and the limiting behaviors of the coefficients in the effective theory in Eq. (7).

ωD → 0 ωD → ∞

tb ¼ ð2t2=jUeff jÞFð−X; YÞ ð2t2=jUeff jÞðUe-ph=Ue-eÞe−ðXþYÞ ð2t2=jUeff jÞ
Vb ¼ ð4t2=jUeff jÞFðX; YÞ 4t2=ðUe-ph þ jUeff jÞ 4t2=jUeff j

FIG. 3. A schematic phase diagram of the Holstein-Hubbard
model in the strong coupling limit. The black or blue dashed lines
separate large and small jt1j=J or jt1j=V regimes. The meanings
of the other lines are discussed in the text and correspond to the
indicated equalities. The condition V ¼ VðmÞ is not plotted to
region V < jt1j, since all orders of VðmÞ are small compared to
quantum hopping in this region.
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representative. The condition (valid so long as Ue-e ≫
jUeff j ∼ jtj) for J ≫ JðmÞ and Vb ≫ VðmÞ

b is jUeff j ≫
minfjtj; rmUe-phe−Xg, where rm ≡ ½m=2ðm − 1Þ�.
Similarly, V ≫ VðmÞ so long as Ue-ph ≫
jtj minf1; X 2−1=ðm−2Þg. The black and blue dashed-dotted
lines in Fig. 3 are thus defined, as indicated by the

estimation J ≈ JðmÞ, Vb ≈ VðmÞ
b , or V ≈ VðmÞ for m ¼ 3

(for the triangular lattice) andm ¼ 4 (for the square lattice).
Longer-ranged interactions are significant inside
these lines.
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