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BACKGROUND: Years ago, Lev Landau taught
us how to think about distinct phases of mat-
ter through an order parameter that charac-
terizes the symmetry-broken state relative to
the symmetry-preserving state from which it
emerges. More recently, however, it has been
realized that not all phases of matter are cap-
tured by this paradigm. This was spectacularly
demonstrated by the discovery of fractional
quantumHall states in the 1980s. Over the years,
it has been elucidated that these states, along
with their exotic excitations—quasiparticles
carrying a rational fraction of the elementary
charge of an electron—are the consequence of
topological properties of ground state wave
functions with a special type of long-range
quantum entanglement. One might wonder
whether analogous phenomena occur for spins.
Whether these “quantum spin liquids” actually
exist in nature has been the subject of much
investigation.

ADVANCES: Since Philip Anderson contem-
plated the idea of quantum spin liquids in
1973, there has been a lot of research to es-
tablish what they are and how they can be
characterized. Of particular note was the re-
alization that an effective low-energy theory
inevitably resembles the gauge theory treat-
ments also invoked in high-energy physics.
However, these gauge fields are “emergent” in
the sense that they reflect important structure
of the many-particle state. Specifically, they
describe excitations that carry a fraction of the

quantum of spin in terms of emergent quasi-
particles with gauge charge and/or gauge flux,
analogous to the electric charge and magnetic
flux in electrodynamics. One consequence is
that these quasiparticle excitations can have
nontrivial statistical interactions when they
are braided around each other. Althoughmost
studies have focused on gapped spin liquids,
equally intriguing are gapless versions—for
instance, ones where the quasiparticle (“spinon”)
spectrum is that of relativistic electrons de-
scribed by the Dirac equation. Much work has
been done to address specific models and con-
nect them to experimental analogs. This has
involved a combination of analytically solvable
models, as well as the development of new
numerical methods that provide approxi-
mate solutions given a microscopic (lattice
scale) Hamiltonian.
Perhaps most excitingly, there has been an

increasingly promising effort to identify quan-
tum spin liquids in nature. Much of the work
has focused on materials where the magnetic
ions reside on lattices that frustrate classical
magnetic order. Examples include the trian-
gular, kagome, hyperkagome, and pyrochlore
lattices. Several candidatematerials have been
discovered, including organic salts, where mo-
lecular dimers realize spin-½ degrees of freedom
on a distorted triangular lattice; herbertsmithite,
where spin-½ copper ions form a kagome lat-
tice; and a-RuCl3, where j =1/2 ruthenium ions
form a honeycomb lattice and that is thought
to be proximate to the famous Kitaev model.

All of these materials have properties reminis-
cent of spin liquids, though their documented
fidelity as model systems is limited by dis-
order, subleading interactions, or lack of ex-
perimental information.

OUTLOOK: Given the infinite variety of poten-
tial materials and the many research groups
now exploring this space, we are optimistic
that a pristinematerials realization of a quan-
tum spin liquid will be discovered in the
coming years. Perhaps even now a spin liq-
uid exists in a long-forgotten drawer of a mu-

seum. Efforts to achieve
ultrahigh-quality samples
and new experiments de-
signed todeterminewheth-
er fractionalization and
long-range entanglement
occur in such materials

will be key. In addition to tantalizing clues
based on such techniques as thermal Hall
conductivity, nuclear magnetic resonance,
and inelastic neutron scattering, futuremeth-
ods may involve looking for spin currents to
prove fractionalization, as has been done for
charge degrees of freedom in the fractional
quantum Hall case, or probing the range and
character of quantum entanglement, as pre-
viously done in ultracold gases. Moreover, if
quasiparticle excitations can be isolated and
thenmanipulated, the prospect of a new form
of topologically protected quantum compu-
tation also exists. Finally, chemically doped
versions of spin liquids have been predicted
to provide an unconventional route to super-
conductivity. The search for such phases will
undoubtedly be an exciting undertaking.▪
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Emergent gauge theory as fluctuating loops. The loops are flux lines, with “particles” living at the ends of open lines. Left: The loops are dilute and small.
The line connecting the particles costs a finite energy per unit length; the particles are confined. Right: The loops are numerous and include a fraction that are of
macroscopic extent; the particles are free to move apart. This is the deconfined (spin liquid) phase.
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Spin liquids are quantum phases of matter with a variety of unusual features arising from their
topological character, including “fractionalization”—elementary excitations that behave as fractions of an
electron. Although there is not yet universally accepted experimental evidence that establishes that
any single material has a spin liquid ground state, in the past few years a number of materials have been
shown to exhibit distinctive properties that are expected of a quantum spin liquid. Here, we review
theoretical and experimental progress in this area.

T
he history of spin liquids goes back to the
early days of quantum mechanics. In
1928, Heisenberg achieved an under-
standing of ferromagnetism by consider-
ing a state in which all the spins point in

a single direction (1). It is straightforward to
see that a state of this sort is consistent with
quantummechanics (2). But problems emerged
in considering antiferromagnets. Louis Néel’s
proposal that antiferromagnetism can be un-
derstood as a state in which the spins on
alternating lattice sites point in alternating
directions promoted great controversy at the
time of its introduction; such a state cannot
be the ground state (i.e., the lowest-energy
state) of any reasonable quantum system
(3, 4). But it is now understood that the
antiferromagnetic ground state is a proto-
typical example of the ubiquitous phenome-
non of spontaneously broken global symmetry:
The ground state is not spin-rotationally in-
variant and thus has a lower symmetry than
the underlying Hamiltonian. This broken-
symmetry point of view enables understand-
ing of a number of universal properties of the
antiferromagnetic state and their unity with
similar phenomena in other ordered phases
of matter. The same ideas when imported into
particle physics underliemany of the successes
of the standard model. For magnetic matter, it
is now known that a variety of different kinds
of spatially oscillating magnetic ordering pat-
terns are possible, each corresponding to dis-
tinct broken symmetries. However, despite the
successes of the broken-symmetry paradigm,
the theoretical possibility of a “quantum spin
liquid,” for which there is no breaking of spin

rotational symmetry, remained an intriguing
possibility (5). In 1973 Philip Anderson proposed
that the ground state of a simple quantum
mechanical model—the spin-½ antiferromag-
netic near-neighbor Heisenberg model (6) on
a triangular lattice—might be a spin liquid.
Specifically, he introduced the resonating
valence bond (RVB) picture of a spin liquid
wave function, based on the resonating single
and double carbon-carbon bond picture devel-
oped by Linus Pauling and others to explain
the electronic structure of benzene rings (7).
Anderson’s paper languished in relative obscu-
rity until he resurrected the idea in the context
of the high-temperature cuprate superconduc-
tors at the beginning of 1987 (8). It was re-
alized soon afterward by Kivelson, Rokhsar,
and Sethna (9) that the excitations of the
spin liquid are topological in nature, and by
Kalmeyer and Laughlin (10) that a version of
the spin liquid could be constructed as a spin
analog of the celebrated fractional quantum
Hall state.
These developments in 1987 led to an ex-

plosion of interest in quantum spin liquids
that continues to this day. In common with
the fractional quantumHall states, but distinct
from conventional ordered states characterized
by broken symmetry, the theory of the quan-
tum spin liquid introduces new concepts, such
as emergent gauge fields, into condensed-
matter physics. It is not our intent here to cover
the theory in great depth, as there exist several
reviews (11–15). Rather, we wish to take a
broader look at the field. In particular, what
are the remaining big questions, both in theory
and experiment?

What are quantum spin liquids?

To discuss them in the clearest context, let us
focus on the idealized situation of quantum
spins arranged in a periodic crystalline lattice,
with interactions that are short-ranged in space.
This setup describes correctly the essential
physics of Mott (i.e., interaction driven) in-
sulating materials. Mott insulatingmaterials
that do not magnetically order down to tem-

peratures at which the spin dynamics is clearly
quantum mechanical (i.e., much below the
measured Curie-Weiss temperature) are at-
tractive candidates in the search for spin
liquids. However, this strategy is not suffi-
ciently focused, as it includes nonmagnetic
(quantum disordered) ground states that are
not spin liquids (16, 17). A more precise char-
acterization comes from considering the struc-
ture of many-particle quantum entanglement
in the ground state. A simple caricature of a
magnetically ordered ground state wave func-
tion is achieved by specifying the spin on each
site in the lattice. The ability to independently
specify the quantum state of individual parts
of a quantum many-particle system requires
that the different parts have no essential quan-
tum entanglement with each other. Thus, the
prototypical ground state wave functions for
conventional states ofmagneticmattermay be
said to have short-range quantum entangle-
ment between local degrees of freedom. By
contrast, the quantum spin liquid refers to
ground states in which the prototypical wave
function has long-range quantumentanglement
between local degrees of freedom (Fig. 1D).
Under smooth deformations, such awave func-
tion cannot be reduced to a product state wave
function in real space (18). Such long-range
quantumentanglement should bedistinguished
from the more familiar long-range order that
characterizes broken-symmetry phases. Thus,
the quantum spin liquid is a qualitatively new
kind of ground state.
Just as there is no single type of magnetic

order, there is no single type of quantum spin
liquid. Loosely speaking, different types of
quantum spin liquids correspond to differ-
ent patterns of long-range entanglement. In
addition, a useful (but coarse) classification
distinguishes two classes of spin liquids on the
basis of whether the excitation spectrum is
separated from the ground state by an energy
gap or not. Gapped spin liquids are simpler
theoretically and are well characterized by
the global topological structure of their ground
state wave functions. Thus, they are said to
have “topological order,” a concept that also
pertains to fractional quantumHall systems.
Such gapped spin liquids have well-defined
emergent quasiparticles. These quasiparticles
carry a topological signature that prevents
them from being created in isolation (9, 12).
They can only be created in nontopological
multiplets, which can then be pulled apart
to yield multiple individual quasiparticles.
A single isolated quasiparticle thus represents
a nonlocal disturbance of the ground state.
This nonlocality means that it can be detected
far away by operations that involve moving
other emergent quasiparticles. Thus, quasi-
particle excitations have nonlocal “statistical”
interactions (such as a chargemoving around
amagnetic flux). In two space dimensions, this
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implies that the quasiparticles are “anyons”
(19, 20); that is, they pick up a nontrivial
quantum-mechanical (Berry) phase when they
circle around each other, as illustrated in Fig.
1C. This phase is associated with the “braiding”
of the world lines traced by the quasiparticle
trajectories.
There is a rich, formal theory of anyons in

such topological ordered phases (12). In three
space dimensions, in addition to emergent
pointlike quasiparticles, there are also loop-
like excitations (analogous to flux lines in a
superconductor) with a line tension. A quasi-
particle encircling a loop excitation can also
accrue a nontrivial phase. In either case (point-
like or looplike), the nonlocality associated
with the quasiparticle excitation enables it to
carry fractional quantum numbers associated
with a global symmetry. A typical example of
such a quasiparticle—known as a spinon—
carries a spin of ½ and a charge of 0 (Fig. 1A).
By contrast, local excitations in any insulating
magnet must necessarily carry integer spin.
A second distinct class of spin liquids have

a gapless excitation spectrum. In the simplest
example of such a phase, the gapless spectrum
admits a quasiparticle description. There also
are gapless spin liquid phases where the quasi-
particle description completely breaks down
(21). In general, gapless spin liquids have power-
law correlations of measurable quantities.
Given this variety of quantum spin liquid

phases, what is the best theoretical frame-
work in which we should think about them?
Over the years, it has become clear that a

powerful and convenient framework is pro-
vided by low-energy effective theories that
involve emergent gauge fields (22–25), anal-
ogous to the vector potential in electrodynamics
(26). Specifically, the low-energy effective theory
of a quantum spin liquid is a deconfined gauge
theory, that is, one in which spinons are free to
propagate and thus not bound in pairs that
would carry integer spin. (The particle physics
analogwould be a phasewith free quarks.) The
gauge theory description elegantly captures the
nonlocal entanglement and its consequences.
To illustrate this, consider the case of a

quantum spin liquid phase described by an
emergent deconfined “Ising gauge field” (27–30),
that is, a gauge field in which the magnetic
flux can only take on two discrete values, 0 and
1. Formally, gauge theories are identified by
their group structure—the Ising case is thus
Z2. Hence, this phase is known as a Z2 quan-
tum spin liquid. In two space dimensions, the
excitations consist of a gapped excitation (the
e “electric” particle) that carries Ising gauge
charge and another gapped excitation (the m
“magnetic” particle) that carries Ising gauge
flux. These two excitations have a long-range
statistical interaction:Thewave function changes
sign when an e particle is taken around an
m particle (Fig. 1C). It is also possible to have a
bound state of e and m (denoted e). The e and
m have bosonic statistics; however, their mu-
tual braiding phase implies that e has fer-
mionic statistics. In systems with spin rotation
symmetry, it can straightforwardly be shown
that the e particle carries spin-½ (i.e., it is a

spinon with bosonic statistics), whereas the m
particle has a spin of 0; it is known as the
“vison” (Fig. 1B). As their bound state, the
e particle also carries a spin of½ and is known
as the fermionic spinon (31, 32).
There are multiple ways of thinking about

how a phase with such an excitation structure
might come about. A close and very useful
analogy is with the excitations of the familiar
Bardeen-Cooper-Schrieffer superconductor
(33). The excitations of a superconductor in-
clude the Bogoliubov quasiparticle (resulting
from the breaking up of a Cooper pair) and
quantized vortices associated with h/2e mag-
netic flux (here, h is Planck’s constant and e is
the electron charge). It is convenient to think
about the quasiparticle in a basis where it is
formally electrically neutral. In that instance,
it has a braiding phase pwith the h/2e vortex.
The Z2 quantum spin liquidmay be viewed as
a phase-disordered version of a superconductor
where long-range order is destroyed by quan-
tum phase fluctuations. In this description,
the fermionic spinon is identified as the cousin
of the Bogoliubov quasiparticle (26, 34, 35),
whereas the vison is identified as the cousin
of the h/2e vortex (26, 34). The close relation-
ship between the Z2 spin liquid and the su-
perconductor suggests that, if a spin liquid
Mott insulator is found in a material, then
doping it might naturally lead to supercon-
ductivity. Indeed, this is the original dream
of the RVB theory as a mechanism for high-
temperature superconductivity (8).
Other quantum spin liquid phases will have

other emergent gauge groups, for example, the
U(1) gauge field familiar fromelectromagnetism
[U(1) being the group defined by rotations on a
circle]; these are not obviously connected to
superconductivity in any simple way. Given
the importance of the gauge theory descrip-
tion, it is not surprising that many concepts in
particle physics have been realized in the spin
liquid context, including magnetic monopole-
like excitations, which have been proposed in
the context of the three-dimensional (3D) pyro-
chlore lattice (36). Furthermore, it is concep-
tually straightforward to combine features of
a spin liquid with more conventional phases,
giving rise to additional new quantum phases
of matter with combined topological order
and broken symmetries (37, 38), or even new
metallic phases with a Fermi surface whose
enclosed volume violates Luttinger’s theorem
(that is, it is not proportional to the electronic
density) (39).

Do quantum spin liquids exist in theory?

This question was settled in a variety of dif-
ferent ways in the late 1980s and 1990s, when
the first stable effective field theory descriptions
of both the Z2 quantum spin liquid (26–29) and
a different time-reversal broken version (known
as a chiral spin liquid) (40) were developed and
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Fig. 1. Excitations of a spin liquid. Diagram of (A) a spinon excitation, (B) a vison excitation, and
(C) braiding of anyons. Blue bonds represent spin singlets. The red arrow in (A) is a spinon, the red line
with an arrow in (B) is a vison (where the phase of each singlet bond in the wave function intersected by this
line changes sign), and e and m in (C) denote anyons. (D) Illustration of long-range entanglement of two
spins, with the torus representing the ground state degeneracy typical for gapped spin liquids (the Z2 spin
liquid has a degeneracy of four on the torus associated with the topologically distinct horizontal and vertical
loops that encircle the torus).
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their physical properties elucidated. Specific
models that realize the Z2 spin liquid were
constructed in an SU(N) generalization of the
SU(2) Heisenberg magnet on square lattices
with short-range interactions involving more
than just nearest neighbors (28) (so as to frus-
trate classical order) and on frustrated non-
bipartite lattices [e.g., the triangular and
kagome lattices (41)]. A Z2 topological or-
dered state was also shown to be present in the
quantum dimer model (42) on the triangular
lattice (43). Additionally, Kitaev described a
simple exactly solvable model (the toric code)
for a Z2 spin liquid (44). Building on these
developments, many concrete models were
constructed and reliably shown to have spin
liquid phases with a variety of emergent gauge
structures, in both two (45–47) and three
dimensions (46, 48). Though the matter of
principle question has been answered in the
affirmative, the question of which of these
phases, if any, occur in realistic models of ma-
terials remained largely open and is still not
satisfactorily settled.
Anderson’s idea in 1973 that the ground

state of the near-neighbor Heisenberg model
was a spin liquid is not realized for the sim-
plest form of the triangular lattice antiferromag-
net, even for spin-½ systems where quantum
effects are maximized, as was shown by Huse
and Elser (49) among others.Modifications of
the ideal model—for instance, the inclusion of
ring exchange (50), further neighbor coupling
(51), or spin anisotropy (52)—can, however,
lead to spin liquid states (as we allude to below
when talking about real materials such as the
2D organic ET and dmit salts). This led to the

study of other lattices where antiferromag-
netic interactions aremore frustrated (i.e., act
to suppress long-range magnetic order). The
classic example in 2D is the lattice of corner-
sharing triangles known as the kagome lattice
(Fig. 2A). In the case of a near-neighbor clas-
sical Heisenberg model on a kagome lattice,
continuous rotations of spins on certain clus-
ters are possible at no energy cost (53–55),
implying a large manifold of soft fluctuation
modes that act to suppress order. This is par-
ticularly evident in exact diagonalization
studies (56), which show a spectrum of states
qualitatively different from the triangular lat-
tice case, with a dense set of both singlet and
triplet excitations extending to low energies.
Such studies have been unable to definitively
address whether the excitation spectrum for
both singlets and triplets is gapped or not
because of limitations of modern supercom-
puters [the largest lattice studied so far has
been 48 sites (57)]. Researchers have addressed
larger lattices by using approximate techniques
based on quantum information–like methods,
such as the density matrix renormalization
group (DMRG) and various generalizations,
including projected entangled pair states
(PEPS) and the multiscale entanglement re-
normalization ansatz (MERA). The basic con-
clusion of such studies of the kagome lattice
is that there are a number of states that have
almost equal energies (13), including gapped
Z2 spin liquids, gapless spin liquids [so-called
U(1) spin liquids where the spinons have a
Dirac-like dispersion], and long-period valence
bond solids. The spin liquid ground state im-
plied by DMRG studies (58) appears to be a

“melted” version of a 12-site valence bond solid
that has a diamondlike structure, as shown in
Fig. 2B, although some studies point to a U(1)
gapless spin liquid instead (59). Exact diago-
nalization studies suggest that the ground
state might break inversion symmetry or even
be chiral in nature (56). Moreover, because the
kagome lattice lacks a point of inversion sym-
metry between neighboring sites, this allows
for Dzyaloshinskii-Moriya (DM) interactions
that can qualitatively change the ground state
relative to that of the Heisenberg model. In-
deed, there are indications from simulations
that the addition of DM interactions favors
magnetic order (60–62).
In 2006, another exactly solvable model

was reported by Kitaev (63). Based on a
honeycomb lattice, the Hamiltonian is a less
symmetric version of the Heisenberg model
(6), where exchange on the “x” bonds of the
honeycomb involves only SxSx, on the “y” bonds
only SySy, and on the “z” bonds only SzSz (Fig.
2C). Its ground state is a Z2 spin liquid with
a gapless spectrum of fermionic e particles
(known as Majoranas). Making the model
anisotropic between the x, y, and z bonds
preserves the exact solubility but gaps out
the e particle. Notably, the exact solution
yields not just the ground state but the full
spectrum of excitations. Themanifold of states
can be factored into flux sectors, with the flux
referring to the product of the sign of the
singlets around a hexagonal loop in the
honeycomb (for the ground state, +1 for all
hexagons). Flux excitations are precisely the
visons mentioned above and are localized with
a small energy gap. But the “unbound” Majo-
rana is free to propagate and forms a dispersion
that can be either gapped or gapless, depending
on the ratio of the various J (Jx, Jy, Jz). The
interaction of these low-energy visons with
theMajoranas leads to a rather featureless spin
excitation spectrum, as could be measured
by neutrons (64). One consequence of this
model is emergent fermionic statistics in the
continuum of spin excitations as would be
measured by Raman scattering (65). Even
more noteworthy is the prediction of Majo-
rana edge currents in a magnetic field, which
would lead to quantization of the thermal
Hall effect with a value half that expected for
fermionic edgemodes (66). Despite the seem-
ingly contrived form of this model, it was
pointed out by Jackeli and Khaliullin in 2009
(67) that the model might be physically realized
in certain honeycomb (and “hyperhoneycomb”)
iridates and relatedmaterials such as a-RuCl3
(Fig. 2D), which has led to an explosion of in-
terest in both this model and those materials.
This brings us to our next question.

Do quantum spin liquids really exist in nature?

Although a spin-½ antiferromagnetic chain is
a 1D analog of a quantum spin liquid [and its

Broholm et al., Science 367, eaay0668 (2020) 17 January 2020 3 of 9

xx

zz

yy

A

B

C

D

Fig. 2. Geometrically frustrated models. (A) Kagome lattice, (B) diamond valence bond solid on a kagome
lattice (153), (C) Kitaev model on a honeycomb lattice, and (D) bond-dependent Kitaev interaction in a sixfold
coordinated transition metal oxide (67). In (B), red bonds are singlets, with blue shading emphasizing the
diamonds. In (C) and (D), x (xx), y (yy), and z (zz) denote the component of the spins involved in that bond.
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spinons have been observed in experiments
(68)], it is qualitatively different (for instance,
there is no braiding in 1D). Beyond one di-
mension, a number of interesting candidate
materials have emerged that might host quan-
tum spin liquids, but the evidence is circum-
stantial. The focus has been on materials with
spins on lattices that frustrate conventional
Néel order. Spin-½ systems are of particular
interest because they are the least classical,
but the possibility of long-range entanglement
for higher spin states should not be overlooked.
Fluctuations are enhanced in 2D and for low
coordination numbers, but even in 3D, there
are pyrochlore and hyperkagome lattice sys-
tems that fail to develop magnetic order owing
to geometrical frustration. Our theoretical un-
derstanding further suggests that “weak” Mott
insulators that are close to the metal-insulator
transition are fertile grounds for quantum
spin liquid phases, consistent with the recent
discovery of frustrated magnetism near the
Mott transition in (V1-xCrx)2O3 (69). Three of
the most actively discussed classes of ma-
terials at the present time are shown in Fig. 3,
and all involve lattices where either the spin,
s, or the total angular momentum, j, has a
value of ½. They are (i) 2D organic salts such
as k-(ET2)Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2,
where structural dimers possessing a single
spin-½ degree of freedom form a triangular

lattice (70); (ii) herbertsmithite (and the closely
related Zn-barlowite), where the Cu2+ ions form
a kagome lattice (71); and (iii) a-RuCl3, where
the Ru3+ ions form a honeycomb lattice (72).
The last two are deep in the Mott insulating
phase, whereas the organic salts are weak
Mott insulators close to the metal-insulator
transition. We discuss each in turn, starting
with the organics.

2D organic salts

Although most of these salts, where structural
dimers form a (distorted) triangular lattice,
havemagnetic order at ambient pressure, there
are a few that do not. Prominent examples are
k-(BEDT-TTF)2Cu2(CN)3 (referred to here
as k-ET), k-(BEDT-TTF)2Ag2(CN)3, EtMe3Sb
[Pd(dmit)2]2 (referred to here as Pd-dmit), k-H3

(Cat-EDT-TTF)2, and k-(BEDT-TTF)2Hg(SCN)2Br.
Under pressure, k-ET becomes superconduct-
ing, which was why it was first synthesized
and studied (73). Nuclearmagnetic resonance
(NMR) studies showa lackof spinorderingdown
to temperatures well below the Curie-Weiss
temperature inferred from high-temperature
spin susceptibility measurements. At low tem-
peratures, the spin susceptibility c is a con-
stant and the heat capacity C = gT has a linear
temperature dependence (74). The Wilson
ratio c/g is within 20% of the free Fermi gas
value, which suggests that there are gapless

spin-carrying excitations despite the lack of
magnetic long-range order.
In Pd-dmit, despite its insulating nature, the

thermal conductivity was reported to have a
metallic form at low temperatures (kº T) and
is magnetic field dependent (75). If correct,
this suggests that the gapless spin-carrying
excitations are also mobile in this material.
However, very recently this result has been
reexamined in a number of dmit samples by
two groups, and no such metallic thermal
conductivity was found (76, 77). Moreover,
in k-ET, there is at very low temperatures a
dip in the thermal conductivity that, if taken
at face value, might indicate a very small en-
ergy gap (78). This emphasizes the challenges
associatedwithmeasurements of subtle features
in complex materials with competing phases
and the need for new results on spin liquid
candidates to be thoroughly investigated. In
k-(BEDT-TTF)2Hg(SCN)2Br, heat capacity and
Raman scattering indicate magnetic and
electric dipole degrees of freedom that remain
fluctuating to the lowest measured temper-
atures (79). Theoretically, the details of exactly
which spin liquid is realized in these materials
is not established. The experiments suggest
that there may be a Fermi surface of emergent
fermionic spinons (at least at very low temper-
atures). Establishing the presence of such a
charge neutral Fermi surface in experiments
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A -(ET)2 Cu2 (CN)3 B ZnCu3(OH)6Cl 2 C -RuCl3

Fig. 3. Candidate spin liquid materials. Crystal structures of (A) k-(ET)2Cu2(CN)3, (B) herbertsmithite, and (C) a-RuCl3. In (A), the ET dimers (top) form a
triangular lattice (with the S = ½ spin degree of freedom per dimer represented by red arrows). These ET molecules are sandwiched by Cu2(CN)3 planes (bottom). In
(B), Cu forms kagome layers (top) that are interconnected (bottom) by Zn (O is shown in the top only, and H and Cl have been suppressed). In (C), Ru octahedra (top)
form honeycomb layers that are weakly coupled (bottom) with Cl.
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would be a great boost to our understanding.
In that context, these materials (under pres-
sure) exhibit quantum oscillations associated
with their metallic Fermi surfaces. Such oscil-
lations were found to be absent in the insulat-
ing spin liquid regime (80). This is contrary to
the prediction that spin liquids with a spinon
Fermi surface might host quantum oscillations
due to weak coupling of the neutral spinons to
charge fluctuations (81). Alternative interpre-
tations of the data that invoke disorder to
produce a heterogeneous gapless state (82–84)
also deserve further experimental and theo-
retical exploration.

Herbertsmithite

Mineralogy has been used to inspire the
search for spin liquids, making one wonder
whether spin liquids are hiding in some long-
forgotten desk drawer in a museum [as in the
case of the first known naturally forming
quasicrystal (85)]. The original studies (86)
were on iron jarosites (and vanadium and
chromium variants) where the magnetic ions
form a perfect kagome lattice and where in-
teresting behavior such as spin chirality has
been observed (87). Unfortunately, these ma-
terials have long-range magnetic order, and
the magnetic ions are not spin-½. However,
owing to larger crystal fields and spin-orbit
coupling, Ru3+ and Os3+ jarosites are candi-
dates for a j = ½ kagome lattice, though syn-
thesizing these minerals with 4d and 5d

transition-metal ions presents an appreciable
challenge.
It would be desirable to find a copper an-

alog, given the large antiferromagnetic ex-
change J known to exist in copper oxides.
However, the kagome ions in jarosites are 3+,
and so cannot be formed with spin-½ Cu2+

except in diluted form. A related mineral class
does contain Cu2+: herbertsmithite, ZnCu3
(OH)6Cl2, a rare mineral first identified from
a mine in Chile (88). The material was syn-
thesized by using a hydrothermal method
(89), and no evidence of long-range order was
found. Since then, single crystals have been
grown by using a refinement of the hydro-
thermal technique (90). This has allowed for
single-crystal neutron scattering studies that
have revealed a broad continuum of spin ex-
citations (91) (Fig. 4A). Surprisingly, these
excitations can be described by a dynamic
magnetic correlation function of the “local”
form S(q,w) = f(q) g(w), reminiscent of the
marginal Fermi liquid conjecture of Varma
and colleagues (92). Such a form is not pre-
dicted by any known spin liquidmodel, though
some resemblance to the data can be found in
models where low-energy visons interact with
the spinons, as mentioned earlier (93). This
raises the important question of disorder.
In particular, though it is claimed that the
kagome spin excitations are gapped [as in-
ferred from NMR (94) and neutron studies
(95)], in reality, the entire low-energy spectrum

is dominated by impurity spins (often referred
to as “orphan” spins). These spins originate
from the transition-metal sites between the
kagome planes that are not completely in-
habited by nonmagnetic Zn but also include
magnetic Cu2+ (96). Similar issues exist when
Zn is replaced by other 2+ ions such as Mg or
Cd. Getting rid of these impurity spins is a
major challenge, not only for herbertsmithite
but for most spin liquid candidates where
similar effects occur. This is important because
some of the properties seen in herbertsmithite
are reminiscent of random spin singlet states
where there is a distribution of exchange en-
ergies J (97), and it has been claimed that the
inelastic neutron scattering (INS) data can be
understood in this way, as well (98). Such ran-
dom singlet states are not quantum spin liq-
uids (because their wave functions have a
product form), even though they do exhibit
quantum-critical–like scaling.
These issues have led to the study of related

materials such as Zn-barlowite, which is simi-
lar to herbertsmithite except that the kagome
layers are stacked differently (99, 100). One
advantage of Zn-barlowite is that the fluorine
NMR line is simple, given its nuclear spin of
½. Analysis of these NMRdata indicates a spin
gap whose field dependence is consistent with
a gas of spin-½ particles (i.e., spinons) (101)
(Fig. 4B). This is further supported by INS
studies, which indicate that the INS spin gap
is twice that inferred by NMR (consistent
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Fig. 4. Key data on spin liquid candidates. (A) Spin continuum of herbertsmithite from inelastic neutron scattering [S(q,w) at 1.6 K in the hk0 plane: upper,
6 meV; middle, 2 meV; lower, 0.75 meV] (91). (B) Field dependence of the spin gap of Zn-barlowite from NMR [upper: 19F Knight shift versus temperature for
various magnetic fields; lower: magnetic field dependence of the spin gap, D, with dashed lines the expected behavior for S = ½ and S = 1 excitations] (101), and
(C) quantized plateau in the thermal Hall effect of a-RuCl3 [kxy/T versus magnetic field: upper, 3.7 K; middle 4.3 K; lower, 4.9 K] (112).
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with the fact that INS measures spin-1 excita-
tions, i.e., pairs of spinons) (102), though as
in herbertsmithite (93, 94), the low-energy
properties of barlowite are dominated by
defect spins. Most recently, attempts have
been made to dope herbertsmithite to realize
the long-sought “doped spin liquid” popular-
ized by Anderson in 1987 (8). However, inter-
calating Li (103) or replacing Zn2+ by Ga3+

(104) leads to localized polarons [as confirmed
by density functional calculations (105)], and
thus no mobile carriers as in high-temperature
superconducting cuprates (106). Even if polar-
ons were not to occur, DMRG simulations
predict Wigner crystallization of the doped
carriers (107).

a-RuCl3

The proposal by Jackeli and Khaliullin (67)
that certain Mott-Hubbard systems with par-
tially filled t2 g-levels and strong spin-orbit
coupling might realize the Kitaev model led
to an intense search. The firstmaterials studied
were those such as a-Na2IrO3 and a-Li2IrO3,
where Ir4+ ions (with effective j = ½) form a
honeycomb lattice. Although these materials
exhibit long-range magnetic order, polarized
resonant x-ray data show that bond-directional
Kitaev interactions (Fig. 2D) indeed occur in
this class of materials (108). This demon-
strates why the recent discovery of a variant,
H3LiIr2O6, that does not exhibit long range
order is important (109).
The realization that a-RuCl3 has properties

similar to those of the iridate honeycomb ma-
terials led to a huge growth in these studies. In
a-RuCl3,magnetic Ru is found on a honeycomb
lattice between close-packed Cl planes (Fig.
3C). This material is relatively easy to grow in
single-crystalline form and manipulate (as
the layers are van derWaals coupled, they can
be exfoliated). Also, the thermal neutron ab-
sorption cross section for Ru is a factor of 170
less than for Ir, so a-RuCl3 is amenable to INS
studies, which reveal a continuum of spin ex-
citations (110). However, there has been some
debate about which properties of this material
are attributable to the Kitaev model, as op-
posed to more traditional physics (stemming
from the non-negligible Heisenberg interac-
tion). In particular, questions have been raised
whether magnon-like excitations could explain
some (or all) of the data (111), given that the
material does order at low temperatures.
Nevertheless, the spin continuum as detected
in Raman data seems to obey fermionic sta-
tistics (65). Most notably, magnetic order is
suppressed upon applying a magnetic field,
implying that a spin liquid phase might exist
in a range of magnetic fields. This led to a
measurement of a thermal Hall signal that
plateaued in a small range of temperature
and magnetic field (112) (Fig. 4C). The value
of this plateau is consistent with Majorana

edge modes, being one-half of the value for
fermionic edge modes (66). The observation
of such a quantized plateau is peculiar, given
that the thermal Hall angle is small (the lon-
gitudinal thermal conductivity is dominated
by phonons), but this has been explained by
two different theory efforts (113, 114). As with
most important experiments in this field, this
result has yet to be reproduced by other groups.
In addition, consistent with the organics and
herbertsmithite, disorder should play an im-
portant role as well, particularly given the
presence of stacking faults (115). Finally, based
on the evidence that a-RuCl3 exhibits spin
liquid behavior, it is of great interest to study
the physical properties of electron- and hole-
doped variants (116, 117).
A big question looms for the honeycomb-

based spin liquid candidates: Is the Kitaev
model actually relevant to these materials?
The spin liquid in the exact solutionmay have
only a tiny regime of stability beyond the
solvable limit, on the basis of numerical cal-
culations of the Kitaev model supplemented
with Heisenberg exchange interactions (118).
Furthermore, in the exact solution, the vison
gap is very small (only a few percent of the
Kitaev exchange) and so thermally, the spin
liquid state only occurs at very low temper-
atures. Recent calculations suggest that a cer-
tain spin-anisotropic “symmetric exchange”
enhances the stability of the exactly solved
spin liquid (119). Alternatively, the possibil-
ity that any spin liquid that occurs in a-RuCl3
or the iridates may not be smoothly con-
nected to the Kitaev spin liquid must be kept
in mind (120).

Other candidate materials

Space considerations preclude a detailed
account of other spin liquid candidates. Of
recent interest has been YbMgGaO4, where
the Yb ions form a triangular lattice, albeit
with disorder on the nonmagnetic cation site.
It is easy to grow and study, and the small
energy scales associated with the 4f Yb ion
make it more amenable to certain types of
studies [extensive neutron scattering studies
have been done (121)]. It, too, has been claimed
to possibly have a “spinon” Fermi surface
(122), but as withmost spin liquid candidates,
disorder plays an important role (82, 123)—in
this case, Mg and Ga interchanges that dis-
tort the Yb environment (124). Similar con-
siderations apply to Ba3CuSb2O9 (125), where
Cu/Sb interchanges occur. Another candidate,
Ca10Cr7O28, can be described as a triangular
lattice of six Cr5+-based spin-½ clusters—each
consisting of an antiferromagnetic and a fer-
romagnetic triangle interacting ferromagneti-
cally with each other. Extensive experimental
and numerical work on this bilayer kagome
material has established its spin Hamiltonian
and the lack of static spin ordering at temper-

atures as low as 0.3K (126). For both YbMaGaO4

(127) and Ca10Cr7O28 (128), however, the absence
of a linear term in the thermal conductivity
argues against the existence of a spinon Fermi
surface.Moreover, a lackof long-rangemagnetic
order has been reported in the triangular-based
materials NiGa2S4 (129), Ba8CoNb6O24 (130),
NaYbO2 (131), and Ba4NbIr3O12 (132), as well as
in the honeycomb-based material BaCo2As2O8

(133). Recently, a copper oxide, averievite
[Cu5V2O10(CsCl)], was identified in which the
copper ions form a pyrochlore slab. First dis-
covered in a volcano inKamchatka, thematerial
was synthesized and subsequently languished
in an academic thesis, only to be “rediscov-
ered” (thanks to Google Scholar) (134). Sub-
stitution by zinc likely replaces the intersite
copper ions (as in herbertsmithite), isolating
the copper kagome layers, and the resulting
susceptibility and specific heat are reminiscent
of herbertsmithite (132). Several materials are
also knownwheremagnetic ions form a “hyper-
kagome” lattice (obtained by taking the kagome
layer and pulling it into the third dimension).
Of particular note are Na4Ir3O8 (135) and
PbCuTe2O6 (136), but again both have quenched
disorder (for the former material, caused by
partial occupation of the Na sites) and dis-
tortions (for the latter material, there are
many exchange parameters associated with
its distorted hyperkagome lattice). As for other
frustrated 3D lattices, extensive studies on rare-
earth and transition-metal pyrochlores are
beyond the scope of this article, and the reader
is referred to a recent review (137). An exciting
recent proposal (138), which has received some
experimental support (139, 140), is that the
layered transition-metal dichalcogenide 1T-
TaS2 might be a quantum spin liquid.

The future

This review of quantum spin liquidsmay leave
one to ask, “What else is out there?” Almost
certainly, a lot. As formaterials, many interest-
ing ones known in mineralogical form have
yet to be made in the lab and studied for their
magnetic properties. As an example, quetzal-
coatlite (named after an Aztec god) has copper
ions on a perfect kagome lattice (141). But it,
like many other minerals, is known only by its
structure and nothing else. A systematic study
of potentially frustratedmagnetism inmineral
collections might be a good start, followed by
attempts to make cleaner synthetic versions
of the most-promising minerals. A recurrent
challenge with frustrated magnets is that chem-
ical disorder acts at the “ultraviolet” scale, giving
rise to orphan spins. Clearly, more attention
(and resources) needs to be devoted to synthe-
sis, both in developingpromising new synthesis
routes (high pressure, hydrothermal, molec-
ular beam epitaxy, etc.) and finding ways to
mitigate and control disorder. This is a difficult
task, but it is useful to recall that it took decades
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of materials research to develop elemental
silicon clean enough for applications and
modulation-doped AlGaAs heterostructures
that display the fractional quantum Hall effect.
Disorder—especiallywhen carefully controlled—
can also be illuminating. The tantalizing pos-
sibility of replacing Fe by Ru or Os in jarosites
has been mentioned above. Similarly, one
wonders what the osmium analog of a-RuCl3
would be like (142). And, of course, obtaining
a doped spin liquid that is metallic would be
the holy grail for many (8, 9, 22, 143). This
could potentially be accomplished by ionic
liquid gating to avoid chemical disorder.
Having addressed materials-based issues

above,we turn to theory. Although great strides
have beenmade in numerical techniques, we
still do not know, for instance, what the ground
state is of the near-neighbor Heisenberg model
on a kagome lattice, and less aboutmany other
frustrated lattices, or for “real” Hamiltonians
that contain multiple exchange parameters
as well as anisotropic exchange andDM terms.
Still less is known about dynamical and non-
equilibrium properties. Although neutron
scattering when combined with theoretical
calculations of the magnetic structure factor
S(q,w) can provide circumstantial evidence
for a spin liquid (144), methods to probe
entanglement are needed to obtain model-
independent evidence. As spin liquids are
spin relatives of the fractional quantum Hall
effect, it would make sense to apply methods
known from spintronics to search for spin
currents (145, 146), the spin Hall effect, spin
noise, and other spin-related effects thatmight
expose the nature of the spinons (if they in-
deed exist). As for visons, a proposal for their
study was made many years ago (147) that
involves looking for trappedmagnetic flux in a
spin-liquid ring. This experiment was actually
performed on a superconducting cuprate with
a null result (148), but obviously doing this
sort of experiment on spin liquid candidate
materials would be in order. Similarly, im-
purities can be exploited not only to trap Ma-
jorana fermions but also to induce Friedel
oscillations near defects (that could be detected
by a scanning tunneling probe) that could re-
veal a spinon Fermi surface should it exist
(149). And tunneling has been advocated as a
possible probe of how electrons could poten-
tially fractionalize when injected into a spin
liquid (150). Ultimately, if topological excita-
tions were identified in a material, then one
could think about probing and extending their
phase coherence time and braiding them in
steps toward their utilization for “topological”
quantum computation (151) (Fig. 1C). As for
other potential applications, we can think
of no better way to end than with Michael
Faraday’s supposed response to William Glad-
stone’s dismissal of a scientific discovery:
“What use is it?” he quipped. “Why, sir, there

is every probability that you will soon be able
to tax it.”
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