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Abstract. For each minuscule flag variety X, there is a corresponding minuscule
poset, describing its Schubert decomposition. We study an action on plane parti-
tions over such posets, introduced by P. Cameron and D. Fon-der-Flaass (1995).
For plane partitions of height at most 2, D. Rush and X. Shi (2013) proved an in-
stance of the cyclic sieving phenomenon, completely describing the orbit structure
of this action. They noted their result does not extend to greater heights in general;
however, when X is one of the two minuscule flag varieties of exceptional Lie type
E, they conjectured explicit instances of cyclic sieving for all heights.

We prove their conjecture in the case that X is the Cayley-Moufang plane of
type E6. For the other exceptional minuscule flag variety, the Freudenthal vari-
ety of type E7, we establish their conjecture for heights at most 4, but show that
it fails generally. We further give a new proof of an unpublished cyclic sieving
of D. Rush and X. Shi (2011) for plane partitions of any height in the case X is
an even-dimensional quadric hypersurface. Our argument uses ideas of K. Dilks,
O. Pechenik, and J. Striker (2017) to relate the action on plane partitions to com-
binatorics derived from K-theoretic Schubert calculus.

1. Introduction

The minuscule posets are a remarkable collection of partially-ordered sets that
arise naturally from the representation theory of Lie algebras or alternatively from
the Schubert calculus of generalized flag varieties. We study dynamical enumerative
properties of plane partitions over these posets.

A special case is the set of ordinary plane partitions that fit inside a fixed rect-
angular box. In this context, P. Cameron and D. Fon-der-Flaass [CFDF95] initi-
ated the study of a combinatorially-natural operator Ψ. This operator is now gen-
erally known as rowmotion and has become a subject of intense study (cf., e.g.,
[Pan09, SW12, AST13, RS13, EP14, PR15, GR15, GR16, DPS17, Vor17, DSV17]).
We will describe minuscule posets and the operation of rowmotion in Sections 2 and
3, respectively.

For any poset P , let PPk(P ) denote the set of plane partitions of height at most
k over P , or equivalently, the set of order ideals in the product P × k of P with a
chain poset of k elements. Let fkP denote the generating function that enumerates
the elements of PPk(P ) by cardinality, so fkP (q) :=

∑
I∈PPk(P ) q

|I|. In the special case
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k ≤ 2 and P minuscule, D. Rush and X. Shi [RS13] showed that fkP also encodes the
orbit structure of rowmotion via an instance of the cyclic sieving phenomenon
(introduced by V. Reiner, D. Stanton, and D. White [RSW04]). Thus for k ≤ 2, the
number of minuscule plane partitions fixed by the d-fold application of rowmotion
Ψ◦d is the evaluation of the polynomial fkP at ζd, where ζ is any primitive nth root of
unity and n is the period of Ψ on PPk(P ). (Since some of our other operators have
superscripts in their names, we denote the d-fold composition of an operator τ by
τ ◦d.)

It was noted in [RS13] that this instance of cyclic sieving does not extend to the
case k ≥ 3 for general minuscule posets. However, D. Rush and X. Shi conjectured
the following. (The posets in question are illustrated in Figure 1.)

Conjecture 1.1 ([RS13, Conjecture 11.1]). Let P be one of the two minuscule posets
associated to an exceptional Lie algebra of type E and let k ∈ Z≥0. Then fkP is a
cyclic sieving polynomial for the action of Ψ on PPk(P ).

(a) Cayley-Moufang poset, PCM (b) Freudenthal poset, PF

Figure 1. The two minuscule posets associated to exceptional Lie al-
gebras of type E. Here, we have drawn the posets to resemble Young
diagrams in Cartesian (“French”) orientation; the boxes are the ele-
ments of the poset and each box covers the box immediately below it
and the box immediately to its left (if such boxes exist). Hence the
minimal element of each poset is the box at the far left of the bottom
row. The Cayley-Moufang poset PCM is associated to E6, while the
Freudenthal poset PF is associated to E7. (There is no minuscule poset
associated to E8.)

Our main result is to completely resolve Conjecture 1.1.

Theorem 1.2. Conjecture 1.1 holds for the E6 minuscule poset PCM (cf. Figure 1A)
and all k, but holds for the E7 minuscule poset PF (cf. Figure 1B) only when k ≤ 4.
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Verification of Conjecture 1.1 in the the cases k ≤ 4 for PCM and k ≤ 3 for PF was
previously reported in [RS13]. Our new results are therefore:

• cyclic sieving for PCM when k > 4,
• cyclic sieving for PF when k = 4, and
• failure of the conjectured cyclic sieving for PF when k > 4.

Our approach to proving Theorem 1.2 is to use the ideas of K. Dilks, O. Pechenik,
J. Striker and C. Vorland [DPS17, DSV17] to relate the action of Ψ to the action
of K-promotion on increasing tableaux. K-promotion was first studied in [Pec14],
building on combinatorial tools for K-theoretic Schubert calculus due to H. Thomas
and A. Yong [TY09]. We show that the action of K-promotion is controlled by
its behavior on a finite subset of increasing tableaux. By understanding the orbit
structure of this subset, we are able to determine the complete orbit structure, thereby
establishing Theorem 1.2.

Having developed these methods, it becomes straightforward to prove the following
additional result.

Theorem 1.3. Let P be a minuscule poset associated to an even-dimensional quadric
of type Dp+1 (cf. Figure 3C) and let k ∈ Z≥0. Then fkP is a cyclic sieving polynomial

for the action of Ψ on PPk(P ).

Theorem 1.3 was previously announced by D. Rush and X. Shi [RS13, Theo-
rem 10.1]; however, they omitted their proof [RS11, §10] from the published paper.
We believe that our alternative proof of Theorem 1.3 via K-theoretic combinatorics
provides different insight.

Remark 1.4. Often instances of cyclic sieving can be proven using representation-
theoretic techniques [RSW04, Rho10], and when cyclic sieving is established in a
more direct fashion, as we do here, it may be a clue toward new underlying algebra
(cf. [Rho17]). The results in Theorems 1.2 and 1.3 perhaps suggest the existence of
new symmetric group module structures on the sets PPk(P ). Developing such repre-
sentations would be an interesting direction for future work. In particular, we do not
have a good understanding of why the posets PCM and PF behave so differently in
Theorem 1.2, even though the associated algebra and geometry seems very similar;
a representation-theoretic construction might shed light on this mystery. It is also
possible that the difference between PCM and PF in Theorem 1.2 could be explained
via monodromy in real Schubert calculus by vastly extending the geometric construc-
tions of [Lev17]; from conversations with J. Levinson and K. Purbhoo, it seems that
there are many obstacles, however, to developing the necessary geometry to give such
a geometric explanation of the results here.

This paper is organized as follows. In Section 2, we define the minuscule posets,
recalling their classification and other properties we will use. Section 3 gives the pre-
cise definition of rowmotion and, following [DPS17, DSV17], notes the close relation
between rowmotion and K-promotion. We then develop new tools for understanding
the orbit structure of K-promotion in Sections 4, 5, and 6. Specifically, Section 4
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introduces the operations of inflation and deflation, retracting the set of increasing
tableaux onto the finite subset of gapless tableaux. In Section 5, we recall the pre-
cise definition of K-promotion on increasing tableaux and show how K-promotion is
governed by its restriction to gapless tableaux. Section 6 uses this information to de-
termine the period of K-promotion on general increasing tableaux. Finally, Section 7
combines these ideas to prove Theorems 1.2 and 1.3.

2. Minuscule posets

Let G be a complex connected reductive Lie group with maximal torus T. Denote
by W the Weyl group NG(T)/T. The root system Φ of G may be partitioned Φ+tΦ−

into positive and negative roots according to a choice ∆ of simple roots. There is
a natural poset structure on Φ+ obtained as the transitive closure of the covering
relation α Ì β if and only if β − α ∈ ∆. The choice of bipartition of Φ into positive
and negative roots further specifies a choice of a Borel subgroup B+ ⊂ G and an
opposite Borel subgroup B− ⊂ G with B+ ∩ B− = T.

We say δ ∈ ∆ is minuscule if for every α ∈ Φ+, δ∨ appears with multiplicity at
most 1 in the simple coroot expansion of α∨. The classification of minuscule roots is
well known and is illustrated in Figure 2 in terms of Dynkin diagrams.

An

Bn

Cn

Dn

E6

E7

Figure 2. In each of the finite-type Dynkin diagrams above, each
minuscule root is marked as a pale blue disk, while the non-minuscule
simple roots are marked in black. In type An, every node is minuscule,
while in the other types only the indicated leaves are minuscule. The
remaining finite-type Dynkin diagrams are omitted because they have
no minuscule nodes.

For each minuscule simple root δ, there is an associated minuscule poset Pδ
obtained as the subposet of Φ+ induced on those positive roots α where δ appears
with nonzero coefficient in the simple root expansion of α.
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Alternatively, one may obtain the minuscule posets via the geometry of certain
generalized flag varieties. If Pδ ⊃ B+ denotes the maximal parabolic subgroup of
G associated to the minuscule simple root δ, then the space X = G/Pδ is called a
minuscule variety. The minuscule varieties are smooth projective varieties with
many additional nice geometric properties (cf., e.g., [BL00] for details). The natural
action of the Borel subgroup B+ on X has finitely many orbits, whose Zariski closures
are the Schubert varieties. Given two Schubert varieties in X, it is known that
they are either disjoint or else one is a subset of the other. Indeed the poset YX
of Schubert varieties of X with respect to inclusion is a distributive lattice and its
corresponding poset of join irreducibles is isomorphic to the minuscule poset Pδ for
the minuscule simple root δ, as constructed above.

The minuscule posets are completely classified. We illustrate them here in Figures 1
and 3. Our focus will be on the propellers, the Cayley-Moufang poset, and the
Freudenthal poset as shown in Figures 3C, 1A, and 1B, respectively. The propeller
Pp with 2p elements (p ≥ 3) is associated to the minuscule node that is not adjacent
to the trivalent node in the Dp+1 Dynkin diagram, the Cayley-Moufang poset PCM
is associated to either of the two minuscule simple roots for E6, and the Freudenthal
poset PF is associated to the unique minuscule simple root for E7 (cf. Figure 2).
The corresponding minuscule varieties are, respectively, even-dimensional quadric
hypersurfaces, the octonionic projective plane (or Cayley-Moufang plane), and the
Freudenthal variety. The remaining minuscule roots yield minuscule posets that are
rectangles or shifted staircases (illustrated in Figure 3A and B). These correspond
respectively to type A Grassmannians and to maximal orthogonal Grassmannians; we
will not consider these posets further in this paper (except as convenient examples),
since the orders of rowmotion and K-promotion are generally unknown for them.

A poset that is linearly ordered is called a chain; we denote the chain on k elements
by k. By a plane partition of height at most k over a poset P , we mean an order
ideal of the product poset P × k. Clearly, such a plane partition may be identified
with a weakly order-reversing map π : P → k (i.e., a map π such that x ≤ x′ implies
π(x) ≥ π(x′)).

Remark 2.1. The poset P is called Gaussian if the generating function fkP (q) may
be expressed in the form

fkP (q) =
(1− qh1+k)(1− qh2+k) · · · (1− qht+k)

(1− qh1)(1− qh2) · · · (1− qht)
,

for some nonnegative integers t, h1, h2, . . . , ht ∈ Z≥0 independent of k. R. Proctor
showed that every minuscule poset is Gaussian [Pro84]. Indeed, it is conjectured that
there are no other connected Gaussian posets. In the case of a minuscule poset P , one
can in fact take t = |P | and, for x ∈ P , take hx = rk(x) + 1, where rk(x) denotes the
length of the largest chain in P with maximum element x. (The length of a chain is
the number of covering relations; that is, x0 < x1 < · · · < xn is a chain of length n.)
Given the beautiful form of these generating functions, it is perhaps not surprising



6 H. MANDEL AND O. PECHENIK

that fkP should play a role in some instances of cyclic sieving, as in Theorems 1.2 and
1.3.

(a) Rectangle (b) Shifted staircase

(c) Propeller, P5

Figure 3. Together with the two posets shown in Figure 1, these are
exemplars of all five families of minuscule posets, shown in Cartesian
orientation. The elements of each poset are the boxes, and each box is
covered by any box immediately above it or immediately to its right.
Rectangles may have arbitrary height and width. Shifted staircases
have arbitrary width, and height equal to their width. The propeller
Pp consists of two rows of length p, overlapping by two boxes in the
center. The Cayley-Moufang and Freudenthal posets of Figure 1 are
exceptional, forming singleton families.

3. The rowmotion operator Ψ

If P is any finite poset, let J(P ) denote the set of its order ideals. For I ∈ J(P ),
we define Ψ(I) ∈ J(P ) to be the order ideal generated by the minimal elements
of the complement P − I. This operator Ψ is closely related to those described in
[BS74, Duc74, CFDF95] in different contexts. It was first considered explicitly as
an action on order ideals by J. Striker and N. Williams [SW12]. We follow them in
referring to Ψ as rowmotion.

We now observe that results of [DPS17] and [DSV17] enable us to study the row-
motion action Ψ via the action of K-promotion on increasing tableaux.

Definition 3.1. Let λ be an order ideal of a minuscule poset, considered as an gener-
alized Young diagram in Cartesian orientation as in Figures 1 and 3. An increasing
tableau of shape λ is an assignment of a positive integer to each box of λ, such
that entries strictly increase from left to right along rows and strictly increase from
bottom to top going up columns. Let Incm(λ) denote the set of increasing tableaux
of shape λ with all entries at most m. We identify Incm(λ) with the set of strictly
order-preserving maps from the poset λ to the chain poset m = {1, 2, . . . ,m} on m
elements. For an example of an increasing tableau, see Figure 4.



ORBITS OF PLANE PARTITIONS 7

23

22

21

19 20

11 12 15 18 19

9 11 13 16 17

8 10 11

6 7 9

1 2 3 4 5 6

Figure 4. A representative increasing tableau T ∈ Inc23(PF ).

From the combinatorics ofK-theoretic Schubert calculus one obtains aK-promotion
operator prom on Incm(λ) that directly extends M.-P. Schützenberger’s classical def-
inition of promotion [Sch72]. We will define prom in Section 5. For a finite poset
P , let rk(P ) denote the length of the longest chain in P . (This is one less than the
definition of rk in [DSV17].)

Proposition 3.2. Let P ∈ {PCM , PF , Pp} and k ∈ Z≥0. There is an equivariant

bijection between Inck+rk(P )+1(P ) under K-promotion and J(P × k) under Ψ.

Proof. By [DSV17, Corollary 5.2], there is an equivariant bijection between the sets

Inck+rk(P )+1(P ) under K-promotion and J(Γ1(P, k + rk(P ) + 1)) under Ψ, where
Γ1(P, k + rk(P ) + 1) is an auxilliary poset constructed from P in [DSV17, §3.1]. For
any x ∈ P , note that the maximal length of a chain through x is independent of x.
(Specifically, this maximal length is rk(P ); we have rk(PCM) = 10, rk(PF ) = 16, and
rk(Pp) = 2p− 2.) Hence [DSV17, Corollary 3.28] applies, and in these cases we have
the isomorphism of posets Γ1(P, k + rk(P ) + 1) ∼= P × k. �

Corollary 3.3. Let P ∈ {PCM , PF , Pp} and k ∈ Z≥0. Then the multiset of cardinal-
ities of Ψ-orbits on J(P × k) and the multiset of cardinalities of prork(P )+k+1-orbits

on Incrk(P )+k+1(λ) are equal. �

4. Inflation and deflation

In light of Corollary 3.3, we now turn to a more thorough study of increasing
tableaux. Let λ be an order ideal in a minuscule poset. Suppose T ∈ Incm(λ) and
consider T as a strictly order-preserving map from λ to the chain poset m. We say
that T is gapless if this map is surjective and gappy otherwise. We write Incmgl (λ)
for the subset of all gapless tableaux in Incm(λ). Notice that the set

Incgl(λ) :=
∐
m

Incmgl (λ)
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is finite. This fact will be critical to our proofs of Theorems 1.2 and 1.3.
For T ∈ Incm(λ), let mT be the number of distinct labels in T . For each m, we

define the deflation map

Deflm : Incm(λ)→
∐

0≤n≤m

Incngl(λ)

by

[Deflm(T )](x) = #{h ∈ range(T ) : h ≤ T (x)},
for T ∈ Incm(λ) and x ∈ λ. Note that Deflm(T ) ∈ IncmTgl (λ) and that mT ≤ m.

For nonnegative integers j and k, let
`

[j]
k

˘

denote the collection of binary vectors of
length j with k 1’s. We now define the content vector function

Conm : Incm(λ)→ {0, 1}m =
∐

0≤n≤m

ˆ

[m]

n

˙

by

Conm(T ) = (c1, . . . , cm),

where ci = 1 if i ∈ range(T ) and ci = 0 if i /∈ range(T ). (Note that this definition of
content differs from the usual notion of content for semistandard tableaux in that here
we do not care about the multiplicity of a label, but only its presence or absence.)

Example 4.1. If T = 4 5 6

1 2 5
∈ Inc7(2× 3), then the deflation of T is

Defl7(T ) = 3 4 5

1 2 4
∈ Inc5gl(2× 3).

The content vector of T is Con7(T ) = (1, 1, 0, 1, 1, 1, 0) ∈
`

[7]
5

˘

⊂ {0, 1}7. ♦

Now if Deflm(T ) ∈ Incngl(λ), then Conm(T ) ∈
`

[m]
n

˘

. We denote by DeflConm the
product map

DeflConm := (Deflm,Conm).

Proposition 4.2. The map

DeflConm : Incm(λ)→
∐

0≤n≤m

ˆ

Incngl(λ)×
ˆ

[m]

n

˙˙

is bijective.

Proof. A two-sided inverse for DeflConm is given as follows. For any positive integer
j, let [j] denote the set {1, 2, . . . , j}. For a binary vector v ∈ {0, 1}m, let Nv be the
number of 1’s in v, and define a vector inflation map

VecInflmv : [Nv]→ [m]



ORBITS OF PLANE PARTITIONS 9

by

VecInflmv (k) = min

{
n ∈ [m] :

n∑
`=1

v〈`〉 = k

}
.

(We use angled brackets “〈 〉” throughout the paper to denote vector components.)
An integer j ∈ [m] is in the range of VecInflmv if and only if v〈j〉 = 1. Therefore

[VecInflmConm(T ) ◦ Deflm(T )](x) = min

{
n ∈ [m] : #{h ∈ range(T ) : h ≤ n} = [Deflm(T )](x)

}
= T (x).

Now define the tableau inflation map

Inflm :
∐

0≤n≤m

ˆ

Incngl(λ)×
ˆ

[m]

n

˙˙

→ Incm(λ)

by

Inflm(S, v) = VecInflmv ◦ S.

Say (S, v) ∈ Incngl(λ)×
`

[m]
n

˘

. Since S is surjective onto [n] and VecInflmv maps [n] onto
the indices of nonzero components in v, Conm(Inflm(S, v)) = v. Also,

[Deflm(VecInflmv ◦ S)](x) = #{h ∈ range(VecInflmv ◦ S) : h ≤ VecInflmv ◦ S(x)}

= #{h : v〈h〉 6= 0 and
h∑
`=1

v〈`〉 ≤ S(x)}

= S(x).

Therefore, Inflm is a two-sided inverse for DeflConm. �

Example 4.3. Let v = (1, 1, 0, 1, 1, 1, 0) ∈ {0, 1}7. Then, Nv = 5 and the map
VecInfl7

v : [5]→ [7] is given by

VecInfl7
v(1) = 1,

VecInfl7
v(2) = 2,

VecInfl7
v(3) = 4,

VecInfl7
v(4) = 5,

VecInfl7
v(5) = 6.

Now, for S = 3 4 5

1 2 4
, we have Infl7(S, v) = VecInfl7

v ◦ S = 4 5 6

1 2 5
. Note

that this process has recovered the tableau T of Example 4.1 from S = Defl7(T ) and
v = Con7(T ). ♦
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5. Interaction between K-promotion and deflation

A classical approach to the cohomological Schubert calculus of type A Grassman-
nians is to use the jeu de taquin on standard Young tableaux introduced by M.-
P. Schützenberger [Sch77]. (See [Ful97, Man01] for modern expositions of the classical
jeu de taquin theory.) A theme of modern Schubert calculus has been extending such
theories to richer generalized cohomologies and in particular into the K-theory ring
of algebraic vector bundles. For a partial survey of recent work related to K-theoretic
Schubert calculus and the associated combinatorics, see [PY17].

The firstK-theoretic Littlewood-Richardson rule was discovered by A. Buch [Buc02];
this rule, however, was not based on jeu de taquin. H. Thomas and A. Yong [TY09]
later found a different Littlewood-Richardson rule for the same structure coefficients
by directly extending M.-P. Schützenberger’s jeu de taquin. This latter rule was con-
jectured in [TY09] to extend to the K-theoretic Schubert structure coefficients of all
minuscule varieties, as was proven by a combination of [BR12, CTY14, BS16]. In
this Thomas-Yong theory, the role of standard Young tableaux is filled by increasing
tableaux.

The K-jeu de taquin of H. Thomas and A. Yong [TY09] gives rise to a K-promotion
operator prom on Incm(λ) that directly extends M.-P. Schützenberger’s classical defi-
nition of promotion [Sch72]. K-promotion was first studied in [Pec14], and has been
further investigated in [BPS16, PSV16, Rho17, DPS17, Pec17, Vor17].

In this section, we determine how prom interacts with DeflConm. Our results will
show that prom is controlled by its action on gapless increasing tableaux. The power
of this observation is that there are only finitely many gapless increasing tableaux
of any fixed shape λ. Thus a finite amount of data governs the action of prom on
Incm(λ) for all m.

First, we define prom, setting up notation that we will need. Instead of using the
original definition of [Pec14], based on K-jeu de taquin, it will be convenient to use an
equivalent formulation from [DPS17], based on certain involutions. Let T ∈ Incq(λ).
The K-Bender-Knuth operator ρi acts on T by swapping the letters i and i + 1
everywhere in T where doing so would not violate the increasingness conditions. More
precisely, ρi looks at the set of boxes labeled i or i+1, decomposes that set into edge-
connected components, swaps the labels i and i+1 in each component that is a single
box, and acts trivially on each non-trivial connected component. Notice that each ρi is
an involution. Using the characterization of [DPS17, Proposition 2.4], K-promotion
may then be defined by

proq(T ) := ρq−1 ◦ · · · ◦ ρ1(T ).

Examples of the action of K-Bender-Knuth operators are shown in Figure 5, while
an example of the full process of K-promotion is shown in Figure 6.

For the remainder of this section, we assume that λ is a miniscule poset. In par-
ticular, λ has a unique maximal element.
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4 5

1 2 3 5

6

3 5

1 2 4 5

6

4 5

1 2 3 4

6

4 5

1 2 3 6

ρ3

ρ4

ρ5

Figure 5. The three increasing tableaux on the right are obtained
from the increasing tableau at left by applying the indicated K-Bender-
Knuth operators. The arrows point in both directions since each K-
Bender-Knuth operator is involutive.

Proposition 5.1. Let T ∈ Incm(λ). If Conm(T )〈1〉 = 1, then

(5.1) Deflm ◦ prom(T ) = promT ◦ Deflm(T ).

If Conm(T )〈1〉 = 0, then prom decrements each label of T by one.

Note that, by Proposition 5.1, the behavior of prom on T ∈ Incm(λ) is fundamen-
tally different depending on whether or not the label 1 appears in T . This distinction
will lead to interestingly complicated counting formulas in Sections 6 and 7. In order
to prove Proposition 5.1, we will first need the following lemma.

Lemma 5.2. Let T ∈ Incm(λ). Let the ordered set of labels of T be

{i1 < i2 < · · · < imT−1 < imT }.
(In the notation above, ij = VecInflmConm(T )(j).) Then, for all 1 ≤ r < mT ,

Deflm ◦ ρir+1−1 ◦ · · · ◦ ρir(T ) = ρr ◦ Deflm(T ).

In addition, the ordered set of labels of ρir+1−1 ◦ · · · ◦ ρir(T ) is

{i1 < · · · < ir−1 < ir+1 − 1 < ir+1 < · · · < imT }.

Proof. Fix 1 ≤ r < mT . For s ≥ ir, we use the shorthand

Ts := ρs−1 ◦ · · · ◦ ρir(T );
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T = 8 9 11 12 13

7 8 10

5 6 7

1 2 3 4 5

8 9 11 12 13

7 8 10

4 6 7

1 2 3 4 5

8 9 11 12 13

7 8 10

4 5 7

1 2 3 4 6

8 9 11 12 13

6 8 10

4 5 7

1 2 3 4 6

7 9 11 12 13

6 8 10

4 5 7

1 2 3 4 6

7 10 11 12 13

6 8 9

4 5 7

1 2 3 4 6

= pro13(T )

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9

ρ10 ρ11 ρ12

ρ1 ρ2 ρ3

Figure 6. The calculation of the K-promotion pro13(T ) of the increas-
ing tableau T (on the Cayley-Moufang poset) through the action of the
sequence of K-Bender-Knuth operators ρ1, . . . , ρ12.

in particular, Tir = T .
Let R ⊆ λ be the set of boxes z ∈ λ such that T (z) = ir. Consider x ∈ R. Either

(1-A) x is covered by at least one box labeled ir+1 in T or
(1-B) it is not.

In either case, observe that for ir ≤ ` < ir+1 − 1, ρ` acts on T` by changing the label
of each z ∈ R from ` to `+ 1 and leaving all other labels unchanged, since T` has no
boxes labeled `+ 1. In the case (1-A),

Tir+1(x) = ρir+1−1(Tir+1−1)(x) = ir+1 − 1.

In the case (1-B),

Tir+1(x) = ρir+1−1(Tir+1−1)(x) = ir+1.
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Now let y ∈ λ be a box with T (y) = ir+1. Either

(2-A) y covers at least one box labeled ir in T or
(2-B) it does not.

In either case, recall that for ir ≤ ` < ir+1 − 1, the label of y is unchanged by the
action of ρ` on T`. In the case (2-A),

Tir+1(y) = ρir+1−1(Tir+1−1)(y) = ir+1.

In the case (2-B),

Tir+1(y) = ρir+1−1(Tir+1−1)(y) = ir+1 − 1.

All other boxes are unaffected by ρ` for ` in this range. Since there must be either
an x ∈ R satisfying (1-A) or a y ∈ λ satisfying (2-B), the ordered set of entries of
Tir+1 is {i1 < · · · < ir−1 < ir+1 − 1 < ir+1 < · · · < imT }, proving the last sentence of
the lemma.

Now therefore, if x satisfies (1-A), then

Deflm(Tir+1)(x) = r,

while if x satisfies (1-B), then

Deflm(Tir+1)(x) = r + 1.

Similarly, if y satisfies (2-A), then

Deflm(Tir+1)(y) = r + 1,

while if y satisfies (2-B),

Deflm(Tir+1)(y) = r.

It is easily seen that these values match ρr ◦Deflm(T )(x) and ρr ◦Deflm(T )(y) in each
case. Since all boxes not satisfying one of these four cases are unchanged by the
K-Bender-Knuth operators in question, this completes the proof of the lemma. �

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Let the ordered set of labels of T ∈ Incm(λ) be

{i1 < i2 < · · · < imT−1 < imT }.

(That is, ij = VecInflmConm(T )(j).)
Let vr be the content vector corresponding to the ordered set

{i2 − 1 < i3 − 1 < · · · < ir − 1 < ir+1 − 1 < ir+1 < · · · < imT }.

That is, vr is the binary vector of length m with 1s in exactly these positions.
First, suppose that Conm(T )〈1〉 = 1, so i1 = 1. Then by Lemma 5.2,

Deflm ◦ ρi2−1 ◦ · · · ◦ ρ1(T ) = ρ1 ◦ Deflm(T ).

Hence by the proof of Proposition 4.2,

ρi2−1 ◦ · · · ◦ ρ1(T ) = VecInflmv1 ◦ (ρ1 ◦ Deflm(T )),
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since v1 = Conm(ρi2−1 ◦ · · · ◦ ρ1(T )). By induction using Lemma 5.2 and the proof of
Proposition 4.2, we then see that

ρimT−1 ◦ · · · ◦ ρ1(T ) = VecInflmv(mT−1)
◦ ρmT−1 ◦ Deflm ◦ · · · ◦ VecInflmv1 ◦ ρ1 ◦ Deflm(T )

= VecInflmv(mT−1)
◦ ρmT−1 ◦ · · · ◦ ρ1 ◦ Deflm(T ),(5.2)

since vr = Conm(ρir+1−1 ◦ · · · ◦ ρ1(T )). If m = imT , we are done after applying
Deflm to both sides of Equation (5.2). Otherwise, Lemma 5.2 implies that the unique
maximal element of λ is labeled with imT in ρimT−1 ◦ · · · ◦ ρ1(T ), so ρimT increments
the maximal box to imT + 1. By induction, ρ` increments this same box to i` + 1 for
` = mT ,mT + 1, . . . ,m− 1. Therefore,

Deflm ◦ ρm−1 ◦ · · · ◦ ρ1(T ) = Deflm ◦ ρimT−1 ◦ · · · ◦ ρ1(T ).

This completes the proof in the case Conm(T )〈1〉 = 1.
Now, suppose that Conm(T )〈1〉 = 0, so i1 > 1. Then ρr acts trivially on ρr−1 ◦ · · · ◦

ρ1(T ) for r < i1 − 1. Next, ρi1−1 decrements all boxes labeled i1 by one, since there
are no adjacent boxes labeled i1 − 1. But then there are no boxes labeled i1, so ρi1
decrements all boxes labeled i1 + 1 by one. Inductively, it follows that ρr decrements
boxes labeled r+ 1 by one for i1− 1 ≤ r < mT and leaves other boxes unchanged. It
is then easy to see that ρr acts trivially for r ≥ mT and the proposition follows. �

6. Computation of period

In this section, we use Proposition 5.1 to relate the period of T ∈ Incm(λ) under
prom to data concerning Deflm(T ). Let

Σm : {0, 1}m → {0, 1}m

be the cyclic rotation defined by

Σm(v1, . . . , vm) = (v2, . . . , vm, v1)

for (v1, . . . , vm) ∈ {0, 1}m.

Theorem 6.1. Fix T ∈ Incm(λ). Let τ be the the period of promT on Deflm(T ) and
` be the period of Σm on Conm(T ). Then, the period of prom on T is

`τ

gcd(`mT/m, τ)
.

Proof. Define

Km :
∐
n≤m

Incngl(λ)×
ˆ

[m]

n

˙

→
∐
n≤m

Incngl(λ)×
ˆ

[m]

n

˙

by

Km(S, v) =

{
ppromS(S),Σm(v)q, if v〈1〉 = 1;

pS,Σm(v)q, otherwise.



ORBITS OF PLANE PARTITIONS 15

We first show that, for T ∈ Incm(λ),

(6.1) DeflConm ◦ prom(T ) = Km ◦ DeflConm(T ).

Let π1 be the projection onto the first factor of
∐

n≤m Incngl(λ) ×
`

[m]
n

˘

and π2 the
projection onto the second factor. It is immediate from the definitions that

π2(K
m ◦ DeflConm(T )) = Σm ◦ Conm(T ).

But by [DPS17, Lemma 2.1],

Σm ◦ Conm(T ) = Conm ◦ prom(T ) = π2(DeflConm ◦ prom(T )).

Thus, the two sides of Equation (6.1) are equal in the second factor.
We now show that Equation (6.1) holds in the first factor. Let

w := Conm(T ) = π2(DeflConm(T )).

By the proof of Proposition 4.2, we can write

T = Inflm(Deflm(T ), w).

If w〈1〉 = 1, then

π1(DeflConm ◦ prom(T )) = Deflm ◦ prom(T )

= promT ◦ Deflm(T ) (by Proposition 5.1, w〈1〉 = 1)

= π1(K
m ◦ DeflConm(T )) (because w〈1〉 = 1).

On the other hand, if w〈1〉 = 0, then

π1(DeflConm ◦ prom(T )) = Deflm ◦ prom(T )

= Deflm(T ) (by Proposition 5.1, w〈1〉 = 0)

= π1(K
m ◦ DeflConm(T )) (because w〈1〉 = 0).

This completes the proof of Equation (6.1).
Now, since DeflConm is a bijection by Proposition 4.2, (prom)◦n(T ) = T exactly

when DeflConm ◦ (prom)◦n(T ) = DeflConm ◦ T . So, by Equation (6.1), we are reduced
to determining which powers n of Km stabilize DeflConm(T ).

Say (Km)◦n(DeflConm(T )) = DeflConm(T ). Applying π2 to both sides, we have

(Σm)◦n(Conm(T )) = Conm(T ),

so n is a multiple of `. Hence, n = t` for some integer t ∈ Z. Applying instead π1 to
both sides, we have

(prom)◦n
′
(Deflm(T )) = Deflm(T ),

where

n′ := n−#{0 ≤ j ≤ n− 1 : π2((K
m)◦j ◦ DeflConm(T ))〈1〉 = 0}(6.2)

= n−#{1 ≤ i ≤ n : Conm(T )〈i mod m〉 = 0}.
Let r be the number of 0s among the first ` entries of Conm(T ). Then, n′ = t(`− r).
Since (prom)◦n

′
fixes Deflm(T ), n′ is a multiple of τ . Hence, n′ = sτ for some integer

s, and so n = n′ + tr = sτ + tr.
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Thus, we have (Km)◦n ◦DeflConm(T ) = DeflConm(T ) if and only if n = t` = sτ + tr
for some integers s and t. Hence, the period of prom on T is the least positive integer
h that can be simultaneously written in the forms h = t` and h = sτ + tr for the
same value of t. But t` = sτ + tr implies t(` − r) = sτ . Since 0 ≤ r < `, the least
such h is clearly achieved when t is minimal, i.e. when t(` − r) is the least common
multiple of `− r and τ . Thus, h can be expressed as

(6.3) h = t` =
` lcm(`− r, τ)

`− r
=

`τ

gcd(`− r, τ)
.

Finally, observe that r = `(m−mT )
m

, so that

`− r =
`mT

m
.

Therefore,

h =
`τ

gcd( `mT
m
, τ)

,

as desired. �

The following corollary will allow us to determine the period of prom on Incm(λ)
in Section 7.

Corollary 6.2. In the notation of Theorem 6.1, suppose j is a positive integer such
that τ divides jmT . Then, the period h of prom on T divides jm.

Proof. First, say jmT = τ . Then,

(6.4) h =
`τ

gcd( `mT
m
, τ)

=
` · jmT

gcd( `mT
m
, jmT )

=
` · jmT

`mT
m

= jm.

Now, say τ divides jmT . Then,

τ

gcd( `mT
m
, τ)

divides
jmT

gcd( `mT
m
, jmT )

.

Thus, h divides jm. �

7. Proof of Theorems 1.2 and 1.3

In this final section, we collect the above results into proofs of Theorems 1.2 and 1.3.
Consider a poset P that is either the Cayley-Moufang poset, the Freudenthal poset,
or one of the propellers. By Corollary 3.3, the multiset of Ψ-orbit cardinalities for
J(P × k) equals the multiset of prork(P )+k+1-orbit cardinalities for Incrk(P )+k+1(P ).
Therefore, we may prove Theorems 1.2 and 1.3 by studying increasing tableaux in-
stead of plane partitions.

By Proposition 5.1, the pro-orbit structure of increasing tableaux is controlled
by the data of gapless increasing tableaux and binary vectors. But for any fixed P ,
Incgl(P ) is a finite set. Using a computer, we found all 549 gapless increasing tableaux
of shape PCM , as well as all 624 493 gapless increasing tableaux of shape PF . For each
such tableau T ∈ Incmgl (PCM) or Incmgl (PF ), we then determined its period under prom
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by direct calculation. These statistics are given in Table 1 for PCM and in Table 2
for PF . We used SageMath [Sag18, SCc08] for these calculations.

mT period (τ) number of orbits (N)
11 1 1
12 3 1

12 1
13 13 6
14 7 2

14 12
15 15 13
16 2 1

4 1
8 1
16 4

Table 1. The distribution of promT -orbits of gapless increasing
tableaux in IncmTgl (PCM) for each mT .

It is essentially trivial to observe that, for any p, Incgl(Pp) consists of exactly three

increasing tableaux. There are two tableaux in Inc2pgl (Pp), forming a single pro2p-orbit,

and a single tableau in Inc2p−1gl (Pp), which is necessarily fixed by pro2p−1. These three
tableaux and their orbits are illustrated in Figure 7 in the case p = 4. Table 3 records
the observations of this paragraph.

4 5 6 7

1 2 3 4

5 6 7 8

1 2 3 4

4 6 7 8

1 2 3 5

pro8

pro8

pro7

Figure 7. The set Incgl(P4) consists of the three illustrated gapless
increasing tableaux. The unique element of Inc7gl(P4) forms a singleton

pro7-orbit, while pro8 switches the two elements of Inc8gl(P4), as shown.
The situation for p 6= 4 is exactly analogous.
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mT period (τ) number of orbits (N)
17 1 1
18 2 1

18 2
19 19 30
20 20 228
21 7 3

21 1044
22 22 3053

66 2
23 23 5813

69 13
24 8 7

24 7195
48 4
72 26

25 25 5602
50 8
75 21

26 2 2
26 2495
52 4
78 6

27 3 2
9 4
27 484

Table 2. The distribution of promT -orbits of gapless increasing
tableaux in IncmTgl (PF ) for each mT .

mT period (τ) number of orbits (N)
2p− 1 1 1

2p 2 1

Table 3. The distribution of promT -orbits of gapless increasing
tableaux in IncmTgl (Pp) for each mT .

We will use Theorems 6.1 and 7.3, together with the data of Tables 1, 2, and 3, to de-
termine the multiset of prom-orbit cardinalities on set Incm(P ) for P ∈ {Pp, PCM , PF}
and any m. These tables and Corollary 6.2 immediately give the period of prom.
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Theorem 7.1. For m� 0, the period of prom on Incm(P ) is

• m for P = Pp,
• m for P = PCM , and
• 3m for P = PF .

(Here ‘m � 0’ means m ≥ 2p for P = Pp, m ≥ 12 for P = PCM , and m ≥ 22 for
P = PF .) For m ∈ {18, 19, 20, 21}, the period of prom on Incm(PF ) is m.

Proof. Inspecting Table 1 shows that, for PCM , the period of each gapless tableau
divides its height (mT ). By Corollary 6.2, this implies that for all m, the period of
each tableau of height m divides m. Clearly the period of pro12 on Inc12(PCM) is no
less than 12, and whenever m > 12, it is possible to find a tableau attaining period
m by taking a gapless tableau T ∈ Inc12gl (PCM) with period 12 and then inflating
according to a content vector with Σm-period m (for example, by just considering
T ∈ Inc12gl (PCM) as a gappy tableau in Incm(PCM)). The analogous calculation for
P = Pp is easy by inspection of Table 3.

The argument is identical for P = PF when m ∈ {18, 19, 20, 21}, but when m ≥ 22,
we do not have that the period of each gapless tableau divides its height. However,
inspecting Table 2 shows that, for PF and for every m, the period of each gapless
tableaux of height mT divides 3mT . Therefore, Corollary 6.2 gives that for every
m, the period of each tableau of height m divides 3m. Clearly the period of pro22

on Inc22(PF ) is no less than 66, and when m > 22, it is possible to find a tableau
attaining period 3m by taking a gapless tableau T ∈ Inc22gl (PF ) with period 66 and
inflating according to a content vector of Σm-period m (for example, by considering
T as a gappy tableau in Incm(PF )). �

Remark 7.2. In light of the fact that one does not necessarily have (prom)◦m(T ) = T
for T ∈ Incm(PF ), it is reasonable to ask:

“For which x ∈ PF , are we guaranteed (prom)◦m(T )(x) = T (x)?”

Consider the maximal order ideal T of PF that is a tree (in the sense that each x ∈ T
covers at most one y ∈ T ) and the maximal order filter T ∨ that is a dual tree (in
the sense that each x ∈ T ∨ is covered by at most one y ∈ T ∨); let Frame(PF ) :=
T ∪ T ∨. The answer to the question, by directly checking all gapless increasing
tableaux of shape PF , is that this property holds precisely for those x ∈ Frame(PF ).
This observation is a Freudenthal analogue of [Pec17, Theorem 2] and seems related
to [IPZ18, Conjecture 5.4].

In order to establish our cyclic sieving results, we will need the fact that the num-
ber of elements of

`

[i]
j

˘

of any fixed Σi-period is given explicitly by [RSW04, Theo-

rem 1.1(b)]:

Theorem 7.3 (Reiner, Stanton, and White). Let

fi,j(q) :=

{
[i]!q

[j]!q ·[i−j]!q if i ≥ j

0 if i < j
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where [`]!q :=
∏`

a=1[a]q and [a]q := 1 + q + · · · + qa−1 = 1−qa
1−q are the standard q-

analogues. Then,

#

{
v ∈

ˆ

[i]

j

˙

: (Σi)◦s(v) = v

}
= fi,j(ζ

s),

where ζ is any primitive ith root of unity. �

For specified P ∈ {Pp, PCM , PF}, we denote by mT 〈i〉, τ〈i〉, and N〈i〉 the ith
element of the first, second, and third columns of the corresponding table, respectively.

Theorem 7.4. Fix P ∈ {Pp, PCM}, m� 0, and d dividing m. Let R(P,m, d) be the
number of increasing tableaux T ∈ Incm(P ) whose prom-period divides m/d. Then,

(7.1) R(P,m, d) =
∑

i: d | mT 〈i〉
τ〈i〉

τ〈i〉N〈i〉 fm,mT 〈i〉(ζm/d).

Proof. Proposition 4.2 gives that a tableau T ∈ Incm(P ) corresponds bijectively to a
pair consisting of a gapless tableau U ∈ IncmTgl (P ) and a content vector of length m
with mT ones. The table corresponding to P enumerates all gapless tableaux. We
iterate over the rows of the table and determine, for each row, how many content
vectors yield tableaux in Incm(P ) whose periods divide m/d.

For each i, let `〈i〉 = mT 〈i〉/τ〈i〉. Recall the definition of d′ from Equation (6.2).

By Theorem 6.1, a gapless tableau U ∈ Inc
mT 〈i〉
gl (P ) and a content vector v with period

m〈i〉/d′ inflate to a tableau V of period
m〈i〉
d′

mT 〈i〉
`〈i〉

gcd(mT 〈i〉
d′

, mT 〈i〉
`〈i〉 )

=

m〈i〉
d′

mT 〈i〉
`〈i〉

mT 〈i〉 gcd(`〈i〉,d′)
d′`〈i〉

=
m〈i〉

gcd(`〈i〉, d′)
.

Therefore, V has period dividing m〈i〉/d if and only if d divides both d′ and `〈i〉.
Now, d divides d′ if and only if the period of v divides m〈i〉/d. But, by Theorem 7.3,
the number of content vectors of length m〈i〉 with mT 〈i〉 1s and with period dividing
m〈i〉/d is precisely fm,mT 〈i〉(ζ

m/d). �

The formula resulting from Theorem 7.4 is simple enough to check by hand. As
in [RSW04, Proof of Theorem 7.1], we need the following elementary identity, which
allows us to work with integers rather than q-integers.

Lemma 7.5. Let ζ be a primitive N th root of unity and let d > 0 divide N . Then
[n]ζN/d = 0 if and only if d > 1 and n ≡ 0 mod d. Moreover, if n1 ≡ n2 mod d,
then

�(7.2) lim
q→ζN/d

[n1]q
[n2]q

=

{
n1

n2
, if n1 ≡ n2 ≡ 0 mod d;

1, if n1 ≡ n2 6= 0 mod d.

For example, we evaluate fm−2p+1
Pp

(ζm/d) for some d > 1 dividing both m and p.
Since the minuscule posets are Gaussian, as discussed in Remark 2.1, we have

fm−2p+1
Pp

(q) =
[m− (2p− 2)]q [m− (2p− 2) + 1]q · · · [m− (p− 1)]2q · · · [m− 1]q [m]q

[1]q [2]q · · · [p]2q · · · [2p− 2]q [2p− 1]q
.
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Since fm−2p+1
Pp

(q) is, by definition, a polynomial, we clearly have fm−2p+1
Pp

(ζm/d) =

limq→ζm/d f
m−2p+1
Pp

(q). Thus, Lemma 7.5 allows us to replace this ratio of polynomials
with a ratio of integers by matching equivalence classes modulo d in the numerator and
denominator. We see that the numerator and denominator have the same multiset
of equivalence classes modulo d. Pairing equivalent terms and using Lemma 7.5, we
have

fm−2p+1
Pp

(ζm/d) =
(m− 2p+ d)(m− 2p+ 2d) · · · (m− d)(m)

(d)(2d) · · · (2p− 2d)(2p− d)p
= 2

ˆ

m/d

2p/d

˙

.

An important special case of Lemma 7.5 allows us to extend Theorem 7.3. We have
that for any i, j ∈ Z>0, if ζ is a primitive ith root of unity and d divides gcd(i, j),
then

(7.3) fi,j(ζ
i/d) =

ˆ

i/d

j/d

˙

=
(i− (j − d))(i− (j − 2d)) · · · (i− d)(i)

(d)(2d) · · · (j − d)(j)
.

Equation (7.3) holds even when j > i, since in that case one of terms in the numerator
is 0.

Proof of Theorem 1.3. Fix positive integers p and k. Let m = k + 2p − 1 = k +
rk(Pp) + 1 and suppose d divides m. We have that

fm−2p+1
Pp

(q) =
[m]!q [m− (p− 1)]q

[2p− 1]!q [m− (2p− 1)]!q [p]q
.

If d = 1, then by Theorem 7.4,

R(Pp,m, d) = fm,2p−1(1) + 2 fm,2p(1) =

ˆ

m

2p− 1

˙

+ 2

ˆ

m

2p

˙

=
(2m− 2p+ 2)m!

(2p)! (m− 2p+ 1)!
= fm−2p+1

Pp
(1),

as desired. Now, for d > 1, we can have that d divides p, or d divides 2p − 1, or d
divides neither. If d divides p, then by Theorem 7.4 and Equation (7.3),

R(Pp,m, d) = 2 fm,2p(ζ
m/d) = 2

ˆ

m/d

2p/d

˙

= fm−2p+1
Pp

(ζm/d).

If instead d divides 2p− 1, then we have

R(Pp,m, d) = fm,2p−1(ζ
m/d) =

ˆ

m/d

(2p− 1)/d

˙

= fm−2p+1
Pp

(ζm/d).

Finally, if d divides neither p nor 2p − 1, then on the one hand Theorem 7.4 claims
R(Pp,m, d) = 0, while on the other hand d divides d2p−1

d
e of the terms in the nu-

merator of fm−2p+1
Pp

(ζm/d) and at most b2p−1
d
c of the terms in the denominator, so

fm−2p+1
Pp

(ζm/d) = 0. �

The verification for P = PCM is similarly straightforward. Before carrying out this
verification, we resolve Conjecture 1.1 as it applies to PF .
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Theorem 7.6. Conjecture 1.1 holds for PF only when k ≤ 4.

Proof. That Conjecture 1.1 holds for PF in the case k ≤ 4 can be checked numerically
using Table 2 and the proof of Theorem 7.4.

It remains to show that the conjecture fails for k ≥ 5. Hence, let m ≥ 22 =
5 + rk(PF ) + 1. By Theorem 7.1, prom has period 3m on Incm(PF ).

Suppose T ∈ Incm(PF ) were fixed by prom. By Equation 6.3, the Σm-period of
Conm(T ) is 1. Since Conm(T ) is certainly not a vector of all 0’s, it must therefore be a
vector of all 1’s. Hence, mT = m and Defl(T ) = T . Therefore, T is gapless. However,
Table 2 shows that no element of Incmgl (PF ) is fixed by prom, for any m ≥ 22, so such
a T does not exist.

Now, let ζ be a primitive (3m)th root of unity. By the above, Conjecture 1.1 claims
that fm−17PF

(ζ) = 0. But this is impossible, for then the minimal polynomial of ζ would

divide the numerator of fm−17PF
(q), which itself divides a product of factors of the form

1− qn where n < 3m. Thus, Conjecture 1.1 fails in these cases. �

Finally, we are prepared to prove Theorem 1.2, the main result of this paper.

Proof of Theorem 1.2. Theorem 7.6 proves the PF cases. Hence, it remains to con-
sider P = PCM . Fix k and let m := k + 11 = k + rk(PCM) + 1.

By inspection of Table 1, the possible values of `〈i〉 := mT 〈i〉/τ〈i〉 are 1, 11, 2, 4,
and 8. Therefore, we will determine R(PCM ,m, d) for each d that divides at least
one of these values. We will verify that this number matches the prediction given by
fm−11CM and Conjecture 1.1. For all other values of d, we have R(PCM ,m, d) = 0, so
our final check will be that fm−11CM (ζm/d) = 0 in these cases.

(Case 1 : d = 1): Here, Theorem 7.4 and Table 1 give

R(PCM ,m, 1) = 1 · 1 ·
´m

11

¯

+ (3 · 1 + 12 · 1) ·
´m

12

¯

+ 13 · 6 ·
´m

13

¯

+ (7 · 2 + 14 · 12)
´m

14

¯

+ 15 · 13 ·
´m

15

¯

+ (2 · 1 + 4 · 1 + 8 · 1 + 16 · 4)
´m

16

¯

=
(m− 10)(m− 9)(m− 8)(m− 7)2(m− 6)2(m− 5)2(m− 4)2(m− 3)2(m− 2)(m− 1)m

1 · 2 · 3 · 42 · 52 · 62 · 72 · 82 · 9 · 10 · 11
= fm−11

CM (1),

as desired.

(Case 2 : d = 11): By Theorem 7.4, Lemma 7.5, and Table 1, we have

R(PCM ,m, 11) = 1 · 1 ·
ˆ

m/11

11/11

˙

= m/11

= fm−11CM (ζm/11).
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(Case 3 : d = 8): By Theorem 7.4, Lemma 7.5, and Table 1, we have

R(PCM ,m, 8) = 2 · 1 ·
ˆ

m/8

16/8

˙

=
(m)(m− 8)

82

= fm−11CM (ζm/8).

(Case 4 : d = 4): By Theorem 7.4, Lemma 7.5, and Table 1, we have

R(PCM ,m, 4) = 3 · 1 ·
ˆ

m/4

12/4

˙

+ (4 · 1 + 2 · 1) ·
ˆ

m/4

16/4

˙

=
(m− 8)(m− 4)2m

42 · 82

= fm−11CM (ζm/4).

(Case 5 : d = 2): By Theorem 7.4, Lemma 7.5, and Table 1, we have

R(PCM ,m, 2) = 3 · 1 ·
ˆ

m/2

12/2

˙

+ 7 · 2 ·
ˆ

m/2

14/2

˙

+ (2 · 1 + 4 · 1 + 8 · 1) ·
ˆ

m/2

16/2

˙

=
(m− 10)(m− 8)(m− 6)2(m− 4)2(m− 2)m

10 · 82 · 62 · 42 · 2
= fm−11CM (ζm/2).

Finally, it remains to check that for all other values of d, we have fm−11CM (ζm/d) = 0.
First, observe that fm−11CM (ζm/d) = 0 if d > 11, for in this case, Lemma 7.5 implies that
the factor [m]ζm/d in the numerator is zero, while all of the factors in the denominator
are nonzero. For the remaining cases d ∈ {3, 5, 6, 7, 9, 10}, it is similarly easy to check,
using Lemma 7.5 and counting congruences to 0 in the numerator and denominator,
that fm−11CM (ζm/d) = 0. �

Acknowledgements

The authors thank Julianna Tymoczko for introducing them to each other. We
are also grateful to two anonymous referees for helpful suggestions. HM was partially
supported by a Graduate Research Fellowship from the National Science Founda-
tion. OP was partially supported by a Mathematical Sciences Postdoctoral Research
Fellowship (#1703696) from the National Science Foundation.

This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1752814. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science
Foundation.



24 H. MANDEL AND O. PECHENIK

References

[AST13] Drew Armstrong, Christian Stump, and Hugh Thomas, A uniform bijection between
nonnesting and noncrossing partitions, Trans. Amer. Math. Soc. 365 (2013), no. 8, 4121–
4151. 1

[BL00] Sara Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathe-
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