
DECOMPOSITIONS OF GROTHENDIECK POLYNOMIALS

OLIVER PECHENIK AND DOMINIC SEARLES

Abstract. We investigate the longstanding problem of finding a combinatorial
rule for the Schubert structure constants in the K-theory of flag varieties (in type
A). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982)
serve as polynomial representatives for K-theoretic Schubert classes; however no
positive rule for their multiplication is known in general. We contribute a new
basis for polynomials (in n variables) which we call glide polynomials, and give a
positive combinatorial formula for the expansion of a Grothendieck polynomial in
this basis. We then provide a positive combinatorial Littlewood-Richardson rule for
expanding a product of Grothendieck polynomials in the glide basis. Our techniques
easily extend to the β-Grothendieck polynomials of S. Fomin–A. Kirillov (1994),
representing classes in connective K-theory, and we state our results in this more
general context.

Contents

1. Introduction 2
2. Grothendieck and glide polynomials 4
2.1. Grothendieck polynomials 4
2.2. Glide polynomials 5
2.3. Expanding β-Grothendieck polynomials in the glide basis 7
2.4. Fundamental slide polynomials 10
3. Symmetric Grothendieck polynomials and quasisymmetric glide

polynomials 10
3.1. Glide expansions of symmetric β-Grothendieck polynomials 10
3.2. Quasisymmetric polynomials and stable limits of glide polynomials 13
4. Multiplication of glide polynomials 16
4.1. The genomic shuffle product 16
4.2. The glide product on weak compositions 18
Acknowledgements 22
References 22

Date: July 20, 2017.
2010 Mathematics Subject Classification. Primary 05E05; Secondary 14M15.
Key words and phrases. Grothendieck polynomials, glide polynomials, Schubert calculus, funda-

mental slide polynomials, multi-fundamental quasisymmetric functions, pipe dreams.
1



2 O. PECHENIK AND D. SEARLES

1. Introduction

Let X “ FlagspCnq be the parameter space of complete flags

C0
Ă F1 Ă F2 Ă ¨ ¨ ¨ Ă Fn´1 Ă Cn.

The space X is a smooth projective complex variety and carries an action of GLnpCq
induced from the standard action of GLnpCq on Cn. There are then restricted actions
by the Borel subgroup B of invertible lower triangular matrices and the maximal

torus T of invertible diagonal matrices. The T-fixed points of X are the flags F
pwq
‚

defined by F
pwq
k “ xewp1q, ewp2q, . . . , ewpkqy, where ei is the ith standard basis vector

and w P Sn is a permutation. Hence the T-fixed points are naturally indexed by the
permutations w in the symmetric group Sn. The B-orbits

X˝
w :“ B ¨ F pwq‚

give a cell decomposition of X and each contains a unique T-fixed point. The closure
of X˝

w is the Schubert variety Xw.
Since the structure sheaf OXw of a Schubert variety has a resolution by locally free

sheaves

0 Ñ Vk Ñ Vk´1 Ñ ¨ ¨ ¨ Ñ V0 Ñ OXw Ñ 0,

one may thereby define classes

rOXws :“
k
ÿ

i“0

p´1qirVis

in the Grothendieck ring KpXq of algebraic vector bundles over X. Indeed the set
trOXwsuwPSn of these K-theoretic Schubert classes is an additive basis for KpXq.
Hence the product structure of KpXq (given by tensor product of vector bundles) is
encoded in the structure coefficients Cw

u,v appearing in

rOXus ¨ rOXv s “
ÿ

wPSn

Cw
u,vrOXws.

It was conjectured by A. Buch [Buc02] and proved by M. Brion [Bri02] that the
signs of these coefficients are determined simply by the codimensions of the Schubert
varieties in X. More precisely, p´1q`pwq´`puq´`pvqCw

u,v ě 0, where `pwq “ codimXpXwq

(or equivalently the Coxeter length of w).
Since the numbers p´1q`pwq´`puq´`pvqCw

u,v are nonnegative integers, one might hope
for a combinatorial rule expressing them as the cardinality of some explicit set of
combinatorial objects. Giving such a rule remains a major, long-standing problem in
algebraic combinatorics.

Most important of the available combinatorial tools are the Grothendieck polyno-
mials Gw (introduced by A. Lascoux–M.-P. Schützenberger [LS82]), which are poly-
nomial representatives for the K-theoretic Schubert classes in KpXq, in the sense
that

Gu ¨Gv “
ÿ

wPSn

Cw
u,vGw,
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with the same structure coefficients as before (cf. [LS82, FL94]). Indeed more general
β-Grothendieck polynomials Kw (introduced by S. Fomin–A. Kirillov [FK94]) play the
analogous role with respect to the richer connective K-theory of X [Hud14], which,
as shown by P. Bressler–S. Evens [BE90], is the most general complex-oriented gen-
eralized cohomology theory in which the standard method of constructing Schubert
classes is well-defined.

In this paper, we contribute the following towards this problem. We use the philos-
ophy of [AS17] to introduce the glide polynomials Ga, which refine the β-Grothendieck
polynomials and form a new basis (indexed by weak compositions) of polynomials in
n variables. A β-Grothendieck polynomial can be expressed as a generating func-
tion for certain combinatorial objects called pipe dreams [FK94, KM05]. We define a
quasi-Yamanouchi condition on pipe dreams and use it to give a positive formula for
the basis change from β-Grothendieck to glide polynomials:

Kw “
ÿ

QPQPDpwq

βexpQqGwtpQq,

where the sum is over quasi-Yamanouchi pipe dreams for the permutation w.
We define the glide product �gen on weak compositions, which is manifestly posi-

tive and extends T. Lam–P. Pylyavskyy’s [LP07] K-theoretic analogue of the shuffle
product of S. Eilenberg–S. Mac Lane [EML53]. Using the glide product, we prove
that the basis of glide polynomials has positive structure constants by providing an
explicit positive combinatorial Littlewood-Richardson rule:

GaGb “
ÿ

c

β|c|´|a|´|b|gca,bGc,

where gca,b denotes the multiplicity of c in the glide product a�gen b.
Using our Littlewood-Richardson rule for the structure constants of the glide basis

and our rule for the glide expansion of a β-Grothendieck polynomial, we then give an
explicit positive combinatorial Littlewood-Richardson rule for expanding a product
of β-Grothendieck polynomials in the glide basis.

The glide basis has close connections to other important families of polynomials.

With β specialized to zero, the glide polynomials Gp0qa are precisely the fundamental
slide polynomials, which were introduced in [AS17] and play an analogous role in
decomposing Schubert polynomials. Moreover, with β specialized to 1, the stable

limits of the glide polynomials Gp1qa are precisely the multi-fundamental quasisymmet-
ric functions of T. Lam–P. Pylyavskyy [LP07], a basis of the ring of quasisymmetric
functions. The product structure on glide polynomials extends that of both the fun-
damental slide polynomials and the multi-fundamental quasisymmetric functions; in
particular, the glide product�gen on weak compositions is a commmon generalization
of the slide product of [AS17] and the multi-shuffle product of [LP07].

This paper is organized as follows. In Section 2, we first recall the Grothendieck
and β-Grothendieck polynomials. We then introduce the basis of glide polynomials
and give our positive combinatorial rule for expressing β-Grothendieck polynomials
in the glide basis. Finally, we show that specializing the glide polynomials to β “ 0
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yields the fundamental slide polynomials of [AS17]. In Section 3, we show the stable
limits of glide polynomials (specialized to β “ 1) are the multi-fundamental qua-
sisymmetric functions of [LP07]. Moreover, the glide polynomials refining symmetric
β-Grothendieck polynomials (i.e., those representing classes in Grassmannians) are a
new basis of quasisymmetric polynomials and can be seen as (connective) K-theoretic
analogues of I. Gessel’s fundamental quasisymmetric polynomials [Ges84]. We give a
positive combinatorial formula for expressing symmetric β-Grothendieck polynomials
in this basis, compacting the set-valued tableau formula of A. Buch [Buc02]. In Sec-
tion 4, we introduce the glide product and use it to present our positive combinatorial
Littlewood-Richardson rules for the structure constants of the glide basis and for the
expansion of a product of β-Grothendieck polynomials in the glide basis.

2. Grothendieck and glide polynomials

Here, we recall the Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger
[LS82] and the more general β-Grothendieck polynomials of S. Fomin–A. Kirillov
[FK94]. We then introduce the glide polynomials as certain refinements.

2.1. Grothendieck polynomials. While the original definition of Grothendieck
polynomials was in terms of divided difference operators, we will follow a more con-
cretely combinatorial description based on work of various authors [BJS93, BB93,
FK94, KM05]. Indeed, we will describe first the more general β-Grothendieck poly-
nomials introduced by S. Fomin–A. Kirillov [FK94].

The β-Grothendieck polynomials naturally represent Schubert classes in the con-
nective K-theory of X [Hud14] and specialize to the ordinary Grothendieck polyno-
mials at β “ ´1. They moreover specialize at β “ 0 to the Schubert polynomials,
representing the Schubert classes in the Chow ring of X. While our interest is pri-
marily in these two specializations, we will write most of our theorems for general
β as a convenient way to describe both theories simultaneously. We find that using
general β requires little extra complication beyond considering the β “ ´1 case.

We now turn to defining β-Grothendieck polynomials. A pipe dream P is a tiling
of the fourth quadrant of the plane by crossing pipes and turning pipes ��that
uses finitely-many crossing pipes. The lines of P , traveling from the y-axis to the x-
axis, are called pipes. We number the pipes by the absolute value of the y-coordinate
of their left endpoint. In the case that no two pipes of P cross each other more than
once, we say P is reduced. For any pipe dream P , its reduction reductpP q is the
reduced pipe dream obtained by replacing all but the southwestmost between each
pair of pipes with ��. Note that if P is reduced, then reductpP q “ P .

The permutation of a reduced pipe dream P is the permutation given by the x-
coordinates of the right endpoints of the pipes, while the permutation of a nonreduced
pipe dream is the permutation of its reduction. The excess expP q of a pipe dream
P is the number of ’s in P minus the number of ’s in reductpP q. Let PDpwq
denote the set of all pipe dreams for the permutation w, and let PDepwq denote the
subset of pipe dreams with excess e, so that PD0pwq denotes the subset of reduced
pipe dreams. The weight wtpP q of a pipe dream P is the weak composition (i.e.,
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finite sequence of nonnegative integers) pa1, a2, . . . q, where ai records the number of
’s in the ith row of P (from the top).

Example 2.1. The pipe dream

P “ 1 2 3 4
1 �� �
2 �� �
3 �
4 �

is not reduced since pipes 3 and 4 cross twice. Its reduction is the reduced pipe dream

reductpP q “ 1 2 3 4

1 �� �
2 �����
3 �
4 �

obtained by removing the second crossing between those pipes. Since reductpP q P
PD0p1432q, we have P P PD1p1432q Ă PDp1432q. The weight of P is the weak
composition p2, 1, 1q, while the weight of reductpP q is p2, 0, 1q. ♦

For w P Sn, the β-Grothendieck polynomial K
pβq
w is the following generating

function for pipe dreams of w:

Kpβqw :“
ÿ

PPPDpwq

βexpP qxwtpP q,

where xa :“ xa11 x
a2
2 . . . . Here we treat β as a formal parameter. Two specializations

of K
pβq
w are particularly significant: For β “ ´1, the Grothendieck polynomials

Gw :“ Kp´1q
w

represent the Schubert classes in KpXq, while for β “ 0, the Schubert polynomials

Sw :“ Kp0qw “
ÿ

PPPD0pwq

xwtpP q

represent the Schubert classes in the Chow ring of X; this reflects the fact that Chow
rings are isomorphic to the associated graded algebras of K-theory rings (at least
after tensoring with Q). Henceforth, we optionally drop β from the notation, unless
it is specialized to a particular value.

2.2. Glide polynomials. Given a weak composition a, the flattening of a is the
(strong) composition flatpaq obtained by deleting all zero terms from a. For example,
flatp0102q “ 12.

Given weak compositions a and b of length n, say that b dominates a, denoted by
b ě a, if

b1 ` ¨ ¨ ¨ ` bi ě a1 ` ¨ ¨ ¨ ` ai

for all i “ 1, . . . , n. For example, 0120 ě 0111. Note that this partial ordering on
weak compositions extends the usual dominance order on partitions.
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Define a weak komposition to be a weak composition where the positive integers
may be colored arbitrarily black or red. The excess expaq of a weak komposition a
is the number of red entries in a.

Definition 2.2. Let a be a weak composition with ` nonzero entries, in positions
n1 ă . . . ă n`. The weak komposition b is a glide of a if there exist positions
i1 ă ¨ ¨ ¨ ă i` such that for each j P t1, . . . , `u we have

(G.1) bij´1`1 ` ¨ ¨ ¨ ` bij “ anj
` expbij´1`1, . . . , bijq (where i0 “ 0),

(G.2) ij ď nj, and
(G.3) the leftmost nonzero entry of bij´1`1, . . . , bij is black.

In other words, b is a glide of a if one can decompose b into ` contiguous blocks, plus
a rightmost (possibly empty) block of zeros, corresponding to the ` nonzero entries
of a as follows. In the jth block of b, the sum of entries minus the number of red
entries is equal to the jth nonzero entry of a; the rightmost entry of the jth block of
b occupies a weakly earlier position than the jth nonzero entry of a; and the leftmost
nonzero entry in each block of b is black.

Example 2.3. Let a “ p0, 1, 0, 0, 0, 3q. Then ` “ 2 with n1 “ 2 and n2 “ 6. The
weak komposition p1, 1, 0, 2, 2, 0q is a glide of a. Here i1 “ 2 and i2 “ 5; the first block
is the first two entries and the second block is the third, fourth and fifth entries. The
rightmost block of zeros is the sixth entry.

Another glide of a is p1, 1, 1, 0, 1, 3q. Here, i1 “ 1 and i2 “ 6; the first block is the
first entry and the second block is the last five entries. The rightmost block of zeros
is empty.

On the other hand, the weak komposition p0, 1, 1, 0, 1, 2q is not a glide of a. Con-
dition (G.3) forces the red 1 to be in the same block as the black 1 to its left. That
means this first block must contain the third entry of b. Thus i1 ě 3 ą 2 “ n1,
violating (G.2). ♦
Remark 2.4. If a glide b of a weak composition a has no red entries, then b is itself a
weak composition. In this case, (G.3) is redundant, while conditions (G.1) and (G.2)
say that entries of b form contiguous blocks, such that entries of the jth block occur
weakly left of and sum to the jth nonzero entry of a. That is, b ě a and flatpbq
refines flatpaq.

Definition 2.5. For a weak composition a of length n, the glide polynomial Gpβqa “

Gpβqa px1, . . . , xnq is

Gpβqa “
ÿ

b

βexpbqxb11 ¨ ¨ ¨ x
bn
n ,

where the sum is over all weak kompositions b that are glides of a. As for K
pβq
w , we

may drop β from the notation, unless it is specialized to a particular value.

Example 2.6. We have

G0102 “ x0102
` x1002

` x0120
` x1020

` x1200
` x0111

` x1011
` x1101

` x1110
`

βx0112
` βx1012

` 2βx1102
` 2βx1120

` βx1021
` βx0121

` 3βx1111
` βx1210

` βx1201
`
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2β2x1112
` 2β2x1121

` β2x1211,

where xb “ xb11 . . . xbnn .
For the term 2βx1120, the corresponding glides are p1, 1, 2, 0q and p1, 1, 2, 0q. ♦

Let Polyn :“ Zrx1, x2, . . . , xns denote the ring of polynomials in n variables.

Theorem 2.7. The set

tβkGa : k P Zě0 and a is a weak composition of length nu

is an additive basis of the free Z-module Polynrβs. Hence for any fixed p P Z,

tGppqa : a is a weak composition of length nu

is a basis of Polyn.

Proof. A monomial m in Polynrβs is determined by a pair pk, aq, where k P Zě0

records the degree of β in m and a is the weak composition of length n that records
the degrees of x1, . . . , xn in m. Let M denote the set of such pairs pk, aq.

Define a total order on M by pk, aq ą p`, bq if

‚ a contains strictly more 0’s than b,
‚ a and b contain equal numbers of 0’s and b precedes a in reverse lexicographic

order, or
‚ a “ b and k ą `.

Now the ă-leading term of Ga is β0xa. Hence if the ă-leading term of p P Polynrβs
is caβ

kxa, then the ă-leading term of

p2 :“ p´ caβ
kGa

is cbβ
`xb for some p`, bq ă pk, aq. Then

p3 :“ p2 ´ cbβ
`Gb

has ă-leading term cdβ
mxd for some pm, dq ă p`, bq, etc. Since there are no infinite

strictly ă-decreasing sequences in M, this process terminates with an expansion of
p as a finite sum of glide polynomials times powers of β, proving the first sentence of
the theorem.

The second sentence of the theorem is immediate from the first. �

2.3. Expanding β-Grothendieck polynomials in the glide basis. By Theo-
rem 2.7, Kw may be uniquely written as a sum of glide polynomials in the form

Kw “
ÿ

pk,aq

cpk,aqw βkGa,

where c
pk,aq
w P Z. This subsection is devoted to showing that these coefficients c

pk,aq
w are

in fact nonnegative integers; we show this by giving an explicit positive combinatorial

formula for c
pk,aq
w .

The following two notions extend definitions of S. Assaf–D. Searles [AS17] to non-
reduced pipe dreams.
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Definition 2.8. For P P PDpwq, the destandardization of P , denoted by dstpP q,
is the pipe dream constructed from P as follows. We start with the top row and move
down through the rows of P . For each row, say row i ´ 1, with no in the first
column, if every in row i´ 1 lies strictly east of every in row i, then shift every

in row i´ 1 southwest one position (if the westmost of row i´ 1 is immediately
northeast of a , then these two crosses merge during the shift).

Example 2.9.

P “ 1 2 3 4 5

1 ������ �
2 �
3 �� �
4 ���
5 �

dstpP q “ 1 2 3 4 5

1 ���������
2 �
3 �����
4 �
5 �

.

♦

Remark 2.10. In fact, in Definition 2.8 one may equivalently consider the rows in
arbitrary order, rather than from top to bottom. An arbitrary order may be less
efficient, as one may have to act on an individual row more than once, repeating until
there is no row on which one can act.

Definition 2.11. A pipe dream is quasi-Yamanouchi if the following is true for
the westmost in every row: Either

(1) it is in the westmost column, or
(2) it is weakly west of some in the row below it.

Let QPDpwq denote the set of quasi-Yamanouchi pipe dreams for the permutation w
and let QPDepwq be the subset of those with excess e.

Example 2.12. The pipe dream reductpP q of Example 2.1 is not quasi-Yamanouchi,
since the westmost in the top row is not in the first column and there is no in
the row below. In the pipe dream P of Example 2.1 the westmost in the top
row is weakly west of a in the second row. However the in the second row is
neither in the first column nor weakly west of a in the third row. Hence P is not
quasi-Yamanouchi either.

A quasi-Yamanouchi pipe dream for 1432 is

Q “ 1 2 3 4
1 �� �
2 �
3 �
4 �

.

(The reduction of Q is formed by removing the ’s in the top row.) ♦

The Lehmer code Lpwq of a permutation w is the weak composition whose ith
term is the number of indices j for which i ă j and wpiq ą wpjq. For example,
Lp146235q “ p0, 2, 3, 0, 0, 0q.

Lemma 2.13. The destandardization map is well-defined and satisfies the following:

(1) for P P PDpwq, dstpP q P QPDpwq;
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(2) for P P PDpwq, dstpP q “ P if and only if P P QPDpwq;
(3) dst : PDpwq Ñ QPDpwq is surjective;
(4) dst : PDpwq Ñ QPDpwq is injective if and only if wi ă wi`1 for all i ě w´1p1q.

Proof. Observe that if P P PDpwq, applying destandardization at row i gives another
pipe dream for w. The destandardization procedure terminates only when the quasi-
Yamanouchi condition is satisfied, proving (1) and (2). Property (3) is immediate
from (2).

For property (4), note that for any w, there is a reduced pipe dream PLpwq given
by placing Lpwqi ’s in row i, columns 1 through Lpwqi. Suppose w has no descent
after the mth position, where m :“ w´1p1q. Then PLpwq has a in row i, column
1 for all i ă m, and no ’s in row i for i ě m. It is then immediate from the local
moves connecting elements of PD0pwq ([BB93]) that every reduced pipe dream for w
has a in row i, column 1 for all i ă m, and no ’s in row i for i ě m. Thus, the
same is true for all P P PDpwq and hence dstpP q “ P for all P P PDpwq. Conversely,
if w has a descent after the mth position, then by [AS17, Lemma 3.12(4)], the map
dst : PD0pwq Ñ QPD0pwq is not injective, so certainly the extension dst : PDpwq Ñ
QPDpwq is not injective. �

Theorem 2.14. For any permutation w, we have

Kw “
ÿ

pk,aq

cpk,aqw βkGa,

where c
pk,aq
w is the number of quasi-Yamanouchi pipe dreams for w with weight a and

excess k.

Proof. By Lemma 2.13, it suffices to show that, for Q P QPDpwq, we have

GwtpQq “
ÿ

PPdst´1pQq

βexpP q´expQqxwtpP q.

By definition,

GwtpQq “
ÿ

b is a glide of wtpQq

βexpbqxb11 ¨ ¨ ¨ x
bn
n .

For a pipe dream P , the colored weight of P is the weak komposition kwtpP q
obtained by coloring the ith entry of wtpP q red if a can merge into the rightmost
of the ith row of P during application of dst. It is not hard to see that if dstpP q “ Q,
then kwtpP q is a glide of wtpQq.

Conversely, we claim that given Q P QPDpwq, for every weak komposition b that is
a glide of wtpQq, there is a unique P P PDpwq with kwtpP q “ b such that dstpP q “ Q.
To construct this P from b and Q, for j “ 1, . . . , n, if wtpQqj “ bij´1`1 ` ¨ ¨ ¨ ` bij ´

expbij´1`1, . . . , bijq, then, from east to west, shift the first bij´1`1 ` ¨ ¨ ¨ ` bij´1 ’s
northeast from row j to row j´ 1 while leaving a copy of the leftmost of these moved

’s in place if bij is red, the first bij´1`1 ` ¨ ¨ ¨ ` bij´2 ’s northeast from row j ´ 1 to

row j ´ 2 while leaving a copy of the leftmost of these moved ’s in place if bij´1 is
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red, and so on. This proves existence, and uniqueness follows from the lack of choice
at each step. �

2.4. Fundamental slide polynomials. The fundamental slide basis of Polyn was
introduced by S. Assaf-D. Searles [AS17], who applied it to the study of Schubert poly-
nomials. We say that a composition b refines a composition a if a can be obtained by
summing consecutive entries of b, e.g., p1, 1, 2, 1q refines p2, 3q but p1, 2, 1, 1q does not.
For a weak composition a of length n, define the fundamental slide polynomial
Fa “ Fapx1, . . . , xnq by

Fa “
ÿ

běa
flatpbq refines flatpaq

xb11 . . . xbnn .

Example 2.15.

F0102 “ x0102
` x1002

` x0120
` x1020

` x1200
` x0111

` x1011
` x1101

` x1110.

Notice that F0102 “ Gp0q0102 (see Example 2.6). ♦

Proposition 2.16. The fundamental slide polynomials are a specialization of the
glide polynomials. More precisely,

Fa “ Gp0qa .

Proof. If b is a glide of a with excess 0, then all entries of b are black, so b is a
weak composition such that flatpbq refines flatpaq and b dominates a, as noted in
Remark 2.4. Conversely, every such weak composition may be so obtained. �

Remark 2.17. Setting β “ 0 in Theorem 2.14 recovers [AS17, Theorem 3.13] for the
fundamental slide expansion of Schubert polynomials.

3. Symmetric Grothendieck polynomials and quasisymmetric glide
polynomials

3.1. Glide expansions of symmetric β-Grothendieck polynomials. When w

is a Grassmannian permutation, i.e., w has at most one descent, K
pβq
w is a symmetric

polynomial (with coefficients in Zrβs). Let n be the index of the rightmost nonzero
entry of Lpwq, or equivalently the position of the unique descent of w. Then the
symmetric β-Grothendieck polynomial Kw may be written as Kλpx1, . . . xnq where λ
is the partition given by reading the nonzero entries of Lpwq in reverse. We identify
the partition λ with its corresponding Young diagram (in English orientation).

A set-valued tableau of shape λ is obtained by filling each box of the Young
diagram λ with a nonempty set of positive integers, subject to the condition that if a
box is filled with a set A, then the smallest number in the box immediately to the right
(respectively, immediately below) is at least as large as (respectively, strictly larger
than) maxpAq. The weight wtpT q of a set-valued tableau T is the weak composition
whose ith entry is the number of occurrences of i in T . Let |T | denote the sum of the
entries of wtpT q.
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In [Buc02, Theorem 3.1], A. Buch expressed the monomial expansion of K
p´1q
λ as a

weighted sum of set-valued tableaux; this formula easily extends to the case of general
β. Let SVnpλq denote the collection of all set-valued tableaux of shape λ using labels
from t1, . . . , nu.

Theorem 3.1 ([Buc02]).

Kλpx1, . . . xnq “
ÿ

TPSVnpλq

β|T |´|λ|xwtpT q,

where |λ| denotes the number of boxes in λ.

In [AS17, Definition 2.4], S. Assaf–D. Searles gave a condition for a semistandard
Young tableau to be quasi-Yamanouchi, and used this to express the fundamental
slide expansion of a Schur polynomial sλpx1, . . . , xnq in terms of quasi-Yamanouchi
tableaux of shape λ. We extend this concept to set-valued tableaux in order to give a
tableau formula for the glide expansion of a symmetric β-Grothendieck polynomial.

Definition 3.2. A set-valued tableau T is quasi-Yamanouchi if for all i ą 1, some
instance of i in T is weakly left of some i´ 1 that is not in the same box.

In the case there is only one entry per box, i.e., T is a semistandard Young tableau,
Definition 3.2 reduces to the definition of quasi-Yamanouchi tableaux from [AS17,
Definition 2.4]. For a weak composition a of length n, let revpaq be the weak compo-
sition of length n obtained by reversing the entries of a.

Theorem 3.3. For λ any partition, we have

Kλpx1, . . . xnq “
ÿ

TPQSVnpλq

β|T |´|λ|GrevpwtpT qq.

Proof. Fix n and a partition λ, and let w be the corresponding Grassmannian per-
mutation. Define a map φ : SVnpλq Ñ PDpwq as follows. Given T P SVnpλq, flip T
upside-down, and place it in the fourth quadrant so that the boxes of T are placed
exactly over the crosses of the pipe dream PLpwq associated to the Lehmer code of
w. Then for each label i of T , turn it into a cross and move it i ` r ´ n ´ 1 steps
northeast, where r is the index of the row in which the cross starts. This map φ is,
up to convention, the bijection of [KMY09, Theorem 5.5].

We now show that the restriction of φ to QSVnpλq is a bijection from QSVnpλq to
QPDpwq. Let T P SVnpλq. Notice that under φ, labels i in boxes of T become crosses
in row n` 1´ i of φpT q.

First suppose T is quasi-Yamanouchi. Then for every i, some instance of i is weakly
left of some instance of i´ 1 in T (and in a different box). By semistandardness the
box containing this i is strictly below the box containing this i ´ 1. Therefore,
the cross corresponding to this i moves weakly fewer steps northeast than the cross
corresponding to this i´1, so there is a cross in row n`1´ i weakly west of a cross in
row n` 2´ i in φpT q, satisfying the quasi-Yamanouchi condition on these two rows.
Since i was arbitrary, φpT q is therefore quasi-Yamanouchi.
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Now suppose T is not quasi-Yamanouchi. Then for some i ą 1, all the i’s in
T are strictly right of all the i ´ 1’s, except possibly for a unique box containing
both an i and an i ´ 1. If a label i in T is to the right of another label i, then by
semistandardness the first label is also weakly above the second; hence, the cross of
φpT q corresponding to this first i is right of the cross of φpT q corresponding to the
second i. Since moreover there cannot be two instances of i in the same column of T ,
it is therefore enough to check that the cross of φpT q corresponding to the leftmost i
in T is strictly east of the cross corresponding to the rightmost i´ 1 in T . If there is
a box b of T containing both i and i´1, then b contains the leftmost i and rightmost
i ´ 1. The cross i of φpT q corresponding to this i sits immediately northeast (and
thus strictly east) of the cross i´1 corresponding to this i ´ 1. If there is no such
box b, then let bi denote the box of the leftmost i and let bi´1 denote the box of
the rightmost i ´ 1. By semistandardness, bi is weakly above bi´1. So the cross i

corresponding to the i P bi moves strictly more steps northeast than the cross i´1

corresponding to the i ´ 1 P bi´1. Therefore i is strictly right of i´1 in φpT q and
φpT q is not quasi-Yamanouchi.

Since φ : SVnpλq Ñ PDpwq is a bijection and we have just shown φ´1pQPDpwqq “
QSVnpλq, it follows that the restriction φ|QSVnpλq : QSVnpλq Ñ QPDpwq is well-
defined and bijective.

Finally, if T P QSVnpλq, then it is clear that wtpφpT qq “ revpwtpT qq. The theorem
now follows from Theorem 2.14. �

Example 3.4. Let w “ 13524. Then Lpwq “ p0, 1, 2, 0, 0q, n “ 3 and the partition λ
corresponding to w is p2, 1q. We have

K13524 “ Kp2,1qpx1, x2, x3q “ x210
` x201

` x120
` 2x111

` x102
` x021

` x012

`βx220
` 3βx211

` βx202
` 3βx121

` 3βx112
` βx022

`2β2x221
` 2β2x212

` 2β2x122
` β3x222.

The elements of QSV3p2, 1q are

1 1

2

1 2

2

1 1, 2

2

1 2

2, 3

1 1, 2

2, 3

1 2, 3

2, 3

1 1, 2, 3

2, 3

Rather than summing over the 27 elements of SV3p2, 1q to obtain K13524, we may
use Theorem 3.3 to sum over the 7 elements of QSV3p2, 1q, obtaining:

K13524 “ Kp2,1qpx1, x2, x3q “ G012`G021`βG022`βG121`β
2G122`β

2G221`β
3G222. ♦
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3.2. Quasisymmetric polynomials and stable limits of glide polynomials. A
polynomial f P Polyn is quasisymmetric if the coefficient of xa1i1 . . . x

ak
ik

is equal to
the coefficient of xa1j1 . . . x

ak
jk

for any two strictly increasing sequences i1 ă ¨ ¨ ¨ ă ik and
j1 ă ¨ ¨ ¨ ă jk. These polynomials were introduced by I. Gessel in [Ges84], who used
them in the study of P -partitions. We write QSymn for the subspace of quasisymmetic
polynomials in Polyn. I. Gessel also defined the fundamental basis tFau of QSymn,
indexed by compositions:

Fapx1, . . . , xnq “
ÿ

b is a weak composition
flatpbq refines a

xb.

In [LP07], T. Lam–P. Pylyavskyy introduced the multi-fundamental quasisymmet-
ric functions (defined below), which form a basis of the ring of quasisymmetric func-
tions (in countably-many variables). The multi-fundamental quasisymmetric func-
tions are a K-theoretic analogue of I. Gessel’s [Ges84] basis of fundamental qua-
sisymmetric functions, and have been further studied in [Pat16].

Let S1 and S2 be nonempty subsets of Zą0. Say that S1 ă S2 if maxpS1q ă minpS2q,
and S1 ď S2 if maxpS1q ď minpS2q. For a strong composition a, let Ãa be the
collection of all chains σ “ pS1, . . . S|a|q of nonempty subsets of positive integers such
Si ă Si`1 if there is some k such that a1 ` . . .` ak “ i, and Si ď Si`1 otherwise.

The multi-fundamental quasisymmetric function L̃apxq “ L̃apx1, x2, . . .q is
defined by

L̃apxq “
ÿ

σPÃa

xwtpσq,

where the ith entry of wtpσq is the number of occurrences of i in σ.
We now show that the multi-fundamental quasisymmetric functions are the stable

limits of the glide polynomials (specialized to β “ 1). Let 0ma denote the weak
composition obtained by prepending m zeros to a.

Theorem 3.5. For any weak composition a,

lim
mÑ8

Gp1q0ma “ L̃flatpaqpxq.

Proof. We give a bijection between the glides indexing monomials in Gp1q0mapx1, . . . xmq
and the chains σ P Ãflatpaq indexing monomials in the truncation L̃flatpaqpx1, . . . , xmq.

Let σ P Ãflatpaq, where σ uses numbers in t1, . . . ,mu only. Then the corresponding
glide b is simply the weight vector wtpσq, with entries colored as follows: If some
j appears in the same subset as some i ă j, then bj is red. Otherwise it is black.
For example, let a “ p0, 0, 0, 0, 3q, so flatpaq “ p3q. If σ “ pt1, 3u, t3, 4u, t5uq, then
b “ p1, 0, 2, 1, 1q.

For the reverse direction, let b be a glide of 0ma such that bi “ 0 for i ą m. Then σ
partitions the collection of b1 ones, b2 twos, etc., into a chain of nonempty subsets of
Zą0. Suppose the first nonzero entry of b is bj. Then the first bj ´ 1 subsets in σ are
all singletons tju, and the final j is assigned to the bjth subset. If the next nonzero
entry, say bk, of b is black, then the bjth subset is also the singleton tju; now continue
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the process with bk. If, on the other hand, bk is red, then assign a k to the bjth subset
and continue in this manner. For example, let a “ p0, 0, 0, 0, 3q, so flatpaq “ p3q.
If b “ p1, 0, 2, 1, 1q, then σ “ pt1u, t3u, t3, 4, 5uq, while if b “ p1, 0, 2, 1, 1q, then
σ “ pt1, 3u, t3u, t4, 5uq.

These maps are clearly mutually inverse. �

Remark 3.6. Taking stable limits of the glide polynomials for general β yields a β-
deformation of the multi-fundamental quasisymmetric functions. In terms of chains
of subsets of integers, the power of β counts the number of integers that occur in
a subset along with a smaller integer. It is not hard to see that specializing β to 0
recovers Gessel’s fundamental quasisymmetric functions.

We say a polynomial in Polynrβs is quasisymmetric if it lies in QSymnrβs. Define
a weak composition a to be quasiflat if the nonzero entries of a occur in an interval.
In [AS17], it was shown that Fa is quasisymmetric in x1, . . . , xn if and only if a
is quasiflat with last nonzero term in postition n, and that moreover in this case

Fa “ Fflatpaqpx1, . . . , xnq. Since Fa “ Gp0qa , this immediately implies that Gpβqa is not
quasisymmetric if a is not quasiflat.

Using the glide polynomials, we define a family of polynomials G
pβq
a indexed by

strong compositions.

Definition 3.7. Given a strong composition a, let the quasisymmetric glide be

Gpβqa px1, . . . , xnq “

#

Gpβq
0n´`paqa

if `paq ď n

0 otherwise.

The fact that G
pβq
a is quasisymmetric, and that indeed G

p1q
a is a truncation of L̃a,

follows immediately from the bijection in the proof of Theorem 3.5 and the fact that no
nonzero entry precedes a zero entry in 0n´`paqa. Nonetheless, we will use combinatorics
of glides to give a direct proof of quasisymmetry, proving moreover that Ga expands
positively in the basis of fundamental quasisymmetric polynomials. Define flatpbq
for a weak komposition b to be the strong composition given by deleting all 0 entries
of b and forgetting the coloring.

Definition 3.8. Let a be a weak composition. A glide b of a is unsplit if

‚ b has the same number of nonzero black entries as a does and
‚ no 0 in b is right of a nonzero entry.

Theorem 3.9. For a strong composition a with `paq ď n,

Gapx1, . . . , xnq “
ÿ

b

βexpbqFflatpbqpx1, . . . , xnq,

where the sum is over the unsplit glides b of 0n´`paqa.

Proof. Suppose that c is a glide of 0n´`paqa. Observe that the following local operations
on the weak komposition c produce another glide of 0n´`paqa:

(1) replacing the subword 0k by k0,
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(2) replacing the subword 0k by k0,
(3) replacing the subword 0k by ij with i` j “ k,
(4) replacing the subword 0k with ij with i` j “ k.

Let b be a unsplit glide of 0n´`paqa. It is clear by repeated application of (1)–(4)
that all monomials of Fflatpbqpx1, . . . , xnq appear from glides of 0n´`paqa.

Now suppose b and b1 are distinct unsplit glides of 0n´`paqa. We need to ensure
repeated application of (1)–(4) to b and b1 yields disjoint sets of glides of 0n´`paqa.
Since (1)–(4) preserve the number of red entries, we may assume that b and b1 both
have r red entries. For any weak komposition c, let Rc denote the strong composition
whose ith entry is the sum of the entries of c that are strictly right of the pi ´ 1qth
red entry and weakly left of the ith red entry. Clearly, if d is obtained from c by any
of (1)–(4), then Rc “ Rd. It remains to note that Rb ‰ Rb1 .

Finally, suppose c is a glide of 0n´`paqa. We need to show c can be obtained from
some unsplit glide b of 0n´`paqa by repeated application of (1)–(4). By definition of
glides, there exists a sequence of nonnegative integers i1 ă ¨ ¨ ¨ ă i` such that

‚ cij´1`1 ` ¨ ¨ ¨ ` cij “ p0
n´`paqaqnj

` expcij´1`1, . . . , cijq,
‚ ij ď nj, and
‚ the leftmost nonzero entry of cij´1`1, . . . , cij is black.

In each block pcij´1`1, . . . , cijq, shift and combine entries to the right as much as
possible by the inverses of (1)–(4). Concatenate the results in order into a new weak
komposition c1. Then push all entries of c1 as far right as possible by the inverses of (1)
and (2). The result b is a glide of 0n´`paqa, since all entries of 0n´`paqa are themselves
as far right as possible. Since b has exactly one black entry for each block of c, b is a
unsplit glide of 0n´`paqa, and since we obtained b from c by applying only the inverses
of (1)–(4), c is associated to the unsplit glide b. �

Example 3.10. Let a “ p1, 2q and x “ px1, x2, x3, x4q. Then Theorem 3.9 gives that

Gp1,2qpxq “Fp1,2qpxq ` 2βFp1,1,2qpxq ` βFp1,2,1qpxq

` 3β2Fp1,1,1,2qpxq ` 2β2Fp1,1,2,1qpxq ` β
2Fp1,2,1,1qpxq,

because the unsplit glides of p0, 0, 1, 2q are

p0, 0, 1, 2q p0, 1, 1, 2q p0, 1, 1, 2q p0, 1, 2, 1q p1, 1, 1, 2q
p1, 1, 1, 2q p1, 1, 1, 2q p1, 1, 2, 1q p1, 1, 2, 1q p1, 2, 1, 1q

. ♦

Corollary 3.11. The fundamental quasisymmetric polynomials are a specialization
of the quasisymmetric glide polynomials. More precisely,

Fapx1, . . . , xnq “ Gp0qa px1, . . . , xnq.

Remark 3.12. Our Theorem 3.9 (at β “ 1) is a finite-variable analogue of [LP07,
Theorem 5.12], which is instead expressed in the language of injective order-preserving
maps between chain posets.

Corollary 3.13.

Kλpx1, . . . xnq “
ÿ

TPQSVnpλq

β|T |´|λ|GrevpwtpT qqpx1, . . . , xnq.
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Proof. By definition, if a quasi-Yamanouchi tableau T uses the label i ą 1, it must
also use the label i´ 1. Hence wtpT q is a strong composition (up to trailing 0s). The
corollary is then immediate from Theorem 3.3. �

Specializing Corollary 3.13 to β “ 0 recovers [AS17, Theorem 2.7], a rephrasing of

I. Gessel’s celebrated expression [Ges84] for writing a Schur polynomial sλ :“ K
p0q
λ

as a sum of fundamental quasisymmetric polynomials. Specializing instead to β “ 1
essentially gives an alternate formulation of (a special case of) [LP07, Theorem 5.6]
about expansions into multi-fundamental quasisymmetric functions.

Theorem 3.14. The set tβkGa : k P Zě0 and `paq ď nu is a basis of the ring of

quasisymmetric polynomials QSymnrβs. Hence for any fixed p P Z, tG
ppq
a : `paq ď nu

is a basis of QSymn.

Proof. The map a ÞÑ 0n´`paqa is injective when `paq ď n, and by Theorem 2.7 the
polynomials tβkGau are linearly independent. Hence tβkGa : k P Zě0 and `paq ď nu

is linearly independent. Since G
p0q
a “ Fa by Corollary 3.11 and tFa : `paq ď nu is a

basis of QSym, the set tβkGa : k P Zě0 and `paq ď nu spans QSymnrβs. Thus it is a
basis of QSymnrβs. The second sentence of the theorem is then immediate. �

Putting together results of this section and the previous, we have the following rela-
tionships between bases of QSymn and Polyn. Here upward arrows represent a lifting
from quasisymmetric polynomials to polynomials, and rightward arrows represent a
lift from ordinary cohomology to connective K-theory.

tFbu Ă Polyn([AS17]) tGbu Ă Polyn

tFau Ă QSymn([Ges84]) tGau Ă QSymn(cf. [LP07])

4. Multiplication of glide polynomials

By Theorem 2.7, the glide polynomials form a basis of Polynrβs. Hence the product
of two glide polynomials can be written uniquely as a sum of glide polynomials times
powers of β. In this section, we show that this sum involves only positive coefficients.
We give an explicit positive combinatorial formula for these structure constants, ex-
tending the rule of S. Assaf–D. Searles [AS17, Theorem 5.11] for the multiplication
of fundamental slide polynomials. Our rule also essentially restricts to [LP07, Propo-
sition 5.9] in the quasisymmetric (and β “ 1) case, though we have some additional
complexity related to having finitely-many variables.

4.1. The genomic shuffle product. Here we give a reformulation of the mul-
tishuffle product of [LP07], a K-theoretic generalization of the shuffle product of
S. Eilenberg–S. Mac Lane [EML53]. This reformulation is necessary for the statement
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of our Littlewood-Richardson rule. In this reformulation, we refer to the multishuf-
fle product as the genomic shuffle product because of resemblances to the genomic
tableau theory for (torus-equivariant) K-theoretic Schubert calculus introduced in
[PY17a] and further expounded in [PY17b].

First we recall the classical shuffle product of S. Eilenberg–S. Mac Lane. Let
A “ A1A2 . . . An and B “ B1 . . . Bm be words on disjoint alphabets A and B, respec-
tively. The shuffle product A�B of A and B is the set of all permutations of the
concatenation AB such that the subword on the alphabet A is A and the subword
on the alphabet B is B.

Example 4.1. The shuffle product of 331 and 62 is the set

331�62 “ t62331, 63231, 63321, 63312, 36231, 36321, 36312, 33621, 33612, 33162u. ♦

Add a superscript to each letter of A so that, if Ah is the jth instance of i in a
(counting from left to right), it becomes ij. Write Agen for this superscripted version
of A. Add superscripts to B to obtain Bgen in the same way. For an alphabet A,
let Agen denote the set of symbols ij, where i P A and j P Zą0. For A a word in
Agen, a genotype1 is given by deleting all superscripts from any subword obtained
by deleting all but one instance of each symbol ij. Let A and B be words in the
alphabets A and B, respectively. The genomic shuffle product A�gen B of A and
B is the set of all words in the alphabet pA\ Bqgen such that

‚ if ij appears to the left of ik, then j ď k;
‚ no two instances of ij are consecutive;
‚ every genotype is an element of Agen

�Bgen.

Remark 4.2. The original definition of �gen by T. Lam–P. Pylyavskyy [LP07] avoids
reference to genotypes. We will need this language of genotypes to formulate some
extra relations in dominance order that are necessary for describing the more-general
structure constants of the glide basis. In the quasisymmetric case, if one works
in countably-many variables, one may simplify our Littlewood-Richardson rule to
coincide with theirs [LP07, Proposition 5.9].

Example 4.3. The genomic shuffle product 331�gen 62 is an infinite set of words,
but contains finitely many words of any fixed length. It contains the 10 words of
length 5 that are in 331� 62 (but with superscripted 1’s on every letter, except the
second 3 which has a superscripted 2), together with 35 words of length 6, 81 words
of length 7, 154 words of length 8, and many longer words. The words of length 6 in

1See [PY17b] for motivation of this terminology.
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331�gen 62 are

613121313211 316121313211 316131213211 316131322111 316131321121

613132213211 316132213211 313261213211 313261322111 313261321121

613132112111 316132112111 313261112111 313211612111 313211611121

313261116121 316132116121 316132611121 316132612111 613132116121

613132611121 613132612111 613161321121 613161322111 613161213211

313261211121 316132211121 316121321121 316121322111 613132211121

613121321121 613121322111 612131321121 612131322111 612131213211

The two genotypes of 613121313211 are 63231 and 62331. ♦

4.2. The glide product on weak compositions. Let S be a sequence of words
in the alphabet A and let B Ď A be a subalphabet. Then the B-composition
CompBpSq of S is the weak composition whose ith coordinate is the number of letters
of B in the ith word of S. If B “ A, we may drop B from the notation.

Order the alphabet Zgen
ą0 lexicographically; that is, ij ă k` if either i ă k or else

i “ k and j ă `. If C is a word in Zgen
ą0 , its run structure RunspCq is the sequence

of successive maximally increasing runs of the symbols ij read from left to right.
A genotype of RunspCq is given by deleting all superscripts from a sequence that
comes from deleting all but one instance of each symbol ij in RunspCq. In particular,
a genotype G of RunspCq is a sequence of (possibly empty) words in the alphabet
Zą0.

Example 4.4. Let C “ 613161321121. Then the run structure of C is RunspCq “
p61, 3161, 32, 1121q and so ComppRunspCqq “ p1, 2, 1, 2q. There are two genotypes
of RunspCq, namely G1 “ p6, 3, 3, 12q and G2 “ pε, 36, 3, 12q, where ε denotes the
empty word. If B denotes the alphabet of even positive integers, then CompBpG1q “

p1, 0, 0, 1q and CompBpG2q “ p0, 1, 0, 1q. ♦

Definition 4.5. Let a, b be weak compositions of length n. Let A and B be the words
A :“ p2n ´ 1qa1 ¨ ¨ ¨ p3qan´1p1qan and B :“ p2nqb1 ¨ ¨ ¨ p4qbn´1p2qbn . Define the genomic
shuffle set GSSpa, bq of a and b by

GSSpa, bq :“ tC P A�genB : for every genotype G of RunspCq, CompApGq ě a and CompBpGq ě bu,

where A,B respectively denote the alphabets of odd and even positive integers.

Example 4.6. Let a “ 021 and b “ 101. Then A “ 331 and B “ 62. The
genomic shuffle product 331�gen 62 is (partially) described in Example 4.3. We have

GSSp021, 101q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

6121313211 612131321121 31612131321121

6131321121 316121313211 31326121321121

3161213211 316131321121 31326111211121

3161321121 313261213211

3132612111 313261321121

3132611121 316121321121

313261211121

313261112111

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

. ♦
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Note that, while A�gen B is usually an infinite set, GSSpa, bq is necessarily finite,
since certainly no element of GSSpa, bq can have length more than n ¨ p|a| ` |b|q. (We
will significantly improve this upper bound in Proposition 4.10.)

Remark 4.7. Although it is convenient to define GSSpa, bq by a condition on all geno-
types, in fact it is sufficient to verify this condition on a particular ‘worst’ genotype.
Specifically let Ĝ be the genotype of RunspCq obtained by preserving the rightmost

instance of each letter and deleting the others. Then Ĝ satisfies the desired dominance
conditions if and only if every genotype of RunspCq does.

Definition 4.8. Let a, b be weak compositions of length n. For C P GSSpa, bq, let
BumpRunspCq denote the unique dominance-minimal way to insert words of length 0
into RunspCq while preserving CompApGq ě a and CompBpGq ě b for every genotype
G of BumpRunspCq. The glide product a�gen b of a and b is the multiset of weak
compositions

a�gen b :“ tComppBumpRunspCqq : C P GSSpa, bqu.

Theorem 4.9. For weak compositions a and b of length n, we have

GaGb “
ÿ

c

β|c|´|a|´|b|gca,bGc,

where gca,b denotes the multiplicity of c in the glide product a�gen b.

Proof. For simplicity, we explicitly prove the theorem for the specialization β “ 1. It
is clear that if the theorem is true for β “ 1, then it is true for general β.

Given a word C P GSSpa, bq, let C be the word in the alphabet Zgen
ą0 Y t|u obtained

by inserting |’s into C to separate the elements of BumpRunspCq. For example, let
C “ 3132611121 from GSSp021, 101q in Example 4.6. Then RunspCq “ p313261, 1121q,
and BumpRunspCq “ p313261, ε, 1121q. Hence C “ 313261||1121, where the |’s reflect
the locations of the commas in BumpRunspCq.

Let shiftpCq denote the set of all words that can be formed from C by optionally
replacing any letter from Zgen

ą0 with a nonempty string of copies of that letter, and by
moving |’s to the right, such that ij ă k` whenever ij and k` are consecutive.

For example, if C “ 313261||1121, then the elements of shiftpCq are
313261||1121 313261|11|21 313261|1121| 313261|11|1121 313261|1121|21.

Define a set

GSSpa, bq :“
ď

CPGSSpa,bq

shiftpCq.

Let Mpa, bq denote the set of ordered pairs pa1, b1q of weak kompositions such that a1

is a glide of a and b1 is a glide of b. Then the elements of Mpa, bq obviously correspond

to the monomials in the product Gp1qa Gp1qb . We claim a bijection between GSSpa, bq and

Mpa, bq; in particular, the elements of GSSpa, bq represent the monomials appearing

in Gp1qa Gp1qb .
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Given an element D P GSSpa, bq, let SeqpDq be the sequence of maximal consecutive
subwords in the alphabet Zgen

ą0 . One then recovers an element pa1, b1q PMpa, bq by

pa1, b1q “
´

CompAgen

`

SeqpDq
˘

,CompBgen

`

SeqpDq
˘

¯

,

where we color a1i (respectively, b1i) red if and only if the ith element of SeqpDq contains
a letter ij P Agen (respectively, ij P Bgen) that also appears in a previous element of
SeqpDq.

For example, we have

Seqp313261
||1121

q “ p313261, ε, 1121
q,

which maps to pp2, 0, 1q, p1, 0, 1qq, while

Seqp313261
|11
|1121

q “ p313261, 11, 1121
q,

which maps to pp2, 1, 1q, p1, 0, 1qq.

Given an element pa1, b1q P Mpa, bq, create D P GSSpa, bq as follows. The first run
of D is the first a11 letters of Agen followed by the first b11 letters of Bgen, sorted into
increasing order, then the second run is the next a12 letters of Agen followed by the next
b12 letters of Bgen, sorted into increasing order, etc, with the exception that whenever
you see a red entry in a1 (respectively b1), the corresponding run of D has a copy of
the most-recently placed letter of Agen (respectively Bgen).

For example, if Agen “ 313211, Bgen “ 6121, then pa1, b1q “ pp2, 1, 0q, p1, 1, 1qq maps
to 313261|1121|21.

It is clear that these two maps are mutually inverse. Hence the elements of GSSpa, bq

represent the set of monomials in Gp1qa Gp1qb . By construction, for any C P GSSpa, bq,
the monomials associated to the elements of shiftpCq together comprise the glide

polynomial Gp1qComppBumpRunspCqq. Continuing the running example of C “ 3132611121,

the monomials corresponding to elements of shiftpCq are x302,x311,x320,x312,x321 and

their sum is the glide polynomial Gp1q302 corresponding to C.

Hence the elements of GSSpa, bq are partitioned by the elements of GSSpa, bq, with
the sum of the monomials in each part equal to the appropriate glide polynomial. �

We can use Theorem 4.9 to better understand GSSpa, bq and the glide polynomials
appearing in the product GaGb. For a weak composition a, let zpaq denote the number
of zeros in a that precede a nonzero entry.

Proposition 4.10. If Gc appears in the glide expansion of GaGb, then

|c| ď |a| ` |b| ` zpaq ` zpbq.

Moreover, if Ga and Gb use the same number of variables, then this bound is attained
by some glide polynomial Gd in the glide expansion of GaGb.

Proof. By Theorem 4.9, the length of an element of GSSpa, bq is the degree of the
lowest-degree monomial of the corresponding glide polynomial. This degree is bounded
above by the maximum possible degree of a monomial appearing in the product GaGb,
i.e., the sum of the highest degrees of monomials in Ga and Gb. These highest-degree
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monomials arise from glides of a and of b with as many red entries as possible. Since
the number of red entries in a glide of a is clearly at most zpaq, the greatest possible
degree of a glide of a is |a| ` zpaq. The analogous statement holds for glides of b.

To see the bound is attained, first note that if Ga and Gb use the same number of
variables then we may suppose that neither a nor b have trailing zeros (by deleting
trailing zeros of a and b if necessary). Suppose we have a glide a1 of a and a glide b1 of
b, each with as many red entries as possible. Then both a1 and b1 must have no zero
entries at all. Let D P GSSpa, bq be the image of pa1, b1q under the map from Mpa, bq

to GSSpa, bq given in the proof of Theorem 4.9. We claim that in fact, D P GSSpa, bq.
Suppose for a contradiction that D has two adjacent copies of the same letter; without
loss of generality, we have b1i is black and b1i`1 is red, the letters of Agen in the ith run
of D are smaller than the letters of Bgen in this run, and the letters of Agen in the
pi` 1qth run of D are larger than the letters of Bgen in the pi` 1qth run. But this is
impossible since a1i and a1i`1 are both nonzero, and letters of Agen decrease from right
to left. Therefore D does not have two adjacent copies of the same letter. Moreover,
D cannot have a bar between an ascent, since clearly that would require some a1i or
b1i to be zero. Thus D P GSSpa, bq, and so Gd appears in the product GaGb, where
d “ ComppBumpRunspDqq. �

Proposition 4.11. If Gc appears in the glide expansion of GaGb and |c| ą |a| ` |b|,
then there is a glide polynomial Gd in the glide expansion of GaGb with |d| “ |c| ´ 1.

Proof. By Theorem 4.9, there is a C P GSSpa, bq corresponding to the weak komposi-
tion c. Since |c| ą |a|` |b|, C has at least one letter appearing more than once. Let D
be the subword formed from C by deleting the rightmost letter of C that is a repeat.
Note that D P A�genB. Since the set of genotypes of D is a subset of the set of geno-
types of C and C P GSSpa, bq, all genotypes of D satisfy the dominance conditions.
Thus D P GSSpa, bq. The corollary follows by taking d “ ComppBumpRunspDqq. �

Theorem 4.9 and the positive combinatorial expansion of a Grothendieck polyno-
mial in the glide basis (Theorem 2.14) together yield a positive Littlewood-Richardson
rule for the expansion of a product of Grothendieck polynomials in the glide basis.
For a permutation w, let invpwq denote the number of inversions of w.

Theorem 4.12. For a weak composition a and permutations u and v, we have

KuKv “
ÿ

a

β|a|´invpuq´invpvqcau,vGa,

where

cau,v “
ÿ

pP,QqPQPDpuqˆQPDpvq

gawtpP q,wtpQq.

Proof. Immediate from Theorems 2.14 and 4.9. �
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