DECOMPOSITIONS OF GROTHENDIECK POLYNOMIALS
OLIVER PECHENIK AND DOMINIC SEARLES

ABSTRACT. We investigate the longstanding problem of finding a combinatorial
rule for the Schubert structure constants in the K-theory of flag varieties (in type
A). The Grothendieck polynomials of A. Lascoux—M.-P. Schiitzenberger (1982)
serve as polynomial representatives for K-theoretic Schubert classes; however no
positive rule for their multiplication is known in general. We contribute a new
basis for polynomials (in n variables) which we call glide polynomials, and give a
positive combinatorial formula for the expansion of a Grothendieck polynomial in
this basis. We then provide a positive combinatorial Littlewood-Richardson rule for
expanding a product of Grothendieck polynomials in the glide basis. Our techniques
easily extend to the S8-Grothendieck polynomials of S. Fomin—A. Kirillov (1994),
representing classes in connective K-theory, and we state our results in this more
general context.
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2 O. PECHENIK AND D. SEARLES

1. INTRODUCTION

Let X = Flags(C") be the parameter space of complete flags
COCF1CF2C---CFn_1CCn.

The space X is a smooth projective complex variety and carries an action of GL,(C)
induced from the standard action of GL,(C) on C". There are then restricted actions
by the Borel subgroup B of invertible lower triangular matrices and the maximal
torus T of invertible diagonal matrices. The T-fixed points of X are the flags F
defined by F,fw) = (w(1), €w(2), - - - » Cw(k)), Where e; is the ith standard basis vector
and w € S,, is a permutation. Hence the T-fixed points are naturally indexed by the
permutations w in the symmetric group .S,,. The B-orbits

Xy :=B-F®

give a cell decomposition of X and each contains a unique T-fixed point. The closure
of X, is the Schubert variety X,,.
Since the structure sheaf Oy, of a Schubert variety has a resolution by locally free
sheaves
0=V, > Vig— - > Vg > 0Ox, =0,

one may thereby define classes

[Ox,] = Y (~1)[V]

in the Grothendieck ring K (X) of algebraic vector bundles over X. Indeed the set
{[Ox, 1} wes, of these K-theoretic Schubert classes is an additive basis for K (X).
Hence the product structure of K(X) (given by tensor product of vector bundles) is
encoded in the structure coefficients Cyf, appearing in

[0x,] - [0x,] = ). C¥[0x,].
wWESH
It was conjectured by A. Buch [Buc02] and proved by M. Brion [Bri02] that the
signs of these coefficients are determined simply by the codimensions of the Schubert
varieties in X. More precisely, (—1)“®) == Cv "> 0, where {(w) = codimy (X,,)
(or equivalently the Coxeter length of w).

Since the numbers (—1)4w)—Hw)—¢@ C’w are nonnegative integers, one might hope
for a combinatorial rule expressing them as the cardinality of some explicit set of
combinatorial objects. Giving such a rule remains a major, long-standing problem in
algebraic combinatorics.

Most important of the available combinatorial tools are the Grothendieck polyno-
mials &, (introduced by A. Lascoux—M.-P. Schiitzenberger [LS82]), which are poly-
nomial representatives for the K-theoretic Schubert classes in K(X), in the sense

that
- 2 C
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with the same structure coefficients as before (cf. [LS82) [F1.94]). Indeed more general
B-Grothendieck polynomials K, (introduced by S. Fomin—-A. Kirillov [FK94]) play the
analogous role with respect to the richer connective K-theory of X [Hud14], which,
as shown by P. Bressler-S. Evens [BE9(], is the most general complex-oriented gen-
eralized cohomology theory in which the standard method of constructing Schubert
classes is well-defined.

In this paper, we contribute the following towards this problem. We use the philos-
ophy of [AS17] to introduce the glide polynomials G,, which refine the S-Grothendieck
polynomials and form a new basis (indexed by weak compositions) of polynomials in
n variables. A [-Grothendieck polynomial can be expressed as a generating func-
tion for certain combinatorial objects called pipe dreams [FK94, [KMO05]. We define a
quasi- Yamanouchi condition on pipe dreams and use it to give a positive formula for
the basis change from [-Grothendieck to glide polynomials:

Ry = Z B=DG 0),
QeQPD(w)
where the sum is over quasi-Yamanouchi pipe dreams for the permutation w.

We define the glide product g, on weak compositions, which is manifestly posi-
tive and extends T. Lam—P. Pylyavskyy’s [LP07] K-theoretic analogue of the shuffie
product of S. Eilenberg—S. Mac Lane [EML53]. Using the glide product, we prove
that the basis of glide polynomials has positive structure constants by providing an
explicit positive combinatorial Littlewood-Richardson rule:

G.Gy = Zﬁld*\alflblg;’bgc’

where g; , denotes the multiplicity of ¢ in the glide product a LWgey 0.

Using our Littlewood-Richardson rule for the structure constants of the glide basis
and our rule for the glide expansion of a 8-Grothendieck polynomial, we then give an
explicit positive combinatorial Littlewood-Richardson rule for expanding a product
of S-Grothendieck polynomials in the glide basis.

The glide basis has close connections to other important families of polynomials.
With ( specialized to zero, the glide polynomials QC(LO) are precisely the fundamental
slide polynomials, which were introduced in [AS17] and play an analogous role in
decomposing Schubert polynomials. Moreover, with 3 specialized to 1, the stable
limits of the glide polynomials Qc(ll) are precisely the multi-fundamental quasisymmet-
ric functions of T. Lam—P. Pylyavskyy [LP07], a basis of the ring of quasisymmetric
functions. The product structure on glide polynomials extends that of both the fun-
damental slide polynomials and the multi-fundamental quasisymmetric functions; in
particular, the glide product L, on weak compositions is a commmon generalization
of the slide product of [AS17] and the multi-shuffle product of [LP07].

This paper is organized as follows. In Section [2, we first recall the Grothendieck
and [-Grothendieck polynomials. We then introduce the basis of glide polynomials
and give our positive combinatorial rule for expressing S-Grothendieck polynomials
in the glide basis. Finally, we show that specializing the glide polynomials to f = 0
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yields the fundamental slide polynomials of [AS17]. In Section , we show the stable
limits of glide polynomials (specialized to § = 1) are the multi-fundamental qua-
sisymmetric functions of [LP07]. Moreover, the glide polynomials refining symmetric
p-Grothendieck polynomials (i.e., those representing classes in Grassmannians) are a
new basis of quasisymmetric polynomials and can be seen as (connective) K-theoretic
analogues of 1. Gessel’s fundamental quasisymmetric polynomials [Ges84]. We give a
positive combinatorial formula for expressing symmetric S-Grothendieck polynomials
in this basis, compacting the set-valued tableau formula of A. Buch [Buc02]. In Sec-
tion [4, we introduce the glide product and use it to present our positive combinatorial
Littlewood-Richardson rules for the structure constants of the glide basis and for the
expansion of a product of S-Grothendieck polynomials in the glide basis.

2. GROTHENDIECK AND GLIDE POLYNOMIALS

Here, we recall the Grothendieck polynomials of A. Lascoux—M.-P. Schiitzenberger
[LS82] and the more general S-Grothendieck polynomials of S. Fomin—A. Kirillov
[EK94]. We then introduce the glide polynomials as certain refinements.

2.1. Grothendieck polynomials. While the original definition of Grothendieck
polynomials was in terms of divided difference operators, we will follow a more con-
cretely combinatorial description based on work of various authors [BJS93|, [BB93,
FK94, [KMO05]. Indeed, we will describe first the more general $-Grothendieck poly-
nomials introduced by S. Fomin—A. Kirillov [FK94].

The p-Grothendieck polynomials naturally represent Schubert classes in the con-
nective K -theory of X |[Hudl4] and specialize to the ordinary Grothendieck polyno-
mials at § = —1. They moreover specialize at § = 0 to the Schubert polynomials,
representing the Schubert classes in the Chow ring of X. While our interest is pri-
marily in these two specializations, we will write most of our theorems for general
[ as a convenient way to describe both theories simultaneously. We find that using
general [ requires little extra complication beyond considering the § = —1 case.

We now turn to defining 5-Grothendieck polynomials. A pipe dream P is a tiling
of the fourth quadrant of the plane by crossing pipes + and turning pipes “ that
uses finitely-many crossing pipes. The lines of P, traveling from the y-axis to the z-
axis, are called pipes. We number the pipes by the absolute value of the y-coordinate
of their left endpoint. In the case that no two pipes of P cross each other more than
once, we say P is reduced. For any pipe dream P, its reduction reduct(P) is the
reduced pipe dream obtained by replacing all but the southwestmost + between each
pair of pipes with “~. Note that if P is reduced, then reduct(P) = P.

The permutation of a reduced pipe dream P is the permutation given by the z-
coordinates of the right endpoints of the pipes, while the permutation of a nonreduced
pipe dream is the permutation of its reduction. The excess ex(P) of a pipe dream
P is the number of +’s in P minus the number of +’s in reduct(P). Let PD(w)
denote the set of all pipe dreams for the permutation w, and let PD.(w) denote the
subset of pipe dreams with excess e, so that PDg(w) denotes the subset of reduced
pipe dreams. The weight wt(P) of a pipe dream P is the weak composition (i.e.,
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finite sequence of nonnegative integers) (ay, as,...), where a; records the number of
+’s in the ith row of P (from the top).

Example 2.1. The pipe dream

P= 1234

17
2
3
4

is not reduced since pipes 3 and 4 cross twice. Its reduction is the reduced pipe dream
= 234
reduct(P) b
obtained by removing the second crossing between those pipes. Since reduct(P) €

PD((1432), we have P € PD;(1432) < PD(1432). The weight of P is the weak
composition (2, 1,1), while the weight of reduct(P) is (2,0, 1). O

=W N =

For w € S, the S-Grothendieck polynomial &P is the following generating
function for pipe dreams of w:

ﬁgf) = Z 6ex(P)th(P)’
PePD(w)

where x® := z{'25> . ... Here we treat § as a formal parameter. Two specializations

of ﬁl(uﬁ ) are particularly significant: For § = —1, the Grothendieck polynomials
B, = ﬁq(lfl)
represent the Schubert classes in K (X), while for 5 = 0, the Schubert polynomials
G, = ﬁl(l?) = Z xVHP)

PePDo(w)

represent the Schubert classes in the Chow ring of X; this reflects the fact that Chow
rings are isomorphic to the associated graded algebras of K-theory rings (at least
after tensoring with Q). Henceforth, we optionally drop § from the notation, unless
it is specialized to a particular value.

2.2. Glide polynomials. Given a weak composition a, the flattening of a is the
(strong) composition flat(a) obtained by deleting all zero terms from a. For example,
flat(0102) = 12.

Given weak compositions a and b of length n, say that b dominates a, denoted by
b= a,if

b1+---+bi>a1+---—|—ai

for all ¢ = 1,...,n. For example, 0120 > 0111. Note that this partial ordering on
weak compositions extends the usual dominance order on partitions.
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Define a weak komposition to be a weak composition where the positive integers
may be colored arbitrarily black or red. The excess ex(a) of a weak komposition a
is the number of red entries in a.

Definition 2.2. Let a be a weak composition with ¢ nonzero entries, in positions
ny < ... < ng. The weak komposition b is a glide of a if there exist positions
iy < -+ <1 such that for each j € {1,...,¢} we have

(G.1) by;_y41+ -+ b, = an, +ex(by;,_,41,...,b;;) (Where i = 0),

(G.2) i; < nj, and

(G.3) the leftmost nonzero entry of by, ,41,...,b;; is black.

In other words, b is a glide of a if one can decompose b into £ contiguous blocks, plus
a rightmost (possibly empty) block of zeros, corresponding to the ¢ nonzero entries
of a as follows. In the jth block of b, the sum of entries minus the number of red
entries is equal to the jth nonzero entry of a; the rightmost entry of the jth block of
b occupies a weakly earlier position than the jth nonzero entry of a; and the leftmost
nonzero entry in each block of b is black.

Example 2.3. Let a = (0,1,0,0,0,3). Then ¢ = 2 with n; = 2 and ny = 6. The
weak komposition (1, 1,0,2,2,0) is a glide of a. Here 7; = 2 and i = 5; the first block
is the first two entries and the second block is the third, fourth and fifth entries. The
rightmost block of zeros is the sixth entry.

Another glide of a is (1,1,1,0,1,3). Here, i = 1 and iy = 6; the first block is the
first entry and the second block is the last five entries. The rightmost block of zeros
is empty.

On the other hand, the weak komposition (0,1, 1,0,1,2) is not a glide of a. Con-
dition (G.3) forces the red 1 to be in the same block as the black 1 to its left. That
means this first block must contain the third entry of b. Thus ¢; = 3 > 2 = ny,
violating (G.2). &

Remark 2.4. 1f a glide b of a weak composition a has no red entries, then b is itself a
weak composition. In this case, (G.3) is redundant, while conditions (G.1) and (G.2)
say that entries of b form contiguous blocks, such that entries of the jth block occur
weakly left of and sum to the jth nonzero entry of a. That is, b > a and flat(b)
refines flat(a).

Definition 2.5. For a weak composition a of length n, the glide polynomial G¥ -

Q,(lﬂ)(azl, cey Ty 1S
G4 = 367 0ay i,
b

where the sum is over all weak kompositions b that are glides of a. As for &Y ), we
may drop S from the notation, unless it is specialized to a particular value.

Example 2.6. We have

0102 1020 1200 0111 1011 1101 1110+

Go102 = X + x1002 50120 4 x + X +x +x + X +x
ﬁxonQ + 5X1012 + 25){1102 + 26){1120 + ﬁXIOZI + onm + 35X1m + 5x1210 + Bx1201+
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2ﬁ2X1112 + 262}(1121 —|—ﬁ2X1211,

where x? = 25 .. abn.

For the term 23x'%° the corresponding glides are (1,1,2,0) and (1,1,2,0). &
Let Poly,, := Z[z1,xs, ..., x,] denote the ring of polynomials in n variables.
Theorem 2.7. The set
{B¥G, : k € Z=y and a is a weak composition of length n}
is an additive basis of the free Z-module Poly, [5]. Hence for any fixed p € Z,
{GW) - 4 is a weak composition of length n}
s a basis of Poly,,.

Proof. A monomial m in Poly,[5] is determined by a pair (k,a), where k € Zs
records the degree of # in m and a is the weak composition of length n that records
the degrees of x1,...,z, in m. Let M denote the set of such pairs (k,a).

Define a total order on M by (k,a) > (¢,b) if

e @ contains strictly more 0’s than b,
e ¢ and b contain equal numbers of 0’s and b precedes a in reverse lexicographic
order, or

eag=>band k > /.

Now the <-leading term of G, is 8°x®. Hence if the <-leading term of p € Poly,,[3]
is c,3*x?, then the <-leading term of

P2 :=p— Caﬁkga
is ¢,3® for some (¢,b) < (k,a). Then
ps = p2 — &Gy

has <-leading term c;8mx? for some (m,d) < (¢,b), etc. Since there are no infinite
strictly <-decreasing sequences in M, this process terminates with an expansion of
p as a finite sum of glide polynomials times powers of 3, proving the first sentence of
the theorem.

The second sentence of the theorem is immediate from the first. 0

2.3. Expanding (-Grothendieck polynomials in the glide basis. By Theo-
rem [2.7] &, may be uniquely written as a sum of glide polynomials in the form

ﬁfw = Z Cq(f’a)ﬁkgav

(k,a)

where ¢ € 7. This subsection is devoted to showing that these coefficients ) are

in fact nonnegative integers; we show this by giving an explicit positive combinatorial
formula for cq(,]f @)
The following two notions extend definitions of S. Assaf-D. Searles [AS17] to non-

reduced pipe dreams.
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Definition 2.8. For P € PD(w), the destandardization of P, denoted by dst(P),
is the pipe dream constructed from P as follows. We start with the top row and move
down through the rows of P. For each row, say row i — 1, with no + in the first
column, if every =+ in row i — 1 lies strictly east of every + in row i, then shift every
+ in row i — 1 southwest one position (if the westmost + of row i — 1 is immediately
northeast of a 1, then these two crosses merge during the shift).

Example 2.9.

P = 2345,

12345 dst(P)= 1

TR W N =~
TR W N~

%

Remark 2.10. In fact, in Definition one may equivalently consider the rows in
arbitrary order, rather than from top to bottom. An arbitrary order may be less
efficient, as one may have to act on an individual row more than once, repeating until
there is no row on which one can act.

Definition 2.11. A pipe dream is quasi-Yamanouchi if the following is true for
the westmost + in every row: Either

(1) it is in the westmost column, or
(2) it is weakly west of some + in the row below it.

Let QPD(w) denote the set of quasi-Yamanouchi pipe dreams for the permutation w
and let QPD,(w) be the subset of those with excess e.

Example 2.12. The pipe dream reduct(P) of Example is not quasi- Yamanouchi,
since the westmost + in the top row is not in the first column and there is no + in
the row below. In the pipe dream P of Example the westmost + in the top
row is weakly west of a + in the second row. However the =+ in the second row is
neither in the first column nor weakly west of a + in the third row. Hence P is not
quasi- Yamanouchi either.

A quasi-Yamanouchi pipe dream for 1432 is

Q= 1234
;Jgf
3
4
(The reduction of Q is formed by removing the +’s in the top row.) &

The Lehmer code L(w) of a permutation w is the weak composition whose ith
term is the number of indices j for which i < j and w(i) > w(j). For example,
L(146235) = (0,2,3,0,0,0).

Lemma 2.13. The destandardization map is well-defined and satisfies the following:
(1) for P € PD(w), dst(P) € QPD(w);
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(2) for P € PD(w), dst(P) = P if and only if P € QPD(w);
(3) dst : PD(w) — QPD(w) is surjective;
(4) dst : PD(w) — QPD(w) is injective if and only if w; < w;y1 for alli = w=*(1).

Proof. Observe that if P € PD(w), applying destandardization at row i gives another
pipe dream for w. The destandardization procedure terminates only when the quasi-
Yamanouchi condition is satisfied, proving (1) and (2). Property (3) is immediate
from (2).

For property (4), note that for any w, there is a reduced pipe dream Py, given
by placing L(w); +'s in row 4, columns 1 through L(w);. Suppose w has no descent
after the mth position, where m := w™'(1). Then P, has a + in row 4, column
1 for all i < m, and no +’s in row i for i > m. It is then immediate from the local
moves connecting elements of PDg(w) ([BB93]) that every reduced pipe dream for w
has a + in row ¢, column 1 for all i < m, and no +’s in row i for ¢ > m. Thus, the
same is true for all P € PD(w) and hence dst(P) = P for all P € PD(w). Conversely,
if w has a descent after the mth position, then by [AS17, Lemma 3.12(4)], the map
dst : PDg(w) — QPDg(w) is not injective, so certainly the extension dst : PD(w) —
QPD(w) is not injective. O

Theorem 2.14. For any permutation w, we have

R = Y BB4G,,

(k,a)

where &Y is the number of quasi- Yamanouchi pipe dreams for w with weight a and

excess k.

Proof. By Lemma [2.13] it suffices to show that, for Q € QPD(w), we have

th(Q) _ Z Bex(P)—ex(Q)xwt(P)‘
Pedst~1(Q)

By definition,
GuiQ) = 2 BEOa -,

b is a glide of wt(Q)

For a pipe dream P, the colored weight of P is the weak komposition kwt(P)
obtained by coloring the ith entry of wt(P) red if a + can merge into the rightmost =+
of the ith row of P during application of dst. It is not hard to see that if dst(P) = Q,
then kwt(P) is a glide of wt(Q).

Conversely, we claim that given ) € QPD(w), for every weak komposition b that is
a glide of wt(@Q), there is a unique P € PD(w) with kwt(P) = b such that dst(P) = Q.
To construct this P from b and @, for j = 1,...,n, if wt(Q); = b;,_, 11 + -~ + b, —
ex(bi,_,+1,---,bs;), then, from east to west, shift the first b;,_ 41 + - + b, 1 +'s
northeast from row j to row j — 1 while leaving a copy of the leftmost of these moved
+’s in place if bi; is red, the first by, 11+ -+ by, 2 +’s northeast from row j — 1 to

row j — 2 while leaving a copy of the leftmost of these moved +’s in place if bi;—1 is
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red, and so on. This proves existence, and uniqueness follows from the lack of choice
at each step. ([l

2.4. Fundamental slide polynomials. The fundamental slide basis of Poly, was
introduced by S. Assaf-D. Searles [AS17], who applied it to the study of Schubert poly-
nomials. We say that a composition b refines a composition a if @ can be obtained by
summing consecutive entries of b, e.g., (1,1,2,1) refines (2,3) but (1,2, 1,1) does not.
For a weak composition a of length n, define the fundamental slide polynomial
Sa = %a(xla SR 73371) by

by b
Sa = 2 R

b>a
flat(b) refines flat(a)

Example 2.15.

0102 1002 0120 1020 1200

So102 = X + X + X + X 4+ x + 50111 + x 1011 + x 1101 + 51110
Notice that §o102 = Qé?{n (see Example . o

Proposition 2.16. The fundamental slide polynomials are a specialization of the
glide polynomials. More precisely,

S:a = géo) .

Proof. It b is a glide of a with excess 0, then all entries of b are black, so b is a
weak composition such that flat(b) refines flat(a) and b dominates a, as noted in
Remark 2.4l Conversely, every such weak composition may be so obtained. O

Remark 2.17. Setting 8 = 0 in Theorem recovers [AS17, Theorem 3.13] for the
fundamental slide expansion of Schubert polynomials.

3. SYMMETRIC GROTHENDIECK POLYNOMIALS AND QUASISYMMETRIC GLIDE
POLYNOMIALS

3.1. Glide expansions of symmetric f-Grothendieck polynomials. When w
is a Grassmannian permutation, i.e., w has at most one descent, RE{,B )is a symmetric
polynomial (with coefficients in Z[/5]). Let n be the index of the rightmost nonzero
entry of L(w), or equivalently the position of the unique descent of w. Then the
symmetric S-Grothendieck polynomial &, may be written as K)(z1,...x,) where A
is the partition given by reading the nonzero entries of L(w) in reverse. We identify
the partition A with its corresponding Young diagram (in English orientation).

A set-valued tableau of shape A is obtained by filling each box of the Young
diagram A with a nonempty set of positive integers, subject to the condition that if a
box is filled with a set A, then the smallest number in the box immediately to the right
(respectively, immediately below) is at least as large as (respectively, strictly larger
than) max(A). The weight wt(7") of a set-valued tableau T is the weak composition
whose ith entry is the number of occurrences of i in T'. Let |T'| denote the sum of the
entries of wt(7T').
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In [Buc02, Theorem 3.1], A. Buch expressed the monomial expansion of ﬁg\_l) as a
weighted sum of set-valued tableaux; this formula easily extends to the case of general
B. Let SV,,(A) denote the collection of all set-valued tableaux of shape A using labels
from {1,...,n}.

Theorem 3.1 ([Buc02]).

Rz, .. ) = Z BITI=xwt(T)
TeSVn(\)

where |A| denotes the number of boxes in .

In [ASI7, Definition 2.4], S. Assaf-D. Searles gave a condition for a semistandard
Young tableau to be quasi- Yamanouchi, and used this to express the fundamental
slide expansion of a Schur polynomial sy(z1,...,x,) in terms of quasi-Yamanouchi
tableaux of shape A\. We extend this concept to set-valued tableaux in order to give a
tableau formula for the glide expansion of a symmetric 8-Grothendieck polynomial.

Definition 3.2. A set-valued tableau 7T is quasi- Yamanouchi if for all i > 1, some
instance of ¢ in T is weakly left of some ¢ — 1 that is not in the same box.

In the case there is only one entry per box, i.e., T'is a semistandard Young tableau,
Definition reduces to the definition of quasi-Yamanouchi tableaux from [AS17,
Definition 2.4]. For a weak composition a of length n, let rev(a) be the weak compo-
sition of length n obtained by reversing the entries of a.

Theorem 3.3. For A\ any partition, we have

fi)\(xl, .. I‘n) = Z ﬁ‘TF'/\‘grev(Wt(T))'
TeQSV,,(N)

Proof. Fix n and a partition A\, and let w be the corresponding Grassmannian per-
mutation. Define a map ¢ : SV,(A) — PD(w) as follows. Given T' € SV,,()), flip T’
upside-down, and place it in the fourth quadrant so that the boxes of T are placed
exactly over the crosses of the pipe dream Pp,) associated to the Lehmer code of
w. Then for each label ¢ of T, turn it into a cross and move it ¢ + r — n — 1 steps
northeast, where r is the index of the row in which the cross starts. This map ¢ is,
up to convention, the bijection of [KMY09, Theorem 5.5].

We now show that the restriction of ¢ to QSV,,(A) is a bijection from QSV,,()) to
QPD(w). Let T € SV,,(A). Notice that under ¢, labels 7 in boxes of 7" become crosses
in row n + 1 — i of ¢(T).

First suppose T' is quasi-Yamanouchi. Then for every 4, some instance of i is weakly
left of some instance of i — 1 in 7" (and in a different box). By semistandardness the
box containing this ¢ is strictly below the box containing this ¢ — 1. Therefore,
the cross corresponding to this ¢ moves weakly fewer steps northeast than the cross
corresponding to this ¢ —1, so there is a cross in row n+ 1 —17 weakly west of a cross in
row n + 2 — i in ¢(T'), satisfying the quasi-Yamanouchi condition on these two rows.
Since i was arbitrary, ¢(T) is therefore quasi-Yamanouchi.
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Now suppose T is not quasi-Yamanouchi. Then for some ¢ > 1, all the i’s in
T are strictly right of all the ¢ — 1’s, except possibly for a unique box containing
both an ¢ and an ¢ — 1. If a label ¢ in T is to the right of another label i, then by
semistandardness the first label is also weakly above the second; hence, the cross of
¢(T) corresponding to this first ¢ is right of the cross of ¢(T") corresponding to the
second 7. Since moreover there cannot be two instances of 7 in the same column of T,
it is therefore enough to check that the cross of ¢(T") corresponding to the leftmost i
in T is strictly east of the cross corresponding to the rightmost ¢ — 1 in 7T". If there is
a box b of T" containing both ¢ and ¢ — 1, then b contains the leftmost ¢ and rightmost
i — 1. The cross +; of ¢(T') corresponding to this 4 sits immediately northeast (and
thus strictly east) of the cross +;_; corresponding to this i — 1. If there is no such
box b, then let b; denote the box of the leftmost i and let b;,_; denote the box of
the rightmost ¢ — 1. By semistandardness, b; is weakly above b;_;. So the cross =
corresponding to the i € b; moves strictly more steps northeast than the cross +;_;
corresponding to the i — 1 € b;_;. Therefore +; is strictly right of +;_; in ¢(T) and
¢(T) is not quasi-Yamanouchi.

Since ¢ : SV,,(A\) — PD(w) is a bijection and we have just shown ¢~!(QPD(w)) =
QSV,,(A), it follows that the restriction ¢lqsv, () @ QSV,(A) — QPD(w) is well-
defined and bijective.

Finally, if 7' e QSV,,()), then it is clear that wt(¢(T')) = rev(wt(7")). The theorem
now follows from Theorem [2.14] O

Example 3.4. Let w = 13524. Then L(w) = (0,1,2,0,0), n = 3 and the partition A
corresponding to w is (2,1). We have

ﬁ13524 _ ﬁ(271) (‘Th T, SL’3> _ X210 + X201 + X120 + 2X111 + X102 + X021 + X012
+6X220 + 3ﬁX211 +BX202 + 3ﬁX121 + 35X112 + BXOQQ
+262X221 + 2,62)(212 + 262}(122 + 63X222

The elements of QSV,4(2,1) are

1] 1 1] 2 11,2 1] 2
2 2 2 2,3
1 ]1,2 1123 1 |1,2,3

2,3 2,3 2,3

Rather than summing over the 27 elements of SV3(2,1) to obtain £;3524, we may
use Theorem to sum over the 7 elements of QSV,(2, 1), obtaining:

Rizsa = R, (71, 22, 23) = Gor2 + Goza1 + BGo22 + G121 + B32Graa + %Gzt + B°Gaza. O
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3.2. Quasisymmetric polynomials and stable limits of glide polynomials. A
polynomial f € Poly, is quasisymmetric if the coefficient of zj! .. xf: is equal to
the coefficient of 27! ... ¥ for any two strictly increasing sequences i; < - -+ < iy and
Jj1 < -+ < jr. These polynomials were introduced by I. Gessel in [Ges84], who used
them in the study of P-partitions. We write QSym,, for the subspace of quasisymmetic
polynomials in Poly,,. I. Gessel also defined the fundamental basis {F,} of QSym,,,

indexed by compositions:

Fy(xy,...,z,) = Z x°.
b is a weak composition
flat(b) refines a

In [LP07], T. Lam—P. Pylyavskyy introduced the multi-fundamental quasisymmet-
ric functions (defined below), which form a basis of the ring of quasisymmetric func-
tions (in countably-many variables). The multi-fundamental quasisymmetric func-
tions are a K-theoretic analogue of I. Gessel’s [Ges84] basis of fundamental qua-
sisymmetric functions, and have been further studied in [Pat16].

Let S; and Sy be nonempty subsets of Z~,. Say that S; < S if max(.S;) < min(S,),
and S; < Sy if max(S;) < min(S2). For a strong composition a, let A, be the
collection of all chains o = (51, ...S|) of nonempty subsets of positive integers such
S; < S;41 if there is some k such that a; + ... + a, = 7, and S; < 5;,1 otherwise.

The multi-fundamental quasisymmetric function L,(x) = L (x1,a,...) is

defined by
E(Z(X) _ Z th(o)7

o€A,
where the ith entry of wt(o) is the number of occurrences of 7 in o.
We now show that the multi-fundamental quasisymmetric functions are the stable
limits of the glide polynomials (specialized to § = 1). Let 0™a denote the weak
composition obtained by prepending m zeros to a.

Theorem 3.5. For any weak composition a,

%l_fgc g(()iza = Lflat(a) (X)
Proof. We give a bijection between the glides indexing monomials in Q(()L)a(:vl, e T)
and the chains o € flﬂat(a) indexing monomials in the truncation iﬂat(a) (1, .y Tn)-

Let o € flﬂat(a), where ¢ uses numbers in {1,...,m} only. Then the corresponding
glide b is simply the weight vector wt(c), with entries colored as follows: If some
J appears in the same subset as some ¢ < j, then b; is red. Otherwise it is black.
For example, let a = (0,0,0,0,3), so flat(a) = (3). If o = ({1,3}, {3,4},{5}), then
b=(1,0,2,1,1).

For the reverse direction, let b be a glide of 0™a such that b; = 0 for © > m. Then o
partitions the collection of b; ones, by twos, etc., into a chain of nonempty subsets of
Z-. Suppose the first nonzero entry of b is b;. Then the first b; — 1 subsets in o are
all singletons {j}, and the final j is assigned to the b;th subset. If the next nonzero
entry, say by, of b is black, then the b;th subset is also the singleton {j}; now continue
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the process with 0. If, on the other hand, by, is red, then assign a k to the b;th subset
and continue in this manner. For example, let a = (0,0,0,0,3), so flat(a) = (3).
Ifb = (1,0,2,1,1), then o = ({1},{3},{3,4,5}), while if b = (1,0,2,1,1), then
o = ({1,3], {3, {1,5}).

These maps are clearly mutually inverse. 0

Remark 3.6. Taking stable limits of the glide polynomials for general 3 yields a (-
deformation of the multi-fundamental quasisymmetric functions. In terms of chains
of subsets of integers, the power of J counts the number of integers that occur in
a subset along with a smaller integer. It is not hard to see that specializing g to 0
recovers Gessel’s fundamental quasisymmetric functions.

We say a polynomial in Poly, [5] is quasisymmetric if it lies in QSym,,[]. Define
a weak composition a to be quasiflat if the nonzero entries of a occur in an interval.
In [AS17], it was shown that §, is quasisymmetric in xz,...,x, if and only if a
is quasiflat with last nonzero term in postition n, and that moreover in this case
Sa = Friat() (1, .., 2,). Since §, = Q(SO), this immediately implies that G is not
quasisymmetric if a is not quasiflat.

Using the glide polynomials, we define a family of polynomials GY indexed by
strong compositions.

Definition 3.7. Given a strong composition a, let the quasisymmetric glide be

B .
Ggﬁ)(xh...,xn) = {g —t(a)q if {(a) <n

on—¢(a)
0 otherwise.

The fact that Géﬂ ) is quasisymmetric, and that indeed G((ll) is a truncation of L,
follows immediately from the bijection in the proof of Theorem [3.5]and the fact that no
nonzero entry precedes a zero entry in 0" “®qa. Nonetheless, we will use combinatorics
of glides to give a direct proof of quasisymmetry, proving moreover that GG, expands
positively in the basis of fundamental quasisymmetric polynomials. Define flat(b)
for a weak komposition b to be the strong composition given by deleting all 0 entries
of b and forgetting the coloring.

Definition 3.8. Let a be a weak composition. A glide b of a is unsplit if

e b has the same number of nonzero black entries as a does and
e 1o 0 in b is right of a nonzero entry.

Theorem 3.9. For a strong composition a with {(a) < n,

Ga(xlw' 26 Fflat(b) fl?l,...,In),

where the sum is over the unsplit glides b of 0" “@q.

Proof. Suppose that c is a glide of 0"~“®q. Observe that the following local operations
on the weak komposition ¢ produce another glide of 0"~4®q:

(1) replacing the subword 0k by kO,
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(2) replacing the subword 0k by £0,
(3) replacing the subword 0k by ij with i + j = k,
(4) replacing the subword 0k with ij with i + j = k.

Let b be a unsplit glide of 0"~“@q. It is clear by repeated application of (1)-(4)
that all monomials of Friarp)(21, ..., 2,) appear from glides of or—Hag,

Now suppose b and ¥ are distinct unsplit glides of 0"“®a. We need to ensure
repeated application of (1)-(4) to b and b’ yields disjoint sets of glides of 0"~“%q.
Since (1)—(4) preserve the number of red entries, we may assume that b and & both
have r red entries. For any weak komposition ¢, let R. denote the strong composition
whose ith entry is the sum of the entries of ¢ that are strictly right of the (i — 1)th
red entry and weakly left of the ith red entry. Clearly, if d is obtained from ¢ by any
of (1)—(4), then R. = Ry. It remains to note that R, # Ry.

Finally, suppose ¢ is a glide of 0"“®a. We need to show ¢ can be obtained from
some unsplit glide b of 0"“%q by repeated application of (1)-(4). By definition of
glides, there exists a sequence of nonnegative integers i; < --- < iy such that

i Cij_1+1 +oeee Cij = (On—f(a)a)nj + eX(Ci]’_l-‘rh B 7Cij)7
e i; < n;, and
e the leftmost nonzero entry of ¢;;_,41,...,¢; is black.
In each block (¢;;_,41,...,¢i;), shift and combine entries to the right as much as

possible by the inverses of (1)—(4). Concatenate the results in order into a new weak
komposition ¢. Then push all entries of ¢’ as far right as possible by the inverses of (1)
and (2). The result b is a glide of 0"~“%q, since all entries of 0"~“@q are themselves
as far right as possible. Since b has exactly one black entry for each block of ¢, b is a
unsplit glide of 0" “®q, and since we obtained b from ¢ by applying only the inverses
of (1)—(4), c is associated to the unsplit glide b. O

Example 3.10. Let a = (1,2) and x = (21, 2, x3, z4). Then Theorem [3.9| gives that
G,2)(x) =F1,2)(x) + 28F1,1,2)(x) + BF1,2,1)(X)
+ 352F(1,1,1,2) (x) + 252F(1,1,2,1)(X) + 52F(1,2,1,1)(X)7
because the unsplit glides of (0,0,1,2) are
(0,0,1,2) (0,1,1,2) (0,1,1,2) (0,1,2,1) (1,1,1,2) o
(1,1,1,2) (1,1,1,2) (1,1,2,1) (1,1,2,1) (1,2,1,1)"
Corollary 3.11. The fundamental quasisymmetric polynomials are a specialization
of the quasisymmetric glide polynomials. More precisely,

Fo(zy,... 1) = GOy, ... x,).

Remark 3.12. Our Theorem (at f = 1) is a finite-variable analogue of [LP07,
Theorem 5.12], which is instead expressed in the language of injective order-preserving
maps between chain posets.

Corollary 3.13.

ﬁ)\(.ﬂjl, . fﬂn) = Z 5|T‘7|)\|Grev(wt(T))(xl7 s 7xn)'
TeQSV, (M)
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Proof. By definition, if a quasi-Yamanouchi tableau 7" uses the label ¢ > 1, it must
also use the label ¢ — 1. Hence wt(T') is a strong composition (up to trailing 0s). The
corollary is then immediate from Theorem [3.3] O

Specializing Corollary to 8 = 0 recovers [AS17, Theorem 2.7], a rephrasing of

I. Gessel’s celebrated expression [Ges84] for writing a Schur polynomial s, := ﬁg\o)
as a sum of fundamental quasisymmetric polynomials. Specializing instead to g = 1
essentially gives an alternate formulation of (a special case of) [LP07, Theorem 5.6]
about expansions into multi-fundamental quasisymmetric functions.

Theorem 3.14. The set {8*G, : k € Zso and £(a) < n} is a basis of the ring of
quasisymmetric polynomials QSym, [B]|. Hence for any fized p € Z, {G&p) : l(a) < n}
is a basis of QSym,,.

Proof. The map a — 0" “@q is injective when £(a) < n, and by Theorem the
polynomials {#*G,} are linearly independent. Hence {5*G, : k € Z>¢ and {(a) < n}
is linearly independent. Since GI” = F, by Corollary and {F, : {(a) < n}isa
basis of QSym, the set {8*G, : k € Zsq and {(a) < n} spans QSym, [5]. Thus it is a
basis of QSym,,[/3]. The second sentence of the theorem is then immediate. 0

Putting together results of this section and the previous, we have the following rela-
tionships between bases of QSym,, and Poly,,. Here upward arrows represent a lifting
from quasisymmetric polynomials to polynomials, and rightward arrows represent a
lift from ordinary cohomology to connective K-theory.

{&»} < Poly, (J[AS1T7]) --------- > {Gy} < Poly,,

J J

{F.} < QSym,, (|Ges84]) ----- » {G.} < QSym,, (cf. [LPOT])

4. MULTIPLICATION OF GLIDE POLYNOMIALS

By Theorem [2.7, the glide polynomials form a basis of Poly,,[3]. Hence the product
of two glide polynomials can be written uniquely as a sum of glide polynomials times
powers of 3. In this section, we show that this sum involves only positive coefficients.
We give an explicit positive combinatorial formula for these structure constants, ex-
tending the rule of S. Assaf-D. Searles [AS17, Theorem 5.11] for the multiplication
of fundamental slide polynomials. Our rule also essentially restricts to [LP07, Propo-
sition 5.9] in the quasisymmetric (and 8 = 1) case, though we have some additional
complexity related to having finitely-many variables.

4.1. The genomic shuffle product. Here we give a reformulation of the mul-
tishuffle product of |[LP07], a K-theoretic generalization of the shuffle product of
S. Eilenberg-S. Mac Lane [EML53]. This reformulation is necessary for the statement
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of our Littlewood-Richardson rule. In this reformulation, we refer to the multishuf-
fle product as the genomic shuffle product because of resemblances to the genomic
tableau theory for (torus-equivariant) K-theoretic Schubert calculus introduced in
[PY17a] and further expounded in [PY17h].

First we recall the classical shuffle product of S. Eilenberg—S. Mac Lane. Let
A=AAy... A, and B = By ... B, be words on disjoint alphabets A and B, respec-
tively. The shuffle product A L B of A and B is the set of all permutations of the
concatenation AB such that the subword on the alphabet A is A and the subword
on the alphabet B is B.

Example 4.1. The shuffle product of 331 and 62 is the set

33162 = {62331, 63231, 63321, 63312, 36231, 36321, 36312, 33621, 33612, 33162}.

Add a superscript to each letter of A so that, if A, is the jth instance of 7 in a
(counting from left to right), it becomes /. Write A" for this superscripted version
of A. Add superscripts to B to obtain B%™" in the same way. For an alphabet A,
let A% denote the set of symbols i/, where i € A and j € Z-y. For A a word in
Ag ) a genotypeﬂ is given by deleting all superscripts from any subword obtained
by deleting all but one instance of each symbol #/. Let A and B be words in the
alphabets A and B, respectively. The genomic shuffle product AL, B of A and
B is the set of all words in the alphabet (A u B)&" such that

e if i/ appears to the left of %, then j < k;
e no two instances of i/ are consecutive;
e every genotype is an element of A% L B&".

Remark 4.2. The original definition of Ly, by T. Lam-P. Pylyavskyy [LP07] avoids
reference to genotypes. We will need this language of genotypes to formulate some
extra relations in dominance order that are necessary for describing the more-general
structure constants of the glide basis. In the quasisymmetric case, if one works
in countably-many variables, one may simplify our Littlewood-Richardson rule to
coincide with theirs [LP07, Proposition 5.9].

Example 4.3. The genomic shuffle product 331 Ly, 62 is an infinite set of words,
but contains finitely many words of any fixed length. It contains the 10 words of
length 5 that are in 331 LW 62 (but with superscripted 1’s on every letter, except the
second 3 which has a superscripted 2), together with 35 words of length 6, 81 words
of length 7, 154 words of length 8, and many longer words. The words of length 6 in

ISee [PYI7D] for motivation of this terminology.
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331 LWgen 62 are
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613121313211 316121313211 316131213211 316131322111 316131321121
613132213211 316132213211 313261213211 313261322111 313261321121
613132112111 316132112111 313261112111 313211612111 313211611121
313261116121 316132116121 316132611121 316132612111 613132116121
613132611121 613132612111 613161321121 613161322111 613161213211
313261211121 316132211121 316121321121 316121322111 613132211121
613121321121 613121322111 612131321121 612131322111 612131213211
The two genotypes of 613121313211 are 63231 and 62331. &

4.2. The glide product on weak compositions. Let S be a sequence of words
in the alphabet A and let B < A be a subalphabet. Then the B-composition
Compg(S) of S is the weak composition whose ith coordinate is the number of letters
of B in the ith word of S. If B = A, we may drop B from the notation.

Order the alphabet Z57' lexicographically; that is, i/ < k¢ if either i < k or else
t=kand j </l IfCisa Word in Z%, its run structure Runs(C') is the sequence
of successive maximally increasing runs of the symbols i/ read from left to right.
A genotype of Runs(C) is given by deleting all superscripts from a sequence that
comes from deleting all but one instance of each symbol i/ in Runs(C'). In particular,
a genotype G of Runs(C) is a sequence of (possibly empty) words in the alphabet
Zy.

Example 4.4. Let C = 6!3'6'3%1'2!. Then the run structure of C is Runs(C) =
(61,3'6',32,112) and so Comp(Runs(C)) = (1,2,1,2). There are two genotypes
of Runs(C), namely G; = (6,3,3,12) and Gy = (¢,36,3,12), where € denotes the
empty word. If B denotes the alphabet of even positive integers, then Compg(G1) =
(1,0,0,1) and Compy(G2) = (0,1,0, 1).

Definition 4.5. Let a, b be weak compositions of length n. Let A and B be the words
A= (2n—1)% - (3)1(1)% and B := (2n)" - -- (4)’-1(2)". Define the genomic
shuffle set GSS(a, b) of a and b by

GSS(a, b) :=

where A, B respectively denote the alphabets of odd and even positive integers.

{C € Algen B : for every genotype G of Runs(C'), Comp 4(G) = a and Compy(G) = b},

Example 4.6. Let a = 021 and b = 101. Then A = 331 and B = 62. The
genomic shuffle product 331 LLgen 62 is (partially) described in Example [4.3] E We have

(6121313211 6l2131321121 3l6l2131321121 )
6131321121 3lel21313211 313%612132112!
3161213211 316131321121 31326111211121
3161321121 313261213211
(}SS(O21a101) = 3132612111 313261321121 >- C>
313261112t 3lel2132112!
31326121112t
L 313261112111 )
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Note that, while A Wy, B is usually an infinite set, GSS(a, b) is necessarily finite,
since certainly no element of GSS(a, b) can have length more than n - (|a| + |b]). (We
will significantly improve this upper bound in Proposition M)

Remark 4.7. Although it is convenient to define GSS(a, b) by a condition on all geno-
types, in fact it is sufficient to verify this condition on a particular ‘worst’ genotype.
Specifically let G be the genotype of Runs(C') obtained by preserving the rightmost
instance of each letter and deleting the others. Then G satisfies the desired dominance
conditions if and only if every genotype of Runs(C') does.

Definition 4.8. Let a,b be weak compositions of length n. For C' € GSS(a, b), let
BumpRuns(C') denote the unique dominance-minimal way to insert words of length 0
into Runs(C') while preserving Comp 4,(G) = a and Compgz(G) = b for every genotype
G of BumpRuns(C'). The glide product a e, b of @ and b is the multiset of weak
compositions

a Wgey b := {Comp(BumpRuns(C)) : C'e GSS(a,b)}.

Theorem 4.9. For weak compositions a and b of length n, we have

G.Gy = ZBICI*\alflblg;bgc’

where gg ,, denotes the multiplicity of ¢ in the glide product aUge, b.

Proof. For simplicity, we explicitly prove the theorem for the specialization g = 1. It
is clear that if the theorem is true for g = 1, then it is true for general (.

Given a word C' € GSS(a, b), let C be the word in the alphabet Z53' U {|} obtained
by inserting |’s into C' to separate the elements of BumpRuns(C'). For example, let
C = 3'3%6'1'2! from GSS(021,101) in Example [4.6] Then Runs(C) = (3'3%6!, 1121),
and BumpRuns(C) = (3!3%6',¢,1'2!). Hence C' = 3'326'||1'2', where the |’s reflect
the locations of the commas in BumpRuns(C').

Let shift(C') denote the set of all words that can be formed from C by optionally
replacing any letter from Z%; with a nonempty string of copies of that letter, and by
moving |’s to the right, such that i/ < k* whenever i/ and k* are consecutive.

For example, if C' = 3'3%6!||1!2!, then the elements of shift(C) are

313261(|1121 313261|11|2! 3132611121 3'326'[1[1'2' 3'3261|1'2!|2",
Define a set
GSS(a,b):= | ) shift(C).
CeGSS(a,b)
Let M(a,b) denote the set of ordered pairs (a’,’) of weak kompositions such that o’
is a glide of a and ¥’ is a glide of b. Then the elements of M (a, b) obviously correspond
to the monomials in the product gﬁf)gé”. We claim a bijection between GSS(a, b) and
M (a,b); in particular, the elements of GSS(a, b) represent the monomials appearing

in GG,
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Given an element D € GSS(a, b), let Seq(D) be the sequence of maximal consecutive
subwords in the alphabet Z&'. One then recovers an element (a’,V’) € M(a,b) by

(d',b) = <CompAgen (Seq(D)), Compeen (Seq(D))),

where we color a} (respectively, b;) red if and only if the ith element of Seq(D) contains
a letter i/ € A% (respectively, i/ € B%") that also appears in a previous element of
Seq(D).
For example, we have
Seq(3'3%6'(|112') = (3'3%6', ¢, 1121),
which maps to ((2,0,1),(1,0,1)), while
Seq(3'3%6!|11[1'2") = (3'3%6", 1", 112%),
which maps to ((2,1,1),(1,0,1)).

Given an element (a’,b') € M(a,b), create D € GSS(a,b) as follows. The first run
of D is the first a} letters of A% followed by the first b} letters of B#", sorted into
increasing order, then the second run is the next a, letters of A%°" followed by the next
b letters of B&", sorted into increasing order, etc, with the exception that whenever
you see a red entry in a’ (respectively '), the corresponding run of D has a copy of
the most-recently placed letter of A% (respectively B&™").

For example, if A& = 313211 Been = 6121 then (/,0') = ((2,1,0),(1,1,1)) maps
to 313261|1121|2L.

It is clear that these two maps are mutually inverse. Hence the elements of GSS(a, b)
represent the set of monomials in gé”gé”. By construction, for any C' € GSS(a,b),
the monomials associated to the elements of shift(C') together comprise the glide
polynomial Q&)mp(BumpRuns(C)). Continuing the running example of C' = 313261121,
the monomials corresponding to elements of shift(C') are x32, x311 x320 x312 %321 and
their sum is the glide polynomial Q;gé)z corresponding to C.

Hence the elements of GSS(a, b) are partitioned by the elements of GSS(a, b), with
the sum of the monomials in each part equal to the appropriate glide polynomial. [J

We can use Theorem [4.9| to better understand GSS(a, b) and the glide polynomials
appearing in the product G,G,. For a weak composition a, let z(a) denote the number
of zeros in a that precede a nonzero entry.

Proposition 4.10. If G. appears in the glide expansion of G,Gy, then
le| < la| + 10| + z(a) + z(b).
Moreover, if G, and G, use the same number of variables, then this bound is attained

by some glide polynomial G4 in the glide expansion of G,Gy.

Proof. By Theorem [4.9] the length of an element of GSS(a,b) is the degree of the
lowest-degree monomial of the corresponding glide polynomial. This degree is bounded
above by the maximum possible degree of a monomial appearing in the product G,G,
i.e., the sum of the highest degrees of monomials in G, and G,. These highest-degree
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monomials arise from glides of a and of b with as many red entries as possible. Since
the number of red entries in a glide of a is clearly at most z(a), the greatest possible
degree of a glide of a is |a| + z(a). The analogous statement holds for glides of b.

To see the bound is attained, first note that if G, and G, use the same number of
variables then we may suppose that neither a nor b have trailing zeros (by deleting
trailing zeros of a and b if necessary). Suppose we have a glide @’ of @ and a glide b’ of
b, each with as many red entries as possible. Then both ¢’ and & must have no zero
entries at all. Let D € GSS(a,b) be the image of (a’,0’) under the map from M (a,b)
to GSS(a, b) given in the proof of Theorem We claim that in fact, D € GSS(a, b).
Suppose for a contradiction that D has two adjacent copies of the same letter; without
loss of generality, we have b; is black and b}, is red, the letters of A% in the ith run
of D are smaller than the letters of B#" in this run, and the letters of A% in the
(¢ + 1)th run of D are larger than the letters of B in the (i 4+ 1)th run. But this is
impossible since a; and a;,, are both nonzero, and letters of A**" decrease from right
to left. Therefore D does not have two adjacent copies of the same letter. Moreover,
D cannot have a bar between an ascent, since clearly that would require some a; or
b; to be zero. Thus D € GSS(a,b), and so G, appears in the product G,G,, where
d = Comp(BumpRuns(D)). O

Proposition 4.11. If G. appears in the glide expansion of G,Gy, and |c| > |a| + |b],
then there is a glide polynomial Gy in the glide expansion of G,Gy with |d| = |c¢| — 1.

Proof. By Theorem there is a C' € GSS(a, b) corresponding to the weak komposi-
tion c. Since |c| > |a| + |b], C has at least one letter appearing more than once. Let D
be the subword formed from C' by deleting the rightmost letter of C' that is a repeat.
Note that D € AL, B. Since the set of genotypes of D is a subset of the set of geno-
types of C' and C' € GSS(a,b), all genotypes of D satisfy the dominance conditions.
Thus D € GSS(a,b). The corollary follows by taking d = Comp(BumpRuns(D)). O

Theorem and the positive combinatorial expansion of a Grothendieck polyno-
mial in the glide basis (Theorem together yield a positive Littlewood-Richardson
rule for the expansion of a product of Grothendieck polynomials in the glide basis.
For a permutation w, let inv(w) denote the number of inversions of w.

Theorem 4.12. For a weak composition a and permutations u and v, we have

R BR, = Z B\a|—inv(u)—inv(v)cg yga’

where

Coy = Z Gt (P)wt(Q)-
(P,Q)eQPD(u)xQPD(v)

Proof. Immediate from Theorems and O
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