
THE GENOMIC SCHUR FUNCTION IS
FUNDAMENTAL-POSITIVE

OLIVER PECHENIK

Abstract. In work with A. Yong, the author introduced genomic tableaux to prove
the first positive combinatorial rule for the Littlewood-Richardson coefficients in
torus-equivariant K-theory of Grassmannians. We then studied the genomic Schur
function Uλ, a generating function for such tableaux, showing that it is non-trivially
a symmetric function, although generally not Schur-positive. Here we show that Uλ

is, however, positive in the basis of fundamental quasisymmetric functions. We give
a positive combinatorial formula for this expansion in terms of gapless increasing
tableaux; this is, moreover, the first finite expression for Uλ. Combined with work
of A. Garsia and J. Remmel, this yields a compact combinatorial (but necessarily
non-positive) formula for the Schur expansion of Uλ.

1. Introduction

The Grassmannian X “ GrkpCnq is the parameter space of k-dimensional vector
subspaces of Cn. The Grassmannian has the structure of a cell complex, where
the cells are naturally indexed by partitions λ whose Young diagrams fit inside a
kˆpn´kq rectangle. This cell complex structure yields the Schubert basis tσλu of the
integral cohomology ring H‹pX;Zq. With respect to the Schubert basis, the structure
constants of this Z-algebra are the famous Littlewood-Richardson coefficients cνλ,µ P
Zě0; that is,

σλ ¨ σµ “
ÿ

νĎkˆpn´kq

cνλ,µσν .

Classically, many positive combinatorial rules for these coefficients are known.
The Grassmannian also carries a natural action of a rank-n algebraic torus T . Con-

sidering the structure sheaves of the cell closures gives rise to an analogous Schubert
basis tOλu of the torus-equivariant K-theory ring KT pXq of equivariant algebraic
vector bundles over X. The analogues of Littlewood-Richardson coefficients in this
setting are the Laurent polynomials Kν

λ,µ P KT pptq given by

Oλ ¨Oµ “
ÿ

νĎkˆpn´kq

Kν
λ,µOν .

Positive combinatorial rules for Kν
λ,µ were conjectured by A. Knutson–R. Vakil [CV09]

and by H. Thomas–A. Yong [TY18].
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Genomic tableaux were introduced in [PY17a] as the key object in the first proved
positive combinatorial rule for Kν

λ,µ. Genomic tableaux have been further stud-
ied in [Mon16, GL17, PY17b, PY17c, PY19, GLP19], yielding, in particular, res-
olutions of the Knutson-Vakil and Thomas-Yong conjectures mentioned above. In
[PY17c], A. Yong and the author further developed the combinatorial theory of ge-
nomic tableaux with relation to the non-equivariant K-theory of X, introducing the
genomic Schur function as a natural deformation of the ordinary Schur function and
generating function for genomic tableaux. This paper further studies the genomic
Schur function, giving the first finite formulas for it, as well as proofs of new positiv-
ity properties that it enjoys.

Consider the Young diagram of a partition λ (in English orientation, so the longer
rows are above). A semistandard tableau of shape λ is a filling T of the boxes of
this Young diagram by positive integers that weakly increase from left to right along
rows and strictly increase from top to bottom down columns.

Definition 1.1 ([PY17a]). A genomic tableau is a semistandard tableau T together
with, for each i P Zą0, a decomposition of the boxes labeled i into blocks, called genes.
These decompositions satisfy:

‚ if a gene G contains boxes labeled i in columns c1, c3 with c1 ă c3, then any i
in an intervening column c2 with c1 ă c2 ă c3 is in G;

‚ each gene G contains at most one box in any row.

Example 1.2. The semistandard tableau

T “ 1 2 2

2 3 4

4

is a genomic tableau with respect to the gene decomposition indicated by the coloring
of the boxes. However, the decompositions

1 2 2

2 3 4

4

and 1 2 2

2 3 4

4

are not valid genomic tableaux; the first decomposition violates the first condition
with respect to i “ 2, while the pale blue 2s in the second violate the second condition.

♦

We write Genpλq to denote the set of all genomic tableaux of shape λ. For n ą 0,
Gennpλq Ă Genpλq denotes the subset of tableaux with all entries at most n.

If a gene G consists of boxes labeled i, we call G an i-gene. A (strong) com-
position is a finite sequence of positive integers, while a weak composition is a
finite sequence of nonnegative integers. The weight of a genomic tableau T is the
weak composition wtpT q whose ith component records the number of i-genes in T .
Just as Schur functions are generating functions for semistandard tableaux, genomic
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Schur functions are analogous generating functions for genomic tableaux. For a weak
composition a, we use the shorthand xa :“

ś

i x
ai
i .

Definition 1.3 ([PY17c]). For a partition λ, the genomic Schur function Uλ is
given by

(1.1) Uλ :“
ÿ

TPGenpλq

xwtpT q.

The genomic Schur polynomial Uλpx1, . . . , xnq in n variables is given by specializ-
ing Uλ by xm Ñ 1 for m ą n, or equivalently by restricting the sum in Equation (1.1)
to Gennpλq.

The power series Uλ was shown in [PY17c, Theorem 6.6] to be a symmetric function
by a Bender-Knuth-type argument. Schur functions form a basis of the algebra of
symmetric functions, so every symmetric function may be written uniquely as a linear
combination of Schur functions. For many important symmetric functions appear-
ing in algebraic combinatorics, these linear combinations have (or are conjectured to
have) only positive coefficients. Under standard interpretations of Schur functions,
this yields immediate interpretations of such Schur-positive symmetric functions as
representing Grassmannian cohomology classes or general linear group representa-
tions. Although Uλ is Schur-positive for very small λ, it is not Schur-positive in
general.

Example 1.4 (cf. [PY17c, Example 6.7]). Let λ “ p3, 3, 3q. Then,

Uλ “ s333 ` s22211 ´ s2222 ` s3221 ` s1111111 ` 2s211111 ` s22111 ` s2221 ` s31111

` 4s111111 ` 2s21111 ` s11111.

We will explain this example further in Section 4, particularly in Example 4.5. ♦

Although genomic Schur functions are not Schur-positive, we will prove a weaker
positivity property that they enjoy. A multivariate power series f is quasisymmetric
if, for any two increasing sequences i1 ă ¨ ¨ ¨ ă in and j1 ă ¨ ¨ ¨ ă jn and any sequence
e1, . . . , en of nonnegative integers, the coefficients of the monomials

śn
k“1 x

ek
ik

and
śn

k“1 x
ek
jk

in f are equal. Clearly, all symmetric functions (in particular, genomic
Schur functions) are quasisymmetric. The collection of all quasisymmetric functions
forms a Z-algebra QSym with symmetric functions as a subalgebra.

The positive part of a weak composition a is the composition a` given by remov-
ing all the 0’s in a. For two strong compositions α and β, we say β refines α (in
symbols, β ( α) if α can be obtained by summing consecutive components of β. For
example,

p1, 2, 1, 1q ( p3, 2q,

while

p1, 2, 1, 1q * p2, 3q.
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For each strong composition α, the fundamental quasisymmetric function Fα is
given by

Fα “
ÿ

a`(α

xa,

where the sum is over weak compositions whose positive part refines α. These qua-
sisymmetric functions were introduced by I. Gessel [Ges84] with application to P -
partitions; they have since become ubiquitous in algebraic combinatorics. Impor-
tantly, the fundamental quasisymmetric functions form an additive basis of the Z-
algebra QSym. In particular, every symmetric function can be written uniquely as
a linear combination of fundamental quasisymmetrics. I. Gessel [Ges84] showed that
Schur functions are positive combinations of fundamental quasisymmetrics; hence, a
Schur-positive symmetric function is necessarily also fundamental-positive. Our main
result is that, while genomic Schur functions are not generally Schur-positive, they
are nonetheless always fundamental-positive.

Theorem 1.5. For any partition λ, the genomic Schur function Uλ is a finite positive
combination of fundamental quasisymmetric functions.

One might naively hope to strengthen Theorem 1.5 by establishing positivity of
genomic Schur functions in the coarser basis of QSym given by the quasisymmetric
Schur functions of [HLMvW11]. However, this is impossible, as any symmetric func-
tion that is a positive sum of quasisymmetric Schur functions is guaranteed to be
Schur-positive, unlike genomic Schur functions. Hence, Theorem 1.5 is essentially as
strong as can expected.

Classically, Schur-positive symmetric functions correspond, under the Frobenius
character map, to representations of symmetric groups. Under this map, the irre-
ducible representations of symmetric groups are taken to the corresponding Schur
functions. Analogously, one has a quasisymmetric Frobenius character map, tak-
ing representations of the (type A) 0-Hecke algebras Hip0q to quasisymmetric func-
tions [DKLT96, KT97]. The irreducible 0-Hecke modules Cα are all 1-dimensional
[Nor79] and correspond, under this map, to the fundamental quasisymmetric func-
tions Fα. Therefore, every homogeneous fundamental-positive quasisymmetric func-
tion f “

ř

α cαFα is the quasisymmetric Frobenius character of a Hip0q-module M ; in
particular, one may construct M as the direct sum of these 1-dimensional irreducibles,
one for each Fα in the expansion of f , i.e. M “

À

α Cα.
In this way, Theorem 1.5 may be interpreted in terms of the representation theory

of 0-Hecke algebras. It would, however, be significantly more interesting to realize
(the kth homogeneous piece of) Uλ as the quasisymmetric Frobenius character of an
indecomposable 0-Hecke module. Analogous such constructions have been obtained
recently for the the dual immaculate quasisymmetric functions [BBS`15], for cer-
tain quasisymmetric Schur functions [TvW15], and for the extended Schur functions
[Sea19]. Unfortunately, we were not able to build indecomposable 0-Hecke modules
corresponding to the homogeneous pieces of Uλ. We further consider this perspective
in Remark 4.4.
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We prove Theorem 1.5 by establishing two explicit positive combinatorial formulas
for the fundamental quasisymmetric expansion of Uλ. Both formulas are analogues of
known formulas for the fundamental quasisymmetric expansion of a Schur function sλ.
In Section 2, we prove a genomic analogue (Theorem 2.2) of the formula of S. Assaf–
D. Searles [AS17] in terms of quasiyamanouchi semistandard tableaux. In Section 3,
we prove an analogue (Theorem 3.4) of the formula of I. Gessel [Ges84] in terms of
standard Young tableaux. An advantage of the former formula is that it restricts
better to an efficient formula for the finite-variable truncation Uλpx1, . . . , xnq, while
an advantage of the latter formula is that it allows an alternate definition of genomic
Schur functions without reference to genomic tableaux. Section 4 builds on these
results to give a (signed) combinatorial rule (Corollary 4.1) for the Schur expansion
of a genomic Schur function. In particular, Proposition 4.3 proves Schur-positivity of
Uλ in the special case that the partition λ has at most 2 rows.

2. Quasiyamanouchi tableaux

S. Assaf–D. Searles introduced the following notion of a quasiyamanouchi tableau.

Definition 2.1 ([AS17, Definition 2.4]). A semistandard tableau T is quasiya-
manouchi if, for each integer i ą 1 that appears in T , there is some instance of
i weakly west of some instance of i´ 1.

We will say that a genomic tableau U is quasiyamanouchi if its underlying semi-
standard tableau is. Let QYGenpλq denote the set of quasiyamanouchi genomic
tableaux of shape λ. Note that for any fixed λ, QYGenpλq is necessarily a finite
set.

Theorem 2.2. For any partition λ, we have

Uλ “
ÿ

TPQYGenpλq

FwtpT q.

Similarly, for any n ą 1,

Uλpx1, . . . , xnq “
ÿ

TPQYGennpλq

FwtpT qpx1, . . . , xnq.

Note that Theorem 1.5 is immediate from Theorem 2.2. To prove Theorem 2.2,
we first need a genomic analogue of a map from [AS17, Definition 2.5], which we will
call regularization. (Regularization is called destandardization in [AS17]; however,
we avoid the latter name, as we will later require a K-standardization map that is
confusingly unrelated.)

Definition 2.3. Let T be a genomic tableau. The regularization regpT q of T is
obtained as follows: For any i ą 1, if every i in T is strictly East of every i ´ 1 in
T (this includes the vacuous case where there is no i ´ 1 in T ), replace every i by
i´ 1, maintaining the same decomposition of the boxes of T into genes. Iterate this
process until no further replacements can be made. (Note that the order in which the
various values i are considered does not affect the final outcome of this algorithm.)
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Lemma 2.4. The map reg : Genpλq Ñ QYGenpλq is well-defined and surjective. The
fixed points of reg are exactly the quasiyamanouchi tableaux.

Proof. By construction, the algorithm preserves weakly increasing rows. Since we do
not replace i by i´1 if i and i´1 appear in the same column, the algorithm preserves
strictly increasing columns. It is easy to see that the resulting gene decomposition
is valid. Since the algorithm terminates (entries only decrease), and terminates only
when the tableau satisfies the quasiyamanouchi condition, regularization is a well-
defined map reg : Genpλq Ñ QYGenpλq. We have regpT q “ T for T P QYGenpλq,
so the map is surjective. Since reg certainly has no other fixed points, the second
sentence of the lemma follows as well. �

Proof of Theorem 2.2. We consider only the infinite-variable case explicitly; the proof
in the finite-variable case is exactly analogous.

We have

Uλ “
ÿ

TPGenpλq

xwtpT q

“
ÿ

UPQYGenpλq

ÿ

V Preg´1pUq

xwtpV q,

where the first equality is by Definition 1.3 and the second is by Lemma 2.4. Hence,
it is enough to show that

ÿ

V Preg´1pUq

xwtpV q
“ FwtpUq,

for U P QYGenpλq.
Fix U P QYGenpλq and note that wtpUq is a strong composition. For example, if

Û “ 1 2 2

2 3 4

4

is the quasiyamanouchi genomic tableau from Example 1.2, then wtpÛq “ p1, 2, 1, 1q.
If V P reg´1pUq, then wtpV q` ( wtpUq, since we obtain U from V by repeatedly
replacing every i by i ´ 1. Conversely, suppose a` ( wtpUq. There is a unique
V P reg´1pUq with wtpV q “ a, obtained as follows. Number the 1-genes of U from
left to right, then the 2-genes of U from left to right, etc. In V , the first a1 of
these genes are 1-genes, the next a2 of these genes are 2-genes, etc. By construction,
V P reg´1pUq and wtpV q “ a; uniqueness is clear from the lack of choices. For

example, p1, 0, 1, 1, 1, 0, 1q` ( wtpÛq. The preceeding algorithm constructs the unique
tableau

V̂ “ 1 3 4

3 5 7

7

P reg´1pÛq

with wtpV̂ q “ p1, 0, 1, 1, 1, 0, 1q. �
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3. Increasing tableaux

In this section, we give another formula for the fundamental quasisymmetric ex-
pansion of a genomic Schur function. An attractive feature of this new formula is
that it gives an alternative definition of the genomic Schur function, which avoids
mention of genomic tableaux.

An increasing tableau is a semistandard tableau with strictly increasing rows.
Increasing tableaux were perhaps first studied in their own right in [TY09], although
they appeared earlier in various contexts (e.g., [EG87, JPS98]). As in [MP18], we say
an increasing tableau T is gapless if the set of numbers appearing in T is an initial
segment of Zą0. We write Incglpλq for the set of all gapless increasing tableaux of
shape λ. Note that, for any λ, Incglpλq is a finite set.

Let T be an increasing tableau. Following [DPS17], we say that the integer i is a
descent of T if there is some instance of i in a higher row of T than some instance
of i` 1.

Example 3.1. Let T “ 1 2 5

3 4 6

5 7 8

. Then, the descents of T are 2, 4, 5, and 6. ♦

Definition 3.2. Let T be a gapless increasing tableau with entry set t1, 2, . . . , nu.
Consider the word 12 ¨ ¨ ¨n and insert a bar | after each letter i that is a descent of T .
The descent composition DespT q of T is the strong composition whose components
are the lengths of the segments between bars in this word (read left to right).

Example 3.3. For the tableau T of Example 3.1, we have DespT q “ p2, 2, 1, 1, 2q,
corresponding to the word 12|34|5|6|78. ♦
Theorem 3.4. For any partition λ, we have

Uλ “
ÿ

TPIncglpλq

FDespT q.

Proof. We first recall the K-standardization map Φ from [PY17c, §2]. For U P

Genpλq, number the 1-genes of U from left to right, then the 2-genes of U from left
to right, etc., as in the proof of Theorem 2.2. The K-standarization ΦpUq of U is the
gapless increasing tableau with the positive integer i in each cell of the ith gene in
this ordering.

Observe that if U is quasiyamanouchi, then i is a descent of ΦpUq precisely if the
ith and pi ` 1qst genes of U contain distinct labels. Hence, for U P QYGenpλq, we
have wtpUq “ DespΦpUqq.

It is enough then to observe that the map Φ : QYGenpλq Ñ Incglpλq is bijective.
This fact follows from [PY17c, Theorem 2.4]. Specifically, the inverse map is given as
follows. A horizontal strip is a skew partition with at most one box in any column.
A Pieri strip is an increasing tableau filling of a horizontal strip such that labels
weakly increase from left to right. For a composition µ, let

M1pµq “ t1, 2, . . . , µ1u,M2pµq “ tµ1 ` 1, . . . , µ2u, etc.
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Say the gapless increasing tableau V P Incglpλq is µ-Pieri-filled if the numbers from
Mipµq form a Pieri strip in V , for each i. Note that, in particular, every gapless
increasing tableau V P Incglpλq is DespV q-Pieri-filled. The K-semistandardization
ΨpV q of V is then the genomic tableau given by placing the number i in those boxes
with an entry from MipDespV qq in V , declaring two boxes to be in the same gene if
they have equal labels in V . It is easy to see that ΨpV q P QYGenpλq, and that Φ and
Ψ are then mutually inverse injections between finite sets. The theorem follows. �

Remark 3.5. Theorem 3.4 could be taken as an alternative definition of the genomic
Schur function Uλ, allowing one to define Uλ without reference to genomic tableaux.
Indeed, the origin of this paper was a question of Bruce Westbury to the author,
asking if the power series of Theorem 3.4 was symmetric. Interestingly, it seems
hard, however, to prove this symmetry without reference to genomic tableaux.

Remark 3.6. As with Theorem 2.2, Theorem 3.4 also yields a formula for the finite-
variable genomic Schur polynomial Uλpx1, . . . , xnq. In this case, one must consider all
of the gapless increasing tableaux of shape λ, and then discard those whose descent
composition has more than n parts.

4. The Schur expansion of genomic Schur functions

As shown in Example 1.4 and [PY17c, Example 6.7], the genomic Schur function Uλ
is not always a positive sum of ordinary Schur functions. However, the genomic Schur
function is Schur-positive for small partitions λ, as shown in [PY17c, Table 1]. In this
section, we use the formula of Theorem 3.4 to shed some light on this phenomenon.

Building on the inverse Kostka matrix of Ö. Eğecioğlu–J. Remmel [ER90], E. Egge–
N. Loehr–G. Warrington [ELW10] gave a combinatorial (but necessarily signed) for-
mula for the Schur expansion of any symmetric function with known expansion into
fundamental quasisymmetric functions. The situation of having a symmetric function
with known fundamental expansion but unknown Schur expansion is not uncommon,
especially in the context of the theory of Macdonald polynomials. In light of Theo-
rem 3.4, this is also the case with genomic Schur functions.

The Egge-Loehr-Warrington formula (or its relatives) can then sometimes be used
to give combinatorial proofs of Schur-positivity, in combination, for example, with a
sign-reversing involution; see, for instance, work of E. Sergel [Lev14] and of D. Qiu–
J. Remmel [QR17]. Such an approach is certainly not possible for general genomic
Schur functions, since genomic Schur functions are not Schur-positive; however, we
still obtain a reasonably compact (but cancellative) formula for the Schur expansion.
We will, moreover, obtain a positive formula for the Schur expansion of Uλ in the
special case that λ has at most 2 rows.

Instead of the Egge-Loehr-Warrington formula, we will use the somewhat simpler
(but essentially equivalent) rule by A. Garsia–J. Remmel [GR18]. An alternative
proof of this later rule has been given by I. Gessel [Ges18]. We first recall the notion
of Schur functions indexed by general compositions. For α a composition, the Schur
function sα is defined to be the determinant |hαi´i`j|, where hk denotes the kth
complete homogeneous symmetric function. Note that this definition restricts to the
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ordinary Jacobi-Trudi formula for ordinary Schur functions in the case that α is a
partition. More generally, we have, for each composition α, that either sα “ 0 or else
sα “ ˘sλ for some λ. The partition λ in question may be found easily by iterating
the straightening law

(4.1) spα1,...,αi,αi`1,...αkq “ ´spα1,...,αi`1´1,αi`1,...,αkq,

for αi`1 ‰ 0. Further discussion may be found in [Mac15].

Corollary 4.1. For any partition λ, we have

Uλ “
ÿ

TPIncglpλq

sDespT q.

Proof. This is immediate by combining Theorem 3.4 and [GR18, Theorem 1]. �

Example 4.2. We may see that U33 is Schur-positive as follows. By Corollary 4.1,
we consider the 11 gapless increasing tableaux

1 2 3

4 5 6

1 3 5

2 4 6

1 3 4

2 5 6

1 2 5

3 4 6

1 2 4

3 5 6

1 2 4

2 3 5

1 2 3

2 4 5

1 2 4

3 4 5

1 3 4

2 4 5

1 2 3

3 4 5

1 2 3

2 3 4

of shape p3, 3q, where the descents are shaded in blue. Hence, we have

U33 “ s33 ` s1221 ` s132 ` s231 ` s222

` s1121 ` s122 ` s221 ` s1211 ` s212

` s1111.

Applying the straightening law (4.1), this becomes

U33 “ s33 ` 0´ s222 ` 0` s222

` 0` 0` s221 ` 0` 0

` s1111

“ s33 ` s221 ` s1111,

establishing the Schur-positivity of U33. ♦

The Schur-positivity in Example 4.2 is a special case of a more general phenomenon.

Proposition 4.3. If λ “ pm,nq is a partition with two rows, then Uλ is Schur-
positive.
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More specifically, if m “ n, we have that Upm,mq is a multiplicity-free sum of Schur
functions:

Upm,mq “
m´1
ÿ

k“0

spm´k,m´k,1kq,

where 1k denotes a sequence of k 1’s. If m ą n, then Upm,nq is the multiplicity-free
sum:

Upm,nq “ spm,nq `
n´1
ÿ

k“1

spm´k,n´k,1kq ` spm´k,n´k`1,1k´1q.

Proof. By [Pec14, Proposition 2.1], there is a bijection between gapless increasing
tableaux of shape pm,mq with maximum entry 2m´ k and standard Young tableaux
of shape pm´k,m´k, 1kq. By [Pec14, Proof of Corollary 2.2], this bijection preserves
descent sets. Thus, writing SYTpλq for the set of all standard Young tableaux of shape
λ, we have

Upm,mq “
ÿ

TPIncglpm,mq

FDespT q

“

m´1
ÿ

k“0

ÿ

SPSYTpm´k,m´k,1kq

FDespSq,

by combining these facts with Theorem 3.4. The rectangular case of the proposition
then follows from I. Gessel’s formula [Ges84] for the fundamental expansion of an
ordinary Schur function.

To prove the case m ą n, it suffices to observe that the bijection of [Pec14, Propo-
sition 2.1] easily extends to a bijection between gapless increasing tableaux of shape
pm,nq with maximum entry m` n´ k and standard Young tableaux whose shape is
either pm´ k, n´ k, 1kq or pm´ k, n´ k` 1, 1k´1q. Since this extended bijection also
preserves descent sets, the m ą n case then follows analogously to the rectangular
case. �

Remark 4.4. In the Schur-positive situations of Example 4.2 and Proposition 4.3,
one might hope to realize the homogeneous pieces of Uλ as quasisymmetric Frobenius
characters of projective 0-Hecke representations. This is not, however, possible. Using
the explicit characterization of all indecomposable projective 0-Hecke representations
described in [Hua16], it is straightforward to check, for example, that s221 (the degree
5 piece of U33, as identified in Example 4.2) is not the quasisymmetric Frobenius
character of any projective 0-Hecke module.

Example 4.5. To understand the failure of Schur-positivity in Example 1.4, it is
enough to consider the 197 gapless increasing tableaux of shape p3, 3, 3q. In fact,
since the Schur-nonpositivity is restricted to homogeneous degree 8, we need only
consider the 84 of these tableaux with maximum entry 8. From the descent sets of
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these, we obtain by Corollary 4.1 that the homogeneous degree 8 piece of U333 is

s1111211 ` 2s111212 ` 2s111221 ` s111311 ` s1121111 ` s112112 ` 3s112121 ` s11213

` 2s112211 ` 3s11222 ` s11231 ` s113111 ` s11312 ` s11321 ` s121112

` 2s121121 ` s12113 ` 3s121211 ` 3s12122 ` 2s12131 ` 2s122111 ` 3s12212

` 4s12221 ` s1223 ` s12311 ` s1232 ` s13112 ` 2s13121 ` s13211 ` s1322

` s211121 ` s211211 ` 2s21122 ` s21131 ` 2s212111 ` 2s21212 ` 3s21221

` s2123 ` s21311 ` s2132 ` 2s22112 ` 3s22121 ` s2213 ` 3s22211 ` 2s2222

` s2231 ` s2312 ` s2321 ` s31121 ` s31211 ` s3122 ` s3212 ` s3221.

Deleting the terms that are 0, we obtain that the degree 8 piece of U333 is

s13211 ` s1322 ` s21311 ` s2132 ` s2213 ` 3s22211 ` 2s2222 ` s3221.

Applying the straightening law (4.1), this becomes

´s22211´s2222 ´ s22211 ´ s2222 ´ s2222 ` 3s22211 ` 2s2222 ` s3221

“ s22211 ´ s2222 ` s3221,

as given in Example 1.4. ♦

Remark 4.6. In light of Theorem 3.4 and Corollary 4.1, it would be desirable to have
enumerations of gapless increasing tableaux. For some special cases of partitions λ,
such counting formulas appear in [Pec14, PSV16], where they are related to small
Schröder paths and their higher-dimensional analogues. In general, however, there
unfortunately does not appear to be a simple formula for the number of gapless
increasing tableaux of shape λ.
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