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Abstract. We introduce two new bases of the ring of polynomials and study
their relations to known bases. The first basis is the quasiLascoux basis, which
is simultaneously both a K-theoretic deformation of the quasikey basis and also a
lift of the K-analogue of the quasiSchur basis from quasisymmetric polynomials to
general polynomials. We give positive expansions of this quasiLascoux basis into
the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux
basis into the quasiLascoux basis. As a special case, these expansions give the
first proof that the K-analogues of quasiSchur polynomials expand positively in
multifundamental quasisymmetric polynomials of T. Lam and P. Pylyavskyy.

The second new basis is the kaon basis, a K-theoretic deformation of the funda-
mental particle basis. We give positive expansions of the glide and Lascoux atom
bases into this kaon basis.

Throughout, we explore how the relationships among these K-analogues mirror
the relationships among their cohomological counterparts. We make several ‘alter-
nating sum’ conjectures that are suggestive of Euler characteristic calculations.

1. Introduction

Let Polyn :“ Zrx1, . . . , xns denote the ring of integral polynomials in n commuting
variables. Considerations in representation theory and algebraic geometry give rise
to a number of interesting and important bases of Polyn. This paper contributes
two new bases and studies their relations to those bases of established importance;
we find that our new bases exhibit well-behaved structure and fill natural holes in
the previously developed theory. This study is part of a general program to develop
a combinatorial theory of Polyn that mirrors the rich classical theory of symmetric
functions.

Foremost among known bases of Polyn are the celebrated Schubert polynomials
tSau of A. Lascoux and M.-P. Schützenberger [LS82]. Let X “ FlagsmpCq be the
parameter space of complete flags

0 “ V0 Ă V1 Ă ¨ ¨ ¨ Ă Vm “ Cm

of nested vector subspaces of Cm, where dimVi “ i. Denote by B the Borel group
of m ˆ m invertible upper triangular matrices. The standard action of B on Cm

induces an action on X with finitely-many orbits, whose closures are the Schubert
varieties of X. These subvarieties may be naturally indexed by weak compositions
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a “ pa1, . . . , amq (i.e., sequences of nonnegative integers) of length m such that ai ď
m´ i (for example, by taking a to be the Lehmer code of an associated permutation).
The corresponding Schubert classes tσau form a Z-linear basis for the Chow ring
A‹pXq of subvarieties of X modulo rational equivalence. The Schubert polynomials
are polynomial representatives for the Schubert classes in the sense that one has (up
to truncation)

Sa ¨Sb “
ÿ

c

Cc
a,b Sc if and only if σa ¨ σb “

ÿ

c

Cc
a,b σc.

Despite the existence of explicit formulas for Schubert polynomials, it remains
a major open problem of algebraic combinatorics to give a positive combinatorial
formula for the Schubert structure constants Cc

a,b P Zě0.
The (type A) Demazure characters tDau of M. Demazure [Dem74] form another

basis of Polyn, which is important in representation theory. These are precisely the
characters of certain explicitly-defined B-modules [Dem74, RS95]. Remarkably, it was
shown in [LS90, RS95] that the Demazure characters refine the Schubert polynomials,
i.e.,

Sa “
ÿ

b

Ea
bDb

for some nonnegative integers Ea
b .

Letting the symmetric group Sn act on Polyn by permuting variables, the Sn-
invariants are the symmetric polynomials Symn Ă Polyn. Another remarkable prop-
erty of the bases tSau and tDau of Polyn is that each contains (as a subset) the
celebrated Schur basis tsλu of Symn; in fact

tSau X Symn “ tDau X Symn “ tsλu.

In this sense, both Schubert polynomials and Demazure characters are lifts of the
Schur basis to the polynomial ring. The Schur basis, moreover, has well-studied and
useful refinements into the quasiSchur polynomials tSαu of [HLMvW11a, HLMvW11b]
and further into the fundamental quasisymmetric polynomials tFαu of [Ges84], both
of which are bases of the subspace QSymn Ă Polyn of quasisymmetric polynomials.
(A polynomial f P Polyn is quasisymmetric if it is invariant under exchanging xi and
xi`1 in those terms of f where at most one of the two variables appears.)

In general, while a rich combinatorial theory of symmetric and quasisymmetric
polynomials has been and continues to be developed, the analogous theory for the full
polynomial ring remains relatively sparse. For example, unlike for general Schubert
polynomials, several positive combinatorial formulas (e.g., [LR34, KTW04, Vak06])
are known for the structure constants of Schur polynomials, i.e., the Littlewood-
Richardson coefficients. A natural program, championed by A. Lascoux [Las13], is to
develop the analogous combinatorial theory of Polyn by

‚ lifting known bases and relationships to Polyn from the better-understood
subrings Symn and QSymn; and by

‚ developing uniform combinatorial models for these lifted bases and for the
relations among them, extending models from Symn and QSymn.
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The end goal of this program is that this new theory eventually bear dividends on ma-
jor problems involving polynomials, such as the Schubert problem mentioned above.

Recent work in this area has provided lifts to Polyn of the quasiSchur and funda-
mental bases of QSymn: respectively, the quasikey polynomials tQau of [AS18b] and
the (fundamental) slide polynomials tFau of [AS17]. (Note that despite the name,
quasikey polynomials are not quasisymmetric. The name instead reflects that they
stand in a similar relation to key polynomials as quasiSchur polynomials to do Schur
polynomials.) These families provide further refinements of Schubert polynomials:
each Demazure character is a nonnegative combination of quasikeys [AS18b, The-
orem 3.7], each of which is, in turn, a nonnegative combination of slides [AS18b,
Theorem 3.4]. The slide basis, moreover, like the Schubert basis, has nonnegative
structure constants; in fact, unlike the Schubert basis, one even has an analogue of the
Littlewood-Richardson rule for multiplying slide polynomials [AS17, Theorem 5.11].

A more classical approach to the study of Demazure characters is to consider their
refinement, not into slides, but rather into the Demazure atom basis tAau of [LS90]
(see also, [Mas09]). While the Demazure atoms refine the quasikeys [Sea18, Theo-
rem 3.4], just as slides do, the Demazure atoms have no known direct relation to the
slide basis. A common refinement of the Demazure atoms and the slides is provided
by the (fundamental) particle basis tPau of [Sea18]. The relations among these nine
families of polynomials, which we call ‘cohomological’, are illustrated in Figure 1.
(Despite the terminology, many of these families do not currently have an interpre-
tation in terms of the cohomology of any space; indeed, for many of them it also
remains open to give a representation-theoretic interpretation.)

In this work, we are interested in the K-theoretic analogues of the bases in Fig-
ure 1. A major theme of the modern Schubert calculus is the investigation of the
geometry of X “ Flagsn (and other generalized flag varieties) via richer complex ori-
ented cohomology theories. In the most general such theories, there is ambiguity in
the appropriate definition of Schubert classes, as the analogues of the usual push-pull
operators fail to satisfy the appropriate braid relations. (For further discussion and
partial progress on these problems, see, e.g., [GR13, CZZ15, LZ17].)

It turns out that this definitional problem can be avoided avoided by working in
the connective K-theory (or a specialization thereof) of X [BE90]; hence, we restrict
ourselves to this context. Complex oriented cohomology theories are determined
by their formal group laws, describing how to express the Chern class of a tensor
product of two line bundles in terms of the original two Chern classes. For connective
K-theory, this formal group law is

(1.1) c1pLbMq “ c1pLq ` c1pMq ` βc1pLqc1pMq,

where β is a formal parameter and L,M are any complex line bundles on X. Hence
the ordinary cohomology ring is recovered by specializing β “ 0, and the ordinary
K-theory ring is recovered by specializing β to any element of C‹.

In the connective K-theory of X, polynomial representatives for a Schubert ba-

sis are given by the β-Grothendieck polynomials tS
pβq

a u of S. Fomin and A. Kirillov
[FK94] (see, [Hud14]). These polynomials form an inhomogeneous basis of Polynrβs,
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Sw Da Qa

Aa

Fa

Pa

sλ Sα Fα

Figure 1. The nine cohomological families of polynomials considered
here. Those depicted in orange are bases of Symn, those in purple are
bases of QSymn, and those in green are bases of Polyn. The thinner
hooked arrows denote that the basis at the tail is a subset of the basis at
the head. The thicker arrows denote that the basis at the head refines
the basis at the tail.

where β is the formal parameter from Equation (1.1). Specializing at β “ 0, one

recovers the Schubert basis tSau “ tS
p0q

a u of Polyn. The usual Grothendieck poly-
nomials of A. Lascoux and M.-P. Schützenberger [LS82] are realized at β “ ´1. (To
help keep track of the relations between bases, we deviate from established practice
by denoting the connective K-analogue of each basis of Figure 1 by merely attach-
ing an ‘overbar’ to the notation for that basis. Moreover, for simplicity, from now
on we routinely drop “pβq” from the notation for connective K-analogues whenever
possible.)

Intersecting tSau with Symnrβs yields the basis tsλu of symmetric Grothendieck
polynomials. These represent connective K-theory Schubert classes on Grassman-
nians. A number of Littlewood-Richardson rules for tsλu are now known (e.g.,
[Vak06, TY09, PY17]), following the first found by A. Buch [Buc02]. Like Schur
polynomials, symmetric Grothendieck polynomials have quasisymmetric refinements;
each sλ expands positively in the quasiGrothendieck basis tSαu of QSymnrβs. This
basis, introduced in [Mon16], is the connective K-analogue of the quasiSchur basis of
QSymn.

Our first new result is that the quasiGrothendieck basis refines further into the
basis of multifundamental quasisymmetric polynomials tFαu of [LP07, PS19], the
connective K-analogue of Gessel’s fundamental basis of QSymn.
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Theorem 1.1. Each quasiGrothendieck polynomial Sα P QSymrβs is a positive sum
of multifundamental quasisymmetric polynomials. That is,

Sα “
ÿ

γ

Jαγ F γ,

where Jαγ P Zě0rβs is a positive polynomial in β.

The multifundamental basis tFαu of QSymnrβs lifts to the glide basis tFau of
Polynrβs [PS19], a β-deformation of the slide polynomials. An analogous deformation
of the Demazure characters has been studied in [Las01, RY15, Kir16, Mon16, MPS18].
We call these the Lascoux polynomials tDau in honor of A. Lascoux, who essen-
tially introduced them. They can be approached via the Lascoux atom basis tAau

of Polynrβs [Mon16], a β-deformation of the Demazure atoms. Finding a positive
formula for the decomposition of Grothendieck polynomials tSau into Lascoux poly-
nomials tDau, analogous to that for the decomposition of Schubert polynomials tSau

into Demazure characters tDau is an open problem. (There is an unpublished con-
jecture for this decomposition by V. Reiner and A. Yong; see [RY15] for discussion.)

Our next major result is to introduce an appropriate β-deformation of the funda-
mental particles. The kaon basis tPau of Polynrβs yields a common refinement of the
glide and Lascoux atom bases; we give explicit positive formulas for these refinements.

Theorem 1.2. The set tPau of kaons is a basis of Polynrβs. The kaons deform the
fundamental particles, in that specializing Pa at β “ 0 yields the particle Pa. The
kaons are a common refinement of the glide polynomials and of the Lascoux atoms;
that is,

Fa “
ÿ

b

P a
b Pb and Aa “

ÿ

b

Qa
b Pb,

where P a
b , Q

a
b P Zě0rbs are positive polynomials in β.

Finally, our last major result is to introduce the new basis tQau of quasiLascoux
polynomials, simultaneously lifting the quasiGrothendieck basis from QSymnrβs to
Polynrβs and giving a β-deformation of the quasikey polynomials. (Note that, like
the quasikey polynomials, quasiLascoux polynomials are not quasisymmetric.) The
quasiLascoux polynomials yield a common coarsening of the glide and Lascoux atom
bases. We give explicit positive formulas for refining Lascoux polynomials in quasi-
Lascoux polynomials and for refining quasiLascoux polynomials in both glides and
Lascoux atoms.

Theorem 1.3. The set tQau of quasiLascoux polynomials is a basis of Polynrβs. This
basis lifts the quasiGrothendieck basis of QSymnrβs in that

tQau XQSymnrβs “ tSαu.

The quasiLascoux polynomials deform the quasikeys, in that specializing Qa at β “ 0
yields the quasikey Qa. Finally, the quasiLascoux polynomials are a refinement of the
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Lascoux polynomials and are further refined by the glide polynomials and separately
by the Lascoux atoms. That is,

Da “
ÿ

b

Lab Qb, Qa “
ÿ

b

Ma
b Fb, and Qa “

ÿ

b

Na
b Ab,

where each of Lab ,M
a
b , N

a
b P Zě0rβs is a positive polynomial in β.

The relations among these nine families of K-theoretic polynomials are illustrated
in Figure 2; compare to the relations among their β “ 0 analogues, as illustrated in
Figure 1.

Sa Da Qa

Aa

Fa

Pa

sλ Sα Fα

Figure 2. The K-theoretic analogues of the nine cohomological fam-
ilies of polynomials of Figure 1. As in Figure 1, families depicted in
orange are bases of Symn, those in purple are bases of QSymn, and
those in green are bases of Polyn. The thinner hooked arrows denote
that the basis at the tail is a subset of the basis at the head. The thicker
arrows denote that the basis at the head refines the basis at the tail.
Those families and arrows that are original to this paper are marked in
red. The dotted arrow is conjectural; see [RY15].

Except for the β-Grothendieck polynomials tSau and their symmetric subset tsλu,
the geometric significance of these K-analogues is currently obscure. While, for ex-
ample, the glide polynomials seem useful in the study of β-Grothendieck polynomials
(and thereby of the connective K-theory of Flagsn), it is currently unknown how to
interpret any single glide polynomial Fa as representing a geometric object or da-
tum. We conclude with some conjectures that suggest geometric meaning for these
polynomials. While it is possible that these conjectures might be proved by entirely
combinatorial means (e.g., sign-reversing involutions), they seem to have the flavor of
Euler characteristic calculations. Ideally, we desire a proof of these conjectures where
the relevant polynomials are given appropriate geometric interpretations, so that the
coefficients in question become the Euler characteristics of some explicit objects. We
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note that these conjectures are fundamentally K-theoretic, having no analogue in the
cohomological setting.

For weak compositions a and b, let Ma
b pβq denote the coefficient of Fb in the glide

expansion of Qa and let Qa
b pβq denote the coefficient of Pb in the kaon expansion of

the Lascoux atom Aa. Note that Ma
b pβq and Qa

b pβq are nonnegative monomials in the
single variable β.

Conjecture 1.4. Let a be a weak composition. Then we have
ÿ

b

Ma
b p´1q P t0, 1u and

ÿ

b

Qa
b p´1q P t0, 1u,

where both sums are over all weak compositions b. �

For example, for a “ p0, 6, 6, 2q, we have
ÿ

b

Ma
b pβq “ 16β3

` 75β2
` 94β ` 36

and
ÿ

b

Qa
b pβq “ 16β3

` 66β2
` 80β ` 31.

In both cases, substituting β “ ´1 yields 1, as predicted. We have verified Conjec-
ture 1.4 by computer for all a with at most 3 zeros and |a| ď 7.

This paper is organized as follows. Section 2 recalls the necessary combinatorics of
the bases studied in previous works. Section 3 introduces the kaon basis and proves
Theorem 1.2, giving the key properties of this basis. Similarly, Section 4 introduces
the quasiLascoux basis and establishes its key properties via proving Theorems 1.1
and 1.3. We also suggest there (Conjecture 4.25) a remarkable positivity phenomenon
for products of Lascoux polynomials.

2. Definitions and preliminaries

2.1. Glide polynomials and fundamental slide polynomials. Given a weak
composition a, the positive part of a is the (strong) composition a` obtained by
deleting all zero terms from a. For example, 0102` “ 12.

Given weak compositions a and b of length n, say that b dominates a, denoted by
b ě a, if

b1 ` ¨ ¨ ¨ ` bi ě a1 ` ¨ ¨ ¨ ` ai
for all i “ 1, . . . , n. For example, 0120 ě 0111. Note that this partial ordering on
weak compositions extends the usual dominance order on partitions.

In [PS19], a weak komposition is defined to be a weak composition where the
positive integers may be colored arbitrarily black or red. The excess expbq of a weak
komposition b is the number of red entries in b.

Definition 2.1. [PS19, Definition 2.2] Let a be a weak composition with nonzero
entries in positions n1 ă ¨ ¨ ¨ ă n`. The weak komposition b is a glide of a if there
exist integers 0 “ i0 ă i1 ă ¨ ¨ ¨ ă i` such that, for each 1 ď j ď `, we have

(G.1) anj
“ bij´1`1 ` ¨ ¨ ¨ ` bij ´ expbij´1`1, . . . , bijq,
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(G.2) ij ď nj, and
(G.3) the leftmost nonzero entry among bij´1`1, . . . , bij is black.

Equivalently, a weak komposition b is a glide of the weak composition a if b can be
obtained from a by a finite sequence of the following local moves:

(m.1) 0pñ p0, (for p P Zą0);
(m.2) 0pñ qr (for p, q, r P Zą0 with q ` r “ pq;
(m.3) 0pñ qr (for p, q, r P Zą0 with q ` r “ p` 1).

Example 2.2. Let a “ p0, 2, 0, 0, 2, 0, 1q. The weak kompositions p1, 2, 0, 2, 0, 1, 1q
and p2, 1, 2, 1, 1, 1, 0q are glides of a. ♦

Definition 2.3. [PS19, Definition 2.5] For a weak composition a of length n, the
glide polynomial Fa “ Fapx1, . . . , xnq is

Fa “
ÿ

b

βexpbqxb11 ¨ ¨ ¨ x
bn
n ,

where the sum is over all weak kompositions b that are glides of a.

Example 2.4. We have

F0201 “ x0201
` x1101

` x0210
` x1110

` x2001
` x2010

` x2100
`

βx0211
` βx1111

` βx1201
` βx1210

` βx2011
` 2βx2101

` 2βx2110
`

β2x1211
` 2β2x2111,

where xb “ xb11 . . . x
bn
n . ♦

In [PS19, Proposition 2.16], it was observed that the fundamental slide polyno-
mials Fa of [AS17] are β “ 0 specializations of glide polynomials. We will take this
as definitional for fundamental slides.

2.2. Lascoux atoms and quasiGrothendieck polynomials. The skyline diagram
Dpaq of a weak composition a is the diagram with ai boxes in row i, left-justified.
In our convention, row 1 is the lowest row. (This convention differs from that of
[HLMvW11b, Mon16] where the rows are numbered from top to bottom, and from
that of [Mas08] where the “rows” are in fact columns and numbered from left to
right.) A triple of a skyline diagram is a collection of three boxes with two adjacent
in a row and either (Type A) the third box is above the right box and the lower row
is weakly longer, or (Type B) the third box is below the left box and the higher row
is strictly longer.

Given a filling of the skyline diagram with numbers, a triple (of either type) is
called an inversion triple if either γ ă α ď β or α ď β ă γ, and a coinversion triple
if α ď γ ď β.

In [Mon16], C. Monical introduced the notion of semistandard set-valued fillings
of skyline diagrams in order to define the (combinatorial) Lascoux atoms, which are
K-theoretic analogues of the Demazure atoms.
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γ
...

β α

Type A
lower row weakly longer

β α
...
γ

Type B
upper row strictly longer

Figure 3. Triples for skyline diagrams.

Definition 2.5. A set-valued filling of a skyline diagram is an assignment a non-
empty set of positive integers to each box of the diagram. The maximum entry in
each box is called the anchor and all other entries are called free. A set-valued filling
is semistandard if

(S.1) entries do not repeat in a column,
(S.2) rows are weakly decreasing where sets A ě B if minA ě maxB,
(S.3) every triple of anchors is an inversion triple,
(S.4) each free entry is in the cell of the least anchor in its column such that (S.2)

is not violated, and
(S.5) anchors in the first column are equal to their row index.

Remark 2.6. The condition (S.5) replaces the equivalent “basement” requirement in
[Mon16]. The condition (S.4) above differs slightly from condition (S4) in [Mon16,
§1.2], which puts free entries in the lowest possible row such that (S.2) is not violated.
These definitions are however equivalent in the sense that there is a simple weight-
preserving (and moreover column set-preserving) bijection between these two notions
of semistandard set-valued skyline fillings via rearranging the free entries appropri-
ately in each column. The convention in Definition 2.5 turns out to be more natural
in the context of the operations we wish to perform on these fillings.

Given a set-valued filling F of shape a, we define the weight of F to be the weak
composition wtpF q “ pc1, . . . , cnq where ci is the number of i’s in F . Furthermore,
|F | “ |wtpF q|. Likewise, the excess of F , denoted expF q, is the number of free entries
of F , or equivalently, expF q “ |F | ´ |a|. Given a weak composition a, let ASSFpaq
be the set of semistandard set-valued skyline diagrams of shape a. See Figure 4 for
examples; the anchor entries are given in bold.

Definition 2.7 ([Mon16]). Given a weak composition a, the (combinatorial) Las-
coux atom Aa is

Aa “
ÿ

FPASSFpaq

βexpF qxwtpF q.

We will drop the word “combinatorial” in Definition 2.7 from now on, as we will
not have cause to consider any of the other conjecturally equivalent definitions of
Lascoux atoms.
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4 431

32 2 2

1

β3x21x
3
2x

2
3x

2
4

42 21

3 3 1

1

β2x31x
2
2x

2
3x4

Figure 4. Two elements of ASSFp1, 0, 3, 2q and their corresponding
monomial weights. The anchor in each box is drawn in bold; the un-
bolded entries are free.

Definition 2.8. For a weak composition a, the Demazure atom Aa is the β “ 0
specialization of the corresponding Lascoux atom. Equivalently, Aa is the generating
polynomial for semistandard set-valued skyline diagrams of shape a where exactly
one number appears in each box.

Demazure atoms were originally defined by A. Lascoux and M.-P. Schützenberger
[LS90] in a different way; the equivalence of Definition 2.8 is due to work by S. Mason
[Mas09]. Thus, Aa is an inhomogeneous deformation of Aa. The Lascoux atoms form
a (finite) basis of Polyrβs “ Zrx1, x2, ...srβs by [Mon16, Proposition 2.2].

Definition 2.9 ([Mon16, §3]). Given a (strong) composition α, the quasiGrothendieck
polynomial Sα in n variables is

Sαpx1, . . . , xnq “
ÿ

a`“α

Aa,

where the sum is over weak compositions of length n. The β “ 0 specialization is
the quasiSchur polynomial Sαpx1, . . . , xnq of J. Haglund, K. Luoto, S. Mason, and
S. van Willigenburg [HLMvW11b].

In [Mon16], it was shown that the quasiGrothendieck polynomials form another
finite basis of QSymrβs.

The Lascoux atoms refine the symmetric Grothendieck polynomials:

Theorem 2.10 ([Mon16]).

sλpx1, . . . xnq “
ÿ

sortpaq“λ

Aa,

where the sum is over weak compositions of length n and sortpaq is the partition
formed by sorting the parts of a in weakly decreasing order.

Combining Theorem 2.10 and Definition 2.9 yields the decomposition of sλ into
quasiGrothendieck polynomials:

Corollary 2.11 ([Mon16]).

sλpx1, . . . , xnq “
ÿ

sortpαq“λ

Sαpx1, . . . , xnq.
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Setting β “ 0 in Theorem 2.10 and Corollary 2.11 recovers the earlier refinements
by J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg [HLMvW11a] of Schur
polynomials respectively into Demazure atoms and into quasiSchur polynomials.

3. The mesonic bases and their relations

In this section, we introduce a new basis of polynomials, which we call the “kaon”
basis. These new polynomials are a simultaneous refinement of both glide polynomials
and Lascoux atoms. In Section 4 we will introduce a new “quasiLascoux” basis
of polynomials, which are a simultaneous coarsening of these two bases. We will
moreover find that quasiLascoux polynomials stand in the same relation to Lascoux
atoms as glide polynomials do to kaons. See Figure 2 for a visual representation of
the relationships among these various bases.

3.1. Kaons.

Definition 3.1. Let a be a weak composition with nonzero entries in positions n1 ă

¨ ¨ ¨ ă n`. The weak komposition b is a mesonic glide of a if, for each 1 ď j ď `, we
have

(MG.1) anj
“ bnj´1`1 ` ¨ ¨ ¨ ` bnj

´ expbnj´1`1, . . . , bnj
q,

(MG.2) the leftmost nonzero entry among bnj´1`1, . . . , bnj
is black, and

(MG.3) bnj
‰ 0.

Equivalently, a weak komposition b is a mesonic glide of a if b can be obtained from
a by a finite sequence of the local moves (m.1), (m.2), and (m.3) that never applies
(m.1) at positions nj ´ 1 and nj for any j.

Observe that, in particular, a mesonic glide is a glide that happens to satisfy
additional conditions. In particular, condition (MG.1) strengthens the combination
of (G.1) and (G.2), while (MG.2) is essentially the same condition as (G.3); condition
(MG.3), however, is entirely new to mesonic glides.

Example 3.2. Let a “ p0, 3, 0, 2q. Then b “ p2, 1, 1, 2q is a mesonic glide of a.
On the other hand, while b1 “ p3, 1, 0, 2q is also a glide of a, it is not mesonic. To

see this fact, observe that an1 “ a2 “ 3, while

b1nj´1`1
` ¨ ¨ ¨ ` b1nj

´ expb1nj´1`1
, . . . , b1nj

q “ b11 ` b
1
2 ´ expb11, b

1
2q “ 3` 1´ 0 “ 4,

in violation of (MG.1).
The reader may check that both b and b1 can be obtained from a by a finite sequence

of the local moves (m.1), (m.2), and (m.3). However, the reader may also check that
b1 cannot be so obtained without applying (m.1) at positions 1 and 2. ♦

Definition 3.3. Let a be a weak composition. The kaon Pa is the following gener-
ating function for mesonic glides:

Pa :“
ÿ

b

βexpbqxb,

where the sum is over all mesonic glides of a.
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Example 3.4. Let a “ p0, 3, 0, 2q. Then the corresponding kaon is

Pa “ x0302
` x0311

` x1202
` x1211

` x2102
` x2111

` βx0312
` βx0321

` βx1212
` βx1221

` βx1302
` βx1311

` βx2112
` βx2121

` βx2202
` βx2211

` βx3102
` βx3111

` β2x1312
` β2x1321

` β2x2212
` β2x2221

` β2x3112
` β2x3121.

The reader may enjoy realizing each exponent vector as a mesonic glide of a.
Although this example is multiplicity-free, in general kaons have nontrivial coeffi-

cients in their monomial expansions. For example, the kaon P002 contains the mono-
mial βx111 with coefficient 2, corresponding to the distinct mesonic glides p1, 1, 1q and
p1, 1, 1q of p0, 0, 2q. ♦

3.2. Fundamental properties of kaons and the kaon expansion of glide poly-
nomials. Every glide polynomial Fa is a positive sum of kaons.

Proposition 3.5. For any weak composition a, we have

Fa “
ÿ

běa
b`“a`

Pb.

Proof. Let a be a weak composition with nonzero entries in positions n1 ă ¨ ¨ ¨ ă n`.
Suppose g is a glide of a. Then there are 0 “ i0 ă i1 ă ¨ ¨ ¨ ă i` satisfying conditions
(G.1), (G.2), and (G.3) of Definition 2.1. Then g may be obtained from a via a 2-step
process. First, apply (m.1) repeatedly to move each nonzero entry of a from position
nj to position ij. Call the resulting weak composition b. Note that b satisfies b ě a
and b` “ a`. Second, apply some sequence of (m.1), (m.2) and (m.3) to obtain the
weak komposition g from b. In this second step, note that we never apply (m.1) at
positions ij ´ 1 and ij for any j.

Hence every glide g of a is a mesonic glide of a weak composition b with b ě a and
b` “ a`, and so every term of the left-hand polynomial is a term of the right-hand
polynomial.

Conversely, every mesonic glide of such a weak composition b with b ě a and
b` “ a` is clearly a glide of a. Thus to complete the proof, we only need to show that
for every glide g of a there is at most one b with b` “ a` such that g is a mesonic
glide of b. Let α “ a` “ pα1, . . . , α`q. Suppose that b, c are weak compositions with
b` “ c` “ α such that g is a mesonic glide of both b and c. Say b has nonzero entries
in positions s1 ă ¨ ¨ ¨ ă s` while c has nonzero entries in positions t1 ă ¨ ¨ ¨ ă t`. By
the definition of mesonic glide, we know that

αj “ bsj “ gsj´1`1 ` . . .` gsj ´ expgsj´1`1, . . . , gsjq,

the leftmost nonzero entry among gsj´1`1, . . . , gsj is black, and gsj ‰ 0. In the same
way, we have that

αj “ ctj “ gtj´1`1 ` . . .` gtj ´ expgtj´1`1, . . . , gtjq,
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the leftmost nonzero entry among gtj´1`1, . . . , gtj is black, and gtj ‰ 0. If sj “ tj for
all j, then b “ c and we are done. Otherwise, there is a least index i such that si ‰ ti.
Without loss of generality, assume si ą ti. Then,

αi “ gsi´1`1 ` ¨ ¨ ¨ ` gsi ´ expgsi´1`1, . . . , gsiq

“ gsi´1`1 ` ¨ ¨ ¨ ` gti ` gti`1 ` ¨ ¨ ¨ ` gsi ´ expgsi´1`1, . . . , gtiq ´ expgti`1, . . . , gsiq

“ gti´1`1 ` ¨ ¨ ¨ ` gti ´ expgti´1`1, . . . , gtiq ` gti`1 ` ¨ ¨ ¨ ` gsi ´ expgti`1, . . . , gsiq

“ αi ` gti`1 ` ¨ ¨ ¨ ` gsi ´ expgti`1, . . . , gsiq,

and so we have

0 “ gti`1 ` ¨ ¨ ¨ ` gsi ´ expgti`1, . . . , gsiq.

This is only possible if each of gti`1, . . . , gsi is either 0 or a red 1. Since gsi ‰ 0,
there is at least one red 1 in this set of entries. However, the first nonzero entry of
gti`1, . . . , gti`1

is required to be black, a contradiction. �

Theorem 3.6. The set

tβkP
pβq

a : k P Zě0 and a is a weak composition of length nu

is an additive basis of the free Z-module Polynrβs. Hence, for any fixed p P Z,

tP
ppq

a : a is a weak composition of length nu

is a basis of Polyn.

Proof. By Proposition 3.5, every glide polynomial can be written as a positive sum
of kaons, and indeed the transition matrix is unitriangular with respect to the lexico-
graphic total order on weak compositions. Hence, the transition matrix is invertible
over Z, and the theorem follows from the fact that glide polynomials are an additive
basis of Polynrβs, as shown in [PS19, Theorem 2.6]. �

A homogeneous basis Pa of Polyn called fundamental particles was introduced
in [Sea18]. This basis is a common refinement of fundamental slides and Demazure
atoms. We will show that the kaon basis plays the analogous role for glide polynomials
and Lascoux atoms.

Proposition 3.7. The fundamental particles Pa are the β “ 0 specialization of kaons:

Pa “ P
p0q

a .

Proof. This is clear from the definitions of the two families of polynomials. �

Remark 3.8. Proposition 3.7 motivates our choice of the name ‘kaon’ for these poly-
nomials. In high energy physics, the ‘K’ fundamental particles are the K-mesons

or kaons. By analogy, perhaps, the cohomological specialization πa “ P
p0q

a could be
named for the lighter analogue of the K-meson, the π-meson or pion. These mesons
play a role in the structural integrity of atomic nuclei; somewhat analogously, we will
show momentarily that the kaon polynomials decompose the Lascoux atoms, thereby
controlling their structure.
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Remark 3.9. In light of Proposition 3.7, setting β “ 0 in Proposition 3.5 recovers
[Sea18, Proposition 4.7] on the expansion of fundamental slide polynomials into fun-
damental particles. Note that although the K-theoretic deformations of both families
of polynomials are significantly larger, the matrix of basis change from Proposition 3.5
is exactly the same as that for fundamental slides into fundamental particles. Taking
p “ 0 in Theorem 3.6 recovers [Sea18, Proposition 4.6] as a special case.

The kaon basis does not have positive structure coefficients. Nonetheless, we con-
jecture the following:

Conjecture 3.10. For any weak compositions a and b, the product

Pa ¨ Fb

of a kaon and a glide polynomial expands positively in the kaon basis.

For example, we have

Pp2,0,1q ¨ Fp1,0,2q “Pp3,0,3q ` βPp3,1,3q ` βPp3,2,2q

` β2Pp3,2,3q ` β
2Pp3,3,2q.

We have computationally verified Conjecture 3.10 for all weak compositions a, b with
at most 3 zeros and |a|, |b| ď 5. To our knowledge, Conjecture 3.10 is new even in
the special β “ 0 case of the fundamental particle expansion of the product of a
fundamental particle by a fundamental slide polynomial.

3.3. The kaon expansion of a Lascoux atom.

Definition 3.11. Let a be a weak composition and T P ASSFpaq. We say T is
meson-highest if, for every integer i appearing in T , either

‚ the leftmost i is in the leftmost column and is an anchor, or
‚ there is a iÒ in some column weakly to the right of the leftmost i and in a

different box, where iÒ is the smallest label greater than i appearing in T .

In light of the following Theorem 3.12, we write A2Ppaq for the set of all meson-
highest T P ASSFpaq.

Theorem 3.12. For any weak composition a, we have

(3.1) Aa “
ÿ

TPA2Ppaq

β|T |´|a|PwtpT q.

In particular, every Lascoux atom Aa is a positive sum of kaons.

To prove Theorem 3.12, we must first develop properties of a destandardization
map on ASSFpaq. Fix T P ASSFpaq. Consider the least integer i with the property
that

‚ the leftmost i in T is not an anchor in the leftmost column, and
‚ this leftmost i has no iÒ weakly to its right in a different box;
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replace every i in T with an i` 1. (If this results in two instances of i` 1 in a single
box, delete one.) Repeat this replacement process until no further replacements can
be made: the final result is the destandardization dstpT q. (This algorithm necessarily
terminates, as we only perform replacement on labels i that are strictly less than the
maximum entry k of T ; this is because k is guaranteed to appear as an anchor in the
leftmost column of T .) For an example of these notions, see Figure 5.

3 3

1

3 32

1

3 2

1

32 2

1

3 31

1

3 321

1

3 21

1

32 21

1

Figure 5. The eight elements of ASSFp102q. The set A2Pp102q con-
sists of two fillings, specifically the leftmost filling in each of the two
rows. Each of the eight illustrated fillings destandardizes to the leftmost
filling in its row.

Remark 3.13. In fact, it is not hard to see that the order in which we perform replace-
ments does not affect the resulting destandardization. Nonetheless, it is convenient
to fix the explicit replacement order chosen above.

Lemma 3.14. Let a be a weak composition. If T P ASSFpaq, then dstpT q P A2Ppaq.
Moreover, destandardization is a retraction onto A2Ppaq, as we have dstpT q “ T if
and only if T P A2Ppaq Ď ASSFpaq.

Proof. Fix the weak composition a. By definition, if T P A2Ppaq, then dstpT q “ T .
Moreover, if T R A2Ppaq, then by definition dstpT q ‰ T . Hence, the third sentence
of the lemma is clear.

It remains to establish the second sentence of the lemma. Fix T P ASSFpaq. It
is enough to show that dstpT q P ASSFpaq, for then dstpT q P A2Ppaq follows easily,
as the destandardization algorithm does not terminate until the extra conditions
defining A2Ppaq as a subset of ASSFpaq are satisfied. Indeed, since destandardization
is defined as a sequence of replacements, it is enough by induction to show that any
single such replacement produces an element of ASSFpaq.

Suppose we apply replacement to the letters i and the result is T 1. Then, by
assumption, the leftmost i P T

‚ is not an anchor in row i of the leftmost column of T , and
‚ does not have an iÒ weakly to its right in T and in a different box.
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We want to show that T 1 satisfies the conditions (S.1)–(S.5).

(S.1): If there is no column of T containing both i and i ` 1, then it is clear that
T 1 satisfies (S.1). Hence, suppose column c of T contains both i and i ` 1. Then,
iÒ “ i` 1. Since T has then no i` 1 weakly to the right of the leftmost i, c must be
the column of the leftmost i. Moreover, i and i` 1 must appear in the same box b of
column c in T . Thus, replacement results in two instances of i` 1 in b, one of which
we then delete by construction. Thus, T 1 has no repeated entries in any column.

(S.2): If row i of T contains an entry i, then by (S.2) and (S.5) for T , row i has i as
an anchor in the first column. Thus, in this case, the leftmost i is an anchor in the
first column, contradicting our assumptions on the number i.

Therefore by (S.2) and (S.5) for T , every entry i in T is in a row with an index j
strictly greater than i. Moreover, for each such j ą i, we have by (S.2) for T that all
labels strictly to the left of the leftmost i in row j are strictly greater than i. Hence,
replacing every i in T with i` 1 preserves the rows being weakly decreasing.

(S.3): To see that no type A coinversion triples appear in T 1, suppose first that T
has a type A inversion triple with γ ă α ď β. This could become a coinversion triple
in T 1 only if γ “ i and α “ i`1 “ iÒ. However, in this case, T has i and iÒ in distinct
boxes of the same column, contradicting our assumptions on the number i.

Now, suppose instead that T has a type A inversion triple with α ď β ă γ. This
could become a coinversion triple in T 1 only if γ “ i ` 1 “ iÒ and β “ i. However,
in this case, T has i ` 1 appearing strictly to the right of i, again contradicting our
assumptions on the number i.

To see that no type B coinversion triples appear in T 1, suppose first that T has a
type B inversion triple with γ ă α ď β. This could become a coinversion triple in T 1

only if γ “ i and α “ i ` 1 “ iÒ. However, then T would have an iÒ strictly to the
right of an i, contradicting our assumptions on i.

Finally, suppose T has a type B inversion triple with α ď β ă γ. This could
become a coinversion triple in T 1 only if γ “ i ` 1 “ iÒ and β “ i. However, then T
would have an i and an i`1 in distinct boxes of the same column, again contradicting
our assumptions on i.

(S.4): If a free entry i of T becomes a free entry i` 1 of T 1 and is not deleted, then
its anchor entry j is larger than i` 1 in both T and T 1. In particular, since j was the
smallest anchor entry in this column accepting a free entry i in T (by (S.4) for T ), j
is still the smallest anchor entry accepting a free entry i` 1 in T 1.

If an anchor entry i of T becomes an anchor entry i` 1 of T 1, then since any other
anchor entry in this column is either greater than i ` 1 or smaller than i, any free
entries in the cell of this anchor entry are still with the smallest possible anchor entry.
Any other free entries in a column where an anchor entry i becomes an anchor entry
i ` 1 are also still with the smallest possible anchor entry, again since other anchor
entries in this column are either greater than i` 1 or smaller than i.

(S.5): By construction, the replacement operation taking T to T 1 does not affect the
anchor entries in the first column. �
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Lemma 3.15. Let a be a weak composition and S P A2Ppaq. Then

PwtpSq “
ÿ

TPdst´1pSq

β|T |´|S|xwtpT q.

Proof. We establish a weight-preserving bijection between mesonic glides of wtpSq
and fillings T P dst´1pSq.

Fix T P dst´1pSq. Define the colored weight kwtpT q of T to be the weak kom-
position obtained by coloring the pi ` 1qst entry of wtpT q red if any i ` 1 is deleted
after replacing every i with i ` 1 during a step of destandardization. (Note that at
most one i` 1 can be so deleted, as otherwise before replacement there would be two
boxes, each containing both i and i`1; in such a case, there would be an i`1 strictly
to the right of an i, in violation of the rules for when to perform replacement.)

We claim that kwtpT q is a mesonic glide of wtpSq. Consider the process of de-
standardization of T to produce S. Each time we replace every i in T 1 by i ` 1 to
produce T 2, we change the ith and pi` 1qst entries of the colored weight by

pq, rq ÞÑ p0, q ` r ´ 1q,

if a duplicate i` 1 is deleted, or

pq, rq ÞÑ p0, q ` rq,

if not. Since these are the inverses of the local move (m.3) in the first case and of
either (m.1) or (m.2) in the second case, it follows then that kwtpT q is a glide of the
weak composition wtpSq.

Let wtpSq have nonzero entries in positions n1 ă ¨ ¨ ¨ ă n`. A local change to the
colored weight

pq, 0q ÞÑ p0, qq

in positions nj´1 and nj for some j would correspond to a step of destandardization
replacing every instance of nj ´ 1 with nj in a T 1 that contains no label nj. Since
S is meson-highest, the entries nj of S satisfy the meson-highest condition. Since
T 1 destandardizes to S, entries nj ´ 1 of T 1 therefore also satisfy the meson-highest
condition. This contradicts the application of such a destandardization step to T 1.
Hence, kwtpT q is a mesonic glide of wtpSq.

For the other direction, let b be a mesonic glide of the weak composition wtpSq. We
construct the unique T P dst´1pSq such that kwtpT q “ b as follows. Suppose wtpSq
has nonzero entries in positions n1 ă ¨ ¨ ¨ ă n`.

Begin with the smallest entries of S, i.e., the wtpSqn1 instances of the entry n1

in S. Consider the sequence s1 “ p1, . . . , i1q of positions of entries associated (via
(G.1)) to n1 in the mesonic glide b. From this sequence, we construct a string str1
by appending letters to the empty word as follows. Reading s1 from left to right, for
each k P s1, consider the entry bk. If bk is a black entry, append bk black k’s to the
end of the string; if bk is a red entry, append one red k followed by bk ´ 1 black k’s.
For example, if wtpSq “ p0, 0, 0, 0, 4, 3q and b “ p1, 0, 2, 0, 2, 3q, then i1 “ n1 “ 5, and
str1 “ 13355.
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Now replace the instances of n1 in S with entries of str1 as follows. In the rightmost
box of S containing an n1, replace that n1 with the first letter of str1. If the next letter
of str1 is red, place it in the same box the previous entry was placed in. Otherwise,
place it in the next box of S to the left that contains an n1, replacing that n1. Continue
in this manner until all letters of str1 have been placed into S. This procedure is well-
defined since by (S.1) no more than one entry n1 appears in any column of S; and
since by (G.1) the number wtpSqn1 of n1’s in S is exactly the length of the string
str1 minus the number of red entries, each black entry goes in a different box of S,
and each red entry goes in a box along with a black entry. Repeat this process with
n2, . . . , n`, where sj is the sequence pij´1 ` 1, . . . , ijq. Since we work with mesonic
glides, we will have ij “ nj for all j; we introduce this extra level of generality in order
to be able to apply this same procedure for arbitrary glides (where ij may be smaller
than nj) in the proof of Lemma 4.16 later. (This algorithm is a minor modification
of that appearing in [PS19, Proof of Theorem 3.5].)

For example, let S be the leftmost filling in the lower row of Figure 5. We have
wtpSq “ p2, 0, 2q. A mesonic glide of wtpSq is b “ p2, 1, 2q. We have i1 “ n1 “ 1,
i2 “ n2 “ 3, str1 “ 11 and str2 “ 233. We construct the filling T from S and b
as follows. Replace the two 1s in S with the two 1s from str1 (which does nothing
to S), then replace the two 3s in S with str2. The 2 and 3 from str2 are placed in
the rightmost box (along with the 1 already there); then, the remaining 3 from str2
is placed in the box to the left. In this way, we obtain T as the second filling from
the left in the lower row of Figure 5. Note that indeed T has weight p2, 1, 2q and
destandardizes to S.

By construction, the resulting filling T has weight b and destandardizes to S. We
need to show that T P ASSFpaq. To see this, notice that the entries of strj (which
replace the entries nj in S) are all strictly larger than nj´1 and weakly smaller than
nj. This fact implies that all inequalities between entries of boxes in S are preserved,

and thus all of (S.1), (S.2), (S.3) and (S.4) are preserved. Finally, since S P A2Ppaq Ď
ASSFpaq, the first column of S has an anchor ai in each nonempty row ai, and so
these (nonzero) ai’s are a subset of the ni’s. Since b is a mesonic glide of wtpSq, by
definition the last entry of each stri is ni. Therefore, the process of constructing T
from b and S ensures that the anchors in the first column are replaced by themselves,
i.e., they do not change. Hence (S.5) is also satisfied, and we have T P ASSFpaq.

The uniqueness of T follows from the lack of choice at each step in this process. �

Proof of Theorem 3.12. For S P A2Ppaq, Lemma 3.15 says that

PwtpSq “
ÿ

TPdst´1pSq

β|T |´|S|xwtpT q.
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Therefore,
ÿ

SPA2Ppaq

β|S|´|a|PwtpSq “
ÿ

SPA2Ppaq

β|S|´|a|
ÿ

TPdst´1pSq

β|T |´|S|xwtpT q

“
ÿ

UPASSFpaq

β|U |´|a|xwtpUq

“ Aa,

where the second equality is by Lemma 3.14 and the third equality is by definition. �

Remark 3.16. Setting β “ 0 in Theorem 3.12 recovers the expansion of Demazure
atoms into fundamental particles from [Sea18, Theorem 4.17]. In particular, the
meson-highest fillings with no free entries are exactly the “particle-highest” fillings of
[Sea18].

4. Lascoux and quasiLascoux polynomials

4.1. QuasiLascoux polynomials. The quasikey basis of [AS18b] is a common coars-
ening of the fundamental slide and Demazure atom bases of Polyn, a refinement of the
basis of Demazure characters, and a lifting of the quasiSchur basis of [HLMvW11a]
from QSymn to Polyn. We introduce a K-theoretic analogue of the quasikey basis—
alternatively, a lifting of the quasiGrothendieck basis from QSymrβs to Polyrβs. See
Figure 2 for a visual representation of the relationships among these various bases.

Definition 4.1. Given a weak composition a, the quasiLascoux polynomial Qa

is given by

Qa “
ÿ

běa

b`“a`

Ab.

Proposition 4.2. The set

tβkQ
pβq

a : k P Zě0 and a is a weak composition of length nu

is an additive basis of the free Z-module Polynrβs. Hence, for any fixed p P Z,

tQ
ppq

a : a is a weak composition of length nu

is a basis of Polyn.

Proof. First, we show that

tβkQ
pβq

a : k P Zě0 and a is a weak composition of length nu

is a spanning set. A monomial m in Polynrβs corresponds to a pair pk, aq, where
k P Zě0 records the power of β in m and a is the weak composition of length n
recording the degrees of x1, x2, . . . , xn in m. Write M for the set of all such pairs.

For a a weak composition of length n, let sa denote the string 1a12a2 ¨ ¨ ¨nan . Write
Mpaq for the largest element of a and write ``paq for the position of the rightmost
nonzero entry of a. Define a total order on M by pk, aq ą ph, bq if

‚ ``paq ą ``pbq;
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‚ ``paq “ ``pbq and Mpaq ąMpbq;
‚ ``paq “ ``pbq, Mpaq “Mpbq, and sa ąlex sb; or
‚ a “ b and k ą h.

(Here, ąlex denotes lexicographic order on strings of numbers.) For example, we have

p2, 23001q ą p7, 10340q ą p2, 23010q ą p2, 32010q ą p1, 32010q.

The ă-leading term of a polynomial f P Polynrβs is the term of f whose monomial
is largest in this order. Now, observe that the ă-leading term of Qa is β0xa. Hence,
if the ă-leading term of f P Polynrβs is caβ

kxa, then the ă-leading term of

f1 :“ f ´ caβ
kQa

is cbβ
hxb for some ph, bq ă pk, aq. Then,

f2 :“ f ´ cbβ
hQb

has ă-leading term cdβ
jxd for some pj, dq ă ph, bq, etc. Since ă is a well order on M,

this process must terminate. Hence, f is a finite Z-linear combination of elements of
our putative basis.

Linear independence is immediate from each element of the putative basis having
a different leading term. This proves the first sentence of the proposition.

The second sentence of the proposition is immediate from the first. �

Proposition 4.3. The quasikey polynomials are the β “ 0 specialization of quasi-
Lascoux polynomials:

Q
p0q

a “ Qa

Proof. In [Sea18], it is proved that

Qa “
ÿ

běa

b`“a`

Ab.

The statement then follows from Definition 4.1 and the fact that A
p0q

b “ Ab. �

The following is clear from Definitions 2.9 and 4.1.

Proposition 4.4. Suppose that the positions of the nonzero entries in the weak com-
position a form an interval and that ak is the last nonzero entry of a. Then,

Qa “ Sa`px1, . . . , xkq.

In particular, every quasiGrothendieck polynomial is a quasiLascoux polynomial.

Moreover, we have

Proposition 4.5. Let a be a weak composition. Then the stable limit lim
mÑ8

Q0mˆa of

the quasiLascoux polynomial Qa is the quasiGrothendieck function Sa`px1, x2, . . .q.
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Proof. Let m ą 0 and consider the polynomial Q0mˆapx1, . . . , xmq. Observe that, for
any weak composition b, the Lascoux atom Ab is divisible by xbi whenever bi ą 0.

Hence, if A
pβq

b appears in the Lascoux atom expansion of Q0mˆa, then it is annihilated
on restriction to m variables unless ``pbq ď m. Thus, by Definitions 2.9 and 4.1,

Q0mˆapx1, . . . , xmq “
ÿ

b`“a`
``pbqďm

Ab “ Sa`px1, . . . , xmq.

The proposition then follows by letting mÑ 8. �

Remark 4.6. Setting β “ 0 in Proposition 4.5 gives a new proof of the fact that
quasikey polynomials stabilise to quasiSchur functions; this was proved via a different
method in [AS18b, §4.3].

To give the monomial expansion of a quasiLascoux polynomial directly, we define
QSSFpaq to be all set-valued skyline fillings of shape a satisfying (S.1)–(S.4), as well
as

(S.51) anchors in the first column are at most their row index and decrease from top
to bottom.

We call QSSFpaq the set-valued quasi-skyline fillings of shape a. Then we have

Proposition 4.7. Given a weak composition a, we have

Qa “
ÿ

SPQSSFpaq

β|S|´|a|xwtpSq.

Proof. There is a weight-preserving bijection

QSSFpaq ÐÑ
ž

běa
b`“a`

ASSFpbq,

where the image of T P QSSFpaq is obtained by moving each row of T downwards
until each anchor in the first column is equal to its row index. This is well-defined
since moving rows without changing their relative order does not affect the inver-
sion/coinversion status of any triple. The proposition then follows from Definitions 2.7
and 4.1. �

Example 4.8. For a “ p1, 0, 2q, the set QSSFpaq consists of the ten fillings shown in
Figure 6. Therefore, we have

Q102 “ x102
` βx112

` βx202
` β2x212

` x111
` βx211

` βx121
` β2x221

` x120
` βx220.

♦

4.2. The glide expansion of a quasiLascoux polynomial.

Definition 4.9. Let a be a weak composition and let S P QSSFpaq be a set-valued
quasi-skyline filling. We say S is quasiYamanouchi if, for every integer i appearing
in S, either
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3 3

1

3 32

1

3 31

1

3 321

1

3 2

1

3 21

1

32 2

1

32 21

1

2 2

1

2 21

1

Figure 6. The ten elements of QSSFp102q.

‚ the leftmost i is an anchor in row i of the leftmost column, or
‚ there is an i`1 in some column weakly right of the leftmost i and in a different

box.

In light of the following Theorem 4.12, we write Q2Fpaq for the set of all quasiYa-
manouchi S P QSSFpaq.

Remark 4.10. The quasiYamanouchi condition (Definition 4.9) for set-valued quasi-
skyline fillings is exactly the meson-highest condition (Definition 3.11) for semistan-
dard set-valued skyline fillings, with iÒ replaced by i` 1.

Example 4.11. The first and third fillings in the top row of Figure 6 are quasiYa-
manouchi. The other fillings in Figure 6 are not. ♦
Theorem 4.12. For any weak composition a, we have

Qa “
ÿ

SPQ2Fpaq

β|S|´|a|FwtpSq.

In particular, every quasiLascoux polynomial Qa is a positive sum of glide polynomials.

To prove Theorem 4.12, we introduce a destandardization map dstQ on QSSFpaq.
Fix T P QSSFpaq. Consider the least integer i appearing in T with the property that

‚ the leftmost i in T is not an anchor in row i of the leftmost column, and
‚ it has no i` 1 weakly to its right in a different box;

replace every i in T with an i` 1. (If this results in two instances of i` 1 in a single
box, delete one.) Repeat this replacement process until no further replacements can
be made; the final result is the destandardization dstQpT q.

Remark 4.13. The destandardization map dstQ is exactly the destandardization map
dst of Section 3 with i` 1 everywhere in place of iÒ.

Example 4.14. The first, second, fifth, seventh and ninth fillings of Figure 6 de-
standardize to the first filling; the remaining fillings destandardize to the third fill-
ing. ♦
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The following result is entirely analogous to Lemma 3.14.

Lemma 4.15. Let a be a weak composition. If T P QSSFpaq, then dstQpT q P Q2Fpaq.

Moreover, destandardization is a retraction onto Q2Fpaq, as we have dstQpT q “ T if

and only if T P Q2Fpaq Ď QSSFpaq.

Proof. Identical to the proof of Lemma 3.14, with i` 1 everywhere in place of iÒ. �

Lemma 4.16. Let a be a weak composition and S P Q2Fpaq. Then,

FwtpSq “
ÿ

TPdst´1
Q pSq

β|T |´|S|xwtpT q.

Proof. We need to establish a weight-preserving bijection between the glides of the
weak composition wtpSq and the fillings T P dst´1Q pSq.

Fix T P dst´1Q pSq. Define the colored weight kwtpT q of T to be the weak komposi-
tion obtained by coloring the pi ` 1qst entry of wtpT q red if an i ` 1 is deleted after
replacing every i with an i` 1 during a step of destandardization. By the same exact
reasoning as in the analogous step of the proof of Lemma 3.15, we have that kwtpT q
is a glide of the weak composition wtpSq.

For the other direction, given a glide b of the weak composition wtpSq, we construct
(the unique) T P dst´1Q pSq such that wtpT q “ b. This is achieved by the same process,
and via the same argument, as in Lemma 3.15. �

Proof of Theorem 4.12. For S P Q2Fpaq, Lemma 4.16 says that

FwtpSq “
ÿ

TPdst´1
Q pSq

β|T |´|S|xwtpT q.

Therefore,
ÿ

SPQ2Fpaq

β|S|´|a|FwtpSq “
ÿ

SPQ2Fpaq

β|S|´|a|
ÿ

TPdst´1
Q pSq

β|T |´|S|xwtpT q

“
ÿ

UPQSSFpaq

β|U |´|a|xwtpUq

“ Qa,

where the second equality is by Lemma 4.15 and the third equality is Definition 4.1.
�

Remark 4.17. Setting β “ 0 in the statement of Theorem 4.12 yields a positive
combinatorial formula for the fundamental slide expansion of a quasikey polynomial
in terms of quasiYamanouchi semi-skyline fillings. Such a formula was alluded to in
[Sea18], but not stated explicitly.

The following is a K-theoretic analogue of the positive expansion established in
[HLMvW11a] of quasiSchur polynomials into fundamental quasisymmetric polynomi-
als.



24 C. MONICAL, O. PECHENIK, AND D. SEARLES

Corollary 4.18. The quasiGrothendieck polynomials expand positively in the basis of
multi-fundamental quasisymmetric polynomials.

Proof. By Theorem 4.12, any quasiLascoux polynomial expands positively in the glide
basis. By Proposition 4.4, the quasiGrothendieck polynomials are included among the
quasiLascoux polynomials. The statement then follows from the fact ([PS19, §3.2])
that the quasisymmetric glide polynomials are the multi-fundamental quasisymmetric
polynomials and form a basis of QSymrβs. �

Remark 4.19. The number of terms in the expansion of Corollary 4.18 generally grows
without bound as the number of variables increases. In the limit, one finds that a
quasiGrothendieck function is a positive sum of multi-fundamental quasisymmetric
functions, but that this sum of formal power series has infinitely-many terms.

4.3. Lascoux polynomials. In this section, we study the combinatorial Lascoux
polynomials of [Mon16, §5] and their relations to the other families of polynomials
discussed in this paper. Given a skyline diagram, we augment it on the left with
an additional column 0, called the basement. We write bi for the entry in row i
of the basement. Expanding on Definition 2.5 and Remark 2.6, a set-valued skyline
filling with basement is semistandard if it (including the basement) satisfies (S.1),
(S.2), (S.3), and (S.4). Basement entries do not count towards the weight wtpF q of a
filling F with basement. In diagrams, we shade the boxes of the basement in gray to
distinguish them from the ordinary boxes.

For a a weak composition, let ÐÝa denote the weak composition formed by reversing
the order of the parts of a. For example, if a “ p0, 1, 0, 3q, then ÐÝa “ p3, 0, 1, 0q.
Let DSSFpaq be the set of semistandard set-valued skyline fillings of shape ÐÝa with
basement bi “ n´ i` 1.

Definition 4.20 ([HLMvW11b, Equation (2.3)], [Mon16, §5]). Let a be a weak com-
position. The (combinatorial) Lascoux polynomial Da is given by

Da “
ÿ

FPDSSFpaq

βexpF qxwtpF q.

The Demazure character is the β “ 0 specialization of the corresponding Lascoux
polynomial:

Da “ D
p0q

a .

Demazure characters are, in fact, characters of certain modules with relation to
Schubert calculus [Dem74]; no such representation-theoretic realization of Lascoux
polynomials is currently known.

Example 4.21. The fillings in Figure 7 show that the monomial expansion of the
Lascoux polynomial D102 is

D102 “ x21x2 ` x1x
2
2 ` βx

2
1x

2
2 ` x

2
1x3 ` x1x2x3

` x1x
2
3 ` βx

2
1x2x3 ` βx

2
1x

2
3 ` βx1x2x

2
3 ` β

2x21x2x
2
3

` βx21x2x3 ` βx1x
2
2x3 ` β

2x21x
2
2x3.
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3 2 2

1 1

2

3 2 21

1 1

2

3 3 1

1 1

2

3 3 2

1 1

2

3 3 3

1 1

2

3 3 21

1 1

2

3 3 31

1 1

2

3 3 32

1 1

2

3 3 321

1 1

2

3 32 1

1 1

2

3 32 2

1 1

2

3 32 21

Figure 7. The 13 elements of DSSFp102q.

The Demazure character D102 is given by setting β “ 0 in this expression; equivalently,
D102 is the weight generating function for those five fillings in Figure 7 that contain
only one number in each box. ♦

The main result of the remainder of this paper is to show that every Lascoux
polynomial Da is a positive sum of quasiLascoux polynomials. Towards this goal, we
first show the weaker result that Da is a positive sum of Lascoux atoms.

Given a weak composition a, let sortpaq be the rearrangement of the parts of a into
weakly decreasing order, and let wpaq be the minimal (Coxeter) length permutation
sending a to sortpaq.

Theorem 4.22. For any weak composition a, we have

Da “
ÿ

sortpbq“sortpaq

wpbqďwpaq

Ab,

where ď denotes the strong Bruhat order on permutations. In particular, every Las-
coux polynomial Da is a positive sum of Lascoux atoms.

Example 4.23. Let a “ p0, 1, 0, 3q. Then sortpaq “ p3, 1, 0, 0q and wpaq “ 3241.
Hence,

D0103 “ A0103 `A1003 `A0130 `A1030 `A1300 `A0301 `A0310 `A3001 `A3010 `A3100.

♦

Specializing Theorem 4.22 at β “ 0 recovers a known formula for the Demazure
atom expansion of a Demazure character (see, e.g., [Mas09], [HLMvW11b]).

Remark 4.24. In [Las01], A. Lascoux introduced K-theoretic analogues of Demazure
characters in terms of divided difference operators. C. Monical conjectured ([Mon16,
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Conjecture 5.3]) that such an operator Lascoux polynomial D
op

a equals the corre-
sponding combinatorial Lascoux polynomial Da of Definition 4.20. Similarly, there
is an operator Lascoux atom A

op

a such that conjecturally A
op

a “ Aa ([Mon16, Conjec-
ture 5.2]). (See, [Mon16, §5] for details.) By [Mon16, Theorem 5.1], these operator
Lascoux polynomials expand into operator Lascoux atoms according to the same
combinatorial formula as in Theorem 4.22. That is, for any weak composition a, we
have

D
op

a “
ÿ

sortpbq“sortpaq

wpbqďwpaq

A
op

b .

Hence, Theorem 4.22 proves the equivalence of [Mon16, Conjecture 5.2] and [Mon16,
Conjecture 5.3].

Before continuing with our proofs of the positive expansions of a Lascoux polyno-
mial in the Lascoux atom and quasiLascoux bases, we formulate the following related
conjecture, which is in some sense a strengthening of Theorem 4.22.

Conjecture 4.25. Let a and b be weak compositions. Then Da ¨Db is a positive sum
of Lascoux atoms.

For example,

Dp0,2q ¨Dp0,1q “ Ap0,3q ` Ap1,2q ` 2βAp1,3q ` Ap2,1q ` βAp2,2q

` β2Ap2,3q ` Ap3,0q ` 2βAp3,1q ` β
2Ap3,2q.

We have checked Conjecture 4.25 by computer for all a, b such that |a| ď 5, |b| ď 5,
and a and b have at most three zeros. Specializing Conjecture 4.25 at β “ 0 recovers a
well-known conjecture of V. Reiner and M. Shimozono on products of key polynomials
(see [Pun16] for discussion and partial results).

4.4. Proof of Theorem 4.22. First, we need a straightforward operation on weak
compositions. Following [AS18b], given a weak composition a, we define a left swap
to be the exchange of two entries ai ď aj where i ă j.

Definition 4.26 ([AS18b, §3.2]). Given a weak composition a, let lswappaq be the set
of weak compositions b that can be obtained from a by a (possibly empty) sequence
of left swaps.

Example 4.27. For the weak compositions a “ p0, 1, 2q and b “ p0, 3, 1q, we have

lswappaq “ tp0, 1, 2q, p1, 0, 2q, p1, 2, 0q, p0, 2, 1q, p2, 0, 1q, p2, 1, 0qu

and

lswappbq “ tp0, 3, 1q, p3, 0, 1q, p1, 3, 0q, p3, 1, 0qu. ♦

The following characterization appears as [Sea18, Lemma 3.1].

Lemma 4.28. For any weak composition a,

lswappaq “ tb : sortpbq “ sortpaq and wpbq ď wpaqu. �



POLYNOMIALS FROM COMBINATORIAL K-THEORY 27

Hence, to prove Theorem 4.22, it suffices by Lemma 4.28 to construct a weight-
preserving bijection

(4.1) ψ : DSSFpaq Ñ
ž

bPlswappaq

ASSFpbq.

We begin by constructing a column-set preserving (and hence weight-preserving)
bijection

(4.2) ψ : DSSFpaq Ñ
ž

bPlswappaq

ASSFpbq

for the non-set-valued case. The advantage of Equation (4.2) over Equation (4.1) is
that we know a priori that there must exist a weight-preserving bijection between

DSSFpaq and
ž

bPlswappaq

ASSFpbq, since both sets are known to generate the Demazure

character Da [HLMvW11b], [Mas09]. To our knowledge, an explicit bijection between
these sets has, however, not appeared previously in the literature. Our goal is to give
an explicit bijection ψ that moreover preserves the column sets of the fillings. Having
established ψ with this property, we will find it straightforward to extend ψ to the
desired map ψ of Equation (4.1), thereby proving the theorem.

Let T P DSSFpaq. Define ψpT q as follows. Let i1 be the least entry in the first
column of T . For k ą 1, recursively define ik to be the greatest entry in column
k that is weakly less than ik´1, terminating when there is no such entry. Place the
entries i1, i2, . . . in row index i1 to form the lowest nonempty row of ψpT q, while
deleting them from T . Repeat this process on what remains of T to find the next-
lowest nonempty row of ψpT q, etc. In [Sea18], this algorithm is referred to as left
row-filling ; by [Sea18, Lemma 5.2, Lemma 5.3], ψpT q P ASSFpbq for some b. (Strictly
speaking, the domain of the map defined in [Sea18] consists of reverse semistandard
Young tableaux rather than the fillings of DSSFpaq. However, as the map operates
at the level of column sets (the positions of boxes in a column are irrelevant) and as
the column sets of T P DSSFpaq can be reordered to create a reverse semistandard
Young tableau, this distinction is insignificant.)

Example 4.29. Suppose that a “ p1, 2, 0, 3, 3q. Then we have, for example,

DSSFp1, 2, 0, 3, 3q Q

1 1

2 2 1

3

4 3 3 2

5 5 4 3

ψ
ùùùùùùñ

5 4 2

3 3 3

2

1 1

P ASSFp2, 1, 3, 0, 3q.

Observe that b “ p2, 1, 3, 0, 3q P lswappaq, as desired. ♦

It is clear that b always satisfies sortpaq “ sortpbq. We need to establish the
stronger property that b P lswappaq. To this end, we make use of the fact (observed
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in [AS18a]) that the fillings in DSSFpaq are exactly the same objects (flipped upside-
down) as the semistandard key tableaux of [Ass18], and hence are in straightforward
bijection with Kohnert diagrams.

A Kohnert move [Koh91] on a finite set of boxes in N ˆ N (realized as the
lattice points of the first quadrant of the plane) moves the rightmost box in some
row down to the highest empty space below it in the same column. The Kohnert
diagrams ofDpaq are the box diagrams that can be obtained fromDpaq by a (possibly
empty) sequence of Kohnert moves. A semistandard key tableau records a particular
choice of Kohnert moves to achieve a given Kohnert diagram; the number in each
box of a semistandard key tableau represents the row that box has moved to in the
corresponding Kohnert diagram.

Example 4.30. Figure 8 shows the semistandard key tableau obtained by flipping the
filling T P DSSFpaq of Example 4.29 upside-down, together with the corresponding
Kohnert diagram. We shade the boxes of the Kohnert diagram in red to distinguish
them from empty space. ♦

5 5 4 3

4 3 3 2

3

2 2 1

1 1

Figure 8. The semistandard key tableau equivalent to the filling
T P DSSFpaq of Example 4.29, together with its corresponding Kohnert
diagram.

This reinterpretation in terms of Kohnert diagrams is useful because it facilitates
a diagrammatic understanding of the lswap operation.

Lemma 4.31. Let a and b be weak compositions. Then b P lswappaq if and only if
Dpbq is a Kohnert diagram of Dpaq.

Proof. Suppose b P lswappaq. Then b is obtained from a by a sequence of swaps that
move larger entries leftwards. Any such swap can be achieved by Kohnert moves:
given Dpaq, to swap a row of length r with a lower row of length r1, where 0 ď r1 ď r,
move the rightmost r ´ r1 boxes of the higher row down to the lower row, in order
from right to left. Clearly, these moves are all valid Kohnert moves and so Dpbq can
be realized as a Kohnert diagram of Dpaq.

Conversely, suppose Dpbq is a Kohnert diagram of Dpaq. Since Kohnert moves
keep each box in its column, we have sortpbq “ sortpaq. It remains to observe that
the only way one can rearrange rows of a skyline diagram via Kohnert moves is to
move the “overhang” of a longer row down to join onto a (possibly empty) shorter
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row. But this operation corresponds to an application of the lswap operation, so
b P lswappaq. �

Definition 4.32. Suppose that a is a weak composition and K is a Kohnert diagram
of Dpaq. Define the nearest skyline diagram of K to be the skyline diagram KÒ

obtained as follows: Reading rows of K from left to right, top to bottom, find the
first box b of K with an empty space immediately to its left; move b upwards to the
first available space above it. Repeat this operation until all boxes are in left-justified
rows, i.e., until a skyline diagram is obtained.

An example of the computation of a nearest skyline diagram appears in Figure 9.

Figure 9. The iterative computation of the nearest skyline diagram
of the Kohnert diagram from Figure 8.

Lemma 4.33. If a is a weak composition and K is a Kohnert diagram of Dpaq, then
KÒ is also a Kohnert diagram of Dpaq.

Proof. Since K is a Kohnert diagram of Dpaq, Dpaq can be obtained by a sequence
of reverse Kohnert moves on K. Let b be the box moved by an iteration of the
“nearest skyline” algorithm of Definition 4.32. Since all boxes strictly higher than
b are by definition in left-justified rows, b does not land left of another box in the
same row. So Definition 4.32 uses valid reverse Kohnert moves. We will show these
reverse Kohnert moves on K (or other sequences of reverse Kohnert moves resulting
in the same diagram) are all necessary to obtain any skyline diagram of which K is
a Kohnert diagram, hence are necessary to obtain Dpaq.

In order for a skyline diagram to be obtained, since a reverse Kohnert move can
never cause a box to land the left of another box in the same row, any box of K that
has an empty space to its left in its row must at some stage move upwards. Moreover,
a reverse Kohnert move on any box does not cause the left-justification status of other
boxes in the diagram to change: those boxes that were in left-justified rows still are,
and those boxes that had an empty space to their left still do.

Now observe that when the algorithm raises a box b, it moves boxes within the
column of b by the minimal amount possible in order to raise b. In the case b jumps
over other boxes, it is of course possible the same diagram may be obtained by moving
the boxes above b first and then moving b upwards by a smaller distance. But this
gives rise to the same diagram: the entire interval of boxes weakly above b moves up
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one space. Since Kohnert diagrams do not distinguish between individual boxes, this
move is thus the minimal move on a Kohnert diagram that raises b.

So the algorithm moves only the boxes that have to be moved upwards to obtain a
skyline diagram, it moves boxes upwards by the minimal distance needed to achieve
this, and the set of boxes of K that need to be moved upwards is independent of
the order in which these boxes are moved. So all these reverse Kohnert moves (or
equivalent sequences of reverse Kohnert moves resulting in the same diagrams) are
necessary in order to obtain Dpaq, and thus KÒ is a Kohnert diagram of Dpaq. �

We can reinterpret ψ to act on Kohnert diagrams. Let K be a Kohnert diagram
of Dpaq. We first decompose K into threads θ1, θ2, . . . . Let b1 be the lowest box
in column 1 of K. Then for k ą 1, recursively define bk to be the highest box in
column k of K that is weakly lower than bk´1. Let θ1 “ tb

1, b2, . . . u. After deleting
θ1, repeat this process on the remainder of K to obtain θ2, etc. Now, define ψpKq to
be the skyline filling given by placing the row indices of the boxes in thread θk into
row k in weakly decreasing order.

Example 4.34. The left of Figure 10 shows the Kohnert diagram K of Figure 8 with
threads indicated both by labels in the boxes and also by coloring. On the right of
Figure 10 is the corresponding filling ψpKq P ASSFp2, 1, 3, 0, 3q. Observe that the
filling ψpKq of Figure 10 coincides with the filling obtained in Example 4.29. ♦

θ4

θ4

θ3 θ3 θ3

θ2 θ4

θ1 θ1

ψ
ùùùùùùñ

5 4 2

3 3 3

2

1 1

Figure 10. The threading of the Kohnert diagram K of Figure 8
and the corresponding filling ψpKq P ASSFp2, 1, 3, 0, 3q. Here, we have
labeled the boxes of K by the threads of which they are part. The color-
coding of the boxes of K is redundant with this labeling by threads,
and the color-coding of the boxes of ψpKq matches the color-coding of
K.

The following lemma justifies the mild abuse of notation in using the same symbol
ψ both for a map on skyline fillings and for a map on Kohnert diagrams.

Lemma 4.35. Let T P DSSFpaq and let K be the corresponding Kohnert diagram of
Dpaq. Then, ψpT q “ ψpKq.

Proof. Observe that the definition of ψpT q only depends on the sets of labels appearing
in each column of T . This set of labels coincides with the set of row indices of the
boxes in the corresponding column of K. It is then straightforward from unwinding
the definitions that ψpT q “ ψpKq, as desired. �
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Lemma 4.36. The threading of a Kohnert diagram K is preserved under the “nearest
skyline” algorithm of Definition 4.32; that is, whenever the algorithm moves a box
upwards, the set of boxes in each thread and the location of the leftmost box in each
thread both remain unchanged.

Proof. Any box in the first column of K has no empty space to its left and thus is
never moved by the “nearest skyline” algorithm. Hence, the location of the leftmost
box in each thread does not change during construction of KÒ.

To see that threads retain the same set of boxes, it is enough by induction to
consider a single application of the “box raising” operation. Suppose this operation
takes K to K` by acting on the box bc in column c. Suppose bc is in the thread
θi “ tb

1, b2, . . . u in K, where bk is in column k. Certainly, c ą 1, so bc´1 exists.
First, consider the case that bc moves up one space, i.e., K has no box immediately

above bc in its column. By definition, K has no box immediately to the left of bc in
its row, so bc´1 is strictly above bc in K. Thus, bc still lies in the same thread as
bc´1 in K`. By definition, bc is not left of any box in its row in K`, so K` has bc in
the same thread as bc`1, if such a box exists. Thus, in this case the threading of K
coincides with the threading of K`.

Now, suppose bc “jumps” over at least one box, i.e., K has a box immediately
above bc in its column. Since K has all boxes above bc in left-justified rows, bc´1 is
necessarily the rightmost box of the lowest row above bc that ends in column c ´ 1.
Since the rows that bc jumps over have length at least c, bc remains threaded with
bc´1 in K`. By definition, bc is not left of any box in its row in K`. In the rows
that bc jumps over, observe that both K and K` have each box threaded with all
the boxes to its left in its row. In particular, K` does not thread bc with a box in
column c ` 1 from a row that has been jumped over. So bc remains threaded with
bc`1 in K`, if such a box exists. Thus, the threadings of K and K` coincide. �

Lemma 4.37. Let K be a Kohnert diagram. Then, the shape of ψpKq is the nearest
skyline diagram KÒ.

Proof. By Lemma 4.36, the threading of K is the same as the threading of KÒ. Hence,
the shape of ψpKq equals the shape of ψpKÒ

q. Since KÒ is a skyline diagram, it is
clear from the definitions that the threads of KÒ are just its rows. Hence, the shape
of ψpKÒ

q is the skyline diagram KÒ itself. Thus, the shape of ψpKq is KÒ. �

Lemma 4.38. Let T, U P DSSFpaq be distinct. Then, there is a column in which T
and U do not have the same set of labels.

Proof. Let KT and KU be the Kohnert diagrams corresponding to T and U , respec-
tively. If, in each column, T and U have the same set of labels, then, in each column,
KT and KU have boxes in the same positions. Hence KT “ KU and so T “ U . �

Theorem 4.39. The map

ψ : DSSFpaq Ñ
ž

bPlswappaq

ASSFpbq

is well-defined, and is a column-set-preserving (and thus weight-preserving) bijection.
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Proof. Let T P DSSFpaq. We know from [Sea18] that ψpT q P ASSFpbq for some b.
Let K be the Kohnert diagram corresponding to T and suppose the nearest skyline
diagram KÒ has shape d. By definition, K is a Kohnert diagram of Dpaq. Hence by
Lemma 4.33, we have that Dpdq is a Kohnert diagram of Dpaq. Thus by Lemma 4.31,
d P lswappaq. By Lemma 4.37, ψpKq has shape d. Thus, by Lemma 4.35, ψpT q has

shape d, and so ψpT q P ASSFpdq Ď
ž

bPlswappaq

ASSFpbq.

By definition, ψ preserves column sets. Since no two elements of DSSFpaq have
identical column sets by Lemma 4.38, this implies ψ is injective. Since DSSFpaq and

ž

bPlswappaq

ASSFpbq both generate the Demazure character Da [HLMvW11b], [Mas09],

they are equinumerous (and finite). Hence ψ is a bijection. �

Lemma 4.40. The bijection ψ extends to a column-set-preserving (and thus weight-
preserving) bijection

ψ : DSSFpaq Ñ
ž

bPlswappaq

ASSFpbq,

as follows: For T P DSSFpaq, let T be the filling obtained by deleting the free entries
of T . Then, ψpT q is given by placing each free entry in T with the smallest possible
anchor in the corresponding column of ψpT q, subject to the decreasingness condition
(S.2).

Proof. Let T P DSSFpaq and let S “ ψpT q P ASSFpbq. The only thing that needs to
be checked is that, for any valid assignment of free entries to columns of T , there is
a corresponding valid assignment of the same free entries to the same columns of S,
and vice versa.

Suppose for a contradiction that this is false for some T P DSSFpaq, whose anchor
entries form the filling T . Let k be the greatest free entry of column c of T that
cannot be added as a free entry in column c of S without violating the decreasingness
condition (S.2). Then, for every entry m greater than k in column c of S, the entry
immediately right in column c ` 1 of S is strictly greater than k. However, since
ψ preserves column sets, the entries of each column of S are a permutation of the
entries of the corresponding column of T . Thus, T also has at least as many entries
that are strictly greater than k in column c ` 1 as it has entries that are that are
strictly greater than k in column c. Hence by (S.2) for T , every entry in column
c` 1 of T that is strictly greater than k must be immediately right of an entry that
is strictly greater than k in column c. Thus, k cannot be added as a free entry in
column c of T , contradicting the existence of T . The argument for the other direction
is identical. �

This completes the proof of Theorem 4.22. �
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4.5. The quasiLascoux expansion of a Lascoux polynomial. The Lascoux
polynomials expand positively in the basis of quasiLascoux polynomials. Follow-
ing [AS18b], define Qlswappaq to be all b P lswappaq such that if c P lswappaq and
b` “ c`, then c ě b.

Example 4.41 (cf. Example 4.27). For the weak compositions a “ p0, 1, 2q and
b “ p0, 3, 1q, we have

Qlswappaq “ tp0, 1, 2q, p0, 2, 1qu

and
Qlswappbq “ tp0, 3, 1q, p1, 3, 0qu. ♦

Theorem 4.42. For any weak composition a, we have

Da “
ÿ

bPQlswappaq

Qb.

In particular, every Lascoux polynomial Da is a positive sum of quasiLascoux polyno-
mials.

Proof. Suppose that b P Qlswappaq and that c is another weak composition with c ě b
and c` “ b`. Then clearly c P lswappaq. By the definitions of lswap and Qlswap,
every c P lswappaq is either in Qlswappaq or else dominates some b P Qlswappaq with
c` “ b`. This establishes the second equality in the following:

Da “
ÿ

cPlswappaq

Ac “
ÿ

bPQlswappaq

ÿ

cěb
c`“b`

Ac “
ÿ

bPQlswappaq

Qb,

where the first equality is by combining Theorem 4.22 and Lemma 4.28, and the third
equality is by Definition 4.1. �

Remark 4.43. The β “ 0 specialization of Theorem 4.42 recovers the expansion of
Demazure characters in the quasikey basis [AS18b, Theorem 3.7].
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