POLYNOMIALS FROM COMBINATORIAL K-THEORY
CARA MONICAL, OLIVER PECHENIK, AND DOMINIC SEARLES

ABSTRACT. We introduce two new bases of the ring of polynomials and study
their relations to known bases. The first basis is the quasiLascouz basis, which
is simultaneously both a K-theoretic deformation of the quasikey basis and also a
lift of the K-analogue of the quasiSchur basis from quasisymmetric polynomials to
general polynomials. We give positive expansions of this quasiLascoux basis into
the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux
basis into the quasiLascoux basis. As a special case, these expansions give the
first proof that the K-analogues of quasiSchur polynomials expand positively in
multifundamental quasisymmetric polynomials of T. Lam and P. Pylyavskyy.

The second new basis is the kaon basis, a K-theoretic deformation of the funda-
mental particle basis. We give positive expansions of the glide and Lascoux atom
bases into this kaon basis.

Throughout, we explore how the relationships among these K-analogues mirror
the relationships among their cohomological counterparts. We make several ‘alter-
nating sum’ conjectures that are suggestive of Euler characteristic calculations.

1. INTRODUCTION

Let Poly, = Z[z1, ..., x,]| denote the ring of integral polynomials in n commuting
variables. Considerations in representation theory and algebraic geometry give rise
to a number of interesting and important bases of Poly,. This paper contributes
two new bases and studies their relations to those bases of established importance;
we find that our new bases exhibit well-behaved structure and fill natural holes in
the previously developed theory. This study is part of a general program to develop
a combinatorial theory of Poly, that mirrors the rich classical theory of symmetric
functions.

Foremost among known bases of Poly, are the celebrated Schubert polynomials
{&,} of A. Lascoux and M.-P. Schiitzenberger [LS82]. Let X = Flags,,(C) be the
parameter space of complete flags

0=VocVic---cV, =C"

of nested vector subspaces of C™, where dimV; = 7. Denote by B the Borel group
of m x m invertible upper triangular matrices. The standard action of B on C™
induces an action on X with finitely-many orbits, whose closures are the Schubert
varieties of X. These subvarieties may be naturally indexed by weak compositions
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a = (ay,...,a,) (i.e., sequences of nonnegative integers) of length m such that a; <
m —1 (for example, by taking a to be the Lehmer code of an associated permutation).
The corresponding Schubert classes {o,} form a Z-linear basis for the Chow ring
A*(X) of subvarieties of X modulo rational equivalence. The Schubert polynomials
are polynomial representatives for the Schubert classes in the sense that one has (up
to truncation)

S, Gy =056, ifandonlyif 0,05 = C5y 0.

Despite the existence of explicit formulas for Schubert polynomials, it remains
a major open problem of algebraic combinatorics to give a positive combinatorial
formula for the Schubert structure constants Cy, € Zzo.

The (type A) Demazure characters {9,} of M. Demazure [Dem74] form another
basis of Poly,,, which is important in representation theory. These are precisely the
characters of certain explicitly-defined B-modules [Dem74, [RS95]. Remarkably, it was
shown in [L.S90, [RS95] that the Demazure characters refine the Schubert polynomials,
ie.,

G, = > B9,
b

for some nonnegative integers Ly

Letting the symmetric group S, act on Poly, by permuting variables, the S,-
invariants are the symmetric polynomials Sym, < Poly,. Another remarkable prop-
erty of the bases {S,} and {D,} of Poly, is that each contains (as a subset) the
celebrated Schur basis {s)} of Sym,; in fact

{&,} nSym,, = {D,} n Sym, = {s\}.

In this sense, both Schubert polynomials and Demazure characters are lifts of the
Schur basis to the polynomial ring. The Schur basis, moreover, has well-studied and
useful refinements into the quasiSchur polynomials {S,} of [HLMvW11a, [HLMvWT11D]
and further into the fundamental quasisymmetric polynomials {F,} of [Ges84], both
of which are bases of the subspace QSym,, < Poly,, of quasisymmetric polynomials.
(A polynomial f € Poly,, is quasisymmetric if it is invariant under exchanging z; and
Z;+1 in those terms of f where at most one of the two variables appears.)

In general, while a rich combinatorial theory of symmetric and quasisymmetric
polynomials has been and continues to be developed, the analogous theory for the full
polynomial ring remains relatively sparse. For example, unlike for general Schubert
polynomials, several positive combinatorial formulas (e.g., [LR34, [KTW04|, [Vak06])
are known for the structure constants of Schur polynomials, i.e., the Littlewood-
Richardson coefficients. A natural program, championed by A. Lascoux [Las13], is to
develop the analogous combinatorial theory of Poly, by

e lifting known bases and relationships to Poly, from the better-understood
subrings Sym,, and QSym,,; and by

e developing uniform combinatorial models for these lifted bases and for the
relations among them, extending models from Sym,, and QSym,,.
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The end goal of this program is that this new theory eventually bear dividends on ma-
jor problems involving polynomials, such as the Schubert problem mentioned above.

Recent work in this area has provided lifts to Poly,, of the quasiSchur and funda-
mental bases of QSym,,: respectively, the quasikey polynomials {Q,} of [AS18b] and
the (fundamental) slide polynomials {§,} of [AS17]. (Note that despite the name,
quasikey polynomials are not quasisymmetric. The name instead reflects that they
stand in a similar relation to key polynomials as quasiSchur polynomials to do Schur
polynomials.) These families provide further refinements of Schubert polynomials:
each Demazure character is a nonnegative combination of quasikeys [ASI8b, The-
orem 3.7], each of which is, in turn, a nonnegative combination of slides [AS18bl,
Theorem 3.4]. The slide basis, moreover, like the Schubert basis, has nonnegative
structure constants; in fact, unlike the Schubert basis, one even has an analogue of the
Littlewood-Richardson rule for multiplying slide polynomials [AS17, Theorem 5.11].

A more classical approach to the study of Demazure characters is to consider their
refinement, not into slides, but rather into the Demazure atom basis {2} of [LS90)
(see also, [Mas09]). While the Demazure atoms refine the quasikeys [Seal8, Theo-
rem 3.4], just as slides do, the Demazure atoms have no known direct relation to the
slide basis. A common refinement of the Demazure atoms and the slides is provided
by the (fundamental) particle basis {,} of [Seal§|]. The relations among these nine
families of polynomials, which we call ‘cohomological’, are illustrated in Figure [I]
(Despite the terminology, many of these families do not currently have an interpre-
tation in terms of the cohomology of any space; indeed, for many of them it also
remains open to give a representation-theoretic interpretation.)

In this work, we are interested in the K -theoretic analogues of the bases in Fig-
ure [I A major theme of the modern Schubert calculus is the investigation of the
geometry of X = Flags, (and other generalized flag varieties) via richer complex ori-
ented cohomology theories. In the most general such theories, there is ambiguity in
the appropriate definition of Schubert classes, as the analogues of the usual push-pull
operators fail to satisfy the appropriate braid relations. (For further discussion and
partial progress on these problems, see, e.g., [GR13| [(CZZ15, [LZ17].)

It turns out that this definitional problem can be avoided avoided by working in
the connective K -theory (or a specialization thereof) of X [BE90]; hence, we restrict
ourselves to this context. Complex oriented cohomology theories are determined
by their formal group laws, describing how to express the Chern class of a tensor
product of two line bundles in terms of the original two Chern classes. For connective
K-theory, this formal group law is

(1.1) A(L® M) = c1(L) + 1 (M) + Ber(L)ey (M),

where [ is a formal parameter and L, M are any complex line bundles on X. Hence
the ordinary cohomology ring is recovered by specializing § = 0, and the ordinary
K-theory ring is recovered by specializing §# to any element of C*.

In the connective K-theory of X, polynomial representatives for a Schubert ba-

sis are given by the S-Grothendieck polynomials {@((16)} of S. Fomin and A. Kirillov
[EK94] (see, [Hud14]). These polynomials form an inhomogeneous basis of Poly,,[/],
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Sa F,

F1GURE 1. The nine cohomological families of polynomials considered
here. Those depicted in are bases of Sym,,, those in purple are
bases of QSym,,, and those in green are bases of Poly,. The thinner
hooked arrows denote that the basis at the tail is a subset of the basis at
the head. The thicker arrows denote that the basis at the head refines
the basis at the tail.

where [ is the formal parameter from Equation (1.1)). Specializing at 8 = 0, one

recovers the Schubert basis {S,} = {@io)} of Poly,,. The usual Grothendieck poly-
nomials of A. Lascoux and M.-P. Schiitzenberger [LS82] are realized at 5 = —1. (To
help keep track of the relations between bases, we deviate from established practice
by denoting the connective K-analogue of each basis of Figure [I| by merely attach-
ing an ‘overbar’ to the notation for that basis. Moreover, for simplicity, from now
on we routinely drop “()” from the notation for connective K-analogues whenever
possible.)

Intersecting {&,} with Sym, [3] yields the basis {3x} of symmetric Grothendieck
polynomials. These represent connective K-theory Schubert classes on Grassman-
nians. A number of Littlewood-Richardson rules for {5,} are now known (e.g.,
[Vak06l [TY09, PY17]), following the first found by A. Buch [Buc02]. Like Schur
polynomials, symmetric Grothendieck polynomials have quasisymmetric refinements;
each 3, expands positively in the quasiGrothendieck basis {S,} of QSym,[3]. This
basis, introduced in [Monl6], is the connective K-analogue of the quasiSchur basis of
QSym,,.

Our first new result is that the quasiGrothendieck basis refines further into the
basis of multifundamental quasisymmetric polynomials {F,} of [LP07, [PS19], the
connective K-analogue of Gessel’s fundamental basis of QSym,,.
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Theorem 1.1. Each quasiGrothendieck polynomial S, € QSym[S] is a positive sum
of multifundamental quasisymmetric polynomials. That is,

Sa=>J0F,,
B!
where J' € Zxo[B] is a positive polynomial in [3.

The multifundamental basis {F,} of QSym,[3] lifts to the glide basis {T,} of
Poly, [8] [PS19], a S-deformation of the slide polynomials. An analogous deformation
of the Demazure characters has been studied in [Las01l, RY 15| [Kir16, Mon16l, MPS18].
We call these the Lascouz polynomials {D,} in honor of A. Lascoux, who essen-
tially introduced them. They can be approached via the Lascour atom basis {ﬁa}
of Poly,[8] [Monl6], a f-deformation of the Demazure atoms. Finding a positive
formula for the decomposition of Grothendieck polynomials {&,} into Lascoux poly-
nomials {D,}, analogous to that for the decomposition of Schubert polynomials {&,}
into Demazure characters {9,} is an open problem. (There is an unpublished con-
jecture for this decomposition by V. Reiner and A. Yong; see [RY15] for discussion.)

Our next major result is to introduce an appropriate S-deformation of the funda-
mental particles. The kaon basis {,} of Poly, [3] yields a common refinement of the
glide and Lascoux atom bases; we give explicit positive formulas for these refinements.

Theorem 1.2. The set {B,} of kaons is a basis of Poly,[B]. The kaons deform the
fundamental particles, in that specializing 3, at f = 0 yields the particle B,. The

kaons are a common refinement of the glide polynomials and of the Lascoux atoms;
that s,

§a:ZPlg$b and ﬁa:ZQggba
b b
where P, QF € Z=o|b] are positive polynomials in 3.

Finally, our last major result is to introduce the new basis {Q,} of quasiLascouz
polynomials, simultaneously lifting the quasiGrothendieck basis from QSym,[5] to
Poly,[#] and giving a f-deformation of the quasikey polynomials. (Note that, like
the quasikey polynomials, quasiLascoux polynomials are not quasisymmetric.) The
quasiLascoux polynomials yield a common coarsening of the glide and Lascoux atom
bases. We give explicit positive formulas for refining Lascoux polynomials in quasi-
Lascoux polynomials and for refining quasilascoux polynomials in both glides and
Lascoux atoms.

Theorem 1.3. The set {Q,} of quasiLascoux polynomials is a basis of Poly, [3]. This
basis lifts the quasiGrothendieck basis of QSym,,[5] in that

{Qa} N QSym, [8] = {Sa}.

The quasiLascouz polynomials deform the quasikeys, in that specializing Q, at B = 0
yields the quasikey Q.. Finally, the quasiLascoux polynomials are a refinement of the
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Lascouz polynomials and are further refined by the glide polynomials and separately
by the Lascouzr atoms. That is,

D, =YL, Qu=D.MT  and Q.= Ny Ay
b b b
where each of Ly, My, Nyt € Z=o[5] is a positive polynomial in [3.

The relations among these nine families of K-theoretic polynomials are illustrated
in Figure 2} compare to the relations among their § = 0 analogues, as illustrated in
Figure [I}

F1GURE 2. The K-theoretic analogues of the nine cohomological fam-
ilies of polynomials of Figure [ As in Figure [I families depicted in

are bases of Sym,,, those in purple are bases of QSym,,, and
those in green are bases of Poly,. The thinner hooked arrows denote
that the basis at the tail is a subset of the basis at the head. The thicker
arrows denote that the basis at the head refines the basis at the tail.
Those families and arrows that are original to this paper are marked in
red. The dotted arrow is conjectural; see [RY15].

Except for the 8-Grothendieck polynomials {S,} and their symmetric subset {5y},
the geometric significance of these K-analogues is currently obscure. While, for ex-
ample, the glide polynomials seem useful in the study of S-Grothendieck polynomials
(and thereby of the connective K-theory of Flags,), it is currently unknown how to
interpret any single glide polynomial §, as representing a geometric object or da-
tum. We conclude with some conjectures that suggest geometric meaning for these
polynomials. While it is possible that these conjectures might be proved by entirely
combinatorial means (e.g., sign-reversing involutions), they seem to have the flavor of
Euler characteristic calculations. Ideally, we desire a proof of these conjectures where
the relevant polynomials are given appropriate geometric interpretations, so that the
coefficients in question become the Euler characteristics of some explicit objects. We
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note that these conjectures are fundamentally K-theoretic, having no analogue in the
cohomological setting.

For weak compositions a and b, let M{(3) denote the coefficient of §, in the glide
expansion of 9, and let Qf(/3) denote the coefficient of 9, in the kaon expansion of
the Lascoux atom 2A,. Note that M{(3) and Q¢ (3) are nonnegative monomials in the
single variable f3.

Conjecture 1.4. Let a be a weak composition. Then we have
2, My (=1) € {0,1} and Y Qj(~1) € {0,1},
b b

where both sums are over all weak compositions b. 0
For example, for a = (0, 6,6, 2), we have

D IM(B) = 1687 + 7557 + 9453 + 36
b

and

3 Q2(8) = 168° + 665> + 803 + 31.
b

In both cases, substituting § = —1 yields 1, as predicted. We have verified Conjec-
ture [1.4] by computer for all @ with at most 3 zeros and |a| < 7.

This paper is organized as follows. Section [2| recalls the necessary combinatorics of
the bases studied in previous works. Section |3|introduces the kaon basis and proves
Theorem [.2] giving the key properties of this basis. Similarly, Section [4] introduces
the quasiLascoux basis and establishes its key properties via proving Theorems [1.1
and . We also suggest there (Conjecture a remarkable positivity phenomenon
for products of Lascoux polynomials.

2. DEFINITIONS AND PRELIMINARIES

2.1. Glide polynomials and fundamental slide polynomials. Given a weak
composition a, the positive part of a is the (strong) composition a* obtained by
deleting all zero terms from a. For example, 01027 = 12.

Given weak compositions a and b of length n, say that b dominates a, denoted by
b>a,if

b1+"'+bi a;+ -+ a;

for all ¢ = 1,...,n. For example, 0120 > 0111. Note that this partial ordering on
weak compositions extends the usual dominance order on partitions.

In [PS19], a weak komposition is defined to be a weak composition where the
positive integers may be colored arbitrarily black or red. The excess ex(b) of a weak
komposition b is the number of red entries in b.

=
=

Definition 2.1. [PS19, Definition 2.2] Let a be a weak composition with nonzero
entries in positions n; < --- < ny. The weak komposition b is a glide of a if there
exist integers 0 = ig < 47 < --- < iy such that, for each 1 < 57 < ¢, we have

(Gl) Ap; = bi]._1+1 + -+ bi]. - ex(bij_lﬂ, R 7bij>7



8 C. MONICAL, O. PECHENIK, AND D. SEARLES

(G.2) i; < nj, and
(G.3) the leftmost nonzero entry among b;, 11, ...,b;; is black.

Equivalently, a weak komposition b is a glide of the weak composition a if b can be
obtained from a by a finite sequence of the following local moves:

(m.1) Op = p0, (for p € Z~y);
(m.2) Op = qr (for p,q,r € Z=o with ¢ +r = p);
(m.3) Op = qr (for p,q,r € Zwg with g + 7 =p+ 1).

Example 2.2. Let a = (0,2,0,0,2,0,1). The weak kompositions (1,2,0,2,0,1,1)
and (2,1,2,1,1,1,0) are glides of a. &

Definition 2.3. [P§19, Definition 2.5] For a weak composition a of length n, the
glide polynomial §, = §.(z1,...,x,) is

Ba = S g0k gt
b

where the sum is over all weak kompositions b that are glides of a.

Example 2.4. We have

1101 0210 1110 2001 2010 2100

To2o1 = X201 4 x MO 4 50210 4  1HO 4 52001 4 &

BX0211 + @XHH + BX1201 + 5X1210 + BXQOH + 26X2101 + 26X2110+

ﬁ2X1211 + 252)(2111,
b b1 b.

where x” = 27" ... 2" &

+ x4

In [PS19, Proposition 2.16], it was observed that the fundamental slide polyno-
mials §, of [AST7] are § = 0 specializations of glide polynomials. We will take this
as definitional for fundamental slides.

2.2. Lascoux atoms and quasiGrothendieck polynomials. The skyline diagram
D(a) of a weak composition a is the diagram with a; boxes in row i, left-justified.
In our convention, row 1 is the lowest row. (This convention differs from that of
[HLMvW11bl Mon16] where the rows are numbered from top to bottom, and from
that of [MasO8] where the “rows” are in fact columns and numbered from left to
right.) A triple of a skyline diagram is a collection of three boxes with two adjacent
in a row and either (Type A) the third box is above the right box and the lower row
is weakly longer, or (Type B) the third box is below the left box and the higher row
is strictly longer.

Given a filling of the skyline diagram with numbers, a triple (of either type) is
called an inversion triple if either v < a < f or a < 8 < 7, and a coinversion triple
ifa<y<p.

In [Monl16], C. Monical introduced the notion of semistandard set-valued fillings
of skyline diagrams in order to define the (combinatorial) Lascoux atoms, which are
K-theoretic analogues of the Demazure atoms.
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15la]

Bla]
Type A Type B
lower row weakly longer upper row strictly longer

F1GURE 3. Triples for skyline diagrams.

Definition 2.5. A set-valued filling of a skyline diagram is an assignment a non-
empty set of positive integers to each box of the diagram. The maximum entry in
each box is called the anchor and all other entries are called free. A set-valued filling
is semistandard if

S.2) rows are weakly decreasing where sets A > B if min A > max B,

S.3) every triple of anchors is an inversion triple,

S.4) each free entry is in the cell of the least anchor in its column such that (S.2)
is not violated, and

(S.5) anchors in the first column are equal to their row index.

Remark 2.6. The condition (S.5) replaces the equivalent “basement” requirement in
[Mon16]. The condition (S.4) above differs slightly from condition (S4) in [Monl6)
§1.2], which puts free entries in the lowest possible row such that (S.2) is not violated.
These definitions are however equivalent in the sense that there is a simple weight-
preserving (and moreover column set-preserving) bijection between these two notions
of semistandard set-valued skyline fillings via rearranging the free entries appropri-
ately in each column. The convention in Definition turns out to be more natural
in the context of the operations we wish to perform on these fillings.

Given a set-valued filling I’ of shape a, we define the weight of F' to be the weak
composition wt(F') = (cq,...,c,) where ¢; is the number of i’s in F'. Furthermore,
|F| = |wt(F)|. Likewise, the ezcess of F', denoted ex(F'), is the number of free entries
of F, or equivalently, ex(F) = |F| — |a|. Given a weak composition a, let ASSF(a)
be the set of semistandard set-valued skyline diagrams of shape a. See Figure 4| for
examples; the anchor entries are given in bold.

Definition 2.7 ([Monl6]). Given a weak composition a, the (combinatorial) Las-
coux atom 2, is
ﬁa _ Z BGX(F)XWt(F)-
FeRASSF(a)
We will drop the word “combinatorial” in Definition [2.7] from now on, as we will

not have cause to consider any of the other conjecturally equivalent definitions of
Lascoux atoms.
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4 431 42121

32| 2|2 3(3 |1

1 1
Bririvie? Badririe,

FIGURE 4. Two elements of 2ASSF(1,0,3,2) and their corresponding
monomial weights. The anchor in each box is drawn in bold; the un-
bolded entries are free.

Definition 2.8. For a weak composition a, the Demazure atom £, is the g = 0
specialization of the corresponding Lascoux atom. Equivalently, %I, is the generating
polynomial for semistandard set-valued skyline diagrams of shape a where exactly
one number appears in each box.

Demazure atoms were originally defined by A. Lascoux and M.-P. Schiitzenberger
[LS90] in a different way; the equivalence of Definition [2.8is due to work by S. Mason
[Mas09]. Thus, 2, is an inhomogeneous deformation of 2,. The Lascoux atoms form
a (finite) basis of Poly[5] = Z[x1, 22, ...][8] by [Monl6, Proposition 2.2].

Definition 2.9 ([Mon16, §3]). Given a (strong) composition «, the quasiGrothendieck
polynomial S, in n variables is

Salzy, ... 20) = Z A,

at=a«a
where the sum is over weak compositions of length n. The § = 0 specialization is
the quasiSchur polynomial S,(z1,...,z,) of J. Haglund, K. Luoto, S. Mason, and
S. van Willigenburg [HLMvWT11h].

In [Monl6], it was shown that the quasiGrothendieck polynomials form another
finite basis of QSym|[/].
The Lascoux atoms refine the symmetric Grothendieck polynomials:

Theorem 2.10 ([Monl6]).
Sa(xy,...xp) = Z A,
sort(a)=\A

where the sum is over weak compositions of length n and sort(a) is the partition
formed by sorting the parts of a in weakly decreasing order.

Combining Theorem [2.10] and Definition yields the decomposition of 5, into
quasiGrothendieck polynomials:

Corollary 2.11 ([Monl6]).
Sa(T1, .., x,) = Z Sa(1,. . 20).

sort(a)=X\
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Setting # = 0 in Theorem and Corollary recovers the earlier refinements
by J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg [HLMvW11a] of Schur
polynomials respectively into Demazure atoms and into quasiSchur polynomials.

3. THE MESONIC BASES AND THEIR RELATIONS

In this section, we introduce a new basis of polynomials, which we call the “kaon”
basis. These new polynomials are a simultaneous refinement of both glide polynomials
and Lascoux atoms. In Section 4] we will introduce a new “quasiLascoux” basis
of polynomials, which are a simultaneous coarsening of these two bases. We will
moreover find that quasilascoux polynomials stand in the same relation to Lascoux
atoms as glide polynomials do to kaons. See Figure [2] for a visual representation of
the relationships among these various bases.

3.1. Kaons.

Definition 3.1. Let a be a weak composition with nonzero entries in positions n; <
-+ < ny. The weak komposition b is a mesonic glide of a if, for each 1 < j < ¢, we
have
(MG.1) an; =bp;_ 141+ + by, — ex(bn;_ 41, .-, by,),
(MG.2) the leftmost nonzero entry among by, 11, ...,by; is black, and
(MG.3) by, # 0.
Equivalently, a weak komposition b is a mesonic glide of a if b can be obtained from

a by a finite sequence of the local moves (m.1), (m.2), and (m.3) that never applies
(m.1) at positions n; — 1 and n; for any j.

Observe that, in particular, a mesonic glide is a glide that happens to satisfy
additional conditions. In particular, condition (MG.1) strengthens the combination
of (G.1) and (G.2), while (MG.2) is essentially the same condition as (G.3); condition
(MG.3), however, is entirely new to mesonic glides.

Example 3.2. Let a = (0,3,0,2). Then b = (2,1,1,2) is a mesonic glide of a.
On the other hand, while b' = (3,1,0,2) is also a glide of a, it is not mesonic. To
see this fact, observe that a,, = ay = 3, while

by yn o by —ex(by s b ) = b+ by —ex (b, by) =3+ 1 -0 =4,

n

in violation of (MG.1).

The reader may check that both b and o’ can be obtained from a by a finite sequence
of the local moves (m.1), (m.2), and (m.3). However, the reader may also check that
b’ cannot be so obtained without applying (m.1) at positions 1 and 2. &

Definition 3.3. Let a be a weak composition. The kaon 3, is the following gener-
ating function for mesonic glides:

%a = BeX(b) b7
; x

where the sum is over all mesonic glides of a.
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Example 3.4. Let a = (0,3,0,2). Then the corresponding kaon is

ma _ X0302 + X0311 + X1202 + X1211 + X2102 + X2111

+ 6X0312 + BX0321 + 6X1212 + ﬂXlQZl + BX1302 + 6X1311
+ 6X2112 + 5X2121 + EX2202 + 5X2211 + BX3102 + /6X3111

+ 62X1312 + 62X1321 + 52X2212 + ﬂ2x2221 + 62X3112 + ﬁ2x3121.

The reader may enjoy realizing each exponent vector as a mesonic glide of a.
Although this example is multiplicity-free, in general kaons have nontrivial coeffi-
cients in their monomial expansions. For example, the kaon 9y, contains the mono-
mial Ax''! with coefficient 2, corresponding to the distinct mesonic glides (1,1,1) and
(1,1,1) of (0,0,2). &

3.2. Fundamental properties of kaons and the kaon expansion of glide poly-
nomials. Every glide polynomial §, is a positive sum of kaons.

Proposition 3.5. For any weak composition a, we have

Sa = 2 ;Bb'
b=a
bt=at
Proof. Let a be a weak composition with nonzero entries in positions n; < --- < ny.
Suppose ¢ is a glide of a. Then there are 0 = iy < i1 < --- < 1, satisfying conditions
(G.1), (G.2), and (G.3) of Definition[2.1] Then g may be obtained from a via a 2-step
process. First, apply (m.1) repeatedly to move each nonzero entry of a from position
n; to position ¢;. Call the resulting weak composition b. Note that b satisfies b > a
and b" = a™. Second, apply some sequence of (m.1), (m.2) and (m.3) to obtain the
weak komposition ¢ from b. In this second step, note that we never apply (m.1) at
positions i; — 1 and ¢; for any j.

Hence every glide g of a is a mesonic glide of a weak composition b with b > a and
b" = a™, and so every term of the left-hand polynomial is a term of the right-hand
polynomial.

Conversely, every mesonic glide of such a weak composition b with b > a and
b™ = a™ is clearly a glide of a. Thus to complete the proof, we only need to show that
for every glide ¢ of a there is at most one b with b* = a™ such that g is a mesonic

glide of b. Let a = a™ = (ay,..., ). Suppose that b, ¢ are weak compositions with
b" = ¢" = a such that ¢ is a mesonic glide of both b and ¢. Say b has nonzero entries
in positions s; < --- < sy while ¢ has nonzero entries in positions t; < --- < t;. By

the definition of mesonic glide, we know that

aj =bs, =gs, 141+ ...+ gs;, —X(Gs, 141, -1 s, )5

the leftmost nonzero entry among g, ,41,...,9s, is black, and g,; # 0. In the same
way, we have that

Oé] = Ctj = gtj_1+1 + ...+ gtj - ex(gtj_1+17 e 7gt]')7
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the leftmost nonzero entry among g, ,;1,..., g is black, and g;; # 0. If s; = ¢; for
all 7, then b = ¢ and we are done. Otherwise, there is a least index ¢ such that s; # t;.
Without loss of generality, assume s; > t;. Then,

Q=G i1+ Gs — (G115, Gsi)
=gsiat1t Gt Gt Gy — €X(Gsyv1s -5 ) — (G-, Os;)
=gt y+1+ g, —exX(Gr_ 41y, 98) F g1+ + gs, — eX(Gr 415+ 9s;)
=i+ g1+t gs, — xX(Grii1s -5 Gs;)s
and so we have
0=gn+1+ - +3s, —ex(gr,41,- -, Js;)-
This is only possible if each of g, 4+1,...,gs, is either 0 or a red 1. Since g5, # 0,

there is at least one red 1 in this set of entries. However, the first nonzero entry of
Gti+1s - - - 1,y 18 Tequired to be black, a contradiction. 0

Theorem 3.6. The set
{ﬁkﬁiﬁ) :k € Zso and a is a weak composition of length n}
is an additive basis of the free Z-module Poly, [5]. Hence, for any fixed p € Z,

{‘Tﬁ?ip) :a is a weak composition of length n}
s a basis of Poly,,.

Proof. By Proposition [3.5] every glide polynomial can be written as a positive sum
of kaons, and indeed the transition matrix is unitriangular with respect to the lexico-
graphic total order on weak compositions. Hence, the transition matrix is invertible
over Z, and the theorem follows from the fact that glide polynomials are an additive
basis of Poly, [53], as shown in [PS19, Theorem 2.6]. O

A homogeneous basis B, of Poly, called fundamental particles was introduced
in [Seal8]. This basis is a common refinement of fundamental slides and Demazure
atoms. We will show that the kaon basis plays the analogous role for glide polynomials
and Lascoux atoms.

Proposition 3.7. The fundamental particles B, are the f = 0 specialization of kaons:

Pa = %((10)'

Proof. This is clear from the definitions of the two families of polynomials. 0

Remark 3.8. Proposition motivates our choice of the name ‘kaon’ for these poly-
nomials. In high energy physics, the ‘K’ fundamental particles are the K-mesons

or kaons. By analogy, perhaps, the cohomological specialization 7, = ‘,}_3((10) could be
named for the lighter analogue of the K-meson, the m-meson or pion. These mesons
play a role in the structural integrity of atomic nuclei; somewhat analogously, we will
show momentarily that the kaon polynomials decompose the Lascoux atoms, thereby

controlling their structure.
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Remark 3.9. In light of Proposition [3.7, setting 5 = 0 in Proposition recovers
[Seal8| Proposition 4.7] on the expansion of fundamental slide polynomials into fun-
damental particles. Note that although the K-theoretic deformations of both families
of polynomials are significantly larger, the matrix of basis change from Proposition
is exactly the same as that for fundamental slides into fundamental particles. Taking
p = 0 in Theorem recovers [Seal8, Proposition 4.6] as a special case.

The kaon basis does not have positive structure coefficients. Nonetheless, we con-
jecture the following:

Conjecture 3.10. For any weak compositions a and b, the product
ga ’ §b
of a kaon and a glide polynomial expands positively in the kaon basis.

For example, we have

Bi2,01) '§(170,2) :§(3,0,3) + 5%(3,1,3) + ﬂ%(g,zz)

+ B Baas + B PBas)-
We have computationally verified Conjecture for all weak compositions a, b with
at most 3 zeros and |al, |b] < 5. To our knowledge, Conjecture is new even in

the special § = 0 case of the fundamental particle expansion of the product of a
fundamental particle by a fundamental slide polynomial.

3.3. The kaon expansion of a Lascoux atom.
Definition 3.11. Let a be a weak composition and T € 2SSF(a). We say T is
meson-highest if, for every integer ¢ appearing in T, either

e the leftmost ¢ is in the leftmost column and is an anchor, or
e there is a i in some column weakly to the right of the leftmost i and in a
different box, where 7' is the smallest label greater than i appearing in 7.

In light of the following Theorem [3.12] we write A2 (a) for the set of all meson-
highest T € ASSF(a).

Theorem 3.12. For any weak composition a, we have

(3.1) A= >, B,

TeA2P(a)
In particular, every Lascouzr atom A, is a positive sum of kaons.

To prove Theorem we must first develop properties of a destandardization
map on ASSF(a). Fix T € ASSF(a). Consider the least integer i with the property
that

e the leftmost ¢ in 7" is not an anchor in the leftmost column, and
e this leftmost i has no i' weakly to its right in a different box;
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replace every i in T" with an ¢ + 1. (If this results in two instances of i 4+ 1 in a single
box, delete one.) Repeat this replacement process until no further replacements can
be made: the final result is the destandardization dst(7"). (This algorithm necessarily
terminates, as we only perform replacement on labels ¢ that are strictly less than the
maximum entry k of T'; this is because k is guaranteed to appear as an anchor in the
leftmost column of T'.) For an example of these notions, see Figure [

33 3|32 3|2 32| 2
1 1 1 1
3|31 3 B21 31|21 32|21
1 1 1 1

FIGURE 5. The eight elements of 2ASSF(102). The set A29(102) con-
sists of two fillings, specifically the leftmost filling in each of the two
rows. Each of the eight illustrated fillings destandardizes to the leftmost
filling in its row.

Remark 3.13. In fact, it is not hard to see that the order in which we perform replace-
ments does not affect the resulting destandardization. Nonetheless, it is convenient
to fix the explicit replacement order chosen above.

Lemma 3.14. Let a be a weak composition. If T' € ﬁ_SSF( a), then dst(T) e A2P ( )
Moreover, destandardization is a retraction onto 2A2%(a), as we have dst(T) =

and only if T € A2B(a) < ASSF(a).

Proof. Fix the weak composition a. By definition, if 7" € A2%93(a), then dst(T) = T.
Moreover, if T ¢ A2B(a), then by definition dst(T) # T. Hence, the third sentence
of the lemma is clear.

It remains to establish the second sentence of the lemma. Fix T' € ASSF(a). It
is enough to show that dst(7") € ASSF(a), for then dst(T') € A2 (a) follows easily,
as the destandardization algorithm does not terminate until the extra conditions
defining A2P(a) as a subset of ASSF(a) are satisfied. Indeed, since destandardization
is defined as a sequence of replacements, it is enough by induction to show that any
single such replacement produces an element of ASSF(a).

Suppose we apply replacement to the letters ¢ and the result is 7’. Then, by
assumption, the leftmost 1 € T’

e is not an anchor in row 7 of the leftmost column of 7', and
e does not have an ' weakly to its right in 7 and in a different box.
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We want to show that 7" satisfies the conditions (S.1)—(S.5).

(S.1): If there is no column of T' containing both ¢ and ¢ + 1, then it is clear that
T' satisfies (S.1). Hence, suppose column ¢ of T' contains both i and i + 1. Then,
i’ =i+ 1. Since T has then no i + 1 weakly to the right of the leftmost i, ¢ must be
the column of the leftmost . Moreover, ¢ and 7 + 1 must appear in the same box b of
column ¢ in T'. Thus, replacement results in two instances of 7 + 1 in b, one of which
we then delete by construction. Thus, 7" has no repeated entries in any column.

(S.2): If row i of T' contains an entry 4, then by (S.2) and (S.5) for T, row ¢ has i as
an anchor in the first column. Thus, in this case, the leftmost ¢ is an anchor in the
first column, contradicting our assumptions on the number 7.

Therefore by (S.2) and (S.5) for 7', every entry ¢ in 7" is in a row with an index j
strictly greater than i. Moreover, for each such j > i, we have by (S.2) for T that all
labels strictly to the left of the leftmost ¢ in row j are strictly greater than i. Hence,
replacing every ¢ in T" with ¢ + 1 preserves the rows being weakly decreasing.

(S.3): To see that no type A coinversion triples appear in 7", suppose first that T
has a type A inversion triple with 7 < a < . This could become a coinversion triple
in 7" only if v = i and a = i+ 1 = i'. However, in this case, T has ¢ and i' in distinct
boxes of the same column, contradicting our assumptions on the number 2.

Now, suppose instead that T has a type A inversion triple with @ < 8 < . This
could become a coinversion triple in 7” only if v = i + 1 = ¢’ and 8 = i. However,
in this case, T has i + 1 appearing strictly to the right of ¢, again contradicting our
assumptions on the number <.

To see that no type B coinversion triples appear in 7", suppose first that 7" has a
type B inversion triple with v < o < 8. This could become a coinversion triple in 7"
only if v = i and o = i + 1 = i'. However, then T would have an i' strictly to the
right of an ¢, contradicting our assumptions on .

Finally, suppose T has a type B inversion triple with a < f < . This could
become a coinversion triple in 7" only if v =i + 1 = i and 3 = i. However, then T
would have an ¢ and an ¢+ 1 in distinct boxes of the same column, again contradicting
our assumptions on 7.

(S.4): If a free entry i of T becomes a free entry i + 1 of 7" and is not deleted, then
its anchor entry j is larger than ¢ 4+ 1 in both 7" and 7”. In particular, since j was the
smallest anchor entry in this column accepting a free entry i in T (by (S.4) for T), j
is still the smallest anchor entry accepting a free entry ¢ + 1 in 7",

If an anchor entry ¢ of T' becomes an anchor entry 7 + 1 of 7", then since any other
anchor entry in this column is either greater than ¢ + 1 or smaller than i, any free
entries in the cell of this anchor entry are still with the smallest possible anchor entry.
Any other free entries in a column where an anchor entry ¢ becomes an anchor entry
1+ 1 are also still with the smallest possible anchor entry, again since other anchor
entries in this column are either greater than ¢ + 1 or smaller than .

(S.5): By construction, the replacement operation taking 7" to 7" does not affect the
anchor entries in the first column. U
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Lemma 3.15. Let a be a weak composition and S € A2%(a). Then
Ty = 3 AT,

Tedst™1(9)

Proof. We establish a weight-preserving bijection between mesonic glides of wt(.S)
and fillings T e dst ().

Fix T € dst™'(S). Define the colored weight kwt(T) of T to be the weak kom-
position obtained by coloring the (i + 1)st entry of wt(7') red if any i + 1 is deleted
after replacing every ¢ with ¢ + 1 during a step of destandardization. (Note that at
most one i + 1 can be so deleted, as otherwise before replacement there would be two
boxes, each containing both ¢ and 7+ 1; in such a case, there would be an ¢+ 1 strictly
to the right of an 4, in violation of the rules for when to perform replacement.)

We claim that kwt(7") is a mesonic glide of wt(S). Consider the process of de-
standardization of T' to produce S. Each time we replace every ¢ in 7" by 7 + 1 to
produce T", we change the ith and (i 4+ 1)st entries of the colored weight by

<Q7 7’) = (O,Q +7r— 1)7
if a duplicate 7 + 1 is deleted, or

(q,7) = (0, + 1),

if not. Since these are the inverses of the local move (m.3) in the first case and of
either (m.1) or (m.2) in the second case, it follows then that kwt(7") is a glide of the
weak composition wt(.S).

Let wt(S) have nonzero entries in positions n; < --- < ng. A local change to the
colored weight

(¢,0) = (0,9)

in positions n; — 1 and n; for some j would correspond to a step of destandardization
replacing every instance of n; — 1 with n; in a 7" that contains no label n;. Since
S is meson-highest, the entries n; of S satisfy the meson-highest condition. Since
T" destandardizes to S, entries n; — 1 of 17" therefore also satisfy the meson-highest
condition. This contradicts the application of such a destandardization step to T".
Hence, kwt(T") is a mesonic glide of wt(5).

For the other direction, let b be a mesonic glide of the weak composition wt(S). We
construct the unique 7" € dst™*(S) such that kwt(T) = b as follows. Suppose wt(S)

has nonzero entries in positions n; < --- < ny.
Begin with the smallest entries of S, i.e., the wt(S5),, instances of the entry n;
in S. Consider the sequence s; = (1,...,41) of positions of entries associated (via

(G.1)) to n; in the mesonic glide b. From this sequence, we construct a string stry
by appending letters to the empty word as follows. Reading s; from left to right, for
each k € sy, consider the entry b,. If b, is a black entry, append by black k’s to the
end of the string; if b is a red entry, append one red £ followed by b, — 1 black £’s.
For example, if wt(S) = (0,0,0,0,4,3) and b = (1,0,2,0,2,3), then i; = n; = 5, and
str; = 13355.



18 C. MONICAL, O. PECHENIK, AND D. SEARLES

Now replace the instances of n; in S with entries of str; as follows. In the rightmost
box of S containing an nq, replace that n, with the first letter of stry. If the next letter
of stry is red, place it in the same box the previous entry was placed in. Otherwise,
place it in the next box of S to the left that contains an nq, replacing that n;. Continue
in this manner until all letters of str; have been placed into S. This procedure is well-
defined since by (S.1) no more than one entry n; appears in any column of S; and
since by (G.1) the number wt(S),, of n;’s in S is exactly the length of the string
str; minus the number of red entries, each black entry goes in a different box of S,
and each red entry goes in a box along with a black entry. Repeat this process with
Ng,...,ng, where s; is the sequence (i;_1 + 1,...,7;). Since we work with mesonic
glides, we will have ¢; = n; for all j; we introduce this extra level of generality in order
to be able to apply this same procedure for arbitrary glides (where i; may be smaller
than n;) in the proof of Lemma later. (This algorithm is a minor modification
of that appearing in [PS19, Proof of Theorem 3.5].)

For example, let S be the leftmost filling in the lower row of Figure [f} We have
wt(S) = (2,0,2). A mesonic glide of wt(S) is b = (2,1,2). We have i3 = ny = 1,
19 = ng = 3, stry = 11 and stry = 233. We construct the filling 7" from S and b
as follows. Replace the two 1s in S with the two 1s from str; (which does nothing
to S), then replace the two 3s in S with stry. The 2 and 3 from stry are placed in
the rightmost box (along with the 1 already there); then, the remaining 3 from stry
is placed in the box to the left. In this way, we obtain 7" as the second filling from
the left in the lower row of Figure Note that indeed T' has weight (2,1,2) and
destandardizes to S.

By construction, the resulting filling 7" has weight b and destandardizes to S. We
need to show that 7' € ASSF(a). To see this, notice that the entries of str; (which
replace the entries n; in S) are all strictly larger than n,_; and weakly smaller than
n;. This fact implies that all inequalities between entries of boxes in S are preserved,
and thus all of (S.1), (S.2), (S.3) and (S.4) are preserved. Finally, since S € A2%(a)
ASSF(a), the first column of S has an anchor a; in each nonempty row a;, and so
these (nonzero) a;’s are a subset of the n;’s. Since b is a mesonic glide of wt(.S), by
definition the last entry of each str; is n;. Therefore, the process of constructing T’
from b and S ensures that the anchors in the first column are replaced by themselves,
i.e., they do not change. Hence (S.5) is also satisfied, and we have T € ASSF(a).

The uniqueness of T follows from the lack of choice at each step in this process. [

Proof of Theorem[3.13. For S € A2%(a), Lemma says that

Py = >, ATHIshen®),

Tedst™1(S)
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Therefore,

Z 5\5\—|a|q—3wt(s): Z glsi-lal Z BITI=IS]we(T)

SeRA2% (a) SeA2(a) Tedst™1(9)
= Z ﬁIUI*\alxwt(U)
U€ASSF(a)
= A,

where the second equality is by Lemmal[3.14]and the third equality is by definition. [

Remark 3.16. Setting 8 = 0 in Theorem |3.12| recovers the expansion of Demazure
atoms into fundamental particles from [Seal8, Theorem 4.17]. In particular, the
meson-highest fillings with no free entries are exactly the “particle-highest” fillings of

[Seal§].

4. LASCOUX AND QUASILASCOUX POLYNOMIALS

4.1. QuasiLascoux polynomials. The quasikey basis of [AS18b] is a common coars-
ening of the fundamental slide and Demazure atom bases of Poly, , a refinement of the
basis of Demazure characters, and a lifting of the quasiSchur basis of [HLMvW11a]
from QSym,, to Poly,. We introduce a K-theoretic analogue of the quasikey basis—
alternatively, a lifting of the quasiGrothendieck basis from QSym[/3] to Poly[5]. See
Figure [2| for a visual representation of the relationships among these various bases.

Definition 4.1. Given a weak composition a, the quasiLascoux polynomial 9,

is given by
2.- Y9

b=a
bt =aqt

Proposition 4.2. The set

{ﬁkﬁiﬁ) 1k € Z=o and a is a weak composition of length n}
is an additive basis of the free Z-module Poly, [5]. Hence, for any fized p € Z,

{ﬁff’) :a is a weak composition of length n}

s a basis of Poly,,.
Proof. First, we show that

{B’“ﬁff” : k € Z>o and a is a weak composition of length n}

is a spanning set. A monomial m in Poly,[3] corresponds to a pair (k,a), where
k € Z-o records the power of f in m and a is the weak composition of length n
recording the degrees of x1,xs,...,x, in m. Write M for the set of all such pairs.

For a a weak composition of length n, let s, denote the string 112 ... n". Write
M (a) for the largest element of a and write ¢, (a) for the position of the rightmost
nonzero entry of a. Define a total order on M by (k,a) > (h,b) if

e (.(a) > . (b)
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e ( (a)=1/{,(b) and M(a)> M(b);
o ( (a)=10.(b), M(a) = M(b), and s, >ex Sp; Or
e a=>band k> h.

(Here, >ex denotes lexicographic order on strings of numbers.) For example, we have

(2,23001) > (7,10340) > (2,23010) > (2,32010) > (1, 32010).

The <-leading term of a polynomial f € Poly,[3] is the term of f whose monomial
is largest in this order. Now, observe that the <-leading term of 9, is °x®. Hence,
if the <-leading term of f € Poly, [A] is c.3"x%, then the <-leading term of

fi= f— R,
is c,"x" for some (h,b) < (k,a). Then,
for=f— By

has <-leading term cq3x? for some (4, d) < (h,b), etc. Since < is a well order on M,
this process must terminate. Hence, f is a finite Z-linear combination of elements of
our putative basis.

Linear independence is immediate from each element of the putative basis having
a different leading term. This proves the first sentence of the proposition.

The second sentence of the proposition is immediate from the first. O

Proposition 4.3. The quasikey polynomials are the 5 = 0 specialization of quasi-
Lascouz polynomials:

a” - q,
Proof. In [Seal§], it is proved that

Q= D, A

b=a
bt=qt

The statement then follows from Definition 4.1| and the fact that ﬁl()o) = Ap. O

The following is clear from Definitions [2.9) and 4.1}

Proposition 4.4. Suppose that the positions of the nonzero entries in the weak com-
position a form an interval and that ay is the last nonzero entry of a. Then,

Qo= Sor(T1,...,28).
In particular, every quasiGrothendieck polynomial is a quasiLascouz polynomial.
Moreover, we have

Proposition 4.5. Let a be a weak composition. Then the stable limit lim Qgmyq of
m—00

the quasiLascouz polynomial Q, is the quasiGrothendieck function S+ (1, T2, ...).
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Proof. Let m > 0 and consider the polynomial Qomxa(21,. .., Zm). Observe that, for
any weak composition b, the Lascoux atom 2, is divisible by xz;, whenever b; > 0.

Hence, if ﬂéﬁ) appears in the Lascoux atom expansion of Qgm x4, then it is annihilated
on restriction to m variables unless £, (b) < m. Thus, by Definitions [2.9) and [4.1]

Qomxa(xl,...,xm) = Z ﬁb:§a+($1,...,xm).

bt =at

The proposition then follows by letting m — 0. O
Remark 4.6. Setting § = 0 in Proposition gives a new proof of the fact that

quasikey polynomials stabilise to quasiSchur functions; this was proved via a different
method in [AS18bl §4.3].

_To give the monomial expansion of a quasilascoux polynomial directly, we define
QSSF(a) to be all set-valued skyline fillings of shape a satisfying (S.1)—(S.4), as well
as

(S.5") anchors in the first column are at most their row index and decrease from top
to bottom.

We call QSSF(a) the set-valued quasi-skyline fillings of shape a. Then we have

Proposition 4.7. Given a weak composition a, we have
Q, = Z BlS1=lalwi(S)
SeQSSF(a)
Proof. There is a weight-preserving bijection

QSSF(a) «— ] ASSF(b),

b=a
bt=qat

where the image of 7' € QSSF(a) is obtained by moving each row of 7" downwards
until each anchor in the first column is equal to its row index. This is well-defined
since moving rows without changing their relative order does not affect the inver-
sion/coinversion status of any triple. The proposition then follows from Deﬁnitions
and O

Example 4.8. For a = (1,0,2), the set QSSF(a) consists of the ten fillings shown in
Figure [6] Therefore, we have

5102 _ X102 + BX112 + 6X202 + B2X212 + Xlll + 6X211 + BXIQI + 62}(221 + X120 + ﬁX220.
¢

4.2. The glide expansion of a quasiLascoux polynomial.

Definition 4.9. Let a be a weak composition and let S € QSSF(a) be a set-valued
quasi-skyline filling. We say S is quasiYamanouchi if, for every integer ¢ appearing
in S, either
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3|3 3|32 3|31 3 821 3|2
1 1 1 1 1
3|21 32| 2 32|21 2|2 2|21
1 1 1 1 1

FIGURE 6. The ten elements of QSSF(102).

e the leftmost 7 is an anchor in row ¢ of the leftmost column, or
e there is an i+ 1 in some column weakly right of the leftmost ¢ and in a different
box.

In light of the following Theorem [4.12] we write Q2F(a) for the set of all quasiYa-
manouchi S € QSSF(a).

Remark 4.10. The quasiYamanouchi condition (Definition for set-valued quasi-
skyline fillings is exactly the meson-highest condition (Definition [3.11]) for semistan-
dard set-valued skyline fillings, with ' replaced by i + 1.

Example 4.11. The first and third fillings in the top row of Figure [6] are quasiYa-
manouchi. The other fillings in Figure [] are not. &

Theorem 4.12. For any weak composition a, we have

Q, = 2 BISIIE L s)-

Se023(a)
In particular, every quasiLascoux polynomial Qg is a positive sum of glide polynomials.

To prove Theorem , we introduce a destandardization map dstg on QSSF(a).
Fix T € QSSF(a). Consider the least integer i appearing in T' with the property that
e the leftmost ¢ in 7" is not an anchor in row 7 of the leftmost column, and

e it has no 7 + 1 weakly to its right in a different box;

replace every i in T with an ¢ + 1. (If this results in two instances of ¢ + 1 in a single
box, delete one.) Repeat this replacement process until no further replacements can
be made; the final result is the destandardization dstg(T").

Remark 4.13. The destandardization map dstq is exactly the destandardization map
dst of Section [3| with i + 1 everywhere in place of i'.

Example 4.14. The first, second, fifth, seventh and ninth fillings of Figure [6] de-
standardize to the first filling; the remaining fillings destandardize to the third fill-

ing. &
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The following result is entirely analogous to Lemma [3.14]

Lemma 4.15. Let a be a weak composition. If T € QSSF(a), then dsto(T) € Q2F(a).
Moreover, destandardization is a retraction onto Q2F(a), as we have dstg(T) = T if

and only if T € Q2F(a) < QSSF(a).
Proof. Identical to the proof of Lemma [3.14] with i + 1 everywhere in place of i'. [
Lemma 4.16. Let a be a weak composition and S € Q2F(a). Then,

By = Y BITIISlom(),

Tedstg' (S)

Proof. We need to establish a weight-preserving bijection between the glides of the
weak composition wt(.S) and the fillings 7" € dstél(S).

Fix T € dstél(S). Define the colored weight kwt(7") of T' to be the weak komposi-
tion obtained by coloring the (i 4+ 1)st entry of wt(T") red if an i + 1 is deleted after
replacing every ¢ with an 7 + 1 during a step of destandardization. By the same exact
reasoning as in the analogous step of the proof of Lemma , we have that kwt(T")
is a glide of the weak composition wt(5).

For the other direction, given a glide b of the weak composition wt(S), we construct
(the unique) 7" € dsty,' () such that wt(7T') = b. This is achieved by the same process,
and via the same argument, as in Lemma [3.15] O

Proof of Theorem[{.13. For S € Q2F(a), Lemma says that
By = 3 AT,

Tedstg' (S)
Therefore,
2 ﬁ'SHa@wt(S) — Z Bls1-—lal Z BITI= 18] wi(T)
5e023(a) S5e023(a) Tedstg' (S)
= 2 BlUI=lalgwt()
UeQSSF(a)
= Q..
where the second equality is by Lemma [4.15] and the third equality is Definition [{.1]

O

Remark 4.17. Setting f = 0 in the statement of Theorem yields a positive
combinatorial formula for the fundamental slide expansion of a quasikey polynomial
in terms of quasiYamanouchi semi-skyline fillings. Such a formula was alluded to in
[SealS], but not stated explicitly.

The following is a K-theoretic analogue of the positive expansion established in
[HLMvWT1a] of quasiSchur polynomials into fundamental quasisymmetric polynomi-
als.



24 C. MONICAL, O. PECHENIK, AND D. SEARLES

Corollary 4.18. The quasiGrothendieck polynomials expand positively in the basis of
multi-fundamental quasisymmetric polynomials.

Proof. By Theorem[4.12] any quasilLascoux polynomial expands positively in the glide
basis. By Proposition 4.4} the quasiGrothendieck polynomials are included among the
quasiLascoux polynomials. The statement then follows from the fact ([PS19) §3.2])
that the quasisymmetric glide polynomials are the multi-fundamental quasisymmetric
polynomials and form a basis of QSym|[/]. O

Remark 4.19. The number of terms in the expansion of Corollary generally grows
without bound as the number of variables increases. In the limit, one finds that a
quasiGrothendieck function is a positive sum of multi-fundamental quasisymmetric
functions, but that this sum of formal power series has infinitely-many terms.

4.3. Lascoux polynomials. In this section, we study the combinatorial Lascoux
polynomials of [Monl6l, §5] and their relations to the other families of polynomials
discussed in this paper. Given a skyline diagram, we augment it on the left with
an additional column 0, called the basement. We write b; for the entry in row ¢
of the basement. Expanding on Definition and Remark [2.6] a set-valued skyline
filling with basement is semistandard if it (including the basement) satisfies (S.1),
(S.2), (S.3), and (S.4). Basement entries do not count towards the weight wt(F") of a
filling F' with basement. In diagrams, we shade the boxes of the basement in gray to
distinguish them from the ordinary boxes.

For a a weak composition, let @ denote the weak composition formed by reversing
the order of the parts of a. For example, if a = (0,1,0,3), then @ = (3,0,1,0).
Let DSSF(a) be the set of semistandard set-valued skyline fillings of shape ‘@ with
basement b; = n — 1 + 1.

Definition 4.20 ([HLMvWI1Db, Equation (2.3)], [Monl6, §5]). Let a be a weak com-
position. The (combinatorial) Lascoux polynomial ®, is given by

D, = Z FEX(E) Wt (F)
FEDSSF(a)
The Demazure character is the § = 0 specialization of the corresponding Lascoux
polynomial:
9, =2,
Demazure characters are, in fact, characters of certain modules with relation to

Schubert calculus [Dem74]; no such representation-theoretic realization of Lascoux
polynomials is currently known.

Example 4.21. The fillings in Figure [/ show that the monomial expansion of the
Lascoux polynomial ®1gs is
Dige = 1209 + 1175 + Brias + xiTs + 117073
+ xlxg + 61‘%%’21’3 + Bmfxg + 51:1x2x§ + ,82ZE%I2£U§

+ Brixows + Bririrs + BPaiasws.
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1 1 1 1 1
2|1 2|2 2|21 3|1 3|2
1 1 1 1 1
33 3|21 3|31 3132 3 321
1 1 1
32| 1 32| 2 32|21

FIGURE 7. The 13 elements of DSSF(102).

The Demazure character 15 is given by setting 5 = 0 in this expression; equivalently,
D192 is the weight generating function for those five fillings in Figure [7] that contain
only one number in each box. O

The main result of the remainder of this paper is to show that every Lascoux
polynomial ®, is a positive sum of quasiLascoux polynomials. Towards this goal, we
first show the weaker result that @, is a positive sum of Lascoux atoms.

Given a weak composition a, let sort(a) be the rearrangement of the parts of a into
weakly decreasing order, and let w(a) be the minimal (Coxeter) length permutation
sending a to sort(a).

Theorem 4.22. For any weak composition a, we have

5{1 = Z ﬁb;

sort(b)=sort(a)

w(b)<w(a)

where < denotes the strong Bruhat order on permutations. In particular, every Las-
coux polynomial ®, is a positive sum of Lascoux atoms.

Example 4.23. Let a = (0,1,0,3). Then sort(a) = (3,1,0,0) and w(a) = 3241.
Hence,

Do10s = Aoros + Aroos + Aorzo + Aroso + Arz00 + Aozor + Aozro + Azoor + Asoro + Asioo-

&

Specializing Theorem at 8 = 0 recovers a known formula for the Demazure

atom expansion of a Demazure character (see, e.g., [Mas09], [HLMvW11h).

Remark 4.24. In [Las01], A. Lascoux introduced K-theoretic analogues of Demazure
characters in terms of divided difference operators. C. Monical conjectured ([MonI6,
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Conjecture 5.3]) that such an operator Lascouz polynomial ®, equals the corre-
sponding combinatorial Lascoux polynomial @, of Definition Similarly, there
is an operator Lascoux atom ﬁzp such that conjecturally ﬁzp =9, ([Mon16, Conjec-
ture 5.2]). (See, [Monl6, §5] for details.) By [Monl6, Theorem 5.1], these operator
Lascoux polynomials expand into operator Lascoux atoms according to the same
combinatorial formula as in Theorem [4.22| That is, for any weak composition a, we

have
R S

sort(b)=sort(a)

w(b)<w(a)
Hence, Theorem [£.22] proves the equivalence of [Mon16, Conjecture 5.2] and [Mon16)
Conjecture 5.3].

Before continuing with our proofs of the positive expansions of a Lascoux polyno-
mial in the Lascoux atom and quasiLascoux bases, we formulate the following related
conjecture, which is in some sense a strengthening of Theorem

Conjecture 4.25. Let a and b be weak compositions. Then D, - Dy is a positive sum
of Lascoux atoms.

For example,
5(0,2) '5(0,1) = ﬁ(0,3) + ﬁ(1,2) + 2/6ﬁ(1,3) + ﬁ(2,1) + 5ﬂ(2,2)
+ 525(2,3) + ﬁ(3,0) + 255(3,1) + 525(3,2)-

We have checked Conjecture by computer for all a,b such that |a| < 5,]b] < 5,
and a and b have at most three zeros. Specializing Conjecture at 8 = 0 recovers a
well-known conjecture of V. Reiner and M. Shimozono on products of key polynomials
(see [Punl6] for discussion and partial results).

4.4. Proof of Theorem [4.22 First, we need a straightforward operation on weak
compositions. Following [AS18b], given a weak composition a, we define a left swap
to be the exchange of two entries a; < a; where i < j.

Definition 4.26 (JASI8b, §3.2]). Given a weak composition a, let 1swap(a) be the set
of weak compositions b that can be obtained from a by a (possibly empty) sequence
of left swaps.

Example 4.27. For the weak compositions a = (0,1,2) and b = (0,3, 1), we have
1swap(a) = {(0,1,2),(1,0,2),(1,2,0),(0,2,1),(2,0,1),(2,1,0)}

and

lswap(b) = {(0,3,1),(3,0,1),(1,3,0),(3,1,0)}. &
The following characterization appears as [Seal8, Lemma 3.1].
Lemma 4.28. For any weak composition a,

lswap(a) = {b: sort(b) = sort(a) and w(b) < w(a)}. O
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Hence, to prove Theorem [4.22] it suffices by Lemma to construct a weight-
preserving bijection

(4.1) ¢ :DSSF(a) > ] ASSF(b

belswap(a)
We begin by constructing a column-set preserving (and hence weight-preserving)
bijection
(4.2) Y DSSF(a) > [[ ASSF(®

belswap(a)

for the non-set-valued case. The advantage of Equation (4.2) over Equation is
that we know a prior: that there must exist a Weight—preserving bijection between
DSSF(a) and H 2ASSF(b), since both sets are known to generate the Demazure
belswap a)

character ©, [HLMyvW11D], [Mas09]. To our knowledge, an explicit bijection between
these sets has, however, not appeared previously in the literature. Our goal is to give
an explicit bijection 1 that moreover preserves the column sets of the fillings. Having
established ) with this property, we will find it straightforward to extend v to the
desired map v of Equation , thereby proving the theorem.

Let T' € ©SSF(a). Define (T') as follows. Let i; be the least entry in the first
column of T. For k > 1, recursively define 7; to be the greatest entry in column
k that is weakly less than i;_;, terminating when there is no such entry. Place the
entries ij,4s,... in row index i; to form the lowest nonempty row of ¢(7'), while
deleting them from T. Repeat this process on what remains of 7" to find the next-
lowest nonempty row of ¢(T"), etc. In [Sealf], this algorithm is referred to as left
row-filling; by [Seal8, Lemma 5.2, Lemma 5.3], ¢(7T") € ASSF(b) for some b. (Strictly
speaking, the domain of the map defined in [Seal§| consists of reverse semistandard
Young tableaux rather than the fillings of ©SSF(a). However, as the map operates
at the level of column sets (the positions of boxes in a column are irrelevant) and as
the column sets of 7' € ©SSF(a) can be reordered to create a reverse semistandard
Young tableau, this distinction is insignificant.)

Example 4.29. Suppose that a = (1,2,0,3,3). Then we have, for example,

5(4]|2
1
DSSF(1,2,0,3,3) 5 — . [3]3]3]eaSSF(2,1,3,0,3).
3132
5(4|3 1|1
Observe that b = (2,1,3,0,3) € 1swap(a), as desired. O

It is clear that b always satisfies sort(a) = sort(b). We need to establish the
stronger property that b € 1swap(a). To this end, we make use of the fact (observed
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in [AS18al) that the fillings in ®SSF(a) are exactly the same objects (flipped upside-
down) as the semistandard key tableaur of [Ass18], and hence are in straightforward
bijection with Kohnert diagrams.

A Kohnert move [Koh91] on a finite set of boxes in N x N (realized as the
lattice points of the first quadrant of the plane) moves the rightmost box in some
row down to the highest empty space below it in the same column. The Kohnert
diagrams of D(a) are the box diagrams that can be obtained from D(a) by a (possibly
empty) sequence of Kohnert moves. A semistandard key tableau records a particular
choice of Kohnert moves to achieve a given Kohnert diagram; the number in each
box of a semistandard key tableau represents the row that box has moved to in the
corresponding Kohnert diagram.

Example 4.30. Figure[§|shows the semistandard key tableau obtained by flipping the
filling T" € ©®SSF(a) of Example upside-down, together with the corresponding
Kohnert diagram. We shade the boxes of the Kohnert diagram in red to distinguish

them from empty space. &
5|4
3132
1
1

FiGUurRE 8. The semistandard key tableau equivalent to the filling
T € ©SSF(a) of Example together with its corresponding Kohnert
diagram.

This reinterpretation in terms of Kohnert diagrams is useful because it facilitates
a diagrammatic understanding of the 1swap operation.

Lemma 4.31. Let a and b be weak compositions. Then b € 1swap(a) if and only if
D(b) is a Kohnert diagram of D(a).

Proof. Suppose b € 1swap(a). Then b is obtained from a by a sequence of swaps that
move larger entries leftwards. Any such swap can be achieved by Kohnert moves:
given D(a), to swap a row of length r with a lower row of length ', where 0 < r' < r,
move the rightmost r — r’ boxes of the higher row down to the lower row, in order
from right to left. Clearly, these moves are all valid Kohnert moves and so D(b) can
be realized as a Kohnert diagram of D(a).

Conversely, suppose D(b) is a Kohnert diagram of D(a). Since Kohnert moves
keep each box in its column, we have sort(b) = sort(a). It remains to observe that
the only way one can rearrange rows of a skyline diagram via Kohnert moves is to
move the “overhang” of a longer row down to join onto a (possibly empty) shorter
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row. But this operation corresponds to an application of the lswap operation, so
b € 1lswap(a). O

Definition 4.32. Suppose that a is a weak composition and K is a Kohnert diagram
of D(a). Define the nearest skyline diagram of K to be the skyline diagram K’
obtained as follows: Reading rows of K from left to right, top to bottom, find the
first box b of K with an empty space immediately to its left; move b upwards to the
first available space above it. Repeat this operation until all boxes are in left-justified
rows, i.e., until a skyline diagram is obtained.

An example of the computation of a nearest skyline diagram appears in Figure [9

FIGURE 9. The iterative computation of the nearest skyline diagram
of the Kohnert diagram from Figure [§]

Lemma 4.33. If a is a weak composition and K is a Kohnert diagram of D(a), then
K" is also a Kohnert diagram of D(a).

Proof. Since K is a Kohnert diagram of D(a), D(a) can be obtained by a sequence
of reverse Kohnert moves on K. Let b be the box moved by an iteration of the
“nearest skyline” algorithm of Definition Since all boxes strictly higher than
b are by definition in left-justified rows, b does not land left of another box in the
same row. So Definition 1.32] uses valid reverse Kohnert moves. We will show these
reverse Kohnert moves on K (or other sequences of reverse Kohnert moves resulting
in the same diagram) are all necessary to obtain any skyline diagram of which K is
a Kohnert diagram, hence are necessary to obtain D(a).

In order for a skyline diagram to be obtained, since a reverse Kohnert move can
never cause a box to land the left of another box in the same row, any box of K that
has an empty space to its left in its row must at some stage move upwards. Moreover,
a reverse Kohnert move on any box does not cause the left-justification status of other
boxes in the diagram to change: those boxes that were in left-justified rows still are,
and those boxes that had an empty space to their left still do.

Now observe that when the algorithm raises a box b, it moves boxes within the
column of b by the minimal amount possible in order to raise b. In the case b jumps
over other boxes, it is of course possible the same diagram may be obtained by moving
the boxes above b first and then moving b upwards by a smaller distance. But this
gives rise to the same diagram: the entire interval of boxes weakly above b moves up
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one space. Since Kohnert diagrams do not distinguish between individual boxes, this
move is thus the minimal move on a Kohnert diagram that raises b.

So the algorithm moves only the boxes that have to be moved upwards to obtain a
skyline diagram, it moves boxes upwards by the minimal distance needed to achieve
this, and the set of boxes of K that need to be moved upwards is independent of
the order in which these boxes are moved. So all these reverse Kohnert moves (or
equivalent sequences of reverse Kohnert moves resulting in the same diagrams) are
necessary in order to obtain D(a), and thus K is a Kohnert diagram of D(a). O

We can reinterpret ¢ to act on Kohnert diagrams. Let K be a Kohnert diagram
of D(a). We first decompose K into threads 6;,6,,.... Let b' be the lowest box
in column 1 of K. Then for k > 1, recursively define b* to be the highest box in
column k of K that is weakly lower than b"~'. Let 6, = {b', 6% ...}. After deleting
61, repeat this process on the remainder of K to obtain 6, etc. Now, define ¢(K) to
be the skyline filling given by placing the row indices of the boxes in thread 6 into
row k in weakly decreasing order.

Example 4.34. The left of Figure|[10|shows the Kohnert diagram K of Figure [§ with
threads indicated both by labels in the boxes and also by coloring. On the right of
Figure 10| is the corresponding filling (K) € 2ASSF(2,1,3,0,3). Observe that the
filling ¢ (K) of Figure [10] coincides with the filling obtained in Example [£.29] &

04 5|4 |2
04

03| 05 | 03 — 3(3|3

02 04

01 | 61 11

FiGURE 10. The threading of the Kohnert diagram K of Figure
and the corresponding filling ¢ (K) € ASSF(2,1,3,0,3). Here, we have
labeled the boxes of K by the threads of which they are part. The color-
coding of the boxes of K is redundant with this labeling by threads,
and the color-coding of the boxes of 1(K) matches the color-coding of
K.

The following lemma justifies the mild abuse of notation in using the same symbol
1 both for a map on skyline fillings and for a map on Kohnert diagrams.

Lemma 4.35. Let T € DSSF(a) and let K be the corresponding Kohnert diagram of
D(a). Then, Y(T') = P(K).

Proof. Observe that the definition of 1)(T") only depends on the sets of labels appearing
in each column of T'. This set of labels coincides with the set of row indices of the

boxes in the corresponding column of K. It is then straightforward from unwinding
the definitions that ¢(T") = ¥(K), as desired. O
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Lemma 4.36. The threading of a Kohnert diagram K s preserved under the “nearest
skyline” algorithm of Definition [{.33; that is, whenever the algorithm moves a box
upwards, the set of boxes in each thread and the location of the leftmost box in each
thread both remain unchanged.

Proof. Any box in the first column of K has no empty space to its left and thus is
never moved by the “nearest skyline” algorithm. Hence, the location of the leftmost
box in each thread does not change during construction of K.

To see that threads retain the same set of boxes, it is enough by induction to
consider a single application of the “box raising” operation. Suppose this operation
takes K to K+ by acting on the box b° in column c. Suppose b® is in the thread

;= {b',6%,...} in K, where b* is in column k. Certainly, ¢ > 1, so b°™! exists.

First, consider the case that b moves up one space, i.e., K has no box immediately
above b in its column. By definition, K has no box immediately to the left of b in
its row, so b ! is strictly above b¢ in K. Thus, b¢ still lies in the same thread as
b ! in K. By definition, b¢ is not left of any box in its row in KT, so K has b® in
the same thread as b°"!, if such a box exists. Thus, in this case the threading of K
coincides with the threading of K.

Now, suppose b° “jumps” over at least one box, i.e., K has a box immediately
above b¢ in its column. Since K has all boxes above b in left-justified rows, b' is
necessarily the rightmost box of the lowest row above b that ends in column ¢ — 1.
Since the rows that b® jumps over have length at least ¢, b remains threaded with
b ! in K. By definition, b° is not left of any box in its row in K*. In the rows
that b° jumps over, observe that both K and K* have each box threaded with all
the boxes to its left in its row. In particular, K does not thread b° with a box in

column ¢ + 1 from a row that has been jumped over. So b° remains threaded with
b in KT, if such a box exists. Thus, the threadings of K and KT coincide. O

Lemma 4.37. Let K be a Kohnert diagram. Then, the shape of 1)(K) is the nearest
skyline diagram K.

Proof. By Lemma , the threading of K is the same as the threading of K. Hence,
the shape of 1/(K) equals the shape of ¢)(K'). Since K is a skyline diagram, it is
clear from the definitions that the threads of KT are just its rows. Hence, the shape
of (K" is the skyline diagram K itself. Thus, the shape of 1(K) is K. O

Lemma 4.38. Let T, U € ©SSF(a) be distinct. Then, there is a column in which T
and U do not have the same set of labels.

Proof. Let K7 and Ky be the Kohnert diagrams corresponding to 7" and U, respec-
tively. If, in each column, 7" and U have the same set of labels, then, in each column,
K7 and Ky have boxes in the same positions. Hence K+ = Ky and so T = U. O

Theorem 4.39. The map
Y DSSF(a) > [[ ASSF(b)
)

belswap(a

is well-defined, and is a column-set-preserving (and thus weight-preserving) bijection.
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Proof. Let T € ®SSF(a). We know from [Seal8] that ¢ (7)) € ASSF(b) for some b.
Let K be the Kohnert diagram corresponding to 7" and suppose the nearest skyline
diagram K' has shape d. By definition, K is a Kohnert diagram of D(a). Hence by
Lemmal[4.33] we have that D(d) is a Kohnert diagram of D(a). Thus by Lemma [4.31]
d € 1swap(a). By Lemma [4.37 ¢(K) has shape d. Thus, by Lemma [4.35] ¢ (T') has
shape d, and so ¢/(T) € ASSF(d) = [ [ ASSF(b).
belswap(a)

By definition, ¢ preserves column sets. Since no two elements of ®SSF(a) have
identical column sets by Lemma , this implies ¢ is injective. Since DSSF(a) and

H 2ASSF(b) both generate the Demazure character ©, [HLMvW11b], [Mas09],

belswap(a)
they are equinumerous (and finite). Hence ¢ is a bijection. O

Lemma 4.40. The bijection ¢ extends to a column-set-preserving (and thus weight-
preserving) bijection

¢ :DSSF(a) - [] ASSF(b),

belswap(a)

as follows: FO_’I“T € DSSF(a), let T be the filling obtained by deleting the free entries
of T. Then, 1(T) is given by placing each free entry in T with the smallest possible
anchor in the corresponding column of ¥(T'), subject to the decreasingness condition

(5.2).

Proof. Let T € DSSF(a) and let S = ¢(T') € ASSF(b). The only thing that needs to
be checked is that, for any valid assignment of free entries to columns of 7', there is
a corresponding valid assignment of the same free entries to the same columns of S,
and vice versa.

Suppose for a contradiction that this is false for some T' € ®SSF(a), whose anchor
entries form the filling 7. Let k be the greatest free entry of column ¢ of T that
cannot be added as a free entry in column c of S without violating the decreasingness
condition (S.2). Then, for every entry m greater than k in column ¢ of S, the entry
immediately right in column ¢ + 1 of S is strictly greater than k. However, since
1 preserves column sets, the entries of each column of S are a permutation of the
entries of the corresponding column of 7. Thus, T" also has at least as many entries
that are strictly greater than k in column ¢ + 1 as it has entries that are that are
strictly greater than k in column c¢. Hence by (S.2) for 7', every entry in column
¢+ 1 of T that is strictly greater than & must be immediately right of an entry that
is strictly greater than k in column c. Thus, k£ cannot be added as a free entry in
column c of T, contradicting the existence of T. The argument for the other direction
is identical. 0

This completes the proof of Theorem [4.22] O
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4.5. The quasiLascoux expansion of a Lascoux polynomial. The Lascoux
polynomials expand positively in the basis of quasilascoux polynomials. Follow-
ing [ASI8b], define Qlswap(a) to be all b € 1swap(a) such that if ¢ € 1swap(a) and
b" = ¢*, then ¢ > b.

Example 4.41 (cf. Example [£.27). For the weak compositions a = (0,1,2) and
b=(0,3,1), we have

Qlswap(a) = {(0,1,2),(0,2,1)}
and

Qlswap(h) = {(0,3,1), (1,3,0)}. &

Theorem 4.42. For any weak composition a, we have

.- Y 1,

beQlswap(a)

In particular, every Lascouz polynomial ®, is a positive sum of quasiLascoux polyno-
mials.

Proof. Suppose that b € Qlswap(a) and that ¢ is another weak composition with ¢ = b

and ¢ = b". Then clearly ¢ € 1swap(a). By the definitions of lswap and Qlswap,

every c € lswap(a) is either in Qlswap(a) or else dominates some b € Qlswap(a) with
* = b*. This establishes the second equality in the following:

o= %= ) 2% = ) .
celswap(a) beQlswap(a) c=b beQlswap(a
ct=bt
where the first equality is by combining Theorem [£.22]and Lemma and the third
equality is by Definition [4.1] O

Remark 4.43. The § = 0 specialization of Theorem recovers the expansion of
Demazure characters in the quasikey basis [AS18b, Theorem 3.7].
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