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Abstract. We construct a type An crystal structure on semistandard set-valued
tableaux, which yields a new formula and proof for the Schur positivity of symmetric
Grothendieck polynomials. For single rows and columns, we construct a K-theoretic
analog of crystals and new interpretation of Lascoux polynomials. We relate our crys-
tal structures to the 5-vertex model using Gelfand–Tsetlin patterns.
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1 Introduction

The set of k-dimensional linear subspaces in Cn is the Grassmannian Grk(C
n) and has

been well studied. One approach is through the cohomology ring, where a basis is
given by the classes of the Schubert varieties. These correspond to Schur polynomials
sλ whose defining partition λ fits inside a k × (n − k) rectangle. In modern Schubert
calculus, an alternative is to use the (connective) K-theory ring, where the Schubert
classes are given by symmetric Grothendieck polynomials Gλ. By work of A. Buch [2],
Gλ is a generating function for semistandard set-valued tableaux of shape λ with entries
at most n. Remarkably, the product GµGλ (even in an infinite number of variables) can be
written as a unique finite sum of Gν. There are many known positive combinatorial rules
to compute the K-theoretic Schubert structure coefficients Cν

λµ, analogs of Littlewood–
Richardson coefficients.

Our aim is to apply crystal theory [7] to the study of symmetric Grothendieck poly-
nomials. Our main result is semistandard set-valued tableaux have a Uq(sln)-crystal
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structure that is isomorphic to a direct sum of crystals for irreducible highest weight
representations. An immediate corollary is that Gλ is a positive sum of Schur functions
sµ, where the multiplicities Mµ

λ are given by counting highest weight (i.e. Yamanouchi)
semistandard set-valued tableaux. C. Lenart [10, Thm. 2.2] has given a different combi-
natorial formula for the multiplicities Mµ

λ in terms of certain flagged increasing tableaux.
We recover his formula using the “uncrowding” operation of [2].

The larger goal of this project is to construct a K-theoretic analog of (combinatorial)
crystal theory. Indeed, we believe there are additional K-theory crystal operators that
extend our Uq(sln)-crystal structure to obtain a single connected component whose the
K-theory analogs of Demazure subcrystal characters are the so-called Lascoux polyno-
mials (see, e.g., [9, 13] and references therein), the K-theory analog of key polynomials
(or An Demazure characters) (see, e.g., [1, 8] and references therein). Towards this goal,
when λ is a single row or column, we construct such a K-theoretic Demazure crystal,
yielding a new interpretation of the associated Lascoux polynomials.

Furthermore, we also expect a suitable notion of a tensor product such that the con-
nected components are uniquely determined by what we call minimal highest weight
elements, and so that the multiplicity of SVn(ν) in SVn(µ) ⊗ SVn(λ) gives Cν

λµ. We
expect this structure to connect with the column insertion given in [2] and to provide
a K-theory analog of jeu de taquin (K-jdt) on semistandard set-valued tableaux. We
make some progress in this direction by introducing a K-jdt for semistandard set-valued
tableaux and showing that it is a Uq(sln)-crystal isomorphism.

Another approach to construct Gλ is by using the 5-vertex model (see, e.g., [14]).
Configurations of the 5-vertex model with certain boundary conditions are in natural
bijection with Gelfand–Tsetlin (GT) patterns, but this (and the corresponding crystal
structure via the bijection with SSYT; see [5]) is a “coarse” structure, yielding a formula
in analogy to the Tokuyama formula. We refine this by adding a marking to the GT
pattern, so we can write a Gλ as a sum over these marked GT patterns.

This extended abstract is organized as follows. In Section 2, we recall necessary
background. In Section 3, we prove our main result: a Uq(sln)-crystal structure on semi-
standard set-valued tableaux and discuss the corollaries. We relate our crystal structure
to (marked) Gelfand–Tsetlin patterns in Section 4. In Section 5, we define a jeu de taquin
on semistandard set-valued tableaux. In Section 6, we construct a K-theory analog of
crystals in some special cases and discuss extensions to the general case.

This is an extended abstract of our paper [12], which also has further connections.
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2 Background

Let sln be the type An−1 Lie algebra with index set I = {1, 2, . . . , n − 1}, fundamental
weights {Λi | i ∈ I}, and (Drinfeld–Jimbo) quantum group Uq(sln). We use the usual
identification of dominant weights, denoted P+, with partitions, where a Λi corresponds
to a column of height i. Let Sn denote the symmetric group on {1, . . . , n} with simple
transpositions {si | 1 ≤ i < n} and longest element w0.

A Uq(sln)-crystal is a nonempty set B together with maps ei, fi : B → B t {0} and
wt : B → P that satisfy certain compatibility properties and corresponds to a crystal
basis of a Uq(sln) representation. For more details, we refer the reader to [3]. We depict

fib = b′ as b i−→ b′. An element u ∈ B is called highest weight if eiu = 0 for all i ∈ I.
The highest weight Uq(sln)-module V(λ) for λ ∈ P+ has a crystal basis [7] and is

denoted by B(λ) with highest weight element uλ. This is given by the set SSTn(λ) of all
semistandard tableaux of shape λ with all entries at most n. The crystal operators ei and
fi act on T ∈ SSTn(λ) as follows: Write + above each column of T containing i but not
i + 1, and write − above each column containing i + 1 but not i. Cancel ordered pairs
−+. If every + (resp. −) thereby cancels, then fi(T) = 0 (resp. ei(T) = 0. Otherwise
fiT (resp. eiT) is given by replacing the i (resp. i + 1) corresponding to the rightmost
uncanceled + (resp. leftmost uncanceled −) with an i + 1 (resp. i). The weight wt(T) of
T ∈ SSTn(λ) is the weak composition (a1, . . . , an) ∈ Zn

≥0, where ai records the number of
i’s in the tableau T. Note that the highest weight element uλ is the semistandard tableau
given by filling the i-th row of λ from the top with i’s.

Let x = (x1, x2, . . . , xn) be indeterminants. For a partition λ, let sλ(x) denote the
corresponding Schur function. A semistandard set-valued tableau of shape λ is a filling T
of the boxes of λ by nonempty finite sets of integers {1, . . . , n} so that for a set A to
the left of a set B in the same row, we have max A ≤ min B, and for C below A in the
same column, we have max A < min C. Let SVn(λ) denote the set of all semistandard
set-valued tableaux of shape λ with all entries at most n. Following A. Buch [2], for a
partition λ, we define the symmetric (or stable) Grothendieck polynomial by

Gλ(x; β) := ∑
T∈SVn(λ)

β|wt(T)|−|λ|xwt(T).

3 Crystal structure of semistandard set-valued tableaux

Definition 3.1. The action of fi on SVn(λ) is defined exactly as for the usual semistan-
dard tableaux unless i ∈ b→, where b→ is the box immediately to the right of the box b

that corresponds to the rightmost uncanceled +. In this case, fi(T) is given by removing
i from b→ and adding i + 1 to b. If i /∈ b→, then we instead replace i with i + 1 in b. The
action of ei is the reverse: We define the action of ei exactly as for the usual semistandard
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Figure 1: The Uq(sl3)-crystal graph for SV3(λ) with λ = (2, 1).

tableaux unless i + 1 ∈ b←, where b← is the box immediately to the left of the box b that
corresponds to the leftmost uncanceled −. In this case, ei(T) is given by removing i + 1
from b← and adding i to b. If i + 1 /∈ b←, we instead replace i + 1 with i in b.

Proposition 3.2. Fix some s ∈ Z>0, k ∈ {1, . . . , n}, and µ = Λk + (s − 1)Λ1. We have
SVn

µ(sΛ1) ∼= B(µ), where SVn
µ(sΛ1) ⊆ SVn(sΛ1) is the closure under ei and fi, for all i ∈ I, of

the 1× s tableau Uµ = 1 1 · · · 1 1, . . . , k .

One proof of Proposition 3.2 is to use the bijection Ψµ to the hook shape B(µ) fol-
lowing [2, Sec. 6], where we take the minimal element of each entry of a semistandard
set-valued tableau T and place the remaining entries down the column.

The highest weight elements in SVn(λ) are characterized as the tableaux whose Far-
Eastern reading word, where we read a set as a column in decreasing order, is a Ya-
manouchi word. Hence, we call the highest weight elements Yamanouchi set-valued tableaux.

Theorem 3.3. We have SVn(λ) ∼=
⊕

µ B(µ)⊕Mµ
λ , where Mµ

λ denotes the number of Yamanouchi
set-valued tableaux of shape λ and weight µ.

Corollary 3.4. We have Gλ = ∑µ β|µ|−|λ|Mµ
λsµ with Mλ

µ as in Theorem 3.3.

C. Lenart [10, Theorem 2.2] gives a different combinatorial formula for the coefficients
Mµ

λ of Corollary 3.4 using flagged increasing tableaux. Although these objects are super-
ficially very different, applying the uncrowding bijection ψ given in [2, Sec. 6], our crys-
tal operators define the coplactic classes in analogy to the Robinson–Schensted–Knuth
(RSK) bijection with semistandard tableaux.
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Example 3.5. Let T = 1,2 3 3,4

3,5 5,6
. We have f3T = 1,2 3,4 4

3,5 5,6
and

ψ(T) =


1 3 3

2 4

3 5

5

6

,

· · ·
· ·
1 2

2

4

 , ψ( f3T) = f3ψ(T) =


1 3 4

2 4

3 5

5

6

,

· · ·
· ·
1 2

2

4

 .

Example 3.6. The K-Bender–Knuth moves of [6] do not commute with uncrowding ψ:

ψ

(
K2

(
1 1,2
3

))
= ψ

(
1 1,3
2

)
=

(
1 1
2 3

, · ·
· 1

)
, t2

(
ψ

(
1 1,2
3

))
=

(
1 1
2
3

,
· ·
·
2

)
.

There is a natural definition of K-evacuation on SVn(λ), given by applying K-Bender–
Knuth moves in the analog of the Bender–Knuth version (see [4]) of the Schützenberger
involution K1(K2K1) · · · (Kn−1Kn−2 · · ·K2K1)T. However, K-evacuation does not gener-
ally coincide with the Lusztig involution (which is equal to the evacuation or Schützenber
involution on semistandard tableaux [11]) on SVn(λ).

Example 3.7. Consider SV3(λ) for λ = (2, 1). Then we have

K1K2K1

(
1 2,3
2

)
= K1K2

(
1 1,3
2

)
= K1

(
1 1,2
3

)
=

1,2 2
3 ,

(
1 2,3
2

)∗
=

1 2,3
2 .

4 Gelfand-Tsetlin patterns

Define a horizontal strip to be a skew partition that does not contain a vertical domino.
Recall that a Gelfand–Tsetlin (GT) pattern with top row λ is a sequence of partitions Λ =
(λ(j))n

j=0 such that λ(0) = ∅, λ(n) = λ, and λ(j)/λ(j−1) is a horizontal strip. The weight

of a GT pattern is wt(Λ) =
(
|λ(j)| − |λ(j−1)|

)n
j=1.

Definition 4.1. A marked Gelfand–Tsetlin (GT) pattern is a GT pattern Λ together with a set
M of entries that are “marked,” where the entry (i, j), for 1 ≤ i < `(λ(j)) and 2 ≤ j ≤ n, is
allowed to be marked if and only if λ

(j)
i+1 < λ

(j−1)
i . If (Λ, M) is a marked GT pattern and

M(j) = {i | (i, j) ∈ M}, then the weight of (Λ, M) is wt(Λ, M) = wt(Λ) +
(∣∣M(j)

∣∣)n
j=1.

Example 4.2. For a GT pattern, we depict the marked entries with boxes and we under-
line those entries that are not allowed to be marked. Note that we can never mark the
rightmost entry in any row and that positions in row j that cannot be marked correspond
to those boxes of the tableau where we cannot add j. On the left is a marked GT pattern
with top row λ = (8, 7, 3, 1) and the corresponding semistandard set-valued tableau is
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on the right:

8 7 3 1 0
8 5 2 0

7 5 2
5 3

3

1 1 1 2 2 3 3,4 4

2 2 2,3 3 3,5 5 5

3 3,4,5 5

5

Proposition 4.3. Summing over all (marked) GT patterns Λ = (λ(j))n
j=1 with top row λ:

Gλ(x1, . . . , xn; β) = ∑
Λ

n

∏
j=1

Gλ(j)/λ(j−1)(xj; β) = ∑
(Λ,M)

xwt(Λ,M).

With this interpretation and [14, Prop. 3.4], we can compute Gλ in similar fashion to
the Tokuyama formula for Whittaker functions:

Gλ(x1, . . . , xn; β) = ∑
Λ

xwt(Λ)
n

∏
j=1

(1 + βxj)
mj(Λ),

where we sum over all GT patterns with top row λ and mj(Λ) denotes the number
of markable entries in row j of Λ. We can connect this to the 5-vertex model (with
natural boundary conditions depending on λ) by a natural bijection with GT patterns,
similar to a translation of [14, Cor. 3.6]. Note that GT patterns, and hence 5-vertex
configurations (see also [5]), have a natural crystal structure coming from the bijection
with semistandard tableaux. However, this crystal structure is a “coarse” version of the
crystals on semistandard set-valued tableaux obtained by grouping monomials.

5 K-jeu de taquin

We propose a K-theoretic analog of jeu de taquin (K-jdt) for semistandard set-valued
skew tableaux. Recall that a skew tableau is a filling of a skew partition λ/µ, where µ is
contained within λ. Let S ∗ T denote the skew tableaux formed by placing the lower-left
corner of S against the upper-right corner of T.

Consider T ∈ SSTn(λ/µ) to rectify to some R ∈ SSTn(ν) for some partition ν. For
any U ∈ SSTm(µ), let U be the tableau where we replace k 7→ k. Next, we define

U t T :=
U

T
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of shape λ. Note that U t T is a semistandard tableau of shape λ in the totally ordered
alphabet 1 < 2 < · · · < m < 1 < 2 < · · · < n. We define operators bi on tableaux whose
entries are in a totally ordered alphabet A. Let j be the letter of A immediately greater
than i. Then, bi acts by first applying the Bender–Knuth operator ti to the labels i and j,
and then switching all instances of i and j.

The rectification rectU(T) of T (with respect to the rectification order U) is the semi-
standard tableau obtained by restricting b◦n

1
◦ · · · ◦ b◦n

m−1
◦ b◦nm (U t T) to the unbarred

alphabet. Intuitively, we have pushed T and U through each other and rectU(T) is the
result of this pushing on T. Rectification is known to be independent of the choice of U,
a property known as confluence.

Theorem 5.1. The Littlewood–Richardson coefficient cν
λµ counts ordered pairs of semistandard

tableaux T ∈ SSTn(λ) and S ∈ SSTn(µ) such that uν ∈ SSTn(ν) is the rectification of T ∗ S.

Since the application of bn
i

during rectification preserves the semistandardness of the
unbarred subtableau, rectification can be considered as a crystal isomorphism. Moreover,
this implies that rect(T ∗ S) = uν if and only if T ∗ S is a highest weight element (i.e.
Yamanouchi) of weight ν.

There is currently no known rule that directly extends Theorem 5.1 to K-theory. To-
wards this goal, we propose rectifying a set-valued tableau by the algorithm described
above, except replacing everywhere the Bender–Knuth operators ti with the K-Bender–
Knuth operators Ki of T. Ikeda–T. Shimazaki [6]. Note that U can be set-valued as well.

Example 5.2. We have

U t T = 1 1,3 2 2
2,3 1,2
1

b37−→ 1 1,1 2 2
2,1 3,2
3

b37−→ 1 1,1 2 2
2,1 2,3
3

b27−→ 1 1,1 2 2
1,2 2,3
3

b27−→ 1 1,1 2 2
1,2 2,3
3

b17−→ 1 1,1 2 2
1,2 2,3
3

b17−→ 1 1,2 2 1
2,1 2,3
3

=⇒ rectU(T) = 1 1,2 2
2

.

Example 5.3. Our proposed K-jdt for set-valued tableaux is not generally confluent.

Consider T =
1,2

, U = 1 , V = 1,2 . Then, we have rectU(T) =
1

2
, rectV(T) = 1,2 .

Proposition 5.4. K-jdt with respect to any fixed rectification order is a crystal isomorphism.

Ideally, we want the Grothendieck product expansion Gλ ·Gµ = ∑ν Cν
λ,µGν, in parallel

to Theorem 5.1, by taking ordered pairs of tableaux T ∈ SV(λ), S ∈ SV(µ), rectifying
with respect to some rectification orders, and obtaining exactly the tableau R ∈ SV(ν)
with the correct multiplicity. We do not know a general choice of a rectification order.

Open Problem 5.5. Determine a K-jdt rule on semistandard set-valued tableaux such

that the K-rectification of T ∗ S equals the Buch insertion S B←− T from [2, Def. 4.1].



8 C. Monical, O. Pechenik, and T. Scrimshaw

6 K-theory crystal arrows

Our approach to finding a K-analog of crystals is to construct an additional set of opera-
tors, which we call K-crystal operators, eK

i , f K
i : SVn(λ)→ SVn(λ) t {0} with f K

i T formed
by adding an i + 1 to some cell of T and eK

i T′ = T if and only if T′ = f K
i T. Such K-crystal

operators should satisfy the following properties.

(K.1) The set SVn(λ) is connected with the minimal highest weight element uλ, the highest
weight element of B(λ), being the only highest weight element such that eK

i uλ = 0.

(K.2) The K-Demazure crystal

SVn
w(λ) :=

{
b ∈ SVn(λ) | (eK

i`)
maxemax

i` · · · (eK
i1)

maxemax
i1 b = uλ

}
does not depend on the choice of reduced expression w = si1 · · · si` .

(K.3) The character of SVn
w(λ) is the Lascoux polynomial Lwλ(x; β) = vwxλ, where vi is

the Demazure–Lascoux operator vi f = πi f + βπi(xi+1 · f ), where πi f = xi· f−xi+1·si f
xi−xi+1

,
and vw = vi1 · · ·vik for some reduced expression w = si1 · · · sik .1

We can think of the Lascoux polynomials, named in honor of A. Lascoux who essen-
tially introduced them in [9], as K-theoretic analogs of the key polynomials (also known
as Demazure characters or standard bases), although no such interpretation using ge-
ometry or representation theory is currently known.

Definition 6.1. If the above properties (K.1)–(K.3) hold for some K-crystal operators, we
say they give SVn(λ) the structure of a K-crystal.

Note that in a K-crystal, we have SVn
w0
(λ) = SVn(λ). We anticipate that there is a

unique K-crystal structure on SVn(λ) extending our Uq(sln)-crystal structure. Moreover,
we expect our K-crystal operators to further satisfy:

(H.1) for all T ∈ SVn(λ), we have eK
i eK

i T = 0 and f K
i f K

i T = 0;

(H.2) if eiT 6= 0 or fiT = 0, then f K
i T = 0.

We expect (H.1) and (H.2) from the definition of vi and use them as heuristics for the K-
crystal operators, where they should make natural axioms for a general K-crystal theory.

We first consider a K-crystal structure for single rows.

Definition 6.2. Let λ ∈ {kΛ1, Λi}. The K-crystal operator f K
i acts on T ∈ SVn(λ) as

follows: If i /∈ T or i + 1 ∈ T, then f K
i T = 0; otherwise f K

i T is given by adding i + 1 to
the rightmost box containing i in T. The K-crystal operator eK

i acts on T ∈ SVn(λ) as
follows: If there is no box in T containing both i and i + 1, then eK

i T = 0; otherwise eK
i T

is given by deleting i + 1 from that (necessarily unique) box.
1Recall that both vi and the Demazure operator πi satisfy the braid relations, so vw is well-defined.
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Figure 2: The K-crystal structure on SV3(2Λ1) (left) and SV4(Λ2) (right).

We need the following K-analog of [8, Prop. 3.3.4]. We propose the following K-
analog of an i-string based on the Demazure–Lascoux operator. Define an i-K-string to
be the subcrystal of the form

b • • · · · • •

• • • · · · •

i i i i i

i i i ii

where the i-strings are as long as possible and the dashed arrow represents the f K
i action.

We say the i-K-string has length ` if ϕi(b) = `. (This is equivalent to saying that the i-
string starting at b has length `.) Note that ϕi( f K

i b) = `− 1.
We have SVn(λ) decomposing as a direct sum of i-K-strings when considering only

i-(K-)arrows. Note that this is branching down to type sl2.

Proposition 6.3. Let S be an i-K-string of SVn(λ) and let b be the highest weight element of S.
Then, the set SVn

w(Λk) ∩ S is either empty, S, or {b}.

Theorem 6.4. Let λ ∈ {kΛ1, Λi}. The Uq(sln)-crystal SVn(λ) with the K-crystal operators
given above is a K-crystal and satisfies (H.1) and (H.2).

For λ = kΛ1, we prove this using properties of the minimal length coset representa-
tives of W/WΛ1 , where WΛ1 = 〈s2, . . . , sn−1〉 is the stabilizer of Λ1. For λ = Λi, we prove
this by analyzing the local behavior at each element.

Next, we try to construct a K-crystal structure on SVn(λ) for general λ. For this, the
K-crystal operators in Definition 6.2 do not seem to give a K-crystal structure on SVn(λ).
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Example 6.5. If we attempt to naturally extend the K-crystal operators, for SV3
s2s1

(Λ2 +

Λ1) and the 1-K-string S starting at the tableau T = 1 1,3

3
, then we have S ∩ SV3

s2s1
(Λ2 +

Λ1) = {T, f1T, f K
1 T} 6= ∅, S, {T}. Hence, the naïve generalization of Proposition 6.3 is

not true in this case. Moreover, if we attempt to extend this structure to SV3
s1s2s1

(Λ2 +Λ1),

then we fail to obtain one of the following two tableaux: 1,2 3

3
, 1 3

2,3
.

Proposition 6.6. There does not exist a K-crystal structure on SV3(Λ2 +Λ1) that satisfies (H.2).

Open Problem 6.7. Does there exist a K-crystal structure satisfying (H.2) for SVn(kΛi)?

We believe a more natural condition would be to enforce Proposition 6.3. In this case,
we require a weakening of the K-crystal structure, where the K-crystal operators depend
on the choice of reduced expression for w0. For λ = Λ2 + Λ1 and n = 3, we give an
example of this weak K-crystal structure for w0 = s1s2s1 by Figure 3. Note that we do
not have 1 3

2,3
in the K-Demazure subcrystal SV3

s2s1s2
(λ).

Let us focus on the weak K-crystal given in Figure 3. There are a few K-crystal
operators that require more care than in the single row and single column cases:

f K
1

1 1,3
3

= 1 1,3
2,3

, f K
1

1 X
3

= 1 X
2,3

, f K
2

1 1,2
2

= 1 X
2

, f K
2

1 2
2

= 1 2
2,3

.

A possible construction of a K-crystal on SVn(λ) is to define a notion of tensor prod-
ucts of K-crystals. Such a tensor product rule should have connected components whose
characters are Grothendieck polynomials. Then one could take a connected component
of SVn(Λ1)

⊗|λ| containing a minimal highest weight element of weight λ.
One approach to showing such the tensor product rule would be use the Pieri rule

from [10] and construct a bijection SVn(Λ1) ⊗ SVn(λ) ∼=
⊕

ν SVn(ν), where ν/λ is a
single box and `(ν) ≤ n, that we consider as a K-crystal isomorphism. By using [2,
Thm. 5.4], the minimal highest weight elements should have a reading word that is
highest weight except we read a box in increasing order, as opposed to decreasing order in
how we construct the crystal operators. Therefore, the minimal highest weight elements
should be of the form i1 < · · · < ik ⊗ Tλ where i1, . . . , ik are rows with addable corners

in λ. We expect such an isomorphism to be given by Buch insertion S⊗ T 7→ (S B←− T).

Open Problem 6.8. Construct a tensor product rule for (weak) K-crystals.

Recall that the insertion given in [2] does not give an associative product (unlike RSK);
see [2, Ex. 4.3]. Thus, we do not expect the tensor product to be associative. Solving Open
Problem 5.5 should help as we will want K-jdt to be a K-crystal isomorphism.



Symmetric Grothendieck crystals 11

References

[1] S. Assaf and A. Schilling. A Demazure crystal construction for Schubert polynomi-
als. Algebraic Combinatorics, 1(2):225–247, 2018.

[2] A. S. Buch. A Littlewood-Richardson rule for the K-theory of Grassmannians. Acta
Math., 189(1):37–78, 2002.

[3] D. Bump and A. Schilling. Crystal bases. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2017. Representations and combinatorics.

[4] M. Chmutov, M. Glick, and P. Pylyavskyy. The Berenstein-Kirillov group and cactus
groups. J. Comb. Algebra, 2016. To appear, arXiv:1609.02046.

[5] J. L. Espiro and L. Volk. Crystals from 5-vertex ice models. J. Lie Theory, 28(4):1119–
1136, 2018.

[6] T. Ikeda and T. Shimazaki. A proof of K-theoretic Littlewood-Richardson rules by
Bender-Knuth-type involutions. Math. Res. Lett., 21(2):333–339, 2014.

[7] M. Kashiwara. On crystal bases of the q-analogue of universal enveloping algebras.
Duke Math. J., 63(2):465–516, 1991.

[8] M. Kashiwara. The crystal base and Littelmann’s refined Demazure character for-
mula. Duke Math. J., 71(3):839–858, 1993.

[9] A. Lascoux. Transition on Grothendieck polynomials. In Physics and combinatorics,
2000 (Nagoya), pages 164–179. World Sci. Publ., River Edge, NJ, 2001.

[10] C. Lenart. Combinatorial aspects of the K-theory of Grassmannians. Ann. Comb.,
4(1):67–82, 2000.

[11] C. Lenart. On the combinatorics of crystal graphs. I. Lusztig’s involution. Adv.
Math., 211(1):204–243, 2007.

[12] C. Monical, O. Pechenik, and T. Scrimshaw. Crystal structures for symmetric
Grothendieck polynomials, 2018. Preprint, arXiv:1807.03294.

[13] C. Monical, O. Pechenik, and D. Searles. Polynomials from combinatorial K-theory,
2018. Preprint, arXiv:1806.03802.

[14] K. Motegi and K. Sakai. K-theoretic boson-fermion correspondence and melting
crystals. J. Phys. A, 47(44):445202, 2014.

[15] The Sage Developers. Sage Mathematics Software (Version 8.2), 2018. http://www.

sagemath.org.

http://arxiv.org/abs/1609.02046
http://arxiv.org/abs/1807.03294
http://arxiv.org/abs/1806.03802
http://www.sagemath.org
http://www.sagemath.org


12 C. Monical, O. Pechenik, and T. Scrimshaw

1
1

2

1
2

21
3

21
3

3

1
1

31
2

32
2

3

1
2

3

1
1,2

21
1,3

2

1
1,3

3

1
2,3

2

1
2,3

32
2,3

3

1
1

2,31
2

2,31
3

2,3

1
1,2

31,2
2

31,2
3

3

1
X

21
X

31,2
2,3

3

1
1,2

2,31
1,3

2,31
2,3

2,3

1
X

2,3

1
2

22

11

2
1

1

21

1
2

1

12

1

2

12

2

1

2

2
1

1
2

1

2

2

21

1

2

2
1

Figure
3:A

w
eak

K
-crystalstructure

on
SV

3(Λ
2
+

Λ
1 ),w

here
X

=
{1,2,3},for

w
0
=

s1 s2 s1 .


	Introduction
	Background
	Crystal structure of semistandard set-valued tableaux
	Gelfand-Tsetlin patterns
	K-jeu de taquin
	K-theory crystal arrows

