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Abstract

Purpose of Review Concerns surrounding climate change are increasing pressure
on policymakers to reduce greenhouse-gas emissions. A number of policy mecha-
nisms, including Pigouvian taxes on carbon and subsidies for and mandates on the
use of carbon-free generation, are among the levers that are used to achieve this goal.
A challenge that such mechanisms present is that they can distort energy markets,
affecting prices and the financial viability of investing in or maintaining generating
capacity.

Recent Findings We survey literature pertaining to how policy mechanisms impact
markets and short- and long-run economic signals. We present also a case study that
examines these issues. Our case study uses a two-step modeling procedure. First, a
long-term generation- and transmission-planning model determines the optimal tech-
nology mix that should be built to serve future loads under different climate-policy
regimes. Next, a unit-commitment model is used to simulate hourly operation of the
system. Combining the results of these two modeling steps, we assess the efficiency
of using different policy mechanisms to achieve carbon reductions.

Summary Based on our literature survey and case study, we find that market-based
policies (e.g., carbon taxes) achieve decarbonization targets most efficiently. More-
over, market-based policies are the least distortionary in terms of price formation in
wholesale electricity markets.

Keywords Energy policy - climate policy - energy markets - generation investment -
cost recovery - energy economics
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1 Introduction

Traditional electricity markets consist typically of vertically integrated utilities that
recover their costs through cost-of-service regulation. Typically, cost-of-service reg-
ulation entails a regulatory body setting retail utility prices based on an estimate of
the cost of serving customers and an added rate of return [, 2]. The added rate of
return is intended to reflect the utility’s cost of capital. Normally, this form of regula-
tion does not provide strong incentives for cost containment and cost risks often are
shifted to customers. As such, beginning in the 1980s, a number of jurisdictions have
introduced electricity-market reforms. The aim of these reforms is to place more cost
risk on investors, which can yield more prudent investment decisions.

Two mechanisms are employed commonly in restructured wholesale electricity
markets to provide generators with opportunities to recover their costs. The first,
which is referred to often as an energy-only market design, relies solely on scarcity
pricing of energy and operating reserves. Stoft [3] provides a stylized model that
outlines how cost-recovery using energy prices only works. Stoft shows also that if
the generation mix of an electricity system is optimal (in the sense of being welfare-
maximizing), the marginal energy prices that emerge from a perfectly competitive
market are guaranteed to recover all generator costs. The other cost-recovery mecha-
nism employs a capacity payment, which supplements energy and reserve payments.
There are a number of reasons that capacity markets may be employed to handle cost
recovery [4, 5]. For one, scarcity pricing in an energy-only market may be harmed
by market mitigation, which are steps that are taken to reduce the exercise of market
power by generators. Capacity markets also can accommodate complexities such as
lumpy investments, economies of scale, and other market features that do not fit the
stylized model that underlies the energy-only market design.

Cost recovery in a restructured electricity market can be complicated further in
the presence of policy interventions. Policymakers, legislators, and regulators are
addressing climate-change concerns through a mix of policy interventions. Among
these mechanisms are Pigouvian taxes on carbon emissions, direct subsidies (e.g.,
production- or investment-tax credits or feed-in tariffs) for carbon-free generation,
and mandates on the usage of carbon-free generation (e.g., renewable portfolio stan-
dards). These types of policy interventions impact cost recovery because they distort
investment decisions. The stylized energy-only model that Stoft [3] analyzes assumes
that generation investments are made based purely on the economics of supplying
demand. A renewable portfolio standard (RPS), as an example, results in some in-
vestments being made for policy as opposed to economic reasons.

This paper contributes to understanding the interplay between electricity markets
and climate policy in two ways. First, we survey formative works that examine this
topic. This includes modeling exercises that examine the impacts of high penetrations
of renewable energy resources on price formation, the functioning of electricity mar-
kets, and cost recovery. Second, we present results from an illustrative case study that
compares the market-efficiency and -distortion properties of three climate-change-
mitigation policies: carbon taxes, an RPS, and a production tax credit (PTC) for re-
newable energy. Our case study demonstrates that carbon taxes are the most and RPS
the least efficient means of achieving a desired level of carbon reductions. We find
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also that carbon taxes are the least distortionary on investment incentives whereas a
PTC and RPS can exacerbate revenue-deficiency problems for generators.

The remainder of this paper is organized as follows. First, we provide a litera-
ture survey. Next, we detail the model and data that underlie our case study. This is
followed by case-study results and conclusions.

2 Literature Survey

Concerns surrounding climate change are leading to increased use of policies to
decarbonize the electricity sector. However, with few exceptions (European Union
Emissions Trading System' being one), most jurisdictions are not addressing carbon
emissions directly through taxes [6] or cap-and-trade schemes [7]. Rather, most poli-
cies address climate change indirectly by providing subsidies to or setting targets for
the deployment and use of carbon-free technology, such as renewable energy [8]. A
number of works compare the relative merits of policy mechanisms to incentivize the
use of renewable energy, with Lipp [9] providing a comprehensive and seminal dis-
cussion. Given this approach to climate-change policy, we focus our literature survey
on the impacts of high renewable-energy penetrations on the functioning of wholesale
electricity markets and price formation and cost recovery therein.

Ela et al. [10] discuss the evolution of wholesale electricity markets with increas-
ing renewable-energy penetrations. They do not provide specific market-design rec-
ommendations. Rather, Ela et al. conduct an agnostic survey of market evolution and
identify two key market-design challenges that arise from renewable integration. One
is providing price signals to incentivize flexibility for short-term operations. The sec-
ond is ensuring sufficient revenues for capacity to be built and maintained for long-
term reliability. Milligan et al. [1 1] explore wholesale electricity market designs to
incentivize investments in resources that are necessary for system reliability with high
renewable-energy penetrations. Their work recognizes the investment and capacity-
expansion challenges that are created by variable availability of renewable energy in
real time. They examine also the need for greater supply-side flexibility to ensure that
demands can be served reliably with renewable variability and uncertainty. Mormann
et al. [12] provide an empirical survey that compares market and policy designs in
California, Texas, and Germany. By comparing outcomes in the three regions, they
draw conclusions regarding how policy and market-design choices can impact the
technical and economic efficiency of integrating renewables into electricity systems.

These types of analyses [10—12] give rise to works that provide more prognos-
tic analyses of wholesale-market designs. Riesz et al. [13] model the performance of
Australia’s National Electricity Market, assuming that it maintains its current energy-
only design with 100% penetration of renewables. They find that the energy-only de-
sign may work without the need for an explicit capacity market, but that this result
depends on some critical assumptions. Importantly, the price cap in the market would
need to be raised substantially (they estimate from a price of 13500 AUD/MWh
at the time of their work to 60000 AUD/MWh-80000 AUD/MWh in the future

I https://ec.europa.eu/clima/policies/ets_en
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that they model). Alternatively, demand-side participation, which allows customers
to specify their willingnesses to pay for various levels of supply reliability [14],
could obviate the need for high price caps. Regardless of the approach that is taken,
the market likely needs a liquid derivatives market to allow hedging of significant
price risk and volatility. Jenkin et al. [15] investigate capacity-market designs in
the presence of high renewable-energy penetrations. Their work is cautionary—if
markets are not designed properly, high renewable-energy penetrations may yield
greater price volatility and revenue deficiency for capacity resources. This can lead
to further suboptimal market-design choices. They suggest that important challenges
remain in designing markets that provide adequate incentives for investing in ca-
pacity and operational flexibility (which are the key challenges that Ela et al. [10]
raise). Levin and Botterud [16] analyze the impacts of increasing wind penetrations
on electricity and reserve prices by solving a mixed-integer optimization that co-
optimizes capacity-expansion, unit-commitment, and dispatch decisions. They find
that revenue-deficiency problems (absent scarcity pricing, no thermal units are prof-
itable) can be addressed through scarcity pricing or capacity payments. However,
the required capacity payments are increasing in the wind-penetration level. Morales
et al. [17] propose a revision to pool- and balancing-energy pricing that is tailored
to a wholesale market with high penetrations of wind generation. They demonstrate
that their proposed prices allow for generator-cost recovery and that the market is
revenue-adequate (i.e., payments from loads cover payments to generators).

One gap in extant modeling exercises that examine the financial viability of gen-
eration [1 1, 13, 15, 16] is that they assume an exogenously set renewable-penetration
level. The case study that we present addresses this gap by examining market eco-
nomics that result from the use of different policy levers. While these policy levers
affect renewable-penetration levels, they impact the generation mix in other ways as
well. Thus, our work provides a comprehensive assessment of how policy decisions
impact the market, as opposed to focusing solely on renewable energy.

3 Case-Study Methodology

Our case study entails two modeling steps. First, we model the least-cost mix of gen-
eration and transmission capacity to serve future demand. Next, we fix the generation
and transmission mix (based on the first step) and use a unit-commitment model to
determine the hourly operation of the power system. Both models are formulated to
capture endogenously the effect of policy mechanisms.

3.1 Generation- and Transmission-Expansion Model

We adapt the model of Liu ef al. [18, 19], to which readers are referred for further
details, to represent generation- and transmission-expansion decisions. We provide
a model formulation, but exclude many of the implementation details for sake of
brevity. The planning model consists of investment epochs, each one spanning mul-
tiple years. Investment decisions are made at the beginning of each epoch. Power-
system operations between the epochs are captured by modeling representative days.
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3.1.1 Model Notation

Sets and Set-Related Parameters
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set of generation technologies.

set of generation technologies to which the RPS applies.

set of transmission zones.

set of operating days between investment epochs.

number of operating hours during each representative day.

set of investment epochs.

number of years between investment epochs.

set of scenarios.

set of scenarios that are indistinguishable from scenario @ when making
investment decisions during investment-epoch i.

lifetime of technology n (investment epochs).

maximum capacity of technology #n that can be built in zone r during
investment-epoch i (MW).

cost of retiring technology n in zone r during investment-epoch i of sce-
nario @ ($/MW).

generation cost of technology 7 in zone r during investment-epoch i of
scenario @ ($/MWh).

PTC for technology 7 in zone r during investment-epoch i of scenario @
($/MWh).

carbon tax for technology # in zone r during investment-epoch i of sce-
nario @ ($/MWh).

investment cost of building transmission between zones r and # during
investment-epoch i of scenario @ ($/MW).

maintenance cost of technology n in zone » during investment-epoch i
of scenario @ that is a epochs old at the end of the epoch ($/MW).
investment cost of energy storage in zone r during investment-epoch i of
scenario ® ($/MW).

cost of unserved load ($/MWh).

investment cost of building technology n in zone r during investment-
epoch i of scenario @ ($/MW).

zone r’s load during hour % of day d of investment-epoch i of scenario @
(MW).

discount rate.

ramping factor of technology n (p.u.).

energy capacity of energy storage (h).

roundtrip efficiency of energy storage (p.u.).

probability of scenario @.

investment-epoch-i RPS (MW).

capacity factor of technology n in zone r during hour % of day d of
investment-epoch i of scenario w (p.u.).

weight on representative day d of investment-epoch i (days).
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capacity of technology n in zone r with age a that is retired economically
during investment-epoch i of scenario @ (MW).

total capacity of technology # that is installed in zone r with age a at the
end of investment-epoch i of scenario @ (MW).

capacity that is added to transmission link between zones r and r’ during
investment-epoch i of scenario ® (MW).

capacity of energy storage that is installed in zone r during investment-
epoch i of scenario @ (MW).

vector denoting all scenario-® investment variables (i.e., k’s) of
investment-epoch i.

hour-A power charged during day d of investment-epoch i of scenario @
into energy storage that is in zone r (MW).

hour-4 power discharged during day d of investment-epoch i of sce-
nario ® from energy storage that is in zone » (MW).

hour-% production during day d of investment-epoch i of scenario ®
from technology » in zone r (MW).

net power flow during hour % of day d of investment-epoch i of sce-
nario @ on link from zone r to ¥ (MW).

hour-4 ending state of energy (SOE) during day d of investment-epoch i
of scenario w of energy storage that is in zone r (MW).

hour-% unserved load in zone r during day d of investment-epoch i of
scenario ® (MW).

3.2 Model Formulation

The generation- and transmission-expansion model is formulated as:
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Objective function (1) minimizes expected discounted cost. The objective func-
tion includes seven cost components. The first is the cost of investing in new gener-
ation capacity. New generation capacity that is added during investment-epoch i is
a = 1 investment epochs old at the end of the epoch. Thus, new capacity is given by
kg,n,m.,]. The second term in (1) is the cost of retiring generating capacity. The third
term is generator-maintenance costs. The fourth term is the cost of investing in en-
ergy storage. The fifth term is generator-operation costs. The sixth term in (1) is the

cost of adding transmission capacity. The final term is the cost of unserved load.
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The model has two types of constraints—(2)—(6) and (7)—(16) pertain to invest-
ment and operating decisions, respectively. Constraints (2) impose limits on gener-
ation investments. Constraints (3) define the time evolution of the amount of gen-
erating capacity of different ages. Constraints (4) impose capacity-based RPS re-
quirements. Constraints (5) impose non-negativity on the investment variables. Con-
straints (6) are non-anticipativity constraints. These impose the structure of the sce-
nario tree on the decisions. This is done by ensuring that decisions that are made
during each investment epoch are not dependent on future scenario realizations.

Constraints (7) impose the load-balance requirement during each operating pe-
riod. Constraints (8) impose capacity limits on generator, which are defined based
on a capacity factor, g, i 4., For most dispatchable generation technologies these
capacity factors equal 1. However, for weather-dependent renewables the capacity
factors vary across operating periods and can be less than 1, to represent the im-
pacts of weather conditions. Constraints (9) impose ramping limits on generators.
Constraints (10) impose transmission-capacity limits.

Constraints (11)—(15) pertain to the operation of energy storage. Constraints (11)
define the time evolution of the SOE of energy storage. Constraints (12) and (13)
force energy storage to begin and end each day with a 50% SOE. This is a heuristic
approach to attaching carryover value to stored energy from one day to the next [20].
Constraints (14) and (15) impose energy and power limits on energy storage.

Constraints (16) limit the amount of unserved energy in each operating period to
be no greater than demand.

3.3 Unit-Commitment Model

Following convention, we formulate our unit-commitment model as a mixed-integer
linear optimization problem [2 1-24].

3.3.1 Model Notation

We define the following model notation. Some of the notation that is common with
the capacity-expansion model (i.e., R, CY, 1, and {) is not repeated here.

Sets and Set-Related Parameters
set of generators.

4(r) set of generators that are in zone r.

49(r) set of non-dispatchable generators that are in zone r.
54 set of energy-storage units.

Z(r) set of energy-storage units that are in zone r.

I set of hours.

Parameters

Cg variable generation cost of generator g ($/MWh).
cgU start-up cost of generator g ($/start-up).

c PTC for generator g ($/MWh).

carbon tax for production of generator g ($/MWh).
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carbon tax for generator g starting up ($/start-up).

cost of unserved operating reserves ($/MW-h).

hour-4 load in zone r (MW).

capacity of transmission line connecting zones r and ¥ (MW).
minimum output level of generator g when it is online (MW).
maximum hour-/ output level of generator g when it is online (MW).
power capacity of energy-storage-unit s (MW).

ramping limit of generator g (MW/h).

load-based operating-reserve requirement (p.u.).

operating-reserve requirement based on non-dispatchable generation
(p.u.).

Decision Variables

es,h

hour-h power charged into energy-storage-unit s (MW).

hour-h power discharged from energy-storage-unit s (MW).

hour-% operating reserves provided by energy-storage-unit.s (MW).
ending hour-4 SOE of energy-storage-unit s (MWh).

hour-A power flow through transmission line connecting zones r and r/
(MW).

hour-% unserved operating reserves in zone r (MW).

hour-4 unserved load in zone r (MW).

hour-% operating reserves provided by generator g (MW).

hour-h power output of generator g (MW).

binary variable that equals 1 if generator g is online during hour %, and
equals O otherwise.

binary variable that equals 1 if generator g is started at the beginning of
hour A, and equals 0 otherwise.

3.3.2 Model Formulation

The unit-commitment model is formulated as:

min Z { Z [(cg —cq + cg) Xeh+ (CSU + C;,Su) Zg,h:| a7
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Objective function (17) minimizes the sum of generation costs and costs associ-
ated with any unserved load or operating reserves.

Constraints (18) impose load-balance requirements in each zone. Constraints (19)
impose operating-reserve requirements. We assume that these requirements are the
sum of portions of demand and scheduled production from non-dispatchable (e.g.,
wind and solar) generators [25]. The rationale behind setting the operating reserves
in this way is that the system should have sufficient flexibility to accommodate unan-
ticipated loss of generation from non-dispatchable renewables. We allow only dis-
patchable generation units and energy storage to provide operating reserves.

Constraints (20) and (21) impose minimum- and maximum-generation limits, re-
spectively, on each generator. The maximum-generation limit applies to the sum of
energy and operating reserves, requiring that operating reserves can be provided with-
out violating the capacity limit. To model renewables, each generating unit’s maxi-
mum capacity can vary by hour. Constraints (22) and (23) impose ramping limits
on generators. Constraints (23) ensure that each generator can provide its operating
reserves without violating its ramping capability. Constraints (24) define each gener-
ator’s start-up variables in terms of intertemporal changes in its online variables.

Constraints (25) define the time evolution of the SOE of each energy-storage unit.
Constraints (26) and (27) impose power-capacity limits on charging and discharg-
ing, respectively, of each energy-storage unit. Constraints (27) ensure that the power-
capacity limits of energy-storage units are not violated by serving operating reserves.
Constraints (28) ensure that each energy-storage unit’s SOE remains non-negative
and below its energy capacity. Constraints (29) ensure that each energy-storage unit
has sufficient stored energy to serve its operating-reserve commitment.

Constraints (30) impose transmission limits. Constraints (31) impose bounds and
non-negativity on unserved load while (32) impose non-negativity on provided oper-
ating reserves. Constraints (33) ensure that the unit-commitment variables are binary.
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3.4 Financial Analysis

We conduct our financial analysis of generation investments by computing the net
operating profit that each generator earns on each day from the solution of the unit-
commitment problem. Specifically, we define A, and B, as the dual variables that
are associated with (18) and (19), respectively, for hour & and zone r.2 These dual
variables represent hourly locational marginal prices for energy and reserves.

Based on the energy and reserve prices, generator g earns:

o T P SU 7,.SU
Z {(xnh — g —cg) g+ Brnxen— (Cg tcg ) Zg,h} )
hey

in profit from energy and reserve payments during day &, where r denotes the zone
in which generator g is located. A challenge in remunerating generators in markets
that rely on centralized unit-commitment is that generators may operate at a net profit
loss if they are paid based solely on energy and reserve prices. This complication
arises because unit-commitment models are non-convex [26, 27]. Most wholesale
electricity markets overcome this issue through make-whole payments, which are
supplemental payments that are given to any generator that operates at a net profit
loss if paid solely based on the energy and reserve prices [28]. The supplemental
payment is equal to the profit loss. Taking account of make-whole payments, we
compute generator g’s total operating profits as:

P, = Zmax 0,
_@

Z |:(A/r7h - Cg + Cg - C;) xg;h + ﬁr!h}{:vh - (C?U + C§7SU) Zg‘h:| ' (34)
he?

We compute the ratio between each generator’s total operating profits and its
investment cost:

where .#, is the investment cost of generator g, which is determined from the solution
of (1)-(16). Z, represents the proportion of the generator’s investment cost that is
recovered from market revenues. One could conduct a back-of-the-envelope analysis
of the financial viability of a generation investment by comparing %, to the capital
charge rate of the investment. If %, is greater than the capital charge rate, one would
conclude that the investment is viable, insomuch as its operating profits cover the
estimated cost of financing the investment.

2 Because (17)—(33) is a mixed-integer linear optimization problem, it does not have dual variables.
Following standard industry practice, we obtain dual variables by fixing the binary variables in (17)—(33)
to their optimal values and solving the resulting linear relaxation, which does have dual variables.
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4 Case-Study Data

Our case study uses data for Electric Reliability Council of Texas (ERCOT) and is
based on the work of Liu [29], which provides the complete data set. We summarize
the case-study data. The case study assumes three zones (West, East, and South). The
investment epochs begin in 2020 and occur at ten-year intervals, with 2040 being the
final investment year. To account for inflation, all costs are measured in 2014 dollars.

4.1 Generation-and-Transmission-Expansion-Model Data

We model five generation technologies—wind, solar, nuclear-powered, and natural-
gas- and coal-fired units—and an energy-storage technology. The system begins with
a thermal-dominated design, consisting of 45 GW, 18 GW, 5 GW, and 4 GW of
natural-gas- and coal-fired, nuclear, and wind generation, respectively.

The uncertainties that are modeled explicitly in the generation- and transmission-
expansion model via scenarios are changes in investment and generation-fuel costs.
Table | summarizes the range of baseline investment costs for wind and solar tech-
nologies during the three investment epochs. The scenarios in the planning model
include cases in which investment costs vary from these baseline values by up to
5% and 7.5% in 2030 and 2040, respectively. This reflects technology-improvement
uncertainty. Wind and solar are assumed to have zero operating cost.

Table 1: Baseline renewable-generation-technology investment costs in generation-

and transmission-expansion model ($/kW) [30, 31]
Technology 2020 2030 2040
Wind 3737-3864  3440-3556  3350-3463
Solar 3164-3345  2990-3161 2603-2752

Table 2 summarizes the investment costs, the baseline range of operating costs in
the three investment epochs, and the ramping factors of the non-renewable generation
technologies. We model scenarios in which coal prices increase by up to 7% and
28% relative to their baseline values in 2030 and 2040, respectively. Scenarios allow
for natural-gas prices to increase by up to 18% and 54% relative to their baseline
values in 2030 and 2040, respectively. We model land-use limits on the installation
of renewable resources [32], but not on other generating technologies.

We model a generic energy-storage technology with a capital cost of $2333/kW-
$2362/kW, 20-hour discharge duration, and 80% roundtrip efficiency. This energy-
storage technology is akin to pumped-hydroelectric or compressed-air energy stor-
age. We focus on such energy-storage technologies because our model uses energy
storage primarily for managing renewable curtailment and bulk generation shifting.
Our model does not have sufficient spatial or temporal granularity to represent other
energy-storage use cases (e.g., distribution deferral or frequency regulation).
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Table 2: Baseline investment and operating costs and ramping factors of non-
renewable generation technologies in generation- and transmission-expansion model

[30,31]

Operating Cost ($/MWh)

Technology  Investment Cost ($/kW) 2020 2030 2040 Ramping Factor (p.u.)

Coal 3037-3164 25-26 27-28 28-29 0.29
Natural Gas ~ 833-862 49-50  55-57 66-68  0.43
Nuclear 5437-5564 10-11  10-11 10-11 0.16

We use 30 days, which are selected from a single representative year using hier-
archical clustering [19], to capture system operations between successive investment
epochs. Weather conditions, which determine real-time solar and wind availabilities
and demand patterns, are simulated using a vector-autoregression (VAR) model [33].
Residential electricity demands are simulated using a methodology that combines
Monte Carlo simulation with physical models of residential devices [33, 34]. Com-
mercial and industrial electricity demands are simulated using a time-series based
model [35].

4.2 Unit-Commitment-Model Data

Once generation investments are determined in the first modeling step, natural-gas-
and coal-fired capacity is divided into discrete generating units. This division is
needed to model unit-commitment decisions. We do this division by using archetypal
natural-gas- and coal-fired units, the minimum and maximum capacities of which are
listed in Table 3. In each of the three investment epochs, we adjust the maximum out-
put levels of the added units so that the added capacity can be divided evenly among
an integer number of units. We adjust the maximum output levels to minimize the
absolute difference between the adjusted maximum output level of each unit and the
maximum output level of the corresponding archetypal unit. We scale the minimum-
output levels of the units in proportion to the adjusted maximum output levels.

Table 3: Minimum and maximum output levels of archetypal natural-gas- and coal-
fired generators in unit-commitment model (MW)

Technology ~ Minimum Output Level =~ Maximum Output Level

Natural Gas 168 600
Coal 224 800

Generator-operation costs, carbon taxes, PTCs, and ramping factors are the same
in the unit-commitment model as they are in the generation- and transmission-expansion
model. Start-up costs for natural-gas- and coal-fired generators are included in the
unit-commitment model, with these costs being higher with a carbon tax (due to the
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associated fuel that is consumed). Nuclear units are assumed always to be operating
at their maximum production levels.

We assume that hourly operating-reserve requirements are set equal to the sum of
3% of demand and 5% of total scheduled production from wind and solar units [25].
We set the cost of unserved load and operating reserves equal to $9000/MWh and
fix the energy and operating-reserve prices to $9000/MWh during any hour with ei-
ther load or operating-reserve curtailment. These pricing rules follow scarcity-pricing
mechanisms that are employed in ERCOT.

We model unit-commitment decisions for each investment epoch, by simulating
the full year from which the 30 operating days that are used in the generation- and
transmission-expansion model are clustered. For sake of computational tractability,
we conduct the simulation in a rolling-horizon fashion one day at a time, with a 48-
hour optimization horizon. The 48-hour optimization horizon ensures that decisions
at the end of each day take into account load conditions during the following day.

5 Case-Study Results

The three policy cases are calibrated to achieve the same target of 80% carbon re-
ductions relative to the 2010 level by the end of 2040. An output-based carbon tax of
$12/MWh and $6/MWh for coal- and natural-gas-fired units, respectively, achieves
this goal. The goal can be achieved with PTCs of $30/MWh and $35/MWh for wind
and solar, respectively, or RPS targets of at least 30 GW and 185 GW for 2030
and 2040, respectively.

Figure | summarizes the optimal generation mix that is built under each policy in
the baseline scenario of the generation- and transmission-expansion model. Figure 1
shows that the policy choice has major impacts on the investments. The BAU case
results in modest investment in natural-gas- and coal-fired generation during 2020,
which is followed by attrition of these technologies as older units reach end-of-life.
This natural-gas- and coal-fired capacity is replaced by nuclear and wind units.

A carbon tax results in investments that are closest to those in the BAU case.
Unlike in the BAU case, a carbon tax sees no investment in and greater retirement
of coal-fired capacity. Similarly, there is less investment during 2020 in and greater
subsequent phase-out of natural-gas-fired units with a carbon tax. The BAU case
results in 24 GW and 39 GW of coal- and natural-gas-fired capacity, respectively,
in 2040 compared to 16 GW and 37 GW with a carbon tax. The lost fossil-fueled
capacity in the carbon-tax case is replaced with nuclear investments (33 GW and
18 GW by 2040 in the carbon-tax and BAU cases, respectively).

The other two policy mechanisms yield very different investments relative to
BAU. With a PTC, no new nuclear units are added and coal- and natural-gas-fired
capacities in 2040 are 16 GW and 23 GW, respectively. These technologies are re-
placed with 67 GW of wind, 55 GW of solar, and 10 GW of energy storage. An RPS
results in qualitatively similar investments, with 20 GW, 10 GW, 35 GW, 150 GW,
and 18 GW of coal- and natural-gas fired, wind, solar, and energy-storage capacity
in 2040.
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Fig. 1: Total installed capacities of generation and energy-storage technologies under
(1a) BAU, (1b) carbon-tax, (1c) PTC, and (1d) policies in baseline scenario of the
generation- and transmission-expansion model

Figure 2 summarizes the energy-production mix under each policy during each of
the three representative years that are simulated using the unit-commitment model.
The system achieves the same reliability level under all policies, with at least 99.99%
of load being served. The energy mixes that are shown in Figure 2 follow the capacity
mixes that are shown in Figure 1. The BAU case results in the energy mix being di-
vided between coal-fired, nuclear-powered, and wind generation. A carbon tax results
in coal-fired generation largely being eliminated in favor of nuclear output. A PTC
or RPS results in very high use of renewable generation—more than 81% of energy
is produced by wind and solar in the PTC and RPS cases in 2040 as opposed to less
than 29% in the other cases.

Table 4 summarizes the resulting cost of investing in and operating the system
over the thirty-year optimization horizon of our case study in the baseline scenario of
the generation- and transmission-expansion model. The table breaks the costs into
several categories. The first three sets of values provide the cost of investing in,
maintaining, and decommissioning capacity in each investment epoch. These costs
are obtained from the generation- and transmission-expansion model. The next three
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Fig. 2: Dispatch in each representative year of generation technologies under (2a)
BAU, (2b) carbon-tax, (2c¢) PTC, and (2d) RPS policies in baseline scenario of the
generation- and transmission-expansion model

sets of values provide the annual system-operation cost in each of the representative
years, and are obtained from the unit-commitment model. The PTC results in nega-
tive operating costs because the PTC that is paid to wind and solar units outweigh the
operating costs of the balance of the generator fleet.

The next row of the table gives for each policy the total gross cost, which is
the sum of the investment costs and ten times the operating costs (which reflects
each operating year representing the ten-year period that follows each investment
epoch). The following row of the table gives the cost adjustment that arises from the
policy mechanism that is employed. For a carbon tax, the tax revenue that is collected
(which is reflected in the operating cost) is subtracted from the total gross cost. This
is because the carbon tax reflects a wealth transfer from fossil-fueled generators to
the government. As such, the tax is not a welfare loss or gain. The PTC involves
a policy-related cost adjustment also, which is the cost of the subsidy. The final two
rows of Table 4 report net system cost, which is total gross cost and any policy-related
cost-adjustments. The net costs show that the policies differ in how efficiently they
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Table 4: Breakdown of total investment and operating costs under different policies
in baseline scenario of the generation- and transmission-expansion model

BAU Carbon Tax  PTC RPS

Investment Cost [$ Billion]

2020 69.49 95.83 99.94 58.09

2030 102.11  143.39 187.28  106.96

2040 67.65 67.27 104.66  179.45
Operating Cost [$ Billion/Year]

2020 11.43 12.81 8.32 12.20

2030 3.87 2.64 —2.36  4.00

2040 1.60 1.24 —245 049
Total Gross Cost [$ Billion] 408.21  473.46 427.00 51141
Policy-Related Cost Adjustment [$ Billion]  0.00 —35.84 218.87  0.00
Net Cost

Aggregate [$ Billion] 408.21  437.62 64587 511.41

Per-MWh [$/MWh] 33.34 35.74 52.75 41.77

achieve carbon reductions. A carbon tax and PTC are the most and least efficient,
respectively, increasing system costs 7% and 60% relative to BAU.

Table 5 summarizes the financial viability of generation investments. It reports
for each generating technology the value of %, during each investment epoch. A
value that has a (4) superscript indicates that particular technology has net capacity
additions during the corresponding investment epoch. The value that is reported for
a technology that has net capacity additions is the ratio between the average profits
that are earned during the corresponding representative operating year by units that
are added and their average investment costs. As such, these ratios can be compared
to the capital charge rate to determine the financial viability of an investment.

A value in Table 5 that has a (—) superscript indicates that a technology has net
capacity retirements during the corresponding investment epoch. For technologies
with net retirements or no net capacity changes, the values that are reported in the
table represent the value of %, for a hypothetical capacity investment, which is based
on the average operating profit of the technology during the corresponding represen-
tative operating year. As such, these values can be used to gauge the financial viability
of adding a marginal unit of such technologies. #, are not reported for solar in the
BAU and carbon-tax cases, because this technology is not used under these policies.

We do not compare the values in Table 5 to any particular value. Rather, we
focus on trends in the value of %, between investment epochs and policies. The
reason for this is that the values in Table 5 are artifacts of our modeling assumptions.
For instance, our systems are designed to achieve a very high reliability of at least
99.99%. However, the value of lost load is capped at $9000/MWh. These values do
not necessarily reflect society’s true willingness to pay for reliable electricity service.

¢ tends to be higher for technologies that are built compared to those that are
retired. This follows the intuition behind the stylized cost-recovery model underlying
the design of wholesale electricity markets [3]. Investments and retirements are sig-
naled in a restructured market by revenues that existing or candidate capacity earn or
can earn in the market. An exception to the trend in % is solar investment under an
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Table 5: Z, of each generation technology during each investment epoch

Coal Natural Gas  Nuclear ~ Wind Solar

BAU
2020 621 1,000 5.9 5.8 n/a
2030 3200 030) 4.4H) 3.9 n/a
2040 1.6 0.08) 3.6(H) 410 nja
Carbon Tax
2020 5.0 1.6(+) 7.0(+) 6.5 n/a
2030 0.9 040) 3.9(+) 3.8t n/a
2040 070 016 3.5(+) 354 nja
PTC
2020 6.3 0.4 6.0 82(t)  n/a
2030 26 0.0 3.2 3.8(1) 300+
2040 1200 0.10) 2.1 3.00 230
RPS
2020 6.4t) 0.6 6.1 5.4 n/a
2030 5200 020 5.4 424 nja
2040 0.4 0.00) 1.7 1.5 04()
«(+)” indicates technologies that have net capacity additions. ‘(=) indicates technologies that have net capacity retirements.

RPS. Such units earn near-zero profits, despite having no operating cost. The reason
for this is that the extremely high penetration of solar that is achieved with an RPS
by 2040 results in energy prices being suppressed during the middle of the day when
solar production peaks. Although energy prices under a PTC experience a similar
trend, the subsidy mitigates this impact. As such, solar units have higher values of
Zq with a PTC relative to with an RPS. One means of providing renewable genera-
tors with a supplemental revenue stream with an RPS, which is used in a number of
jurisdictions, is to create a supplemental market for renewable energy certificates [9].
These certificates pay renewable generators for their contribution toward meeting the
RPS.

Significant nuclear investments are undertaken in the BAU and carbon-tax cases.
These units have relatively high values of %,, with a capacity-weighted average of
4.2 over the investment epochs in the BAU and carbon-tax cases. Nuclear capacity
is not added in the PTC and RPS cases. Nevertheless, it is important for these units
to earn sufficient profit for their ongoing operation and maintenance to remain finan-
cially viable. The RPS policy achieves this target whereas the PTC falls short with a
capacity-weighted average value over the investment epochs of %, = 3.7. This low
value of % is due largely to the PTC suppressing energy prices, because the subsidy
appears as a negative cost in (17).

6 Conclusions

The literature and past experience (e.g., with cap-and-trade-based SO, markets) in-
dicates that market-based policies can address climate change more efficiently than
subsidies or technology mandates can. Despite this knowledge, many jurisdictions
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are employing less efficient policies. In some cases, these policy choices are politi-
cally driven. The extant literature indicates that high renewable-energy penetrations
can create or exacerbate price-formation and market-design problems.

Our case study demonstrates that there are significant differences in the efficiency
of meeting carbon-reduction targets through different policies. A carbon tax is most
efficient, which follows from basic economic principles that internalizing the cost of
an externality can align private and societal incentives efficiently. Climate-change-
related policies that are used most commonly—PTC and RPS—are considerably less
efficient. Using a PTC in our case study is eight times as costly as employing a carbon
tax. Indeed, the taxation that is needed to fund the subsidy can create other societal
losses that our case study does not capture. Our case study shows also that policy
choices can yield capacity and cost distortions that can impact price formation in
wholesale electricity markets and harm the financial viability of capacity investments.

Acknowledgements The authors thank Armin Sorooshian and Antonio J. Conejo for helpful discussions
and suggestions. The material in this paper is based upon work that was supported financially by National
Science Foundation through Grant Number 1029337. Any opinions and conclusions expressed in this
paper are solely those of the authors.

References

1. Geoftrey S. Rothwell and Tomds Gémez. Electricity Economics: Regulation and
Deregulation. Wiley—IEEE Press, Piscataway, New Jersey, February 2003.

2. Ignacio J. Pérez-Arriaga, editor. Regulation of the Power Sector. Power Systems.
Springer-Verlag, London, United Kingdom, 1 edition, 2013.

3. Steven Stoft. Power System Economics: Designing Markets for Electricity.
Wiley-Interscience, New York, New York, 2002.

4. Peter Cramton and Steven Stoft. A Capacity Market that Makes Sense. The
Electricity Journal, 18:43-54, August-September 2005.

5. Dominique Finon and Virginie Pignon. Capacity mechanisms in imperfect elec-
tricity markets. Utilities Policy, 16:141-142, September 2008.

6. Gilbert E. Metcalf. Designing a Carbon Tax to Reduce U.S. Greenhouse Gas
Emissions. Review of Environmental Economics and Policy, 3:63-83, Winter
2009.

7. A. Denny Ellerman. The U.S. SO, Cap-and-Trade Programme. In Tradeable
Permits: Policy Evaluation, Design and Reform, pages 71-97. OECD Publishing,
11 May 2004.

8. Janet L. Sawin, Freyr Sverrisson, Kanika Chawla, Christine Lins, Angus Mc-
Crone, Evan Musolino, Lily Riahi, Ralph Sims, and Jonathan Skeen. Renew-
ables 2014 Global Status Report. Technical report, Renewable Energy Policy
Network for the 21st Century, 2014.

9. Judith Lipp. Lessons for effective renewable electricity policy from Denmark,
Germany and the United Kingdom. Energy Policy, 35:5481-5495, November
2007.

10. Erik Ela, Michael Milligan, Aaron Bloom, Audun Botterud, Aaron Townsend,
and Todd Levin. Evolution of Wholesale Electricity Market Design with Increas-



20

Y. Liu et al.

13.

15.

16.

18.

20.

21.

22.

23.

24.

25.

ing Levels of Renewable Generation. Technical Report NREL/TP-5D00-61765,
National Renewable Energy Laboratory, Golden, CO, September 2014.

. Michael Milligan, Bethany A. Frew, Aaron Bloom, Erik Ela, Audun Botterud,

Aaron Townsend, and Todd Levin. Wholesale electricity market design with
increasing levels of renewable generation: Revenue sufficiency and long-term
reliability. The Electricity Journal, 29:26-38, March 2016.

. Felix Mormann, Dan Reicher, and Victor Hanna. A Tale of Three Markets: Com-

paring the Renewable Energy Experiences of California, Texas, and Germany.
Stanford Environmental Law Journal, 35:55-99, February 2016.

Jenny Riesz, Joel Gilmore, and Iain MacGill. Assessing the viability of Energy-
Only Markets with 100% Renewables: An Australian National Electricity Market
Case Study. Economics of Energy & Environmental Policy, 5:105-130, 2015.

. Hung po Chao, Shmuel Shimon Oren, Stephen A. Smith, and Robert B. Wilson.

Priority Service: Market Structure and Competition. The Energy Journal, 9:77—
104, 1988.

Thomas Jenkin, Philipp Beiter, and Robert Margolis. Capacity Payments in
Restructured Markets under Low and High Penetration Levels of Renewable
Energy. Technical Report NREL/TP-6A20-65491, National Renewable Energy
Laboratory, Golden, CO, February 2016.

Todd Levin and Audun Botterud. Capacity Adequacy and Revenue Sufficiency
in Electricity Markets With Wind Power. IEEE Transactions on Power Systems,
30:1644-1653, May 2015.

. Juan M. Morales, Antonio Jesus Conejo, Kai Liu, and Jin Zhong. Pricing Elec-

tricity in Pools With Wind Producers. IEEE Transactions on Power Systems, 27:
1366-1376, August 2012.

Yixian Liu, Ramteen Sioshansi, and Antonio Jesus Conejo. Multistage Stochas-
tic Investment Planning with Multiscale Representation of Uncertainties and De-
cisions. IEEE Transactions on Power Systems, 33:781-791, January 2018.

. Yixian Liu, Ramteen Sioshansi, and Antonio Jesus Conejo. Hierarchical Cluster-

ing to Find Representative Operating Periods for Capacity-Expansion Modeling.
IEEE Transactions on Power Systems, 33:3029-3039, May 2018.

Frank Graves, Thomas Jenkin, and Dean Murphy. Opportunities for Electricity
Storage in Deregulating Markets. The Electricity Journal, 12:46-56, October
1999.

Gerald B. Sheble and George N. Fahd. Unit commitment literature synopsis.
IEEE Transactions on Power Systems, 9:128—135, February 1994.

Ross Baldick. The generalized unit commitment problem. IEEE Transactions
on Power Systems, 10:465-475, February 1995.

Benjamin Field Hobbs, Michael H. Rothkopf, Richard P. O’Neill, and Hung
po Chao, editors. The Next Generation of Electric Power Unit Commitment Mod-
els. Kluwer, Norwell, Massachusetts, 2001.

Narayana Prasad Padhy. Unit Commitment—A Bibliographical Survey. IEEE
Transactions on Power Systems, 19:1196—1205, May 2004.

GE Energy. Western Wind and Solar Integration Study. Technical Report
NREL/SR-550-47434, National Renewable Energy Laboratory, Golden, CO,
May 2010.



How Climate-Related Policy Affects the Economics of Electricity Generation 21

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Herbert E. Scarf. Mathematical Programming and Economic Theory. Operations
Research, 38:377-385, May-June 1990.

Herbert E. Scarf. The Allocation of Resources in the Presence of Indivisibilities.
The Journal of Economic Perspectives, 8:111-128, Autumn 1994.

Ramteen Sioshansi. Pricing in Centrally Committed Markets. Utilities Policy,
31:143-145, December 2014.

Yixian Liu. Electricity Capacity Investments and Cost Recovery with Renew-
ables. PhD thesis, The Ohio State University, Columbus, Ohio, USA, August
2016.

Trieu Mai, Debra Sandor, Ryan Wiser, and Thomas R. Schneider. Renewable
Electricity Futures Study: Executive Summary. Technical Report NREL/TP-
6A20-52409-ES, National Renewable Energy Laboratory, Golden, CO, 2012.
United States Energy Information Administration. Annual Energy Outlook 2014.
United States Energy Information Administration, DOE/EIA-0383 (2014) edi-
tion, April 2014.

Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro.
U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis. Tech-
nical Report NREL/TP-6A20-51946, National Renewable Energy Laboratory,
Golden, CO, July 2012.

Yixian Liu, Matthew Christopher Roberts, and Ramteen Sioshansi. A Vector
Autoregression Weather Model for Electricity Supply and Demand Modeling.
Journal of Modern Power Systems and Clean Energy, 6:763-776, July 2018.
Matteo Muratori, Matthew Christopher Roberts, Ramteen Sioshansi, Vincenzo
Marano, and Giorgio Rizzoni. A highly resolved modeling technique to simulate
residential power demand. Applied Energy, 107:465-473, July 2013.

Amy Pielow, Ramteen Sioshansi, and Matthew Christopher Roberts. Modeling
Short-run Electricity Demand with Long-term Growth Rates and Consumer Price
Elasticity in Commercial and Industrial Sectors. Energy, 46:533-540, October
2012.



22 Y. Liu et al.

Bulleted Annotated References
Very Important References

— Elaeral. [11]. A comprehensive exploration of designs of wholesale electricity
markets to incentivize investments that are necessary for system reliability with
high renewable-energy penetrations.

— Riesz et al. [13]. Detailed model and case study demonstrating that a current
energy-only market design can deliver system reliability with 100% penetration
of renewables.

Important References

— Jenkin et al. [15]. Investigate capacity-market designs in the presence of high
renewable-energy penetrations. They argue that if markets are not designed prop-
erly, high renewable-energy penetrations may yield greater price volatility and
revenue deficiency for capacity resources, which can lead to further suboptimal
market-design choices.
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