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Abstract

Purpose of Review Concerns surrounding climate change are increasing pressure

on policymakers to reduce greenhouse-gas emissions. A number of policy mecha-

nisms, including Pigouvian taxes on carbon and subsidies for and mandates on the

use of carbon-free generation, are among the levers that are used to achieve this goal.

A challenge that such mechanisms present is that they can distort energy markets,

affecting prices and the financial viability of investing in or maintaining generating

capacity.

Recent Findings We survey literature pertaining to how policy mechanisms impact

markets and short- and long-run economic signals. We present also a case study that

examines these issues. Our case study uses a two-step modeling procedure. First, a

long-term generation- and transmission-planning model determines the optimal tech-

nology mix that should be built to serve future loads under different climate-policy

regimes. Next, a unit-commitment model is used to simulate hourly operation of the

system. Combining the results of these two modeling steps, we assess the efficiency

of using different policy mechanisms to achieve carbon reductions.

Summary Based on our literature survey and case study, we find that market-based

policies (e.g., carbon taxes) achieve decarbonization targets most efficiently. More-

over, market-based policies are the least distortionary in terms of price formation in

wholesale electricity markets.
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cost recovery · energy economics
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1 Introduction

Traditional electricity markets consist typically of vertically integrated utilities that

recover their costs through cost-of-service regulation. Typically, cost-of-service reg-

ulation entails a regulatory body setting retail utility prices based on an estimate of

the cost of serving customers and an added rate of return [1, 2]. The added rate of

return is intended to reflect the utility’s cost of capital. Normally, this form of regula-

tion does not provide strong incentives for cost containment and cost risks often are

shifted to customers. As such, beginning in the 1980s, a number of jurisdictions have

introduced electricity-market reforms. The aim of these reforms is to place more cost

risk on investors, which can yield more prudent investment decisions.

Two mechanisms are employed commonly in restructured wholesale electricity

markets to provide generators with opportunities to recover their costs. The first,

which is referred to often as an energy-only market design, relies solely on scarcity

pricing of energy and operating reserves. Stoft [3] provides a stylized model that

outlines how cost-recovery using energy prices only works. Stoft shows also that if

the generation mix of an electricity system is optimal (in the sense of being welfare-

maximizing), the marginal energy prices that emerge from a perfectly competitive

market are guaranteed to recover all generator costs. The other cost-recovery mecha-

nism employs a capacity payment, which supplements energy and reserve payments.

There are a number of reasons that capacity markets may be employed to handle cost

recovery [4, 5]. For one, scarcity pricing in an energy-only market may be harmed

by market mitigation, which are steps that are taken to reduce the exercise of market

power by generators. Capacity markets also can accommodate complexities such as

lumpy investments, economies of scale, and other market features that do not fit the

stylized model that underlies the energy-only market design.

Cost recovery in a restructured electricity market can be complicated further in

the presence of policy interventions. Policymakers, legislators, and regulators are

addressing climate-change concerns through a mix of policy interventions. Among

these mechanisms are Pigouvian taxes on carbon emissions, direct subsidies (e.g.,

production- or investment-tax credits or feed-in tariffs) for carbon-free generation,

and mandates on the usage of carbon-free generation (e.g., renewable portfolio stan-

dards). These types of policy interventions impact cost recovery because they distort

investment decisions. The stylized energy-only model that Stoft [3] analyzes assumes

that generation investments are made based purely on the economics of supplying

demand. A renewable portfolio standard (RPS), as an example, results in some in-

vestments being made for policy as opposed to economic reasons.

This paper contributes to understanding the interplay between electricity markets

and climate policy in two ways. First, we survey formative works that examine this

topic. This includes modeling exercises that examine the impacts of high penetrations

of renewable energy resources on price formation, the functioning of electricity mar-

kets, and cost recovery. Second, we present results from an illustrative case study that

compares the market-efficiency and -distortion properties of three climate-change-

mitigation policies: carbon taxes, an RPS, and a production tax credit (PTC) for re-

newable energy. Our case study demonstrates that carbon taxes are the most and RPS

the least efficient means of achieving a desired level of carbon reductions. We find
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also that carbon taxes are the least distortionary on investment incentives whereas a

PTC and RPS can exacerbate revenue-deficiency problems for generators.

The remainder of this paper is organized as follows. First, we provide a litera-

ture survey. Next, we detail the model and data that underlie our case study. This is

followed by case-study results and conclusions.

2 Literature Survey

Concerns surrounding climate change are leading to increased use of policies to

decarbonize the electricity sector. However, with few exceptions (European Union

Emissions Trading System1 being one), most jurisdictions are not addressing carbon

emissions directly through taxes [6] or cap-and-trade schemes [7]. Rather, most poli-

cies address climate change indirectly by providing subsidies to or setting targets for

the deployment and use of carbon-free technology, such as renewable energy [8]. A

number of works compare the relative merits of policy mechanisms to incentivize the

use of renewable energy, with Lipp [9] providing a comprehensive and seminal dis-

cussion. Given this approach to climate-change policy, we focus our literature survey

on the impacts of high renewable-energy penetrations on the functioning of wholesale

electricity markets and price formation and cost recovery therein.

Ela et al. [10] discuss the evolution of wholesale electricity markets with increas-

ing renewable-energy penetrations. They do not provide specific market-design rec-

ommendations. Rather, Ela et al. conduct an agnostic survey of market evolution and

identify two key market-design challenges that arise from renewable integration. One

is providing price signals to incentivize flexibility for short-term operations. The sec-

ond is ensuring sufficient revenues for capacity to be built and maintained for long-

term reliability. Milligan et al. [11] explore wholesale electricity market designs to

incentivize investments in resources that are necessary for system reliability with high

renewable-energy penetrations. Their work recognizes the investment and capacity-

expansion challenges that are created by variable availability of renewable energy in

real time. They examine also the need for greater supply-side flexibility to ensure that

demands can be served reliably with renewable variability and uncertainty. Mormann

et al. [12] provide an empirical survey that compares market and policy designs in

California, Texas, and Germany. By comparing outcomes in the three regions, they

draw conclusions regarding how policy and market-design choices can impact the

technical and economic efficiency of integrating renewables into electricity systems.

These types of analyses [10–12] give rise to works that provide more prognos-

tic analyses of wholesale-market designs. Riesz et al. [13] model the performance of

Australia’s National Electricity Market, assuming that it maintains its current energy-

only design with 100% penetration of renewables. They find that the energy-only de-

sign may work without the need for an explicit capacity market, but that this result

depends on some critical assumptions. Importantly, the price cap in the market would

need to be raised substantially (they estimate from a price of 13500 AUD/MWh

at the time of their work to 60000 AUD/MWh–80000 AUD/MWh in the future

1 https://ec.europa.eu/clima/policies/ets_en
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that they model). Alternatively, demand-side participation, which allows customers

to specify their willingnesses to pay for various levels of supply reliability [14],

could obviate the need for high price caps. Regardless of the approach that is taken,

the market likely needs a liquid derivatives market to allow hedging of significant

price risk and volatility. Jenkin et al. [15] investigate capacity-market designs in

the presence of high renewable-energy penetrations. Their work is cautionary—if

markets are not designed properly, high renewable-energy penetrations may yield

greater price volatility and revenue deficiency for capacity resources. This can lead

to further suboptimal market-design choices. They suggest that important challenges

remain in designing markets that provide adequate incentives for investing in ca-

pacity and operational flexibility (which are the key challenges that Ela et al. [10]

raise). Levin and Botterud [16] analyze the impacts of increasing wind penetrations

on electricity and reserve prices by solving a mixed-integer optimization that co-

optimizes capacity-expansion, unit-commitment, and dispatch decisions. They find

that revenue-deficiency problems (absent scarcity pricing, no thermal units are prof-

itable) can be addressed through scarcity pricing or capacity payments. However,

the required capacity payments are increasing in the wind-penetration level. Morales

et al. [17] propose a revision to pool- and balancing-energy pricing that is tailored

to a wholesale market with high penetrations of wind generation. They demonstrate

that their proposed prices allow for generator-cost recovery and that the market is

revenue-adequate (i.e., payments from loads cover payments to generators).

One gap in extant modeling exercises that examine the financial viability of gen-

eration [11, 13, 15, 16] is that they assume an exogenously set renewable-penetration

level. The case study that we present addresses this gap by examining market eco-

nomics that result from the use of different policy levers. While these policy levers

affect renewable-penetration levels, they impact the generation mix in other ways as

well. Thus, our work provides a comprehensive assessment of how policy decisions

impact the market, as opposed to focusing solely on renewable energy.

3 Case-Study Methodology

Our case study entails two modeling steps. First, we model the least-cost mix of gen-

eration and transmission capacity to serve future demand. Next, we fix the generation

and transmission mix (based on the first step) and use a unit-commitment model to

determine the hourly operation of the power system. Both models are formulated to

capture endogenously the effect of policy mechanisms.

3.1 Generation- and Transmission-Expansion Model

We adapt the model of Liu et al. [18, 19], to which readers are referred for further

details, to represent generation- and transmission-expansion decisions. We provide

a model formulation, but exclude many of the implementation details for sake of

brevity. The planning model consists of investment epochs, each one spanning mul-

tiple years. Investment decisions are made at the beginning of each epoch. Power-

system operations between the epochs are captured by modeling representative days.
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3.1.1 Model Notation

Sets and Set-Related Parameters
N set of generation technologies.

Nρ set of generation technologies to which the RPS applies.

R set of transmission zones.

T D set of operating days between investment epochs.

T H number of operating hours during each representative day.

T I set of investment epochs.

ϒ I number of years between investment epochs.

Ω set of scenarios.

ω̄i set of scenarios that are indistinguishable from scenario ω when making

investment decisions during investment-epoch i.

Parameters
An lifetime of technology n (investment epochs).

B̄n,r,i maximum capacity of technology n that can be built in zone r during

investment-epoch i (MW).

CE
ω,n,r,i cost of retiring technology n in zone r during investment-epoch i of sce-

nario ω ($/MW).

CG
ω,n,r,i generation cost of technology n in zone r during investment-epoch i of

scenario ω ($/MWh).

C
G,σ
ω,n,r,i PTC for technology n in zone r during investment-epoch i of scenario ω

($/MWh).

C
G,τ
ω,n,r,i carbon tax for technology n in zone r during investment-epoch i of sce-

nario ω ($/MWh).

CL
ω,r,r′

investment cost of building transmission between zones r and r′ during

investment-epoch i of scenario ω ($/MW).

CM
ω,n,r,i,a maintenance cost of technology n in zone r during investment-epoch i

of scenario ω that is a epochs old at the end of the epoch ($/MW).

CS
ω,r,i investment cost of energy storage in zone r during investment-epoch i of

scenario ω ($/MW).

CU cost of unserved load ($/MWh).

CV
ω,n,r,i investment cost of building technology n in zone r during investment-

epoch i of scenario ω ($/MW).

Lω,r,i,d,h zone r’s load during hour h of day d of investment-epoch i of scenario ω
(MW).

γ discount rate.

δn ramping factor of technology n (p.u.).

η energy capacity of energy storage (h).

ζ roundtrip efficiency of energy storage (p.u.).

πω probability of scenario ω .

ρi investment-epoch-i RPS (MW).

φω,n,r,i,d,h capacity factor of technology n in zone r during hour h of day d of

investment-epoch i of scenario ω (p.u.).

ϒi,d weight on representative day d of investment-epoch i (days).
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Decision Variables
kE

ω,n,r,i,a capacity of technology n in zone r with age a that is retired economically

during investment-epoch i of scenario ω (MW).

kG
ω,n,r,i,a total capacity of technology n that is installed in zone r with age a at the

end of investment-epoch i of scenario ω (MW).

kL
ω,r,r′,i

capacity that is added to transmission link between zones r and r′ during

investment-epoch i of scenario ω (MW).

kS
ω,r,i capacity of energy storage that is installed in zone r during investment-

epoch i of scenario ω (MW).

Kω,i vector denoting all scenario-ω investment variables (i.e., k’s) of

investment-epoch i.

qC
ω,r,i,d,h hour-h power charged during day d of investment-epoch i of scenario ω

into energy storage that is in zone r (MW).

qD
ω,r,i,d,h hour-h power discharged during day d of investment-epoch i of sce-

nario ω from energy storage that is in zone r (MW).

qG
ω,n,r,i,d,h hour-h production during day d of investment-epoch i of scenario ω

from technology n in zone r (MW).

qL
ω,r,r′,i,d,h

net power flow during hour h of day d of investment-epoch i of sce-

nario ω on link from zone r to r′ (MW).

qS
ω,r,i,d,h hour-h ending state of energy (SOE) during day d of investment-epoch i

of scenario ω of energy storage that is in zone r (MW).

qU
ω,r,i,d,h hour-h unserved load in zone r during day d of investment-epoch i of

scenario ω (MW).

3.2 Model Formulation

The generation- and transmission-expansion model is formulated as:

min ∑
ω∈Ω

πω ∑
i∈T I

γ iϒI ·

{

∑
n∈N,r∈R

[

CV
ω,n,r,ik

G
ω,n,r,i,1 (1)

+CE
ω,n,r,i ·

(

kG
ω,n,r,i,An

+
An−1

∑
a=1

kE
ω,n,r,i,a

)

+
An

∑
a=1

CM
ω,n,r,i,akG

ω,n,r,i,a + ∑
r∈R

CS
ω,r,ik

S
ω,r,i

+ ∑
d∈T D

ϒi,d

T H

∑
h=1

(

CG
ω,n,r,i −C

G,σ
ω,n,r,i +C

G,τ
ω,n,r,i

)

qG
ω,n,r,i,d,h

]

+ ∑
r,r′∈R,r 6=r′

CL
ω,r,r′k

L
ω,r,r′,i + ∑

r∈R,d∈TD

ϒi,d

T H

∑
h=1

CU qU
ω,r,i,d,h

}

s.t. kG
ω,n,r,i,1 ≤ B̄n,r,i; ∀ω ∈ Ω ;n ∈ N;r ∈ R; i ∈ T I (2)

kG
ω,n,r,i,a = kG

ω,n,r,i−1,a−1 − kE
ω,n,r,i−1,a−1; (3)

∀ω ∈ Ω ;n ∈ N;r ∈ R; i ∈ T I
, i ≥ 2;a = 2, . . . ,An

∑
n∈Nρ

An

∑
a=1

kG
ω,n,r,i,a ≥ ρi; ∀ω ∈ Ω ; i ∈ T I (4)
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Kω,i ≥ 0; ∀ω ∈ Ω ; i ∈ T I (5)

Kω,i = Kω ′
,i; ∀ω ∈ Ω ; i ∈ T I ;ω ′ ∈ ω̄i (6)

∑
n∈N

qG
ω,n,r,i,d,h + qD

ω,r,i,d,h − qC
ω,r,i,d,h + qU

ω,r,i,d,h (7)

+ ∑
r′∈R,r′ 6=r

(

qL
ω,r′,r,i,d,h − qL

ω,r,r′,i,d,h

)

= Lω,r,i,d,h;

∀ω ∈ Ω ;n ∈ N;r ∈ R; i ∈ T I;d ∈ T d ;h = 1, . . . ,T H

0 ≤ qG
ω,n,r,i,d,h ≤ φω,n,r,i,d,h

An

∑
a=1

kG
ω,n,r,i,a; (8)

∀ω ∈ Ω ;n ∈ N;r ∈ R; i ∈ T I;d ∈ T d ;h = 1, . . . ,T H

− δn

An

∑
a=1

kG
ω,n,r,i,a ≤ qG

ω,n,r,i,d,h − qG
ω,n,r,i,d,h−1 ≤ δn

An

∑
a=1

kG
ω,n,r,i,a; (9)

∀ω ∈ Ω ;n ∈ N;r ∈ R; i ∈ T I;d ∈ T d ;h = 1, . . . ,T H

− ∑
i′≤i

kL
ω,r,r′,i′ ≤ qL

ω,r,r′,i,d,h ≤ ∑
i′≤i

kL
ω,r,r′,i′ ; (10)

∀ω ∈ Ω ;r,r′ ∈ R,r′ 6= r; i ∈ T I;d ∈ T d ;h = 1, . . . ,T H

qS
ω,r,i,d,h = qS

ω,r,i,d,h−1 − qD
ω,r,i,d,h + ζqC

ω,r,i,d,h; (11)

∀ω ∈ Ω ;r ∈ R; i ∈ T I ;d ∈ T d ;h = 2, . . . ,T H

qS
ω,r,i,d,0 =

1

2
η ∑

i′≤i

kS
ω,r,i; ∀ω ∈ Ω ;r ∈ R; i ∈ T I ;d ∈ T d (12)

qS
ω,r,i,d,T H =

1

2
η ∑

i′≤i

kS
ω,r,i; ∀ω ∈ Ω ;r ∈ R; i ∈ T I;d ∈ T d (13)

0 ≤ qS
ω,r,i,d,h ≤ η ∑

i′≤i

kS
ω,r,i; ∀ω ∈ Ω ;r ∈ R; i ∈ T I ;d ∈ T d ;h = 1, . . . ,T H (14)

0 ≤ qC
ω,r,i,d,h,q

D
ω,r,i,d,h ≤ ∑

i′≤i

kS
ω,r,i; (15)

∀ω ∈ Ω ,r ∈ R; i ∈ T I ;d ∈ T d ;h = 1, . . . ,T H

0 ≤ qU
ω,r,i,d,h ≤ Lω,r,i,d,h; (16)

∀ω ∈ Ω ;n ∈ N;r ∈ R; i ∈ T I;d ∈ T d ;h = 1, . . . ,T H
.

Objective function (1) minimizes expected discounted cost. The objective func-

tion includes seven cost components. The first is the cost of investing in new gener-

ation capacity. New generation capacity that is added during investment-epoch i is

a = 1 investment epochs old at the end of the epoch. Thus, new capacity is given by

kG
ω,n,r,i,1. The second term in (1) is the cost of retiring generating capacity. The third

term is generator-maintenance costs. The fourth term is the cost of investing in en-

ergy storage. The fifth term is generator-operation costs. The sixth term in (1) is the

cost of adding transmission capacity. The final term is the cost of unserved load.
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The model has two types of constraints—(2)–(6) and (7)–(16) pertain to invest-

ment and operating decisions, respectively. Constraints (2) impose limits on gener-

ation investments. Constraints (3) define the time evolution of the amount of gen-

erating capacity of different ages. Constraints (4) impose capacity-based RPS re-

quirements. Constraints (5) impose non-negativity on the investment variables. Con-

straints (6) are non-anticipativity constraints. These impose the structure of the sce-

nario tree on the decisions. This is done by ensuring that decisions that are made

during each investment epoch are not dependent on future scenario realizations.

Constraints (7) impose the load-balance requirement during each operating pe-

riod. Constraints (8) impose capacity limits on generator, which are defined based

on a capacity factor, φω,n,r,i,d,h. For most dispatchable generation technologies these

capacity factors equal 1. However, for weather-dependent renewables the capacity

factors vary across operating periods and can be less than 1, to represent the im-

pacts of weather conditions. Constraints (9) impose ramping limits on generators.

Constraints (10) impose transmission-capacity limits.

Constraints (11)–(15) pertain to the operation of energy storage. Constraints (11)

define the time evolution of the SOE of energy storage. Constraints (12) and (13)

force energy storage to begin and end each day with a 50% SOE. This is a heuristic

approach to attaching carryover value to stored energy from one day to the next [20].

Constraints (14) and (15) impose energy and power limits on energy storage.

Constraints (16) limit the amount of unserved energy in each operating period to

be no greater than demand.

3.3 Unit-Commitment Model

Following convention, we formulate our unit-commitment model as a mixed-integer

linear optimization problem [21–24].

3.3.1 Model Notation

We define the following model notation. Some of the notation that is common with

the capacity-expansion model (i.e., R, CU , η , and ζ ) is not repeated here.

Sets and Set-Related Parameters
G set of generators.

G (r) set of generators that are in zone r.

G O(r) set of non-dispatchable generators that are in zone r.

S set of energy-storage units.

S (r) set of energy-storage units that are in zone r.

H set of hours.

Parameters
cg variable generation cost of generator g ($/MWh).

cSU
g start-up cost of generator g ($/start-up).

cσ
g PTC for generator g ($/MWh).

cτ
g carbon tax for production of generator g ($/MWh).
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c
τ,SU
g carbon tax for generator g starting up ($/start-up).

CP cost of unserved operating reserves ($/MW-h).

Dr,h hour-h load in zone r (MW).

f+
r,r′

capacity of transmission line connecting zones r and r′ (MW).

X−
g minimum output level of generator g when it is online (MW).

X+
g,h maximum hour-h output level of generator g when it is online (MW).

XPW
s power capacity of energy-storage-unit s (MW).

∆g ramping limit of generator g (MW/h).

ξ D load-based operating-reserve requirement (p.u.).

ξ O operating-reserve requirement based on non-dispatchable generation

(p.u.).

Decision Variables
eC

s,h hour-h power charged into energy-storage-unit s (MW).

eD
s,h hour-h power discharged from energy-storage-unit s (MW).

eP
s,h hour-h operating reserves provided by energy-storage-unit s (MW).

eS
s,h ending hour-h SOE of energy-storage-unit s (MWh).

fr,r′,h hour-h power flow through transmission line connecting zones r and r′

(MW).

vP
r,h hour-h unserved operating reserves in zone r (MW).

vU
r,h hour-h unserved load in zone r (MW).

xP
g,h hour-h operating reserves provided by generator g (MW).

xg,h hour-h power output of generator g (MW).

yg,h binary variable that equals 1 if generator g is online during hour h, and

equals 0 otherwise.

zg,h binary variable that equals 1 if generator g is started at the beginning of

hour h, and equals 0 otherwise.

3.3.2 Model Formulation

The unit-commitment model is formulated as:

min ∑
h∈H

{

∑
g∈G

[

(

cg − cσ
g + cτ

g

)

xg,h +
(

cSU
g + cτ,SU

g

)

zg,h

]

(17)

+ ∑
r∈R

(

CPvP
r,h +CU vU

r,h

)

}

s.t. ∑
g∈G (r)

xg,h + ∑
s∈S (r)

(eD
s,h − eC

s,h)+ ∑
r′∈R,r′ 6=r

( fr′ ,r,h − fr,r′,h) = Dr,h − vU
r,h; (18)

∀r ∈ R;h ∈ H

∑
g∈G (r)\G O(r)

xP
g,h + ∑

s∈S (r)

eP
s,h ≥ ξ DDr,h + ξ O ∑

g∈G O(r)

xg,h − vP
r,h; (19)

∀r ∈ R;h ∈ H

X−
g yg,h ≤ xg,h; ∀g ∈ G ;h ∈ H (20)
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xg,h + xP
g,h ≤ X+

g,hyg,h; ∀g ∈ G ;h ∈ H (21)

−∆g ≤ xg,h − xg,h−1; ∀g ∈ G ;h ∈ H (22)

xg,h + xP
g,h − xg,h−1 ≤ ∆g; ∀g ∈ G ;h ∈ H (23)

zg,h ≥ yg,h − yg,h−1; ∀g ∈ G ;h ∈ H (24)

eS
s,h = eS

s,h−1 + ζeC
s,h − eD

s,h; ∀s ∈ S ;h ∈ H (25)

0 ≤ eC
s,h ≤ XPW

s ; ∀s ∈ S ;h ∈ H (26)

0 ≤ eD
s,h + eP

s,h ≤ XPW
s ; ∀s ∈ S ;h ∈ H (27)

0 ≤ eS
s,h ≤ ηXPW

s ; ∀s ∈ S ;h ∈ H (28)

0 ≤ eP
s,h ≤ eS

s,h − eD
s,h; ∀s ∈ S ;h ∈ H (29)

− f+
r,r′

≤ fr,r′ ,h ≤ f+
r,r′

; ∀r,r′ ∈ R,r′ 6= r;h ∈ H (30)

0 ≤ vU
r,h ≤ Dr,h; ∀r ∈ R;h ∈ H (31)

xP
g,h ≥ 0; ∀g ∈ G ;h ∈ H (32)

yg,h,zg,h ∈ {0,1}; ∀g ∈ G ;h ∈ H . (33)

Objective function (17) minimizes the sum of generation costs and costs associ-

ated with any unserved load or operating reserves.

Constraints (18) impose load-balance requirements in each zone. Constraints (19)

impose operating-reserve requirements. We assume that these requirements are the

sum of portions of demand and scheduled production from non-dispatchable (e.g.,

wind and solar) generators [25]. The rationale behind setting the operating reserves

in this way is that the system should have sufficient flexibility to accommodate unan-

ticipated loss of generation from non-dispatchable renewables. We allow only dis-

patchable generation units and energy storage to provide operating reserves.

Constraints (20) and (21) impose minimum- and maximum-generation limits, re-

spectively, on each generator. The maximum-generation limit applies to the sum of

energy and operating reserves, requiring that operating reserves can be provided with-

out violating the capacity limit. To model renewables, each generating unit’s maxi-

mum capacity can vary by hour. Constraints (22) and (23) impose ramping limits

on generators. Constraints (23) ensure that each generator can provide its operating

reserves without violating its ramping capability. Constraints (24) define each gener-

ator’s start-up variables in terms of intertemporal changes in its online variables.

Constraints (25) define the time evolution of the SOE of each energy-storage unit.

Constraints (26) and (27) impose power-capacity limits on charging and discharg-

ing, respectively, of each energy-storage unit. Constraints (27) ensure that the power-

capacity limits of energy-storage units are not violated by serving operating reserves.

Constraints (28) ensure that each energy-storage unit’s SOE remains non-negative

and below its energy capacity. Constraints (29) ensure that each energy-storage unit

has sufficient stored energy to serve its operating-reserve commitment.

Constraints (30) impose transmission limits. Constraints (31) impose bounds and

non-negativity on unserved load while (32) impose non-negativity on provided oper-

ating reserves. Constraints (33) ensure that the unit-commitment variables are binary.
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3.4 Financial Analysis

We conduct our financial analysis of generation investments by computing the net

operating profit that each generator earns on each day from the solution of the unit-

commitment problem. Specifically, we define λr,h and βr,h as the dual variables that

are associated with (18) and (19), respectively, for hour h and zone r.2 These dual

variables represent hourly locational marginal prices for energy and reserves.

Based on the energy and reserve prices, generator g earns:

∑
h∈D

[

(

λr,h − cg + cσ
g − cτ

g

)

xg,h +βr,hxP
g,h −

(

cSU
g + cτ,SU

g

)

zg,h

]

,

in profit from energy and reserve payments during day D , where r denotes the zone

in which generator g is located. A challenge in remunerating generators in markets

that rely on centralized unit-commitment is that generators may operate at a net profit

loss if they are paid based solely on energy and reserve prices. This complication

arises because unit-commitment models are non-convex [26, 27]. Most wholesale

electricity markets overcome this issue through make-whole payments, which are

supplemental payments that are given to any generator that operates at a net profit

loss if paid solely based on the energy and reserve prices [28]. The supplemental

payment is equal to the profit loss. Taking account of make-whole payments, we

compute generator g’s total operating profits as:

Pg = ∑
D

max

{

0,

∑
h∈D

[

(

λr,h − cg + cσ
g − cτ

g

)

xg,h +βr,hxP
g,h −

(

cSU
g + cτ,SU

g

)

zg,h

]

}

. (34)

We compute the ratio between each generator’s total operating profits and its

investment cost:

Rg =
Pg

Ig

,

where Ig is the investment cost of generator g, which is determined from the solution

of (1)–(16). Rg represents the proportion of the generator’s investment cost that is

recovered from market revenues. One could conduct a back-of-the-envelope analysis

of the financial viability of a generation investment by comparing Rg to the capital

charge rate of the investment. If Rg is greater than the capital charge rate, one would

conclude that the investment is viable, insomuch as its operating profits cover the

estimated cost of financing the investment.

2 Because (17)–(33) is a mixed-integer linear optimization problem, it does not have dual variables.

Following standard industry practice, we obtain dual variables by fixing the binary variables in (17)–(33)

to their optimal values and solving the resulting linear relaxation, which does have dual variables.
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4 Case-Study Data

Our case study uses data for Electric Reliability Council of Texas (ERCOT) and is

based on the work of Liu [29], which provides the complete data set. We summarize

the case-study data. The case study assumes three zones (West, East, and South). The

investment epochs begin in 2020 and occur at ten-year intervals, with 2040 being the

final investment year. To account for inflation, all costs are measured in 2014 dollars.

4.1 Generation-and-Transmission-Expansion-Model Data

We model five generation technologies—wind, solar, nuclear-powered, and natural-

gas- and coal-fired units—and an energy-storage technology. The system begins with

a thermal-dominated design, consisting of 45 GW, 18 GW, 5 GW, and 4 GW of

natural-gas- and coal-fired, nuclear, and wind generation, respectively.

The uncertainties that are modeled explicitly in the generation- and transmission-

expansion model via scenarios are changes in investment and generation-fuel costs.

Table 1 summarizes the range of baseline investment costs for wind and solar tech-

nologies during the three investment epochs. The scenarios in the planning model

include cases in which investment costs vary from these baseline values by up to

5% and 7.5% in 2030 and 2040, respectively. This reflects technology-improvement

uncertainty. Wind and solar are assumed to have zero operating cost.

Table 1: Baseline renewable-generation-technology investment costs in generation-

and transmission-expansion model ($/kW) [30, 31]

Technology 2020 2030 2040

Wind 3737–3864 3440–3556 3350–3463

Solar 3164–3345 2990–3161 2603–2752

Table 2 summarizes the investment costs, the baseline range of operating costs in

the three investment epochs, and the ramping factors of the non-renewable generation

technologies. We model scenarios in which coal prices increase by up to 7% and

28% relative to their baseline values in 2030 and 2040, respectively. Scenarios allow

for natural-gas prices to increase by up to 18% and 54% relative to their baseline

values in 2030 and 2040, respectively. We model land-use limits on the installation

of renewable resources [32], but not on other generating technologies.

We model a generic energy-storage technology with a capital cost of $2333/kW–

$2362/kW, 20-hour discharge duration, and 80% roundtrip efficiency. This energy-

storage technology is akin to pumped-hydroelectric or compressed-air energy stor-

age. We focus on such energy-storage technologies because our model uses energy

storage primarily for managing renewable curtailment and bulk generation shifting.

Our model does not have sufficient spatial or temporal granularity to represent other

energy-storage use cases (e.g., distribution deferral or frequency regulation).
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Table 2: Baseline investment and operating costs and ramping factors of non-

renewable generation technologies in generation- and transmission-expansion model

[30, 31]

Operating Cost ($/MWh)

Technology Investment Cost ($/kW) 2020 2030 2040 Ramping Factor (p.u.)

Coal 3037–3164 25–26 27–28 28–29 0.29

Natural Gas 833–862 49–50 55–57 66–68 0.43

Nuclear 5437–5564 10–11 10–11 10–11 0.16

We use 30 days, which are selected from a single representative year using hier-

archical clustering [19], to capture system operations between successive investment

epochs. Weather conditions, which determine real-time solar and wind availabilities

and demand patterns, are simulated using a vector-autoregression (VAR) model [33].

Residential electricity demands are simulated using a methodology that combines

Monte Carlo simulation with physical models of residential devices [33, 34]. Com-

mercial and industrial electricity demands are simulated using a time-series based

model [35].

4.2 Unit-Commitment-Model Data

Once generation investments are determined in the first modeling step, natural-gas-

and coal-fired capacity is divided into discrete generating units. This division is

needed to model unit-commitment decisions. We do this division by using archetypal

natural-gas- and coal-fired units, the minimum and maximum capacities of which are

listed in Table 3. In each of the three investment epochs, we adjust the maximum out-

put levels of the added units so that the added capacity can be divided evenly among

an integer number of units. We adjust the maximum output levels to minimize the

absolute difference between the adjusted maximum output level of each unit and the

maximum output level of the corresponding archetypal unit. We scale the minimum-

output levels of the units in proportion to the adjusted maximum output levels.

Table 3: Minimum and maximum output levels of archetypal natural-gas- and coal-

fired generators in unit-commitment model (MW)

Technology Minimum Output Level Maximum Output Level

Natural Gas 168 600

Coal 224 800

Generator-operation costs, carbon taxes, PTCs, and ramping factors are the same

in the unit-commitment model as they are in the generation- and transmission-expansion

model. Start-up costs for natural-gas- and coal-fired generators are included in the

unit-commitment model, with these costs being higher with a carbon tax (due to the
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associated fuel that is consumed). Nuclear units are assumed always to be operating

at their maximum production levels.

We assume that hourly operating-reserve requirements are set equal to the sum of

3% of demand and 5% of total scheduled production from wind and solar units [25].

We set the cost of unserved load and operating reserves equal to $9000/MWh and

fix the energy and operating-reserve prices to $9000/MWh during any hour with ei-

ther load or operating-reserve curtailment. These pricing rules follow scarcity-pricing

mechanisms that are employed in ERCOT.

We model unit-commitment decisions for each investment epoch, by simulating

the full year from which the 30 operating days that are used in the generation- and

transmission-expansion model are clustered. For sake of computational tractability,

we conduct the simulation in a rolling-horizon fashion one day at a time, with a 48-

hour optimization horizon. The 48-hour optimization horizon ensures that decisions

at the end of each day take into account load conditions during the following day.

5 Case-Study Results

The three policy cases are calibrated to achieve the same target of 80% carbon re-

ductions relative to the 2010 level by the end of 2040. An output-based carbon tax of

$12/MWh and $6/MWh for coal- and natural-gas-fired units, respectively, achieves

this goal. The goal can be achieved with PTCs of $30/MWh and $35/MWh for wind

and solar, respectively, or RPS targets of at least 30 GW and 185 GW for 2030

and 2040, respectively.

Figure 1 summarizes the optimal generation mix that is built under each policy in

the baseline scenario of the generation- and transmission-expansion model. Figure 1

shows that the policy choice has major impacts on the investments. The BAU case

results in modest investment in natural-gas- and coal-fired generation during 2020,

which is followed by attrition of these technologies as older units reach end-of-life.

This natural-gas- and coal-fired capacity is replaced by nuclear and wind units.

A carbon tax results in investments that are closest to those in the BAU case.

Unlike in the BAU case, a carbon tax sees no investment in and greater retirement

of coal-fired capacity. Similarly, there is less investment during 2020 in and greater

subsequent phase-out of natural-gas-fired units with a carbon tax. The BAU case

results in 24 GW and 39 GW of coal- and natural-gas-fired capacity, respectively,

in 2040 compared to 16 GW and 37 GW with a carbon tax. The lost fossil-fueled

capacity in the carbon-tax case is replaced with nuclear investments (33 GW and

18 GW by 2040 in the carbon-tax and BAU cases, respectively).

The other two policy mechanisms yield very different investments relative to

BAU. With a PTC, no new nuclear units are added and coal- and natural-gas-fired

capacities in 2040 are 16 GW and 23 GW, respectively. These technologies are re-

placed with 67 GW of wind, 55 GW of solar, and 10 GW of energy storage. An RPS

results in qualitatively similar investments, with 20 GW, 10 GW, 35 GW, 150 GW,

and 18 GW of coal- and natural-gas fired, wind, solar, and energy-storage capacity

in 2040.
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(a) (b)

(c) (d)

Fig. 1: Total installed capacities of generation and energy-storage technologies under

(1a) BAU, (1b) carbon-tax, (1c) PTC, and (1d) policies in baseline scenario of the

generation- and transmission-expansion model

Figure 2 summarizes the energy-production mix under each policy during each of

the three representative years that are simulated using the unit-commitment model.

The system achieves the same reliability level under all policies, with at least 99.99%

of load being served. The energy mixes that are shown in Figure 2 follow the capacity

mixes that are shown in Figure 1. The BAU case results in the energy mix being di-

vided between coal-fired, nuclear-powered, and wind generation. A carbon tax results

in coal-fired generation largely being eliminated in favor of nuclear output. A PTC

or RPS results in very high use of renewable generation—more than 81% of energy

is produced by wind and solar in the PTC and RPS cases in 2040 as opposed to less

than 29% in the other cases.

Table 4 summarizes the resulting cost of investing in and operating the system

over the thirty-year optimization horizon of our case study in the baseline scenario of

the generation- and transmission-expansion model. The table breaks the costs into

several categories. The first three sets of values provide the cost of investing in,

maintaining, and decommissioning capacity in each investment epoch. These costs

are obtained from the generation- and transmission-expansion model. The next three
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(d) RPS

Fig. 2: Dispatch in each representative year of generation technologies under (2a)

BAU, (2b) carbon-tax, (2c) PTC, and (2d) RPS policies in baseline scenario of the

generation- and transmission-expansion model

sets of values provide the annual system-operation cost in each of the representative

years, and are obtained from the unit-commitment model. The PTC results in nega-

tive operating costs because the PTC that is paid to wind and solar units outweigh the

operating costs of the balance of the generator fleet.

The next row of the table gives for each policy the total gross cost, which is

the sum of the investment costs and ten times the operating costs (which reflects

each operating year representing the ten-year period that follows each investment

epoch). The following row of the table gives the cost adjustment that arises from the

policy mechanism that is employed. For a carbon tax, the tax revenue that is collected

(which is reflected in the operating cost) is subtracted from the total gross cost. This

is because the carbon tax reflects a wealth transfer from fossil-fueled generators to

the government. As such, the tax is not a welfare loss or gain. The PTC involves

a policy-related cost adjustment also, which is the cost of the subsidy. The final two

rows of Table 4 report net system cost, which is total gross cost and any policy-related

cost-adjustments. The net costs show that the policies differ in how efficiently they
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Table 4: Breakdown of total investment and operating costs under different policies

in baseline scenario of the generation- and transmission-expansion model

BAU Carbon Tax PTC RPS

Investment Cost [$ Billion]

2020 69.49 95.83 99.94 58.09

2030 102.11 143.39 187.28 106.96

2040 67.65 67.27 104.66 179.45

Operating Cost [$ Billion/Year]
2020 11.43 12.81 8.32 12.20

2030 3.87 2.64 −2.36 4.00

2040 1.60 1.24 −2.45 0.49

Total Gross Cost [$ Billion] 408.21 473.46 427.00 511.41

Policy-Related Cost Adjustment [$ Billion] 0.00 −35.84 218.87 0.00

Net Cost

Aggregate [$ Billion] 408.21 437.62 645.87 511.41

Per-MWh [$/MWh] 33.34 35.74 52.75 41.77

achieve carbon reductions. A carbon tax and PTC are the most and least efficient,

respectively, increasing system costs 7% and 60% relative to BAU.

Table 5 summarizes the financial viability of generation investments. It reports

for each generating technology the value of Rg during each investment epoch. A

value that has a (+) superscript indicates that particular technology has net capacity

additions during the corresponding investment epoch. The value that is reported for

a technology that has net capacity additions is the ratio between the average profits

that are earned during the corresponding representative operating year by units that

are added and their average investment costs. As such, these ratios can be compared

to the capital charge rate to determine the financial viability of an investment.

A value in Table 5 that has a (−) superscript indicates that a technology has net

capacity retirements during the corresponding investment epoch. For technologies

with net retirements or no net capacity changes, the values that are reported in the

table represent the value of Rg for a hypothetical capacity investment, which is based

on the average operating profit of the technology during the corresponding represen-

tative operating year. As such, these values can be used to gauge the financial viability

of adding a marginal unit of such technologies. Rg are not reported for solar in the

BAU and carbon-tax cases, because this technology is not used under these policies.

We do not compare the values in Table 5 to any particular value. Rather, we

focus on trends in the value of Rg between investment epochs and policies. The

reason for this is that the values in Table 5 are artifacts of our modeling assumptions.

For instance, our systems are designed to achieve a very high reliability of at least

99.99%. However, the value of lost load is capped at $9000/MWh. These values do

not necessarily reflect society’s true willingness to pay for reliable electricity service.

Rg tends to be higher for technologies that are built compared to those that are

retired. This follows the intuition behind the stylized cost-recovery model underlying

the design of wholesale electricity markets [3]. Investments and retirements are sig-

naled in a restructured market by revenues that existing or candidate capacity earn or

can earn in the market. An exception to the trend in Rg is solar investment under an
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Table 5: Rg of each generation technology during each investment epoch

Coal Natural Gas Nuclear Wind Solar

BAU

2020 6.2(+) 1.0(+) 5.9 5.8 n/a

2030 3.2(−) 0.3(−) 4.4(+) 3.9(+) n/a

2040 1.6(−) 0.0(−) 3.6(+) 4.1(+) n/a

Carbon Tax

2020 5.0 1.6(+) 7.0(+) 6.5 n/a

2030 0.9(−) 0.4(−) 3.9(+) 3.8(+) n/a

2040 0.7(−) 0.1(−) 3.5(+) 3.5(+) n/a

PTC

2020 6.3 0.4 6.0 8.2(+) n/a

2030 2.6 0.0(−) 3.2 3.8(+) 3.0(+)

2040 1.2(−) 0.1(−) 2.1 3.0(+) 2.3(+)

RPS

2020 6.4(+) 0.6 6.1 5.4 n/a

2030 5.2(−) 0.2(−) 5.4 4.2(+) n/a

2040 0.4(−) 0.0(−) 1.7 1.5(−) 0.4(+)

‘(+)’ indicates technologies that have net capacity additions. ‘(−)’ indicates technologies that have net capacity retirements.

RPS. Such units earn near-zero profits, despite having no operating cost. The reason

for this is that the extremely high penetration of solar that is achieved with an RPS

by 2040 results in energy prices being suppressed during the middle of the day when

solar production peaks. Although energy prices under a PTC experience a similar

trend, the subsidy mitigates this impact. As such, solar units have higher values of

Rg with a PTC relative to with an RPS. One means of providing renewable genera-

tors with a supplemental revenue stream with an RPS, which is used in a number of

jurisdictions, is to create a supplemental market for renewable energy certificates [9].

These certificates pay renewable generators for their contribution toward meeting the

RPS.

Significant nuclear investments are undertaken in the BAU and carbon-tax cases.

These units have relatively high values of Rg, with a capacity-weighted average of

4.2 over the investment epochs in the BAU and carbon-tax cases. Nuclear capacity

is not added in the PTC and RPS cases. Nevertheless, it is important for these units

to earn sufficient profit for their ongoing operation and maintenance to remain finan-

cially viable. The RPS policy achieves this target whereas the PTC falls short with a

capacity-weighted average value over the investment epochs of Rg = 3.7. This low

value of Rg is due largely to the PTC suppressing energy prices, because the subsidy

appears as a negative cost in (17).

6 Conclusions

The literature and past experience (e.g., with cap-and-trade-based SO2 markets) in-

dicates that market-based policies can address climate change more efficiently than

subsidies or technology mandates can. Despite this knowledge, many jurisdictions
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are employing less efficient policies. In some cases, these policy choices are politi-

cally driven. The extant literature indicates that high renewable-energy penetrations

can create or exacerbate price-formation and market-design problems.

Our case study demonstrates that there are significant differences in the efficiency

of meeting carbon-reduction targets through different policies. A carbon tax is most

efficient, which follows from basic economic principles that internalizing the cost of

an externality can align private and societal incentives efficiently. Climate-change-

related policies that are used most commonly—PTC and RPS—are considerably less

efficient. Using a PTC in our case study is eight times as costly as employing a carbon

tax. Indeed, the taxation that is needed to fund the subsidy can create other societal

losses that our case study does not capture. Our case study shows also that policy

choices can yield capacity and cost distortions that can impact price formation in

wholesale electricity markets and harm the financial viability of capacity investments.
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