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A B S T R A C T

Recent theoretical and computational progress has led to unprecedented understanding of
symmetry-breaking instabilities in 2D dynamic fracture. At the heart of this progress resides the
identification of two intrinsic, near crack tip length scales — a nonlinear elastic length scale l
and a dissipation length scale ⇠ — that do not exist in Linear Elastic Fracture Mechanics (LEFM),
the classical theory of cracks. In particular, it has been shown that at a propagation velocity
v of about 90% of the shear wave-speed, cracks in 2D brittle materials undergo an oscillatory
instability whose wavelength varies linearly with l, and at larger loading levels (corresponding
to yet higher propagation velocities), a tip-splitting instability emerges, both in agreements
with experiments. In this paper, using phase-field models of brittle fracture, we demonstrate
the following properties of the oscillatory instability: (i) It exists also in the absence of near-tip
elastic nonlinearity, i.e. in the limit l ô 0, with a wavelength determined by the dissipation
length scale ⇠. This result shows that the instability crucially depends on the existence of
an intrinsic length scale associated with the breakdown of linear elasticity near crack tips,
independently of whether the latter is related to nonlinear elasticity or to dissipation. (ii) It
is a supercritical Hopf bifurcation, featuring a vanishing oscillations amplitude at onset. (iii)
It is largely independent of the phenomenological forms of the degradation functions assumed
in the phase-field framework to describe the cohesive zone, and of the velocity-dependence
of the fracture energy � (v) that is controlled by the dissipation time scale in the Ginzburg–
Landau-type evolution equation for the phase-field. These results substantiate the universal
nature of the oscillatory instability in 2D. In addition, we provide evidence indicating that
the tip-splitting instability is controlled by the limiting rate of elastic energy transport inside
the crack tip region. The latter is sensitive to the wave-speed inside the dissipation zone, which
can be systematically varied within the phase-field approach. Finally, we describe in detail the
numerical implementation scheme of the employed phase-field fracture approach, allowing its
application in a broad range of materials failure problems.

1. Background and motivation 1

Materials failure, which is mainly mediated by crack propagation, is an intrinsically complex phenomenon that couples dynamic 2
processes at length and time scales that are separated by many orders of magnitude, giving rise to a wealth of emergent behaviors. 3
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Crack initiation and dynamics are of prime fundamental and practical importance, and have been intensively studied in the last1
few decades (Freund, 1998; Broberg, 1999). Despite some significant progress, our understanding of many basic aspects of fracture2
dynamics remains incomplete (Fineberg and Marder, 1999; Bouchbinder et al., 2010, 2014; Fineberg and Bouchbinder, 2015).3
For example, it is now well established that dynamically propagating cracks universally undergo a three-dimensional (3D) micro-4
branching instability, where short-lived micro-cracks branch out sideways from the parent crack (Ravi-Chandar and Knauss, 1984;5
Sharon et al., 1996; Fineberg and Marder, 1999; Livne et al., 2005), bearing some similarities to side-branching in dendritic crystal6
growth during solidification (Mullins and Sekerka, 1964; Kessler et al., 1988; Karma, 2001; Asta et al., 2009).7

Significant progress has been made in relation to the solidification instability (Mullins and Sekerka, 1964; Kessler et al., 1988;8
Karma, 2001; Asta et al., 2009), mainly because the dynamical evolution of the solid–liquid interface has been shown to be governed9
on a continuum scale by a well-defined free-boundary problem, which can be solved numerically or analytically in certain limits.10
In contrast — as of yet — we have no comparable understanding of dynamic fracture instabilities, mainly because we do not fully11
understand the strongly nonlinear and dissipative physics of the localized region near crack tips, where failure is taking place. In12
particular, we still miss a complete understanding of the roles played in failure dynamics by intrinsic material length and time13
scales associated with the crack tip physics, which are entirely neglected in the classical theory of cracks — Linear Elastic Fracture14
Mechanics (LEFM) (Freund, 1998; Broberg, 1999).15

Recent progress in understanding dynamic fracture instabilities has been directly related to intrinsic material length scales16
(Bouchbinder et al., 2008; Livne et al., 2008; Bouchbinder et al., 2009; Bouchbinder, 2009; Livne et al., 2010; Bouchbinder, 2010;17
Goldman et al., 2012; Bouchbinder et al., 2014; Fineberg and Bouchbinder, 2015; Chen et al., 2017; Lubomirsky et al., 2018). It has18
been shown that a nonlinear elastic length scale l, i.e. a length scale that is associated with nonlinear elastic deformation near the19
crack tip (where linear elasticity breaks down, cf. Fig. 1e), controls the high velocity oscillatory instability in quasi-two-dimensional20
(quasi-2D) fracture, cf. Fig. 1a–b for simulations and experiments, respectively. This oscillatory instability, occurring at a crack21
propagation velocity v of Ì90% of the shear wave-speed cs, has been experimentally observed in Livne et al. (2007) by suppressing22
the 3D micro-branching instability, which typically occurs at v Ù 0.4cs or slower (Fineberg and Marder, 1999), through reducing the23
system thickness (approaching the 2D limit). The nonlinear elastic length l has been understood in the framework of the ‘‘Weakly24
Nonlinear Elastic Theory of Fracture’’ (Bouchbinder et al., 2008, 2009; Livne et al., 2010; Bouchbinder, 2010; Bouchbinder et al.,25
2014) that extends LEFM to incorporate elastic nonlinearities near the crack tip. This theory shows that l corresponds to a crossover26
between the classical square root crack tip singularity Ì1_

˘

r of LEFM, where r is the distance from the tip, and a stronger Ì1_r27
singularity, associated with weak elastic nonlinearities. The decisive role played by the intrinsic length scale l in the high velocity28
oscillatory instability highlights basic limitations of LEFM, which features only extrinsic/geometric length scales (Bouchbinder et al.,29
2014).30

These new physical insights regarding the importance of near crack tip nonlinearity and intrinsic length scales have been recently31
incorporated into a unified theoretical and computational framework (Chen et al., 2017; Lubomirsky et al., 2018). The latter belongs32
to a rather broad class of phase-field approaches to brittle fracture (Karma et al., 2001; Karma and Lobkovsky, 2004; Henry and33
Levine, 2004; Hakim and Karma, 2005; Henry, 2008; Hakim and Karma, 2009; Aranson et al., 2000; Eastgate et al., 2002; Marconi34
and Jagla, 2005; Bourdin et al., 2000, 2008, 2011; Miehe et al., 2010; Ambati et al., 2015a; Bleyer and Molinari, 2017; Bleyer et al.,35
2017; Geelen et al., 2019; Mandal et al., 2020), which allow a self-consistent selection of the fracture-related dissipation, the crack36
propagation velocity v and the crack path, and is particularly suitable for studying complex crack patterns under both quasi-static and37
dynamic conditions. Phase-field approaches have also been developed to model ductile fracture that is inherently quasi-static (Ambati38
et al., 2015b; Miehe et al., 2016). The phase-field fracture approach has proved to be highly fruitful in elucidating various material39
failure processes involving complex geometries — such as crack front segmentation in mixed-mode fracture (Pons and Karma, 2010;40
Chen et al., 2015), quasi-static crack oscillations in thermal fracture (Corson et al., 2009), thermal shocks (Bourdin et al., 2014)41
and crack kinking in anisotropic materials (Mesgarnejad et al., 2020) —, to name a few examples. As phase-field approaches offer a42
self-consistent mathematical formulation of fracture problems, they inevitably also involve a dissipation length ⇠ over which elastic43
singularities are regularized (cf. Fig. 1e), giving rise to a well-defined v-dependent fracture energy � (v). While the dissipation44
length ⇠ in existing phase-field approaches is not associated with realistic dissipation mechanisms (e.g. plastic deformation), but45
rather serves as a mathematical regularization length that mimics an effective cohesive zone and renders the fracture problem self-46
contained, its mere existence is completely generic. Finally, � (v) also incorporates a dissipation time scale, which like the nonlinear47
length scale l and the dissipation length ⇠, is also entirely missing in LEFM.48

The phase-field fracture approach of Chen et al. (2017) and Lubomirsky et al. (2018), to be detailed below in Section 2,49
distinguishes itself from previous approaches by incorporating near-tip elastic nonlinearities and by allowing unprecedentedly high50
crack propagation velocities, approaching the theoretical limiting speed (cf. Fig. 1f). These novel properties resulted in a theory51
that predicted the high velocity 2D oscillatory instability (Chen et al., 2017), which has been shown to be controlled by the intrinsic52
length scale l (cf. Fig. 1a), in quantitative agreement with experiments (Chen et al., 2017). Furthermore, the very same theoretical53
and computational framework demonstrated that upon increasing the driving force for fracture W , i.e. the stored elastic energy54
per unit area ahead of the crack, cracks accelerate faster and to yet higher velocities (cf. Fig. 1f), leading to tip-splitting after the55
onset of oscillations (cf. Fig. 1c) or even prior to it (Lubomirsky et al., 2018). This ultra-high velocity 2D tip-splitting instability,56
to be distinguished from the 3D micro-branching instability, has been then observed experimentally in the same ultra-high velocity57
regime (Lubomirsky et al., 2018).58

This progress gave rise to several outstanding questions that we aim at addressing in this paper. First, it has been established59
that the wavelength � of the oscillatory instability scales linearly with the nonlinear elastic length scale l (reproduced here in60
Fig. 2a), in quantitative agreement with experiments on brittle gels (Bouchbinder et al., 2009; Goldman et al., 2012; Bouchbinder61
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Fig. 1. (a) The theoretical prediction of the high-velocity oscillatory instability obtained in mode-I (tensile) phase-field fracture simulations (Chen et al., 2017;
Lubomirsky et al., 2018), see text for additional details (see also panels (b) and (f)). The top part shows the crack trajectory, defined by the � = 1_2 contour
(see text for details), in the undeformed configuration. The lower part presents a sequence of snapshots in the deformed configuration at the onset of instability
(the color code corresponds to estrain_�, where the elastic energy density estrain is given in Eq. (9) and � is the shear modulus, see text for additional details. H is
the height of the strip in which the crack propagates). (b) The corresponding experimental images for thin brittle gels (Livne et al., 2007), where the oscillatory
instability occurs upon surpassing a critical propagation velocity of vc Ù 0.92cs, in quantitative agreement with the theoretical–computational results of panel (a).
(c) Upon increasing the driving force for fracture, crack oscillations are predicted to be followed by a tip-splitting instability (the same presentational scheme
as panel (a)), see also panel (f). (d) The corresponding experimental image (Lubomirsky et al., 2018), confirming the prediction. (e) A schematic sketch of the
two intrinsic, near crack tip, material length scales discussed in this work, see extensive discussion in the text. l is the near tip nonlinear elastic length and ⇠
is the dissipation length. (f) The instantaneous crack velocity v, in units of the shear wave-speed cs, as a function of the normalized propagation distance d_H ,
as obtained in large-scale phase-field simulations at different dimensionless crack driving forces W_�0 (see text for the definition of W and �0, and the legend
for the values used). For the two smallest values of W_�0, the crack exhibits the oscillatory instability (cf. panels (a) and (b)) upon surpassing a critical velocity
of vc = 0.92cs, marked by the arrows (note that the larger W_�0 is, the larger the acceleration is). For the largest W_�0, the crack oscillates and then tip-splits
(cf. panels (c) and (d)) at a slightly larger velocity (also marked by an arrow). The simulation parameters in panel (a) are �0_�⇠ = 0.29, H = 300⇠, W = 900⇠,
W_�0 = 2.5, � = 0.21⇠ and � = 0.28 (see text and Appendix for the definition of all quantities). The parameters in panel (c) are the same, except for W_�0 = 3.0
(compare to panel (f)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

et al., 2014; Chen et al., 2017). Extrapolating this linear relation to the l ô 0 limit, i.e. to situations in which crack tip elastic 1
nonlinearity is small/absent, indicated a finite intercept of � Ù 13⇠ (cf. Fig. 2a). If valid, this extrapolation implies that crack tip 2
elastic nonlinearity is not a necessary condition for the existence of the 2D oscillatory instability, i.e. that the latter can also be 3
controlled by the dissipation length ⇠. In this case, the 2D oscillatory instability is entirely universal and controlled by either l or ⇠, 4
i.e. it requires an intrinsic length scale over which linear elasticity breaks down (be it nonlinear elastic or dissipative in nature) and 5
hence is expected to be observed by any material in 2D. Yet, calculations with l = 0 did not reveal the 2D oscillatory instability, 6
thereby suggesting instead that this instability disappears in the l ô 0 limit and consequently that crack tip elastic nonlinearity is 7
essential for its existence. 8

In Section 3 we resolve this puzzle by properly probing the l ô 0 limit, using a modified phase-field formulation. The latter 9
introduces degradation functions, i.e. functions which control the softening of the elastic energy at large strains near the crack 10
tip, that minimize lattice (numerical grid) pinning effects. Lattice pinning effects are inherently present in any finite-difference 11
implementation of the phase-field equations on a regular lattice/grid and tend to trap crack trajectories along lattice/grid planes, 12
thereby suppressing small-amplitude oscillatory instabilities. We find that lattice pinning effects can be minimized by choosing 13
degradation functions that increase the length of the effective cohesive zone along the crack propagation direction, thereby allowing 14
us to quantitatively investigate the oscillatory instability in the l ô 0 limit. We show that the 2D oscillatory instability persists also 15
in the absence of near-tip elastic nonlinearity, i.e. in the limit l ô 0, with a wavelength determined by the dissipation length scale 16
⇠, in quantitative agreement with the linear extrapolation. This result shows that the instability crucially depends on the existence 17
of an intrinsic length scale associated with the breakdown of linear elasticity near crack tips, independently of whether it is related 18
to nonlinear elasticity or to dissipation. 19

Another open question concerns the nature of the oscillatory instability. We show that the oscillatory instability is a supercritical 20
Hopf bifurcation, featuring a vanishing oscillations amplitude at onset. Furthermore, it remained unclear whether the oscillatory 21
instability depends on basic properties of the phase-field model (to be introduced in detail in Section 2) including: (i) the functional 22
form of the degradation functions that phenomenologically describe the energetic properties of the effective cohesive zone, and (ii) 23
the dissipation time scale associated with the Ginzburg–Landau-type dynamics assumed to govern the evolution of the phase-field, 24
which yields a velocity-dependent fracture energy � (v) (Karma and Lobkovsky, 2004). To address the role of (i), we study rapid 25
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fracture in two phase-field formulations where the mass density in the dissipation zone is degraded as in Chen et al. (2017) and1
Lubomirsky et al. (2018) to attain ultra-rapid speeds. In the first, the degradation functions in the elastic energy are chosen to be2
the same as in the original model of Karma, Kessler and Levine (KKL) (Karma et al., 2001). In the second, those functions are chosen3
to have different forms that yield an elongated cohesive zone, which reduces the aforementioned lattice pinning effect. Therefore,4
this second formulation has the 2-fold benefit of allowing one to both study the onset of the oscillatory instability in the l ô 0 limit5
and to test to what degree dynamic fracture instabilities depend on details of the energetic properties of the cohesive zone. We find6
that both formulations exhibit strikingly similar ‘‘phase diagrams’’ distinguishing regimes of straight, oscillatory, and tip-splitting7
crack states as a function of applied load and l_⇠ (the ratio of nonlinear and dissipation length scales).8

To address the role of (ii), we investigate crack behavior in the KKL model as a function of the dimensionless ratio � = ⌧ cs_⇠9
of a dissipation time scale ⌧ and the characteristic time scale ⇠_cs of energy transport on the scale ⇠. This ratio controls the v10
dependence of the function � (v), which is nearly v independent for small �, as in ideally brittle materials such as silica glass, but11
that becomes a steep function of v for � larger than unity, as exemplified by polymeric materials such as PMMA. We find that12
the onset of the oscillatory instability and its characteristic wavelength are largely independent of � over an order of magnitude13
variation that encompasses the limits where � (v) is weakly and strongly dependent on v. Taken together, the results to be presented14
in Section 3 substantiate the universal nature of the oscillatory instability, which is expected to be observed in any material in 2D.15

Another set of open questions concerns the physical origin of the ultra-high velocity 2D tip-splitting instability. In Section 4 we16
address this issue, where we propose that the tip-splitting instability is controlled by a limiting rate of elastic energy transport inside17
the crack tip region. This rate of elastic energy transport is sensitive to the wave-speed inside the dissipation zone; while the latter is18
not expected to change significantly compared to the elastic bulk wave-speed, it can still be systematically reduced within the phase-19
field approach. By so doing, we show that the critical tip-splitting velocity continuously shifts to smaller values, lending support20
to the proposed instability mechanism. Finally, some discussion and concluding remarks are offered in Section 5 and a detailed21
description of the numerical implementation scheme of the employed phase-field fracture approach (that is presented in Section 2)22
appears in Appendix A and in Appendix B. The power of the dynamic phase-field approach is also demonstrated in Appendix C in23
elucidating strongly inertial effects on the near tip fields of rapid cracks.24

2. A nonlinear phase-field approach to dynamic fracture: resolving physically-relevant, intrinsic material length scales25

The nonlinear phase-field approach to dynamic fracture, to be employed in this paper, has been introduced in quite some26
detail in Chen et al. (2017) and studied in Chen et al. (2017) and Lubomirsky et al. (2018). Its presentation is repeated here for27
completeness, and in order to further highlight its physical content and potential utility. This phase-field approach is a Lagrangian28
field theory that is designed to incorporate the intrinsic material length scales l and ⇠, and to allow for high crack propagation29
velocities, where dynamic instabilities are known to occur experimentally. The starting point is the Lagrangian L = T * U , where30
the potential energy U and kinetic energy T are given as31

U =  

⌧1
2 ((�)

2 + g(�)� Ñestrain(u) +w(�)ec
�

dV and T =  
1
2f (�)⇢

⇠ )u
)t

⇡2
dV , (1)32

in terms of the displacement vector field u(x, y, t) and the scalar phase-field �(x, y, t), an auxiliary field to be discussed below (here33
(x, y) is a Cartesian coordinate system and t is time). The elastic strain energy density functional is estrain(u) = � Ñestrain(u) (i.e. Ñestrain(u)34
is the dimensionless energy density functional, measured in units of the shear modulus �) and ⇢ is the mass density. The integral35
are performed over the entire system and dV is a volume element.36

The phase-field �(x, y, t) is a scalar field that varies continuously near the crack tip and is meant to mathematically represent the37
degradation process of the material upon failure. The latter process is mediated by the degradation functions g(�), f (�) and w(�)38
that spontaneously generate, once coupled to the dissipative evolution of �, the traction-free boundary conditions on the crack faces39
and at the same time give rise to a finite fracture energy � . It is important to note that this process is a phenomenological approach40
that regularizes crack tip singularities and renders the fracture problem fully self-contained, but it does not represent physically41
realistic dissipation processes near the crack tip. Yet, as will be further discussed below, this regularization method should satisfy42
some important physical constraints. Within the phase-field approach, an intact/unbroken material corresponds to � = 1, for which43
g(1) = f (1) = 1 and w(1) = 0, which in turn leads to U = î � Ñestrain(u)dV and T = î 1

2 ⇢()u_)t)
2dV . The latter correspond to an elastic44

material that is characterized by a linear shear wave-speed cs í
˘

�_⇢, even though the elastic energy density functional Ñestrain(u) is45
not necessarily quadratic, i.e. not restricted to linear elasticity.46

As an elastic material, in itself, does not contain any intrinsic length scales, we next explain how the intrinsic material length47
scales l and ⇠ are incorporated into the phase-field approach. These are related to the properties of the elastic functional Ñestrain(u)48
and to the phase-field �. Consider physical situations in which the material is loaded far from the crack by weak forces, which is the49
generic case in brittle materials, and set � = 1. As the driving forces are weak, the material response would be predominantly linear50
elastic, i.e. the quadratic approximation to Ñestrain(u) is expected to be very good. Yet, as the crack tip is approached, the square51
root singularity of LEFM will build up and displacement gradients will not be necessarily small. Hence, if Ñestrain(u) incorporates52
elastic nonlinearity, i.e. contributions in the displacement gradient (u that are higher order than quadratic, there will be a length53
scale near the crack tip where nonlinear elastic deformation becomes important. This occurs exactly at the nonlinear elastic length54
scale l discussed above, which has been shown to scale as l Ì �_� (Bouchbinder et al., 2014). Therefore, by using a nonlinear55
elastic Ñestrain(u) and by keeping the far-field loading weak, the length scale l is naturally incorporated into the phase-field approach,56
cf. Fig. 1e. We note in passing that by considering strong far-field loading conditions, the very same framework makes it possible57
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to study the fracture of soft materials (Long et al., 2021), where elastic nonlinearity may be relevant at all scales. This interesting 1
topic is not discussed in this paper. 2

When the crack tip is further approached, energy dissipation sets in, eventually leading to material failure, i.e. to the loss of 3
load-bearing capacity. This is accounted for in the phase-field approach by the field �(x, y, t), which smoothly varies from � = 1 4
(intact/unbroken material) to � = 0 (fully broken material), and by the degradation functions g(�), f (�) and w(�) that depend on 5
it. The onset of dissipation is related to the strain energy density threshold ec in Eq. (1). As � decreases from unity, g(�) is chosen 6
such that it decreases towards zero and w(�) is chosen such that it increases towards unity. This process mimics the conversion of 7
elastic strain energy into fracture energy, where the broken � = 0 phase/state becomes energetically favorable from the perspective 8
of minimizing U in Eq. (1). For � = 0, we set g(0) = 0, implying that the effective shear modulus g(�)� in Eq. (1) vanishes, i.e. that 9
the material lost its load-bearing capacity and traction-free boundary conditions are achieved. This process is associated with a 10
length scale, which emerges from the combination of the energetic penalty of developing � gradients, as accounted for by the first 11
contribution to U in Eq. (1) that is proportional to , and the �-dependent elastic energy density threshold for failure (1 *w(�))ec 12
(the � = 0 state becomes energetically favored when the degraded elastic energy density g(�)� Ñestrain(u) exceeds this threshold). 13
Consequently, the characteristic length scale is ⇠ í

˘

_2ec, setting the size of the dissipation zone near the tip, cf. Fig. 1e. To see 14
the explicit connection between ⇠ and fracture-related dissipation, note that the fracture energy at onset, �0 í � (v ô 0), can be 15
expressed as �0 = 4ec⇠ î

1
0
˘

w(�) d� (Karma et al., 2001; Hakim and Karma, 2009). 16
In the KKL model (Karma et al., 2001), the same function g(�) was used to represent both the degradation of the elastic modulus 17

and the �-dependent threshold for failure, corresponding to w(�) = 1*g(�) in the notation of Eq. (1), while in the phase-field models 18
introduced in the mathematical literature (see Bourdin et al. (2000) and references therein), the function w(�) has typically been 19
chosen independently of g(�), where ecw(�) represents a mathematical regularization of the fracture energy. While various choices 20
of degradation functions can yield a finite fracture energy in the ⇠ ô 0 limit, the extra freedom to choose w(�) independently of 21
g(�) offers additional benefits, such as the ability to vary the effective size of the cohesive zone (Geelen et al., 2019). 22

This freedom is exploited here with the particular choice g(�) = �4 and w(�) = 1 * �, which is found to increases the size of 23
the effective cohesive zone in comparison to KKL in a way that substantially reduces numerical lattice/grid pinning effects. Pinning 24
originates from the fact that the material displacement field becomes discontinuous on the lattice/grid scale in the fully broken 25
region behind the crack tip. In a finite-difference discretization of the phase-field model on a periodic lattice, pinning tends to trap 26
cracks along lattice planes. While this effect is minimized in finite element implementations that use unstructured grids, it is not 27
completely eliminated. In the standard finite-difference implementation of phase-field models on 2D square lattices used here and 28
in several previous studies (Karma et al., 2001; Karma and Lobkovsky, 2004; Henry and Levine, 2004; Hakim and Karma, 2005; 29
Henry, 2008; Chen et al., 2017; Lubomirsky et al., 2018), we find that pinning can be reduced by the aforementioned choice of 30
degradation functions that, by effectively elongating the cohesive zone, pushes the displacement discontinuity further behind the 31
crack tip on the scale ⇠. (The tip can be defined arbitrarily as the most advanced point on the � = 1_2 contour). This turns out 32
to be important to demonstrate the existence of the oscillatory instability in the l ô 0 limit, which is presumably suppressed by 33
lattice pinning in the KKL model, where the displacement discontinuity forms closer to the crack tip. For finite l_⇠ values, elastic 34
nonlinearity promotes the oscillatory instability in such a way that lattice pinning is insufficient to suppress the instability in the 35
KKL model (Chen et al., 2017; Lubomirsky et al., 2018). In this setting, the comparison of crack behavior in the KKL model and the 36
modified model with reduced pinning serves the different purpose of probing universal aspects of dynamical instabilities that are 37
independent of details of the choice of degradation functions. 38

The intrinsic material length scales l and ⇠, as explained above, are incorporated into the potential energy U in Eq. (1) through 39
elastic nonlinearity in Ñestrain and through the phase-field �, respectively. The phase-field � also appears in the kinetic energy T 40
in Eq. (1), through the degradation function f (�). What physical considerations should be taken into account in selecting f (�)? 41
How is it related to g(�)? As explained above, g(�) accounts for the degradation of the effective shear modulus g(�)� inside 42
the dissipation zone, which enforces the physical traction-free boundary conditions on the crack faces. Yet, this elastic modulus 43
degradation process does not realistically represent dissipative processes near crack tips, e.g. plastic deformation, that do not involve 44
significant softening of elastic moduli. This, in turn, implies that the wave-speeds inside the dissipation zone are not significantly 45
different from their elastic bulk values. Therefore, we write the kinetic energy inside the dissipation zone, i.e. for 0 f � < 1, as 46
T = î 1

2 g(�)� [cpz(�)]
*2()u_)t)2dV , where we defined the modified shear wave-speed cpz(�) as 47

cpz(�) í

v

g(�)�
f (�)⇢ = cs

v

g(�)
f (�) for 0 f � < 1 , (2) 48

with f (�)⇢ being the effective mass density, and demand cpz(�) ˘ cs (‘pz’ stands for ‘process zone’, a common term for the dissipation 49
zone in the fracture mechanics literature (Lawn, 1993)). The latter implies f (�) ˘ g(�). In Chen et al. (2017) and Lubomirsky et al. 50
(2018), as well as in Section 3 below, f (�) = g(�) is used, implying that the mass density degrades inside the dissipation zone 51
similarly to the shear modulus. This is quite different from earlier works (Karma et al., 2001; Hakim and Karma, 2009) that used 52
f (�) = 1. The implications of such choices on crack dynamics will be discussed in Section 4. 53

Since fracture is a non-conservative phenomenon, the Lagrangian of Eq. (1) must be supplemented with a dissipation function, 54
which is directly related to the phase-field �. We define the dissipation function D as 55

D í 1
2�  

0

)�
)t

12
dV , (3) 56
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where � is a dissipation rate coefficient, to be related below to the v-dependence of the fracture energy � (v). The evolution of �1
and u is derived from Lagrange’s equations2
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where  = (�, ux, uy) (here u = (ux, uy)). Using Eqs. (1) and (3), one obtains4
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where U (u, �) is the potential energy density, U =î U (u, �)dV , which can be identified using Eq. (1).8
Eqs. (5)–(7), together with Eqs. (1) and (3), can be used to calculate the time rate of change of the total energy of the system,9

leading to d(T + U )_dt = *2D f 0 (Chen et al., 2017). The latter shows that the system follows gradient flow dynamics, where10
D indeed accounts for the rate of dissipation, which is localized near the crack tip (where � varies). This dissipation localization11
can be immediately employed to calculate the fracture energy � (v). In particular, it suggests v(� (v) * �0) = 2D, which upon using12
Eq. (3) and assuming steady-state crack propagation along the positive x-direction (implying )t = *v)x), leads to Hakim and Karma13
(2009)14

� (v) = �0 + �*1 v 

0

)�
)x

12
dV . (8)15

This result shows that the dissipation coefficient � is responsible for the v-dependence of � (v), which is also affected by the spatial16
distribution and extent of � gradients near the tip. Finally, note that crack healing in the phase-field approach is prevented by using17
the irreversibility condition )�_)t f 0.18

To conclude the presentation of the nonlinear phase-field approach to dynamic fracture, we discuss a natural way to nondimen-19
sionalize Eqs. (5)–(7) and list the dimensionless groups of parameters that control them. Boundary conditions, and specific choices20
of the degradation functions g(�), f (�) and w(�) (whose generic properties have already been discussed above), will be discussed21
later. A natural spatial scale is obviously ⇠ (recall that it is given by ⇠ =

˘

_2ec), which sets the length unit. A natural time scale22
would be associated with the dissipation rate � , taking the form ⌧ í (2�ec)*1, which sets the time unit. Energy density would be23
naturally measured in units of the shear modulus � and the mass density ⇢ would be naturally measured in units of �_c2s , where24
cs is the shear wave-speed introduced above. With these at hand, Eqs. (5)–(7) can be fully nondimensionalized. The dimensionless25
set of equations depends on a small number of dimensionless groups of physical parameters. First, the dimensionless energy density26
functional Ñestrain(u), which depends on the dimensionless displacement gradient tensor (u, contains elastic constants — in the most27
general case both linear and nonlinear ones — that are expressed in units of �. Second, the dimensionless set of equations depends on28
ec_�, which quantifies the ratio between the dissipation onset threshold ec and a characteristic elastic modulus. Third, the equations29
depend on � = ⌧ cs_⇠ (already defined above), which quantifies the relative importance of material inertia and dissipation. As30
� Ì �*1, it directly controls the v-dependence of the fracture energy according to Eq. (8), as will be further discussed in Section 3.31

The ratio of the two fundamental length scales discussed in this paper, l_⇠, depends on all of these dimensionless parameters; the32
dimensionless nonlinear elastic constants appear in the prefactor of l_⇠ Ì � (v)_�⇠ (Bouchbinder et al., 2008, 2014). This prefactor33
vanishes in the absence of elastic nonlinearity, as will be discussed in Section 3, and in general depends also on v_cs (Bouchbinder34
et al., 2008, 2014). l_⇠ is proportional to ec_�, but also depends on � through the v-dependence of � (v) (cf. Eq. (8)). These35
dependencies provide unprecedented control of a ratio of two intrinsic material length scales that are entirely missing in LEFM.36
This unique power of the phase-field approach to dynamic fracture has already proven essential in the discoveries reported in Chen37
et al. (2017) and Lubomirsky et al. (2018), and will be further utilized in this paper. Finally, solutions of the dimensionless version of38
Eqs. (5)–(7), which are strongly nonlinear coupled partial differential equations, generally require large-scale numerical simulations.39
We provide a comprehensive description of the relevant numerical procedures and techniques in the Appendices.40

3. The oscillatory instability: The l ô 0 limit, supercritical Hopf bifurcation and independence of � (v)41

One of the major achievements of the phase-field approach presented in the previous section is related to the high-velocity 2D42
oscillatory instability, shown in Fig. 1a–b and briefly discussed earlier in Section 1. To apply the phase-field framework to a given43
physical problem, one needs to specify the relevant elastic strain energy density functional estrain, the degradation functions g(�),44
f (�) and w(�), the system’s geometry and the applied boundary conditions. As the 2D oscillatory instability has been observed in45
thin brittle gels (Livne et al., 2007; Goldman et al., 2012; Bouchbinder et al., 2014), whose near crack tip deformation is known46
to be described by 2D incompressible neo-Hookean elasticity (Livne et al., 2005, 2007), we focus here on the latter that takes the47
form (Knowles and Sternberg, 1983)48

estrain = � Ñestrain =
�
2

�

FijFij + [det(F )]*2 * 3
�

. (9)49
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Here F is the deformation gradient tensor, whose components are related to the displacement field u according to Fij = �ij + )jui, 1
where i, j = {x, y}. The nonlinearity in this energy density functional is contained inside the out-of-plane stretch ratio [det(F )]*1, 2
where nonlinear elastic coefficients (in units of �) can be obtained by a systematic expansion in the displacement gradient tensor 3
(u (Bouchbinder et al., 2008, 2014). As explained above, this near tip nonlinearity, combined with weak far-field loading, gives 4
rise to the existence of a finite nonlinear elastic length l. 5

For all the computations, except those that require reducing lattice pinning to study the l = 0 limit, the degradation functions 6
g(�) and w(�) are chosen following the well-studied KKL model (Karma et al., 2001; Hakim and Karma, 2009) to be g(�) = 4�3*3�4 7
and w(�) = 1 * g(�) (see some additional discussion of this choice in Karma et al. (2001) and Hakim and Karma (2009) and note 8
that the general properties g(1) = w(0) = 1 and g(0) = w(1) = 0, discussed in Section 2, are satisfied). These degradation functions 9
also satisfy g®(0) = w®(0) = g®(1) = w®(1) = 0, which automatically limits the value of the phase-field to reside between 0 and 1. For 10
f (�), we choose f (�) = g(�) (Chen et al., 2017; Lubomirsky et al., 2018), which according to the discussion in Section 2, leads to 11
cpz = cs in Eq. (2). This choice, in contrast to the previously employed relation f (�) = 1 (Karma et al., 2001; Hakim and Karma, 12
2009), allows probing the high-velocity regime in which the oscillatory instability has been observed experimentally (Livne et al., 13
2007), as mentioned in Section 2 and as will be discussed in detail in Section 4. 14

Finally, we consider mode-I (tensile) cracks initially propagating along the symmetry line (y = 0, the propagation is in the positive 15
x-direction) of a long strip of heightH (the long strip condition is mimicked by a finite strip of lengthW using a treadmill procedure, 16
as explained in Appendix A.4). Fixed tensile displacements uy(±H_2) = ±�y are imposed on the top and bottom boundaries of the 17
strip, with �y ~ H . The latter ensures weak loading conditions, i.e. that the material behaves linearly elastically everywhere except 18
for a small region of typical size l near the tip. The driving force for fracture is quantified by W , which equals to the elastic energy 19
density associated with a uniform tensile strain of magnitude 2�y_H (realized far ahead of the crack tip), multiplied by H . 20

Large-scale numerical simulations of the resulting equations (Chen et al., 2017; Lubomirsky et al., 2018) revealed an oscillatory 21
instability (cf. Fig. 1a) that spontaneously initiates at a very high critical velocity vc (cf. Fig. 1f), in quantitative agreement with 22
the experimental observations (both in terms of the existence of the instability, cf. Fig. 1b, and in terms of the value of the critical 23
velocity). Moreover, the oscillations wavelength � has been shown to vary linearly with the nonlinear length l (Chen et al., 2017; 24
Lubomirsky et al., 2018) — cf. Fig. 2a —, featuring a slope d�_dl whose value is in quantitative agreement with the corresponding 25
experiments (Chen et al., 2017). It is important to stress that within the theoretical–computational framework l Ì �_� (at fixed 26
⇠ and elastic nonlinearity) can be controllably varied by independently varying ec (which determines the basic scale of � ) and 27
�, while experimentally this is far more challenging. The reason for this is that � and � may vary in a correlated manner across 28
materials (Goldman et al., 2012), as both depend on a basic interaction energy scale. Finally, note that the nonlinear length l 29
in Fig. 2a–b is calculated following Lubomirsky et al. (2018). In particular, this is done by splitting the strain energy density to 30
its linear and nonlinear contributions, estrain = elestrain + enlstrain and then calculating the area that corresponds to the region where 31
Ò)Fenlstrain_)Fe

le
strainÒ becomes non-negligible. Here Ò � Ò denotes the square root of sum of squares of all the components of the tensor. 32

The nonlinear length is then estimated as l =
˘

A, where A corresponds to the area where Ò)Festrain_)FelestrainÒ > 1_2 (Lubomirsky 33
et al., 2018). 34

The extrapolation of the linear �–l relation to l ô 0, which is inaccessible experimentally, yielded a finite intercept of 35
� Ù 13⇠. The very same intercept has been obtained for a different nonlinear elastic material (Lubomirsky et al., 2018), which 36
features a different slope d�_dl compared to brittle neo-Hookean materials. If this extrapolation is physically valid, it has dramatic 37
implications; it suggests that the oscillatory instability exists also in the absence of elastic nonlinearity (l ô 0), in which case the 38
oscillations wavelength is inherited from the other intrinsic length scale in the problem, i.e. the dissipation length ⇠. The flexibility 39
of the theoretical–computational phase-field framework allows one to probe the l ô 0 limit, going significantly beyond experiments. 40
The ratio l_⇠ can be reduced down to O(10*2) by reducing ec, as shown in Fig. 2b, and the wavelength � seems to follow the linear 41
dependence on l, in agreement with the prediction based on the linear approximation. To decisively resolve the l ô 0 limit, one 42
should actually set l = 0. This cannot be achieved through ec, which has to remain finite, but rather by controlling the prefactor in 43
the relation l Ì �_�, which depends on nonlinear elastic coefficients. 44

Since the prefactor in the relation l Ì �_� vanishes identically in the absence of elastic nonlinearity, l = 0 can be achieved 45
by setting all nonlinear elastic coefficients to zero, i.e. by a priori using the linear elastic approximation of the nonlinear elastic 46
functional estrain. For 2D brittle neo-Hookean materials described by Eq. (9), the linear elastic approximation takes the form 47
elestrain = � Ñelestrain = �([tr(✏)]2 + tr(✏2)), where ✏ is the linear elastic strain tensor whose components are ✏ij = 1

2 ()jui + )iuj ). Using 48

elestrain = � Ñelestrain inside Eq. (1) corresponds to a material with l = 0; performing such calculations did not yield an oscillatory 49
instability. This result suggests a qualitatively different physical scenario in which the oscillatory instability disappears in the absence 50
of elastic nonlinearity l ô 0, cf. the dotted line in Fig. 2b, compared to the linear extrapolation scenario in which the instability 51
exists in this limit, cf. the dashed line in Fig. 2b, and is controlled by the dissipation length ⇠. 52

How can one decide between these two mutually exclusive and qualitatively different physical scenarios? As the equations 53
of motion are numerically resolved on a square lattice/grid, we cannot exclude the possibility that the oscillatory instability is 54
spuriously suppressed for l = 0, where the oscillations amplitude is expected to be small, due to lattice pinning (see discussion in 55
Sections 1 and 2). That is, it is conceivable that the crack is trapped at a numerical lattice plane and hence cannot oscillate when its 56
oscillations amplitude is vanishingly small. To address this possibility, and inspired by Geelen et al. (2019), we formulate a modified 57
phase-field model that employs g(�) = �4 and w(�) = 1 * �. This choice of degradation functions is expected to increase the size of 58
the effective cohesive zone compared to the KKL choice, which in turn is expected to reduce lattice pinning effects. Additional and 59
more detailed discussion of this modified phase-field formulation will be presented elsewhere (Vasudevan et al., 2021). 60
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Fig. 2. (a) The wavelength of the oscillatory instability �, in units of ⇠, vs. the dimensionless nonlinear length l_⇠, as obtained in large-scale phase-field simulations
of two phase-field models. The latter differ in the choice of degradation functions, corresponding to the KKL choice, g(�) = 4�3 * 3�4 and w(�) = 1* g(�) (brown
squares) and to the modified phase-field model, where g(�) = �4 and w(�) = 1 * � (yellow circles). The nonlinear length is estimated as explained in the text. �
varies linearly with l, as indicated by the best linear fit (dashed line), largely independently of the choice of the degradation functions and in agreement with
experimental observations (Chen et al., 2017; Lubomirsky et al., 2018). The best linear fit features a finite intercept corresponding to � Ù 13⇠ (Chen et al., 2017;
Lubomirsky et al., 2018). Some, but not all, of the data points corresponding to the KKL model overlap those reported in Fig. 2a of Lubomirsky et al. (2018).
The red rectangle marks the region that is zoomed in on in the next panel. (b) Zooming in on the small l_⇠ regime. As explained in detail in the text, there exist
two qualitatively different scenarios in relation to the l_⇠ ô 0 limit; one scenario (dashed line), which follows the linear fit/extrapolation of panel (a), predicts
a finite intercept at l = 0 (i.e. in the absence of near tip elastic nonlinearity). The other scenario (dotted line) predicts the disappearance of the instability for
l = 0. Previous work failed to decide between the two qualitatively different physical scenarios. Here, using the modified phase-field model as detailed in the
text and already employed in panel (a), the first scenario is supported (green circle). (c) v_cs vs. d_H for l = 0 (i.e. using the linear elastic approximation of the
elastic energy functional) for different loading levels W_�0. For W_�0 = 1.13 no instability occurs, while for W_�0 = 1.16 (corresponding to the green circle in
panel (b)) the oscillatory instability takes place (arrow) and for W_�0 = 1.18 tip-splitting occurs (arrow). (d) The normalized oscillations amplitude, A_⇠, vs. the
driving force W_�0 near the onset of instability, using the modified phase-field model for both l = 0 and l > 0. The results are consistent with a supercritical
Hopf bifurcation, as discussed in the text. Panel (a) employs a variety of simulation box dimensions W and H so that the background strain remains small,
and ec_� is gradually varied to vary l. W = H = 200⇠ and ec_� = 0.1 are used elsewhere. In addition, we set � = 0.28 and � = 0.2⇠. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

For a finite nonlinear length l, it is known that the oscillatory instability is controlled by l, where the cohesive zone and its1
characteristic scale ⇠ play a secondary role. Consequently, we expect the modified phase-field formulation to give rise to the very2
same oscillatory instability discussed above in relation to the KKL degradation functions. To test this, we performed simulations3
with the modified phase-field formulation for l > 0, i.e. with the nonlinear elastic energy functional of Eq. (9), and superimposed4
in Fig. 2a the oscillations wavelength � vs. l for this model (yellow circles) on top of the corresponding results for the KKL model5
(brown squares). The two data sets nearly collapse, clearly demonstrating the expected independence of �(l) on the details of the6
dissipation/cohesive zone when l > 0. The main merit of the modified model, in the present context, would be to explore its behavior7
for l = 0; if indeed the modified degradation functions reduce lattice pinning effects, we expect this model to distinguish between8
the two qualitatively different physical scenarios discussed above, i.e. to unambiguously show whether the oscillatory instability9
exists in the l ô 0 limit (the dashed line hypothesis in Fig. 2b) or disappears (the dotted line hypothesis in Fig. 2b). Performing10
this calculation clearly reveals an oscillatory instability for l = 0, with a wavelength � ˘ 13⇠ (marked by the large green circle in11
Fig. 2b), in quantitative agreement with the linear extrapolation prediction (the dashed line in Fig. 2b, which intercepts the l = 012
line exactly at this value). Furthermore, in Fig. 2c we present v_cs vs. d_H for l = 0, showing that the oscillatory instability emerges13

8



MPS: 104372

A. Vasudevan et al. Journal of the Mechanics and Physics of Solids xxx (xxxx) xxx

Fig. 3. (a) The normalized fracture energy � (v)_�0 vs. v_cs for two values of �, which are separated by an order of magnitude (see legend) and for two choices
of degradation functions, g(�) = 4�3 * 3�4 and w(�) = 1 * g(�) (termed KKL) and the modified one, i.e. g(�) = �4 and w(�) = 1 * � (see text for additional
details). (b) The normalized oscillations wavelength �_⇠ vs. � (vc)_�⇠ (which is proportional to l_⇠) for the KKL choice and various values of � (see legend).
Compare the results to those of Fig. 2a and see text for discussion. The simulation box features H = 300⇠ and W = 900⇠, and the spatial discretization size is
� = 0.2⇠, for both panels (a) and (b). In panel (a) the linear elastic strain energy density elestrain corresponding to Eq. (9) (see text for additional details) is used
with ec_� = 0.5, while in panel (b) estrain of Eq. (9) is used and ec_� is gradually varied in order to vary � (vc)_�⇠. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

as a critical velocity vc is reached (with increasing loading level W_�0), in full agreement with the l > 0 results of Fig. 1f. We also 1
show that further increasing W_�0 leads to tip-splitting, yet again in agreement with the l > 0 results of Fig. 1f. 2

The results presented in Fig. 2b–c have far-reaching implications. Most notably, they show that the oscillatory instability crucially 3
depends on the existence of an intrinsic length scale associated with the breakdown of linear elasticity near crack tips, independently 4
of whether it is related to nonlinear elasticity or to dissipation. In particular, they show that near tip elastic nonlinearity is not a 5
necessary condition for the existence of instability, which is expected to be observed also in very stiff materials in 2D. Furthermore, 6
the fact that the wavelength in the l = 0 limit, � Ù 13⇠, is significantly larger than the bare dissipation length ⇠ reflects the strongly 7
inertial nature of the instability, where elastodynamic effects emerging for v_cs Ì O(1) renormalize the magnitude of the region in 8
which LEFM breaks down ahead of the tip. This effect is shown in Appendix C to be consistent with direct observations of the near 9
tip fields of straight l = 0 cracks propagating at high velocities. 10

The resolution of the l ô 0 limit also allows to determine the nature of the bifurcation occurring at the onset of instability, which 11
remained previously unknown. To address this question, we set l = 0 together with g(�) = �4 and w(�) = 1*� (as in the discussion 12
above), and calculated the amplitude A of the oscillations close to the onset of instability as a function of the dimensionless driving 13
force for fracture W_�0. For relatively low driving forces, the crack does not reach the critical oscillations velocity vc, i.e. A = 0. 14
With increasing W_�0, the oscillations emerge and their amplitude can be extracted. The results are presented in Fig. 2d, where 15
it is shown that A increases from zero at the onset of instability in a continuous manner for both l = 0 and l > 0, but apparently 16
with a discontinuous derivative. This behavior is characteristic of a supercritical Hopf bifurcation (Strogatz, 2018), in line with the 17
theoretical predictions of Bouchbinder (2009). Furthermore, the vanishingly small oscillations amplitude at onset indeed supports 18
the idea that the KKL model did not feature an oscillatory instability for l = 0 due to numerical lattice pinning. 19

The established properties of the oscillatory instability and its theoretical understanding, most notably its dependence on intrinsic 20
material length scales, clearly suggest that the salient features of the instability are independent of the fracture energy � (v). In the 21
presence of near tip nonlinear elasticity, the major predicted effect of � (v) is a renormalization of the oscillations wavelength by 22
� (vc), according to �*13⇠ Ì l Ì � (vc)_�. Moreover, the slope d�_dl is predicted to be independent of the functional form of � (v). 23
These predictions can be readily tested within the phase-field approach as � (v) can be varied following Eq. (8), by either varying 24
the parameter � Ì �*1 or by varying the degradation functions that affect the integral on the right-hand-side of Eq. (8). 25

In Fig. 3a we present � (v) corresponding to a 10-fold variation in �, and to the two choices of the degradation functions g(�) 26
and w(�) discussed above (the KKL one, and the modified one, i.e. g(�) = �4 and w(�) = 1 * �). � (v) was calculated through the 27
relation � (v) = J (v)_v, where the J-integral J (v) is given by J (v) = îC [(U + T ) v nx + Pij )tui nj ]dC (Bouchbinder et al., 2009; Livne 28
et al., 2010; Freund, 1998; Nakamura et al., 1985). Here C is a close contour surrounding the crack tip outside of the dissipation 29
zone (i.e. predominantly along a �(x, y) = 1 path), n = (nx, ny) is the outward normal to the contour and Pij are the components of 30
the first Piola–Kirchhoff stress tensor, cf. Eq. (A.4) (see details about the numerical implementation of the J-integral in Appendix B). 31
It is observed that � (v) varies quite significantly, from being nearly flat for the smallest � value used to exhibiting substantial 32
v-dependence for the largest one. Moreover, note that for small � (here � = 0.28) � (v) is insensitive to the choice of degradation 33
functions and is almost independent of v. For larger values of � (here � = 2.8), not only � (v) exhibits rather strong v-dependence, but 34
it also depends on the degradation functions that control the phase-field behavior in the cohesive zone (compare the green squares 35
and diamonds in Fig. 3a, corresponding to the two choices of the degradation functions). 36
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Fig. 4. (a) The phase diagram of 2D dynamic fracture, in the W_�0—�0_�⇠ plane, for materials featuring near tip nonlinear neo-Hookean elasticity, and using
the KKL degradation functions (recall that l_⇠ Ì �0_�⇠ and compare to Lubomirsky et al. (2018)). As �0 is the fracture energy at the onset of crack propagation,
we focus on W_�0 > 1. For a fixed l_⇠ Ì �0_�⇠, straight crack states exist at small driving forces W_�0 (diamonds), oscillatory crack states (circles) exist
for larger W_�0 (required to surpass the critical oscillations velocity vc) and tip-split crack states, which include both the oscillatory to tip-split states and
straight to tip-split states, exist at yet higher driving forces (squares). The range of driving forces W_�0 for which straight and oscillatory cracks exist diminishes
with decreasing �0_�⇠, as discussed in Lubomirsky et al. (2018), where it was also shown that the presented topology of the phase diagram is independent
of the form of near tip elastic nonlinearity. See additional discussion of the phase diagram in the text. (b) The same as in panel (a), but with the modified
choice of degradation functions g(�) = �4 and w(�) = 1 * �. The topology of the phase diagram remains the same as in panel (a), but due to reduced lattice
pinning, we can obtain the phase diagram also for l_⇠ Ì �0_�⇠ ô 0 and even exactly at l = 0. (c)–(f) Snapshots of the crack states (shown in the undeformed
coordinates) representative of each distinct region in the phase diagram, corresponding to straight (panel (c)), oscillatory (panel (d)), oscillatory to tip-split
(panel (e)) and straight to tip-split (panel (f)) crack states. These snapshots correspond to the symbols with black edge markers shown in panel (b). Note the
frustrated tip-splitting event in panel (e), taking place prior to the actual tip-splitting. In all of the simulations reported here we used � = 0.28 and � = 0.2⇠. A
simulation box of W = H = 200⇠ is used for small �0_�⇠ values, which is gradually increased to W = H = 600⇠ for larger �0_�⇠, in order to maintain a small
background strain.

As the largest variation of � (v) with � is observed for the KKL degradation functions (squares in Fig. 3a), we focused on this case1
and performed extensive calculations for three values of �, spanning an order of magnitude (see legend of Fig. 3b), using Eq. (9).2
For each calculation, we accelerated the crack to the critical velocity vc for the onset of oscillations and extracted the oscillation3
wavelength �. In Fig. 3b we plot �_⇠ vs. � (vc)_�⇠ for the three values of � indicated in the legend. It is observed that despite the4
large variation in � (v) (cf. Fig. 3a), the relation �*13⇠ Ì l Ì � (vc)_� is satisfied to a fairly good degree independently of � (v), with5
a slope d�_dl (which depends on the form of near tip elastic nonlinearity, kept fixed in these calculations) that is also independent6
of it, as predicted theoretically. These results, together with the existence of the oscillatory instability in the l ô 0 limit, substantiate7
the universal nature of the oscillatory instability, which is expected to be observed in any material in 2D.8

4. The ultra-high velocity tip-splitting instability: Relations to the wave-speed inside the dissipation zone9

As discussed above in relation to Figs. 1c,f and 2c, upon increasing the driving force W_�0 for fracture, cracks are predicted to10
accelerate faster and to yet higher velocities, and feature a tip-splitting instability, either after the onset of oscillations or even prior11
to it. This behavior is supported by experiments, cf. Fig. 1d. The observation of tip-split crack states, together with the previously12
discussed oscillatory crack states, allow one to construct a comprehensive phase diagram for 2D dynamic fracture, which is presented13
in Fig. 4a–b for both the KKL and modified (g(�) = �4, w(�) = 1*�) choices of the degradation functions, respectively. These phase14
diagrams highlight the different crack states attained as a function of the intrinsic length scale ratio l_⇠ Ì �0_�⇠ and the normalized15
driving force W_�0. These include straight crack states (diamonds), oscillatory crack states (circles) and oscillatory/straight cracks16
followed by tip-splitting (squares). Snapshots of the different crack states (in the undeformed coordinates) are shown in Fig. 4c–f.17
Note that the topology of the phase diagram is independent of the choice of the degradation functions, though some quantitative18
differences are evident. Most notably, since � (v) is significantly smaller for the modified model (with g(�) = �4 and w(�) = 1 * �,19
cf. Fig. 3a), lower driving force levels W_�0 are needed to reach the critical velocity for these instabilities, and hence in this case20
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the y-axis range is smaller (compare Fig. 4a–b). Finally, note that the phase diagram in Fig. 4b extends all the way to the l = 0 1
limit (by overcoming lattice pinning, as discussed above), featuring the same sequence of transitions as for l > 0. 2

One feature of the tip-splitting instability is the angle formed by the two branches. We define the tip-splitting angle as half 3
of the angle between the two symmetric branches, e.g. those shown in Fig. 4f. In Katzav et al. (2007), using the Griffith energy 4
criterion and the principle of local symmetry in the framework of LEFM, a tip-splitting angle of 27˝ that is independent of the 5
critical tip-splitting velocity has been predicted. To make contact with this prediction — despite the fact that the bound on the 6
critical tip-splitting velocity predicted in Katzav et al. (2007), of about half cs, is substantially smaller than our observed one (around 7
0.9cs) —, we measured the tip-splitting angle in our simulations over a length sufficiently larger than both ⇠ and l (for LEFM to 8
be relevant/applicable), and sufficiently smaller than the system height H (to avoid curving of the branches due to interactions 9
with the boundaries). We find tip-splitting angles in the range 24˝ ±2˝, weakly dependent on material and loading parameters. This 10
result appears to be in reasonable agreement with the prediction of Katzav et al. (2007), though we stress again that the same LEFM 11
considerations seem to seriously fail to predict the tip-splitting critical velocity. 12

Our next goal in this section is to gain physical insight into the origin of this ultra-high velocity instability, which together 13
with the discussion of the oscillatory instability in Section 3, would offer a comprehensive understanding of dynamic instabilities 14
in 2D fracture. To set the stage for this discussion, let us recall the form of the kinetic energy contribution to the Lagrangian, 15
T = î 1

2 g(�)� [cpz(�)]
*2()u_)t)2dV , where cpz(�) is given in Eq. (2). In the analysis above, as well as in Chen et al. (2017) and 16

Lubomirsky et al. (2018), we set f (�) = g(�) that implies cpz(�) = cs, i.e. the wave-speed inside the dissipation zone equals its 17
elastic bulk value. It was argued that this situation is representative of realistic dissipative processes, e.g. plastic deformation, which 18
generally do not lead to a significant softening of elastic moduli (in polycrystals, known to undergo strain hardening, elastic moduli 19
actually stiffen). It is precisely this choice that allowed cracks in this framework to accelerate to unprecedentedly high velocities, 20
which in turn allowed the oscillatory instability to be elucidated. 21

In previous work (Karma et al., 2001; Karma and Lobkovsky, 2004; Henry, 2008), the relation f (�) = 1 has been employed, 22
which implies that cpz(�) in Eq. (2) degrades together with the effective modulus g(�)�. In such 2D models, cracks are known to 23
undergo a tip-splitting instability at moderate velocities in the range of 0.4cs * 0.5cs, in sharp contrast to 2D experiments in which 24
cracks accelerate to much higher velocities until oscillations set in. These observations suggest that material inertia, which plays a 25
central role in the conversion of elastic strain energy into fracture energy at high propagation velocities, is the limiting factor that 26
controls the 2D tip-splitting instability. In other words, we suggest that tip-splitting occurs when the crack velocity v approaches 27
the characteristic wave-speed inside the dissipation zone. To see this more formally, we express the kinetic energy T in a co-moving 28
frame of reference of a crack propagating steady at a velocity v along the x-direction, i.e. T = î 1

2 g(�)� [v_cpz(�)]
2()u_)x)2dV . This 29

expression suggests that the model’s behavior depends on v_cpz, where cpz is a characteristic value of cpz(�) inside the dissipation 30
zone, and consequently that the tip-splitting is affected by cpz. 31

To test this idea we introduce a control parameter g� that allows to continuously extrapolate between the f (�) = g(�) and 32
f (�) = 1 limits. This is done by defining 33

f (�; g�) =
g(�) + g�
1 + g�

, (10) 34

where f (�; g� = 0) = g(�) and f (�; g� ∏ 1) ô 1. Consequently, we define cpz(�; g�)_cs í
˘

g(�)_f (�; g�), which is plotted in the inset 35
of Fig. 5a for the KKL choice of degradation functions. We performed calculations for neo-Hookean materials for a wide range of 36
g� values, as shown in Fig. 5a for � = 0.28 and � = 2.8, where vc_cs is plotted against g� (vc is the critical velocity for an instability, 37
independently of its nature, i.e. whether it corresponds to oscillations or tip-splitting). For each � value, the driving force was fixed, 38
where W_�0 = 2.0 (cf. Fig. 1) for � = 0.28 and W_�0 = 3.8 for � = 2.8 were used. The values of W_�0 are chosen such that the 39
oscillatory instability emerges in the g� ô 0 limit, as used previously throughout the paper. 40

For very small values of g� , i.e. in the g� ô 0 limit, the results reported on in Fig. 1a are reproduced; that is, the crack accelerates 41
to very high velocities and exhibits an oscillatory instability (green symbols). With increasing values of g� , a tip-splitting instability is 42
observed at smaller vc, either preceded by oscillations (brown symbols) or emerging directly from a straight crack (yellow symbol), 43
where the latter occurs for sufficiently large g� . This sequence of transitions with increasing g� lends support to the role played by 44
cpz in determining the crack velocity needed for tip-splitting. For (relatively) large g� , where cpz is small, the critical tip-splitting 45
velocity is small and tip-splitting is observed as the crack accelerates (yellow symbols). As g� decreases, the critical tip-splitting 46
velocity increases, until at some point it becomes larger than the critical oscillations velocity and the latter is observed (green 47
symbols). 48

The trend of a decreasing tip-splitting velocity vc with increasing g� (i.e. decreasing wave-speed cpz) is observed for both low 49
(� = 0.28) and high (� = 2.8) fracture energies, with a larger � yielding a lower tip-splitting velocity for the same g� (cf. Fig. 5a). 50
To shed light on the mechanism of the tip-splitting instability, we show in Fig. 5b–c a sequence of � = 1_2 contours at equal time 51
intervals just before tip-splitting. In Fig. 5b, tip-splitting occurs asymmetrically, as it is preceded by an oscillatory behavior that 52
breaks the reflection symmetry relative to the straight crack propagation axis, while in Fig. 5c tip-splitting occurs symmetrically, 53
directly from a non-oscillatory straight crack. Fig. 5b–c correspond to the two encircled symbols in panel (a). For both of these cases, 54
as the crack approaches the threshold velocity vc for tip-splitting, the crack tip blunts, suggesting a picture in which tip-splitting 55
can be seen as an exacerbated form of tip-blunting. Tip-blunting, in turn, is expected to be more prominent as cpz decreases, simply 56
because the radiating energy away from the tip becomes more limited, leading to an increase in the amount of fracture surfaces 57
generated (which is larger for blunter tips). 58

This picture is further tested in Fig. 5d, showing the crack tip shape (� = 1_2 contours) for g� = 0.01 and g� = 0.5, for fixed 59
values of � and v_cs. It is observed that indeed reducing g� , which increases cpz, is accompanied by reduced tip-blunting. A sharper 60

11
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Fig. 5. (a) The normalized critical velocity vc_cs at which a straight crack loses stability is plotted against g� (cf. Eq. (10)), for two different values of �. Yellow
symbols correspond to a tip-splitting instability, which emerges directly from a straight crack state, while brown symbols correspond to tip-splitting that emerges
from an oscillatory crack state and green symbols correspond to the oscillatory instability. Inset: cpz(�; g� )_cs, defined through Eqs. (2) and (10), as a function of
g� for three values of � < 1 (as indicated on the figure). (b) � = 1_2 contours, plotted at equal time intervals, for a crack that asymmetrically tip-splits after the
onset of oscillations (corresponding to the encircled brown square in panel (a)). (c) The same as panel (b), but for a crack that symmetrically tip-splits directly
from a straight crack state (corresponding to the encircled yellow square in panel (a)). (d) � = 1_2 contours for two different values of g� , and fixed � and v_cs
(see figure for the values and the text for discussion). (e) The same as panel (d), but for two values of �, and fixed g� = 0.5 and v_cs (see figure for the values
and the text for discussion). (f) The same as panel (e), but for g� = 0.01. The simulation box for panels (a)–(f) features W = H = 300⇠, using the KKL degradation
functions. In panel (a), �0_�⇠ = 0.287 is used, and for � = 0.28 the driving force is fixed at W_�0 = 2.0, while for � = 2.8 we used W_�0 = 3.8. Panels (b)–(f) are
plotted using the results shown in panel (a). A grid spacing of � = 0.2⇠ is used for all simulations and scale bars in units of ⇠ are added. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

crack-tip, in turn, suppresses tip-splitting in the g� ô 0 limit and enables the crack to reach ultra-high velocities that exceed the1
threshold for the oscillatory instability (green symbols in Fig. 5a). The crack tip shape is also influenced by energy dissipation at the2
crack tip. In particular, increasing the rate of dissipation (through �) increases the size of the process/cohesive zone, accompanied3
by a blunter crack tip. This is observed in Fig. 5e that compares the crack tip shapes for g� = 0.5 and two different values of �,4
an order of magnitude apart. The tip shape corresponding to the larger � value is significantly blunter. As explained, a crack tip5
that is blunter is expected to tip-split at a lower critical velocity, which is clearly observed in Fig. 5a, where for larger g� , vc is6
smaller for the larger �. This trend is similar to the one previously reported on in mode-III dynamic fracture simulations (Karma7
and Lobkovsky, 2004), where an increase rate of dissipation was found to promote tip-splitting in the g� ô ÿ limit. Note, however,8
that in the g� ô 0 limit, � has a negligible effect and the crack tip shape is almost independent of it, as shown in Fig. 5f.9

5. Discussion and concluding remarks10

In this paper, we used phase-field simulations to investigate the role of intrinsic material length and time scales on the emergence11
of oscillatory and tip-splitting instabilities in 2D dynamic fracture. The two basic length scales, which are absent in LEFM, include12
the scale ⇠ of the dissipation zone where elastic energy is transformed irreversibly into new fracture surfaces and a nonlinear length13
l that is a measure of the distance from the crack tip at which elastic nonlinearity becomes significant and modifies the 1_

˘

r14
divergence of the linear-elastic fields. The basic time scale ⌧, which is only indirectly present in LEFM through the dependence of15
the fracture energy on crack velocity, � (v), controls the rate of energy dissipation inside the process zone. This time scale is only16
physically meaningful when compared to the characteristic time Ì ⇠_cs for elastic waves to traverse the dissipation zone Ì ⇠_cs.17
When ⌧ ~ ⇠_cs (� = ⌧ cs_⇠ ~ 1), dissipation rate has a negligible effect on the crack dynamics and � (v) is nearly independent of v,18
while in the opposite limit � ∏ 1, dissipation is sluggish and becomes rate limiting, thereby causing � (v) to increase with v. Our19

12
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simulations exploited a recently developed Lagrangian phase-field formulation (Chen et al., 2017) that incorporates a degradation 1
function in the kinetic energy so as to maintain the wave-speeds constant inside the dissipation zone, thereby enabling cracks to 2
accelerate without tip-splitting to the range of ultra-high speed approaching cs, where oscillations are observed experimentally in 3
thin brittle materials (Livne et al., 2007), and reproduced remarkably by phase-field simulations in the same velocity range (Chen 4
et al., 2017; Lubomirsky et al., 2018). Simulations also reproduced an experimentally observed tip-splitting behavior that causes a 5
new crack to emerge asymmetrically on one side of a propagating oscillatory crack (Lubomirsky et al., 2018). 6

The present results shed additional light on both the oscillatory and tip-splitting instabilities. First, the results further support the 7
fundamental role of elastic nonlinearity in the genesis of the oscillatory instability with an intrinsic (i.e. system-size-independent) 8
wavelength, by showing that this instability occurs even in the limit l ~ ⇠ where linear elasticity holds outside of the dissipation 9
zone. This limit was investigated here by simulating rapid fracture in a purely linear-elastic phase-field formulation, where 10
nonlinearity is only present inside the dissipation zone where material deformation and the phase-field are coupled. Importantly, 11
the oscillatory wavelength in this model is an order of magnitude larger than ⇠ and coincides with the extrapolation to the l_⇠ ô 0 12
limit of phase-field simulations with nonlinear neo-Hookean elasticity, in strong support of our interpretation that this coupling acts 13
as an effective form of nonlinearity, on equal footing with neo-Hookean or Saint Venant-Kirchhoff nonlinear elasticity (Lubomirsky 14
et al., 2018). This effect is explicitly addressed in Appendix C. Interestingly, therein we provide evidence that the lengthscale that 15
determines the wavelength of the oscillatory instability in the l = 0 limit — which is an order to magnitude larger than ⇠ — 16
appears to be comparable to the size of the region around the crack tip where the extensional strain exhibits a non-monotonous 17
behavior (cf. Fig. C.1) in this very same l = 0 limit (where the LEFM extensional strain is known to become negative, see discussion 18
in Appendix C). 19

On a more technical side, one limitation of the present study is that we were only able to demonstrate the existence of an 20
oscillatory instability in a purely linear-elastic phase-field model for a particular choice of degradation functions in the potential 21
energy that reduces lattice trapping of cracks along lattice planes. This was accomplished by choosing a combination of functions g(�) 22
and w(�) that increases the length of the dissipation zone along the crack propagation direction, thereby pushing the discontinuity of 23
material displacement on the numerical lattice/grid scale further behind the crack tip. We expect, however, the same result to hold 24
true in other formulations or numerical implementations on unstructured grids that sufficiently reduce lattice pinning to permit small 25
amplitude oscillations to be numerically resolved. Of note, this limitation does not apply to simulations with neo-Hookean elasticity 26
where, as demonstrated here, oscillations exist with comparable wavelength for different choices of degradation functions g(�) and 27
w(�) (including those of the model with reduced lattice pinning and those of the KKL model). This somewhat alleviates doubts on 28
the use of a phenomenological description of failure processes inside the dissipation zone, inherent in a phase-field approach, to 29
investigate dynamic fracture instabilities. 30

Second, the results of the simulations with near tip nonlinear neo-Hookean elasticity support the existence of a supercritical 31
Hopf bifurcation, as evidenced by the fact that the oscillation amplitude A increases rapidly and monotonously as a function of 32
crack velocity v for v > vc. While our simulations lack the resolution to quantitatively demonstrate the scaling A Ì

˘

v * vc — 33
theoretically expected for such a bifurcation —, we do not observe the type of hysteretic behavior that would point to a subcritical 34
bifurcation, at least as far as purely oscillatory behavior is concerned. 35

Third, the results further support the universal character of the nonlinear oscillatory instability by showing that it is ostensibly 36
independent of �. An exhaustive series of simulations for different values of �, varying by an order of magnitude, encompassing 37
regimes where � (v) is weakly and strongly dependent on v, reveal that � only has a weak effect on the oscillatory instability 38
wavelength. This finding is consistent with the theoretical expectation that this wavelength is predominantly determined by elastic 39
nonlinearity through the length scale l that is independent of the rate of energy dissipation. This result could potentially be tested 40
experimentally in thin brittle materials where � is velocity independent and ⇠ is comparable to the sample thickness, so as to 41
suppress 3D micro-branching. Whether such a material can be found is unclear as ideally brittle materials such as glass typically 42
have a very small process zone. 43

Fourth, the simulation results shed light on the physical origin of the tip-splitting instability by showing that its onset velocity 44
is affected by the wave-speeds inside the dissipation zone, which can be varied phenomenologically by varying the degree of 45
degradation of the kinetic energy inside that zone. In the limit of no degradation, where the wave-speeds drop due to the degradation 46
of the elastic moduli inside that zone, the velocity of straight cracks is limited to about half cs or less, consistent with previous 47
findings (Karma and Lobkovsky, 2004; Henry, 2008). Tip-splitting becomes inevitable as a direct consequence of the limited rate 48
of energy transport and occurs symmetrically, i.e. with the main crack splitting symmetrically into two branches with equal angles 49
with respect to the parent crack propagation axis. In the opposite limit, where the kinetic energy is fully degraded, this degradation 50
compensates the degradation of the moduli so as to keep the wave-speeds constant inside the entire dissipation zone and straight 51
crack propagation is only limited by the wave-speeds. In this case, tip-splitting still occurs above a critical velocity that is very close 52
to the one corresponding to the onset of oscillations. As a result, for v slightly above vc, tip-splitting can occur asymmetrically from 53
an oscillatory crack state, manifested as the emission of a side branch that is somewhat reminiscent of 3D micro-branching. 54

Extension of the present simulations to 3D are presently underway to investigate the tantalizing possibility that this asymmetric 55
form of tip-splitting is related to micro-branching in 3D. This possibility is suggested by experiments showing that this type of 56
side-branching can be induced to occur for v < vc with a finite mode-II perturbation with an amplitude that becomes vanishing 57
small as v ô vc (Goldman Boué et al., 2015). 58
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Appendix A. Numerical discretization scheme8

9 The goal of this appendix is to provide a detailed description of the numerical discretization scheme of the equations of motion,
cf. Eqs. (5)–(7). The latter, using Eq. (1), can be presented as

1
�
)�
)t

= (2� * g®(�)estrain *w®(�)ec +
1
2⇢ f

®(�)v � v , (A.1)

)u
)t

= v , (A.2)

⇢ f (�) )v
)t

= (�P * ⇢ )f (�)
)t

v . (A.3)

Here P is the first Piola–Kirchoff stress tensor, defined as the stress that is thermodynamically conjugate to F (Holzapfel, 2000),10
given by11

P = g(�)
)estrain (F )

)F , (A.4)12

and the operator (� is the divergence operator with respect to the undeformed coordinates, defined as13

(( � P )i = )jPij . (A.5)14

The degradation functions g(�), w(�) and f (�) are assumed to be given, as well as the elastic energy density functional estrain. For15
the latter, we use in this paper either Eq. (9) or its linear elastic approximation elestrain (see main text for exact definition). We aim at16
numerically calculating the phase field �(x, y, t), the displacement vector field u(x, y, t) and the velocity field v(x, y, t). Consequently,17
Eqs. (A.1)–(A.3) are discretized in both space and time, as detailed next. We will first outline the discretization of these equations18
in space and then discuss the discretization in time.19

A.1. Spatial discretization20

Eqs. (A.1)–(A.3) are discretized on a uniform square grid of spacing � = 0.2⇠, comprising of nx points in the x-direction and ny
points in the y-direction, as shown in Fig. A.1. The fields �(x, y, t), u(x, y, t) and v(x, y, t) are discretized on the vertices of the grid,
denoted by indices (p, q), where p À {0, 1, ..nx *1} and q À {0, 1, ..ny *1}. An element of the grid with corners (p, q), (p, q +1), (p+1, q)
and (p + 1, q + 1) is represented by the indices of its center, i.e. (p + 1

2 , q +
1
2 ). The components of the deformation gradient tensor,

Fij with i, j = {x, y}, are approximated at the center of each element as

F

⇠

p+ 1
2 ,q+

1
2

⇡

xx = 1 +
)ux
)x

⇠

p+ 1
2 ,q+

1
2
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= 1 + 1
2

b

f

f

d

)ux
)x

⇠

p+ 1
2 ,q

⇡

+
)ux
)x

⇠

p+ 1
2 ,q+1

⇡

c

g

g

e

(A.6a)

= 1 + 1
2�

⌅

(u(p+1,q)x * u(p,q)x ) + (u(p+1,q+1)x * u(p,q+1)x )
⇧

,

F

⇠

p+ 1
2 ,q+

1
2

⇡

xy = 1
2�

⌅

(u(p,q+1)x * u(p,q)x ) + (u(p+1,q+1)x * u(p+1,q)x )
⇧

, (A.6b)

F

⇠

p+ 1
2 ,q+

1
2

⇡

yx = 1
2�

⌧

(u(p+1,q)y * u(p,q)y ) + (u(p+1,q+1)y * u(p,q+1)y )
�

, (A.6c)
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2 ,q+

1
2
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yy = 1 + 1
2�

⌧

(u(p,q+1)y * u(p,q)y ) + (u(p+1,q+1)y * u(p+1,q)y )
�

. (A.6d)

P is evaluated at center of the elements, at the points (p + 1
2 , q +

1
2 ), as21

P
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1
2
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= g (�)
⇠

p+ 1
2 ,q+

1
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0
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1
2

⇡
1

)F , (A.7)22
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Fig. A.1. The spatial discretization of the domain into a uniform square grid with spacing �. Shown in red is a representative element with coordinates
(p�, q�), ((p+1)�, q�), ((p+1)�, (q +1)�), (p�, (q +1)�). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where g (�)
⇠

p+ 1
2 ,q+

1
2

⇡

is the approximated as the average of g(�) at the neighboring vertices, evaluated as 1

g(�)(p+
1
2 ,q+

1
2 ) = 1

4
�

g(�(p,q)) + g(�(p+1,q)) + g(�(p,q+1)) + g(�(p+1,q+1))
�

. (A.8) 2

The strain energy density at the vertex (p, q) is approximated as the average of the strain energy densities evaluated at the centers 3
of the neighboring elements, expressed as 4

e(p,q)strain = 1
4

H

e
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1
2
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strain + e
⇠

p+ 1
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p* 1
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1
2
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1
2

⇡
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I

. (A.9) 5

The numerical approximation of the Laplacian of the phase-field is given as

(2�(p,q) = 
0

)2�(p,q)

)x2
+ )2�(p,q)

)y2

1

= 
�2

�

�(p+1,q) + �(p*1,q) + �(p,q+1) + �(p,q*1) * 4�(p,q)� . (A.10)

Finally, (( � P ) is evaluated at the points (p, q), similarly to Eqs. (A.6), as
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Using the spatial discretization described above, the equations of motion can be rewritten as

1
�
)�(p,q)(t)

)t
= G(p,q)

�

u(t), v(p,q)(t), �(p,q)(t)
�

, (A.12)

)u(p,q)
)t

(t) = v(p,q)(t) , (A.13)

⇢ f (�(p,q)) )v
(p,q)(t)
)t

= H(p,q) �u(t), v(p,q)(t), �(p,q)(t)
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, (A.14)

where
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Note that u in the argument of G(p,q) in Eq. (A.12) and of H(p,q) in Eq. (A.14) does not carry a discretization index as the dependence1
on u is nonlocal.2

A.2. Temporal discretization3

The phase-field equation, i.e. Eq. (A.12), is discretized using a simple forward Euler scheme4

�(p,q)
n+1 = �(p,q)

n + G(p,q)
�

un, v(p,q)n , �(p,q)
n

�

�t , (A.15)5

where the subscript n refers to the current time step, tn = n�t, where �t is the time increment. The time evolution of the displacement
is computed using a modified Beeman’s algorithm (Schofield, 1973; Beeman, 1976; Levitt et al., 1983), according to
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v(p,q)n+1 = v(p,q)n + 1
12

⇠

5 Éa(p,q)n+1 + 8a(p,q)n * a(p,q)n*1

⇡

�t . (A.19)

A.3. Numerical regularization of the strain energy density6

Under mode-I loading conditions, the material is under tension and hence the out-of-plane stretch ratio [det(F )]*1 appearing in the7
strain energy density in Eq. (9) is smaller than unity everywhere in space. However, in dynamic situations such as those encountered8
in fracture, transient nonlinear elastic waves can cause compression behind the crack tip, leading to very large [det(F )]*1. To avoid9
numerical issues associated with such large values, which are not expected to affect the properties of our solutions, we modify the10
strain energy density in Eq. (9) to read (Chen et al., 2017)11

estrain =
�
2

0

FijFij +
1
J 2 * 3

1

, (A.20)12

where13

1
J 2 í

T

1_[det(F )]2, if [det(F )]*1 < J*1
min

8_[det(F ) + Jmin]2 * 1_J 2
min, otherwise ,

(A.21)14

with Jmin being a numerical cutoff parameter. Eq. (A.21) regularizes the strain energy density function estrain in the det(F ) ô 0 limit15
and ensures the continuity of the first derivative of estrain. In our simulations, we chose Jmin = 0.2 and found that this choice has16
a negligible influence on the crack dynamics; the same applies to other choices of Jmin, as long as it is chosen to be much smaller17
than unity.18

A.4. Simulation setup for the oscillatory and tip-splitting instabilities19

In Fig. A.2 we show a typical initial configuration that is used in this work to investigate 2D high-velocity fracture instabilities.20
A rectangular strip of dimension H (in the y-direction) and W (in the x-direction) contains an edge crack along the symmetry line21
in the x-direction, which extends up to the center of the strip.22

The strip is loaded in pure mode-I by fixing the vertical and horizontal displacement uy(y = ±H_2) = ±�y and ux(y = ±H_2) = 023
on the top and bottom edges of the strip. Prior to the initiation of the simulation, the displacement field u is relaxed to equilibrium,24
( � P = 0, while keeping � fixed. During the relaxation procedure, the boundary conditions far behind the tip, x = *W _2 (left edge25
of the strip), and far ahead of it, x = W _2 (right edge of the strip), are set to )xux(x = *W _2) = )xuy(x = *W _2) = )xux(x = W _2) =26
)xuy(x = W _2) = 0. During crack dynamics, the boundary conditions are set to )xux(x = *W _2) = )xuy(x = *W _2) = )xvx(x =27
*W _2) = )xvy(x = *W _2) = )x�(x = *W _2) = 0 behind the crack, and to vx(x = W _2) = vy(x = W _2) = )t�(x = W )_2 = 0 ahead28
of the crack.29

A treadmill procedure is used to simulate a strip of effectively infinite length, where a strained layer is added on the right vertical30
boundary while another layer is removed from the opposite left boundary, such that the crack tip always remains at the center of31
the strip. This allows to propagate the crack for very large distances, with negligible boundary effects. A small amount of Kelvin’s32
dissipation is added behind the crack, or close to the system boundaries, to damp the effect of elastic waves generated in dynamic33
simulations. In a typical simulation, we have H = 300⇠ * 800⇠ and W _H = 1 * 3, with a spacing of � = 0.2⇠, resulting in a system34
with 106–107 degrees of freedom. A time step of �t = 8 ù 10*4 is used and the simulation codes are parallelized on NVIDIA GPU’s35
using the CUDA platform.36
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Fig. A.2. The simulation set up for mode-I dynamic fracture. All symbols are defined in the text.

Fig. B.1. (a) The simulation set up used for the calculation of the J-integral, see text for details. (b) The normalized fracture energy � (v)_�0, measured using
the J-integral for a crack propagating at an instantaneous velocity v_cs = 0.79, as a function the area enclosed in the contour box, Abox = b2, where b is the
linear size of the contour box, as shown in panel (a). Here we used the linear elastic strain energy density elestrain, together with H = 300⇠, W = 900⇠, � = 0.2⇠,
� = 2.8, W_�0 = 3.0 and ec_� = 0.5.

Appendix B. Numerical evaluation of the J-integral 1

2In order to numerically evaluate the J-integral, the simulation setup is modified to have a seed crack located at the center along 3
the symmetry line in the x-direction. The crack then propagates outwards in both the positive and negative x-directions. Vertical 4
displacements uy(±H_2) = ±�y are applied to the top and bottom edges of the strip and no-flux boundary conditions are applied to 5
the right and left vertical boundaries, i.e. )xux, )xuy, )x� are all set to zero. To evaluate the J-integral, see explicit expression in the 6
text, the integral is evaluated on a contour surrounding the crack tip that is chosen as a square box of linear size b, cf. Fig. B.1a. 7
The J-integral is computed for different box sizes b and the result is shown to be independent of b, cf. Fig. B.1b. 8

Appendix C. The near tip fields of straight cracks propagating at high velocities 9

10The fully dynamic phase-field approach allows to quantitatively address various basic aspects of fast crack propagation. For 11
example, in Bouchbinder et al. (2014) (cf. Eq. (49) therein) it has been shown that the singular Ì1_

˘

r mode-I LEFM contribution 12
to the extensional strain ✏yy = )yuy ahead of a propagating crack can become negative; this happens if the crack velocity satisfies 13
v_cs > 1

2

⇠

˘

(cd_cs)2 + 8 * cd_cs
⇡

, with cd being the dilatational wave-speed. As the singular contribution is expected to dominate 14

✏yy over some spatial range, we expect that for v_cs >
1
2

⇠

˘

(cd_cs)2 + 8 * cd_cs
⇡

one observes ✏yy(x, y = 0) < 0 at some intermediate 15
range of x’s ahead of the propagating tip. It is clear that mode-I fracture is driven by extensional strains, so we also have ✏yy > 0 16
far enough ahead of the tip, i.e. for sufficiently large x. Recall that x = 0 is the crack tip location, cf. Fig. A.2. 17

While ✏yy(x, y = 0) < 0 might appear physically inconsistent, as mode-I tensile fracture is ultimately related to extensional 18
(opening) strains, it contradicts nothing. The existence of ✏yy(x, y = 0) < 0 over some range of x’s ahead of a propagating crack tip 19
simply implies that at yet smaller x’s, ✏yy(x, y = 0) should change sign again and become positive where material failure is actually 20
taking place. In the absence of near tip elastic nonlinearity, i.e. for l = 0, the intervention of the dissipation length is expected to be 21

17
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Fig. C.1. The extensional strain ✏yy(x, y = 0) = )yuy(x, y = 0) as a function of x_⇠ for a mode-I crack propagating at v = 0.87cs. The system size used is
H = W = 2000⇠ (cf. Fig. A.2), and we set l = 0 (i.e. no near tip elastic nonlinearity) and cd = 2cs. Under these conditions (see text for discussion), it is
theoretically predicted that ✏yy(x, y = 0) is nonmonotonic and negative at intermediate x’s, exactly as observed. ✏yy(x, y = 0) attains a minimum at x Ù 4.5⇠,
indicating that the magnitude of the zone in which LEFM breaks down at high propagation velocities is of O(10⇠), due to dynamic renormalization effects. (inset)
Zooming in on the minimum region.

responsible for ✏yy(x, y = 0) becoming positive again. Consequently, by continuity, this implies the existence of a region larger than1
the dissipation zone where significant deviations from the LEFM singular fields are expected under strongly dynamic conditions. This2
deviation sets a dynamic length scale that is associated with the presence of a finite dissipation zone and of tip blunting (cf. Fig. 5).3

In Fig. C.1 we present ✏yy(x, y = 0) for a mode-I crack propagating at v = 0.87cs with l = 0 (i.e. no near tip elastic nonlinearity4
exists in this case) and cd = 2cs. Since for the latter we have

1
2

⇠

˘

(cd_cs)2 + 8* cd_cs
⇡

= 0.73 < 0.87, we expect ✏yy(x, y = 0) to follow5
the predictions just discussed. Indeed, these predictions are fully verified in Fig. C.1, where ✏yy(x, y = 0) is observed to change sign6
from positive to negative and then to positive again with decreasing x. The minimum of ✏yy(x, y = 0) provides a lower bound on7
the magnitude of the zone where the singular Ì1_

˘

r fields are not dominant anymore (since deviations from the singular Ì1_
˘

r8
fields must occur even before the minimum is reached).9

The minimum of ✏yy(x, y = 0) in Fig. C.1 is attained at x Ù 4.5⇠, which suggests that the magnitude of the zone where the singular10
Ì1_

˘

r fields are not dominant anymore, at this high propagation velocity, is of O(10⇠). As the onset of the oscillatory instability11
takes place at a slightly larger propagation velocity (around 0.9cs, cf. Fig. 2c), the suggestion that the magnitude of the zone in12
which LEFM breaks down at high propagation velocities (due to dynamic renormalization effects) can be quite significantly larger13
than ⇠ — i.e. of O(10⇠) — appears to be consistent with the observation of Fig. 2b in which the oscillations wavelength for l = 014
is � Ù 13⇠.15
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