

1 **How much does the upward advection of supergradient component of**
2 **boundary-layer wind contribute to tropical cyclone intensification and**
3 **maximum intensity?**

4 Yuanlong Li^{1,2}, Yuqing Wang^{2,3*}, and Yanluan Lin¹

5 ¹Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System
6 Science and Joint Center for Global Change Studies (JCGCS), Tsinghua University, Beijing, China

7 ²International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean
8 and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA

9 ³State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China
10 Meteorological Administration, Beijing, China

11 November 4, 2019 (submitted)
12 December 22, 2019 (resubmitted)
13 April 27, 2020 (first revision)
14 May 31, 2020 (second revision)
15 Dateline

16 Submitted to *Journal of the Atmospheric Sciences*

17 *Corresponding author address:

18 Prof. Yuqing Wang
19 International Pacific Research Center
20 University of Hawaii at Manoa
21 404A/POST, 1680 East West Road,
22 Honolulu, HI 96822, USA.
23 Email: yuqing@hawaii.edu
24

25

Abstract

26 Although the development of supergradient winds is well understood, the importance of
27 supergradient winds in TC intensification is still under debate. One view is that the spinup of the
28 eyewall occurs by the upward advection of high tangential momentum associated with
29 supergradient winds from the boundary layer. The other view argues that the upward advection of
30 supergradient winds by eyewall updrafts results in an outward agradient force, leading to the
31 formation of a shallow outflow layer immediately above the inflow boundary layer. As a result, the
32 spinup of tangential wind in the eyewall by the upward advection of supergradient wind from the
33 boundary layer is largely offset by the spindown of tangential wind due to the outflow resulting
34 from the agradient force. In this study, the net contribution by the upward advection of
35 supergradient wind component from the boundary layer to the intensification rate and final
36 intensity of a TC are quantified through ensemble sensitivity numerical experiments using an
37 axisymmetric TC model. Results show that consistent with the second view above, the positive
38 upward advection of supergradient wind component from the boundary layer by eyewall updrafts
39 is largely offset by the negative radial advection due to the outflow resulting from the outward
40 agradient force. As a result, the upward advection of supergradient wind component contributes
41 little (often less than 4%) to the intensification rate and but it contributes about 10%–15% to the
42 final intensity of the simulated TC due to the enhanced inner-core air-sea thermodynamic
43 disequilibrium.

44 **1. Introduction**

45 Over the past five decades or so, many efforts have been devoted to conceptualizing the
46 physical/dynamical mechanisms responsible for tropical cyclone (TC) intensification.
47 Montgomery and Smith (2014) recently summarized and compared four prominent paradigms of
48 TC intensification in the literature. These are the CISK (conditional instability of the second kind,
49 Charney and Eliassen 1964) paradigm; the cooperative intensification paradigm (Ooyama 1964,
50 1969, 1982); the wind-induced heat exchange feedback – WISHE paradigm (Rotunno and Emanuel
51 1987; Emanuel 1989, 1995); and the rotating convective paradigm (Nguyen et al. 2008;
52 Montgomery et al. 2006, 2015; Smith et al. 2009). Each of these paradigms gives, to some extent,
53 a qualitative explanation for the intensification processes of a TC. There are still many remaining
54 scientific mysteries and debates regarding the role of local and nonlocal energy supply,
55 axisymmetric and asymmetric contributions, linear and nonlinear processes, relative contributions
56 of balanced and unbalanced dynamics, and so on (e.g., Montgomery and Smith 2017).

57 More recently, the relative importance/contributions of the balanced and unbalanced
58 dynamics to TC intensification have been under debate (i.e., Bui et al. 2009; Smith et al. 2009;
59 Stern et al. 2015; Smith and Montgomery 2015, 2016; Heng and Wang 2016a,b; Heng et al. 2017,
60 2018; Montgomery and Smith 2018). The balanced vortex dynamics solves the Sawyer-Eliassen
61 equation to obtain the transverse (secondary) circulation in an axisymmetric vortex in gradient
62 wind balance in response to specified heat and momentum sources (Eliassen 1951). The secondary

63 circulation with its low-level inflow and eyewall updraft in response to diabatic heating in the
64 eyewall transports high absolute angular momentum (AAM) inward to spin up the tangential winds
65 in the inner core of the vortex. The balanced vortex dynamics has been regarded as a classic
66 mechanism of TC intensification with the TC being considered as a “slowly evolving”
67 axisymmetric system (Willoughby 1979; Shapiro and Willoughby 1982; Schubert and Hack 1982;
68 Pendergrass and Willoughby 2009).

69 The above classic view of TC intensification was challenged by Smith et al. (2009), who
70 proposed that the balanced dynamics in response to eyewall heating spins up the outer circulation
71 of the TC vortex above the boundary layer where the flow is in gradient wind balance and the AAM
72 is conserved following the motion, while the inner-core spinup is largely contributed by the
73 unbalanced dynamics in the boundary layer where the flow is not in gradient balance and the AAM
74 is not conserved due to surface friction. This has been further elaborated later to form the so-called
75 boundary layer spinup mechanism of TC intensification, in which the spinup of supergradient
76 winds is key to the spinup of the inner core of the TC not only in the boundary layer but also above
77 the boundary layer (Smith and Montgomery 2015; Schmidt and Smith 2016; Montgomery and
78 Smith 2017, 2018). By this mechanism, “*The spin-up in the boundary layer is associated with the*
79 *development there of supergradient winds. The spin-up of the eyewall updraught occurs by the*
80 *vertical advection of the high tangential momentum associated with the supergradient winds in the*
81 *boundary layer*” (Schmidt and Smith 2016, p. 1515; also see Montgomery and Smith 2017, p. 555).
82 Note that the ‘*high tangential momentum*’ includes both the gradient wind component and the

83 supergradient wind component. The gradient wind component belongs to the balanced dynamics
84 and is determined by the radial gradient of air pressure. The boundary layer spinup mechanism of
85 Montgomery and Smith (2017, 2018) emphasizes the unbalanced supergradient wind component
86 as quoted above. This spinup mechanism is considered necessary for TC intensification because in
87 the eyewall updraught above the boundary layer “*the flow is outwards (typifying the outward slope*
88 *of the eyewall) so that the radial advection of absolute angular momentum (or radial flux of*
89 *absolute vorticity) makes a negative contribution to spin-up in this region*” (Schmidt and Smith
90 2016, p. 1515; also see Montgomery and Smith 2017, p. 555). Therefore, Montgomery and Smith
91 (2018, p. 2493) stated that “*in an axisymmetric configuration, the spinup of supergradient*
92 *tangential winds in the boundary layer can provide the necessary negative vertical gradient of M*
93 (i.e., absolute angular momentum; we insert) *to spin up the eyewall*” above the boundary layer
94 where the flow is outwards.

95 Note that although the boundary layer spinup hypothesis emphasizes the supergradient wind
96 component, their results did not split the supergradient wind component from the total upward
97 advection (e.g., Schmidt and Smith 2016). One issue regarding the boundary layer spinup
98 mechanism, therefore, has not been addressed, namely, whether the upward advection of
99 supergradient wind component from the boundary layer dominates the spinup of tangential wind
100 in the eyewall above the boundary layer. Based on a TC boundary layer model, Kepert and Wang
101 (2001) showed that the outflow (typifying the outward slope of the eyewall) immediately above
102 the boundary layer inflow develops in response to supergradient momentum carried aloft by the

103 eyewall updraft. This led Heng et al. (2018) to hypothesize that the spinup of tangential wind in
104 the eyewall due to upward advection of supergradient winds from the boundary layer could be
105 largely offset by the spindown due to the outflow resulting from the outward agradient force due
106 to the upward advection of supergradient winds. Therefore, they argued that the upward advection
107 of supergradient wind component from the boundary layer might not be a dominant mechanism for
108 the overall TC intensification.

109 This study attempts to quantify the degree to which the upward advection of supergradient
110 wind component from the boundary layer contributes to the TC intensification rate and maximum
111 intensity of a numerically simulated TC based on ensemble simulations using an axisymmetric
112 convection-permitting TC model. Note that the axisymmetric model is used here, as in Schmidt
113 and Smith (2016), because the boundary layer spinup mechanism is also introduced based on the
114 axisymmetric argument. We will show that the boundary layer spinup mechanism related to the
115 upward advection of supergradient wind component from the boundary layer contributes little
116 (often less than 4%) to TC intensification and thus should not be considered as a dominant
117 mechanism of TC intensification, but contributes positively to the final intensity by about 10-15%.
118 The rest of the paper is organized as follows. The model and experimental designs are described in
119 Section 2. Results from the control ensemble experiment and the sensitivity ensemble experiments
120 with the upward advection of supergradient winds suppressed are discussed in Section 3. The
121 sensitivity of the main results from Section 3 to surface drag coefficient is examined in Section 4.
122 Our major findings are summarized and discussed in the last section.

123 **2. Model and experimental design**

124 The axisymmetric model used in this study is the state-of-the-art cloud model (CM1), version
125 19.8 (Bryan and Fritsch 2002). The domain size is 3100 km×25 km. The radial resolution within
126 100-km radius is 1 km and is stretched to 12 km at the outer boundary. The model has 59 vertical
127 levels with stretched grids below 5.5 km as in Li et al. (2019). The moist tropical sounding of
128 Dunion (2011) is used as the unperturbed environment of the initial condition. The sea surface
129 temperature is set constant at 29°C. An f -plane is assumed with the Coriolis parameter set to
130 5×10^{-5} s⁻¹. Similar to Montgomery et al. (2015), a warm rain microphysics scheme (Kessler
131 1969) is used for cloud/precipitation processes and no cumulus convective parameterization is used
132 in all simulations. Newtonian cooling, capped at 2 K d⁻¹, is added to the thermodynamic equation
133 to mimic radiative cooling (Rotunno and Emanuel 1987), while dissipative heating is not included
134 for simplicity. As in Montgomery et al. (2015), the ratio of surface enthalpy exchange coefficient
135 to surface drag coefficient is set at $C_k/C_D = 0.5$ with surface drag coefficient C_D being
136 2.58×10^{-3} . The subgrid-scale turbulent mixing is parameterized using the Smagorinsky scheme
137 (Bryan and Fritsch, 2002), and the corresponding horizontal and asymptotic vertical mixing lengths
138 are fixed at 700 m and 50 m, respectively, also the same as those used in Montgomery et al. (2015).
139 The initial TC vortex has a radial profile of tangential wind speed following Wood and White
140 (2011). The initial maximum tangential wind speed is 15 m s⁻¹ at 80-km radius in the standard run
141 of each ensemble experiment. The radial shape parameter is set to be 1.6. The tangential wind speed

142 decreases linearly with height to zero at 18-km height. Each ensemble experiment has 21 members.
143 In addition to the standard run, each of the remaining 20 members are generated by perturbing the
144 initial radius of maximum wind (RMW) by an increment of ± 0.4 km (for 10 runs) or the initial
145 maximum wind speed by ± 0.1 m s⁻¹ (for 10 runs). All 21 runs for each experiment (see description
146 below) are integrated for 120 h with the model output saved at every 6 minutes for the purpose of
147 composite and budget analyses. The ensemble experiments are designed to remove internal
148 variability and make sure of the robustness of the results from sensitivity simulations. Only the
149 ensemble composite from each experiment is discussed in this study. Note that our preliminary
150 tests indicate that the results discussed herein are insensitive to the perturbation increments within
151 reasonable ranges.

152 To address whether and to what extent the upward advection of supergradient winds from the
153 boundary layer contributes to the overall intensification rate and final intensity of a TC, two
154 ensemble experiments are conducted (Table 1). In the control experiment (labeled by CTL), the
155 model is run with all default settings as described above. In the sensitivity experiment, the vertical
156 advection of tangential winds in the inner core region is modified in each run so that the upward
157 advection of supergradient wind component in the tangential momentum equation is omitted. Note
158 that only the positive (upward) vertical advection is modified, so that the boundary layer spinup
159 mechanism as articulated by Schmidt and Smith (2016) and Montgomery and Smith (2017) as
160 mentioned in section 1 is suppressed. Specifically, the positive vertical advection term $-w \partial v / \partial z$
161 in the tangential momentum equation is replaced by $-w \partial [\min(v, v_g)] / \partial z$, where z denotes

162 height, and w , v , and v_g denote vertical velocity, tangential wind speed, and gradient wind speed,
163 respectively. The gradient wind v_g in CM1 is calculated as follows

164

$$v_g = -\frac{fr}{2} + \left(\frac{f^2 r^2}{4} + r c_p \theta_v \frac{\partial \pi'}{\partial r}\right)^{\frac{1}{2}}, \quad (1)$$

165 where r is the radius, c_p the specific heat of dry air at constant pressure, and θ_v and π' are
166 virtual potential temperature and nondimensional pressure, respectively. Figure 1 shows an
167 example of the modified vertical advection (Fig. 1c) from the unmodified vertical advection (Fig.
168 1a) using the model output after 48 h of simulation from CTL. As we can see from Fig. 1c, by the
169 approach used in our sensitivity experiment, the upward (positive) advection of supergradient
170 winds from the boundary layer (Fig. 1b), namely the dominant process contributing to the eyewall
171 spinup as articulated in the boundary layer spinup mechanism of the eyewall by Schmidt and Smith
172 (2016) and Montgomery and Smith (2017), is clearly omitted. Note that because our focus is on
173 the upward advection of supergradient wind component, as emphasized by the boundary layer
174 spinup hypothesis, rather than the supergradient wind itself, we allow the supergradient wind to
175 develop but only suppress the upward advection of supergradient wind component. Note also that
176 we do not mean the sensitivity experiment to be “realistic simulation”, rather it is a thought
177 experiment that is designed to allow the above mentioned process to be quantified.

178 Because we focus on the intensification process of the simulated TC, the replacement of the
179 vertical advection term in all sensitivity members is activated after the initial 24-h adjustment (cf.
180 Fig. 2a). By this time, the RMW reaches ~ 45 km and contracts continuously from then on (cf. Figs.
181 2b). Therefore, the replacement of the vertical advection term is confined to the inner core region

182 within a radius of 50 km (Table 1). In addition, given the fact that supergradient winds are mainly
183 located in the boundary layer and below ~2–3 km (cf. Fig. 3), the replacement of vertical advection
184 is confined at low levels below 3 km height (labeled by Vg3, Table 1). To ensure the robustness of
185 the main results, the sensitivity experiment is repeated with the replacement of vertical advection
186 confined below 4 km height (labeled by Vg4).

187 Considering the fact that supergradient winds result from surface friction and may change
188 with surface drag coefficient, we conduct six extra ensemble experiments using different surface
189 drag coefficients to ensure the robustness of the results. The surface drag coefficient in the CTL
190 experiment described above is multiplied by 0.5, 1.5, 2.0, respectively, in experiments 05Cd, 15Cd,
191 and 20Cd, with all default model settings as in the CTL experiment. In three other sensitivity
192 experiments (05Cd_Vg3, 15Cd_Vg3, and 20Cd_Vg3), the positive vertical advection of the
193 supergradient wind component within a 50-km radius and below 3 km is omitted as in experiment
194 Vg3. Note that because the duration of the initial adjustment varies slightly with surface drag
195 coefficient, the omission of the vertical advection of supergradient wind component is activated
196 after 27 h run of 05Cd in 05Cd_Vg3, 21 h run of 15Cd in 15Cd_Vg3, and 21 h run of 20Cd in
197 20Cd_Vg3 (Table 1) by subjectively chosen. Note that the results discussed below are not affected
198 by the time and the space of the replacement of vertical advection in the sensitivity experiments.
199 This is because that the supergradient wind and its upward advection are very marginal during the
200 early stage of TC intensification or outside the eyewall (cf. Fig. 3)

201 **3. Contributions of upward advection of supergradient winds**

202 Figure 2a and 2b compares the time series of maximum 10-m height wind speed (TC intensity)
203 and the corresponding RMW from experiments CTL, Vg3, and Vg4, respectively. Consistent with
204 the hypothesis in the recent literature (Smith and Montgomery 2015; Schmidt and Smith 2016;
205 Montgomery and Smith 2017, 2018), the upward advection of supergradient winds contributes
206 positively to TC intensification during the early intensification period and quasi-steady intensity
207 (Fig. 2a). However, consistent with the hypothesis of Heng et al. (2018), but in contrast to the
208 boundary layer spinup mechanism proposed by Schmidt and Smith (2016) and Montgomery and
209 Smith (2017, 2018), this contributes little (<1%) to the intensification rate during the primary
210 intensification stage, but it contributes ~15% of the final quasi-steady intensity of the simulated
211 TC. Note that the “primary intensification stage” here is defined as a continuous period within
212 which the TC intensity increased by 5 m s^{-1} or more in the following 12 h after the onset of the
213 intensification (see asterisks marked in Fig. 2a). The effect of upward advection of supergradient
214 winds on both the contraction of the RMW at 10-m height and the final RMW are minor (Fig. 2b).
215 In addition to the maximum tangential wind at 10-m height, we also compared the maximum
216 tangential winds anywhere in the interior of the boundary layer (Fig. 2c) and that at 2 km height
217 (Fig. 2d). Overall, the results are consistent with those discussed above although the maximum
218 tangential wind in the interior of the boundary layer is considerably greater than that at 10-m height
219 or at 2-km height because of the large supergradient nature of tangential wind in the boundary layer

220 and subgradient nature near the surface. From Fig. 2, we also can see that the results from Vg3 and
221 Vg4 are quite similar, confirming that the upward advection of supergradient winds mainly
222 occurred below 3 km height in the simulation (cf. Fig. 3). Therefore, we will mainly focus on the
223 results from Vg3 in the following discussion.

224 The above results strongly suggest that the upward advection of supergradient wind
225 component is not a dominant mechanism of TC intensification, such as the spinup of the eyewall
226 as hypothesized in some previous studies (Schmidt and Smith 2016; Montgomery and Smith 2017,
227 2018). To understand why the upward advection of supergradient winds from the boundary layer
228 is not crucial to TC intensification, we first compare in Fig. 3 the evolution of the ensemble mean
229 boundary layer structures in CTL and Vg3. At the beginning of intensification (Fig. 3a), the
230 agradient force ($= f v + \frac{v^2}{r} - c_p \theta_v \frac{\partial \pi'}{\partial r}$) in the inner-core region is generally small, and thus there
231 is no obvious supergradient wind (not shown, which has the same spatial pattern as the agradient
232 force by definition) in the boundary layer. Therefore, the differences in TC intensity (Fig. 2a) and
233 the boundary layer structure (Figs. 3a and 3e) between CTL and Vg3 are negligible in the early
234 stage of intensification, also partly because this is the first hour after the imposition of the modified
235 advection. However, later on, as the TC intensifies, the inward agradient force appears in the
236 surface layer near and outside the RMW due to surface friction, leading to the development of
237 strong inflow near the surface in both CTL and Vg3. A local maximum in outward agradient force,
238 which results from the amplification of supergradient winds as the storm intensifies, appears above
239 the surface layer inside the RMW in CTL (Figs. 3b–d). The outward agradient force in the boundary

240 layer leads to the development of an outflow layer in the upper part of the inflow boundary layer
241 and in the lower troposphere in CTL (Figs. 3b–d). In the upper part of the outflow layer, a local
242 maximum in inward agradient force appears, reflecting the existence of subgradient winds (Figs.
243 3b-d). This alternative appearance of supergradient and subgradient winds is consistent with the
244 vertical oscillation of the AAM surfaces discussed in Rotunno and Bryan (2012), and has been
245 proven to be a common structure in rotating-flow boundary layers (Rotunno 2014).

246 With the positive vertical advection of supergradient wind component removed in Vg3, the
247 amplitude of oscillation of the AAM surfaces, supergradient winds and the corresponding outflow
248 layer in the upper part of the boundary layer (Figs. 3f–h) are largely reduced compared with those
249 in CTL (Figs. 3b–d), indicating that the vertical advection of supergradient winds largely
250 contributes to the enhancement of supergradient winds in the boundary layer and outflow aloft as
251 demonstrated by Kepert and Wang (2001). Since the outflow above the frictional boundary layer
252 often causes the spindown of tangential wind, Heng et al. (2018) speculated that the spinup of
253 tangential wind resulting from the upward advection of supergradient winds might be largely offset
254 by the spindown due to the forced outflow. As a result, the net effect of the upward advection of
255 supergradient winds from the boundary layer should not be crucial to TC intensification.

256 In addition to the reduction of the outward agradient force in the upper part of and immediately
257 above the inflow boundary layer, the inward agradient force in the lower part of the inflow
258 boundary layer also becomes weaker in the inner-core region in Vg3 than in CTL. Because of the
259 reduction of supergradient winds aloft, the near-surface negative upward advection of tangential

260 wind, which decelerates the local tangential wind and enhances the near-surface inward agradiant
261 force, would decrease. As a result, the reduced inward agradiant force under the eyewall in Vg3
262 leads to reduced boundary layer inflow (Figs. 3f–h), and meantime, the inflow and inward agradiant
263 force outside the eyewall (near the layer of peak inflow) are also reduced (Figs. 3f–h). This suggests
264 that the increase in inner-core radial advection of tangential wind due to enhanced inflow in
265 association with the spinup of supergradient wind is offset by the increase of negative vertical
266 advection of tangential wind in the presence of supergradient wind. This will be confirmed by
267 results from tangential wind budget analyses discussed below.

268 To understand why the upward advection of supergradient winds contributes little to the
269 overall TC intensification rate, we further examine the tangential wind budgets for the simulated
270 TCs in CTL and Vg3 during their primary intensification stages (Figs. 4–6). The tangential wind
271 tendency equation in the axisymmetric version of CM1 can be written as (Li et al. 2019)

$$272 \quad \frac{\partial v}{\partial t} = -u\xi_a - w\frac{\partial v}{\partial z} + F_h + F_v, \quad (2)$$

273 where u denotes radial wind speed, $\xi_a = \partial v / \partial r + v/r + f$ denotes absolute vertical vorticity.
274 The term on the lhs of Eq. (2) is the net local tangential wind tendency (NET), and the four terms
275 on the rhs are radial advection (ADV_H), vertical advection (ADV_V), turbulent horizontal mixing
276 (DIFF_H), and turbulent vertical mixing including surface friction (DIFF_V). As in Li et al. (2019),
277 all instantaneous terms in Eq. (2), including the NET, are output directly from the model
278 simulations at a 6-min interval. Therefore, the budget is residual free. We compare the tangential
279 wind budgets in CTL and Vg3 during their corresponding primary intensification stages. The

280 budgets are averaged in the period during which the storms in CTL and Vg3 have the same
281 ensemble-mean 10-m tangential wind speed, i.e., between 15–45 m s⁻¹ (the two black dashed
282 horizontal lines in Fig. 2a). Note that although some small shift of RMW (≤ 2 km, Fig. 6) occurs
283 between the two experiments, the overall budget results are insensitive to the period chosen for the
284 time averaging (not shown).

285 In CTL, large positive tangential wind tendencies in the inflow boundary layer reflect the
286 inward transport of AAM by the boundary layer inflow while a relatively deep layer of negative
287 tendencies inside the RMW immediately above the positive tendencies results from the outflow
288 (Fig. 4a) associated with the outward agradient force as discussed above. Vertical advection due to
289 upward motion in the eyewall induces negative tangential wind tendencies in the lower part of the
290 inflow boundary layer and large positive tendencies immediately above (Fig. 4b). This is mainly
291 because the supergradient wind peaks in the interior of the inflow boundary layer, giving rise to a
292 positive vertical gradient of tangential wind below and a negative vertical gradient above. Although
293 the negative tangential wind tendencies induced by vertical advection in the lower part of the inflow
294 boundary layer inside the RMW is smaller compared with the positive tendencies induced by the
295 radial advection, the positive tendencies induced by vertical advection above the inflow boundary
296 layer are largely offset by the negative tendencies induced by the radial advection, resulting in
297 relatively weak positive tendencies (Fig. 4c). The positive tendencies in the inflow boundary layer
298 by total advection (Fig. 4c) is largely compensated by the negative tendencies due to vertical
299 mixing including surface friction (Fig. 4d). Horizontal diffusion results in some small negative

300 tangential wind tendencies inside the RMW and some small positive tendencies further inside in
301 the eye region (Fig. 4e). As a result, the net tangential wind tendencies (NET) shown in Fig. 4f is
302 consistent with the intensification of the simulated storm. Note that the error between the NET (the
303 sum of all terms from the 6-min model output) and the actual tangential wind tendencies is small
304 (not shown).

305 The removal of vertical advection of the supergradient wind component in Vg3 leads to a
306 substantial reduction of both negative tangential wind tendencies induced by radial advection and
307 positive tendencies induced by vertical advection immediately above the inflow boundary layer
308 (Figs. 5a and 5b). As a result, the total advection-induced positive tangential wind tendencies inside
309 the RMW above the inflow boundary layer in Vg3 (Fig. 5c) are quite similar to those in CTL (Fig.
310 4c). This means that although the vertical and radial advections are largely offsetting terms (Figs.
311 4a–c) for both the supergradient flow and the gradient flow, the cancellation is more nearly
312 complete for the supergradient flow and it is the vertical advection of the gradient flow that is
313 largely responsible for spinning up the eyewall above the boundary layer (Figs. 5a–c). In addition,
314 the vertical gradient of tangential winds in the lower part of the inflow boundary layer is reduced
315 in Vg3 because of the reduction of supergradient winds (Fig. 3) in response to the removal of
316 upward advection of supergradient wind component as mentioned above. This leads to a reduction
317 of the negative tangential wind tendencies due to vertical advection in the lower part of the inflow
318 boundary layer (Fig. 5b) compared to those in CTL (Fig. 4b). This reduction is largely compensated
319 by the reduction of positive tendencies contributed by radial advection (Fig. 5a) due to the reduced

320 inflow in the lower part of the inflow boundary layer inside the RMW in Vg3 as mentioned above.
321 As a result, the differences in tangential wind tendencies induced by total advection between Vg3
322 and CTL are quite small both above and in the inflow boundary layer (Figs. 4c and 5c). Similar to
323 those in CTL, the positive tangential wind tendencies in the boundary layer contributed by total
324 advection are largely offset by the negative tendencies induced by vertical mixing including surface
325 friction (Fig. 5d), and the tendencies due to horizontal diffusion are quite small (Fig. 5e). The net
326 tendencies (NET, Fig. 5f) show little difference from those in CTL (Fig. 4f).

327 The above results can be more clearly seen from the differences in all terms in tangential wind
328 budget between CTL and Vg3 shown in Fig 6. The upward advection of supergradient wind
329 component leads to large positive tangential wind tendencies in the upper part of the inflow
330 boundary layer and immediately above (Fig. 6b), a process being considered as the boundary layer
331 spinup mechanism of the TC eyewall above the boundary layer by Schmidt and Smith (2016) and
332 Montgomery and Smith (2017, 2018). However, the positive tendencies are largely offset by the
333 negative tendencies induced by radial advection due to outflow (Fig. 6a). As a result, the tangential
334 wind tendencies induced by the total advection show little difference above the inflow boundary
335 layer between Vg3 and CTL (Fig. 6c). This confirms that although the upward advection of the
336 tangential wind from the boundary layer is responsible for the spinup of the eyewall as in Peng et
337 al. (2018), the upward advection of the supergradient wind component has little contribution to the
338 net tangential wind tendencies above the boundary layer, which supports the hypothesis of Heng
339 et al. (2018). Note that the positive (negative) tendencies immediately above the large negative

340 (positive) tendencies induced by radial (vertical) advection in Fig. 6a (Fig. 6b) are associated with
341 the subgradient winds and the associated inflow (Rotunno 2014). Note also that the stronger
342 supergradient winds in the interior of the inflow boundary layer in CTL result in a larger vertical
343 gradient of tangential winds under the eyewall than in Vg3. This leads to larger negative tangential
344 wind tendencies in the lower part of the inflow boundary layer inside the RMW in CTL (Fig. 6b).
345 These negative tendencies, however, are largely compensated by the positive tendencies induced
346 by radial advection due to the relatively stronger inflow therein (Fig. 6a) as mentioned above. Some
347 small differences in positive and negative tendencies by the total advection between Vg3 and CTL
348 (Fig. 6c) are almost compensated by the tendencies induced by vertical mixing (Fig. 6d), which is
349 enhanced by relatively larger vertical shear of tangential winds in CTL. The difference in the
350 tendencies induced by horizontal diffusion between Vg3 and CTL is relatively small (Fig. 6e). As
351 a result, the net tangential wind tendencies show little differences in both magnitude and spatial
352 distribution between Vg3 and CTL (Fig. 6f). This explains why the upward advection of
353 supergradient wind component contributes little to the intensification rate of the simulated TC.

354 Although the vertical advection of supergradient wind component contributes little to the
355 intensification rate, the storm in CTL intensified for a longer period and thus reached a higher
356 quasi-steady intensity than that in either Vg3 or Vg4 (Fig. 2a). To explain the difference in the
357 quasi-steady intensity between CTL and Vg3 (and Vg4), we revisited the TC maximum potential
358 intensity (MPI) theory. According to Rousseau-Rizzi and Emanuel (2019), if the dissipative heating
359 is not included, the theoretical MPI in terms of the maximum sustained 10-m wind speed can be

360 given as

361

$$|V_{10}|^2 = \frac{c_k}{c_D} (T_s - T_{out})(S^* - S_{10}), \quad (3)$$

362 where $|V_{10}|$ is the potential 10-m total wind speed, T_s and T_{out} are the sea surface temperature
363 and outflow temperature in the upper troposphere, and S^* and S_{10} are the surface saturated
364 entropy at the RMW and 10-m height air entropy at the RMW. Note that the evolutions of 10-m
365 total wind speed and 10-m tangential wind speed are quite similar in each of the three experiments
366 (Figs. 2a and 7a). Since the same ratio of surface exchange coefficients, sea surface temperature,
367 and environmental sounding are used in all experiments, the difference in the quasi-steady intensity
368 between in CTL and Vg3 (and Vg4) is most likely due to the difference in the air-sea
369 thermodynamic disequilibrium, namely $S^* - S_{10}$, in all experiments. Therefore, we compared the
370 evolution of the air-sea thermodynamic disequilibrium at the RMW in CTL and Vg3/Vg4. Note
371 that we used the near-surface air entropy at 25-m height (at the lowest model level) instead of that
372 at 10-m height in the comparison, as shown in Fig. 7b. The air-sea thermodynamic disequilibrium
373 in CTL is slightly larger than that in Vg3/Vg4 even with similar intensities during the primary
374 intensification stage, indicating a potentially higher MPI of the TC in CTL than in Vg3/Vg4. The
375 difference in the air-sea thermodynamic disequilibrium between CTL and Vg3/Vg4 increases with
376 time and reached $10 \text{ J K}^{-1} \text{ Kg}^{-1}$ in the quasi-steady stage. This explains the higher quasi-steady
377 intensity of the storm in CTL and in Vg3/Vg4. The larger air-sea thermodynamic disequilibrium
378 in CTL is related to the stronger inflow in the inner-core region in the lower boundary layer as
379 discussed earlier (Fig. 3), as also shown in Fig. 7c, which shows the time evolution of the maximum

380 inflow in all experiments. The stronger inflow implies larger cold entropy advection to lower the
381 inner-core air entropy and thus to increase the air-sea thermodynamic disequilibrium under the
382 eyewall, as shown in the entropy budget by Rotunno and Emanuel (1987). Note that we do not
383 attempt to give a quantitative comparison of the MPI between those experiments, because Eq. (3)
384 assumes a local energy balance between the air-sea frictional dissipation and enthalpy flux near the
385 RMW (Rousseau-Rizzi and Emanuel 2019), which tends to yield an underestimation of the MPI
386 (Wang and Xu 2010). Based on the entropy budget, Wang and Xu (2010) found that the entropy
387 flux outside about 2-2.5 times of the RMW, rather than the local $S^* - S_{10}$ near the RMW alone,
388 also contributes to balance the energy dissipation near the RMW.

389 In addition, we also found a difference in the vertical tilt of the RMW between CTL and Vg3.
390 Because of the larger outflow above the inflow boundary layer and the stronger inflow in the lower
391 part of the boundary layer, the mean RMW in CTL is about 1–2 km smaller (larger) than that in
392 Vg3 in (above) the boundary layer (Fig. 6). This leads to a relatively larger outward tilt of the
393 RMW with height in the lower troposphere during both the primary intensification stage and the
394 quasi-steady stage in CTL than in Vg3 (Fig. 3) although the RMWs near the surface in CTL and
395 Vg3 are similar (Fig. 2b). Finally, note that all those changes of structure of the TC in Vg3 from
396 that in CTL, as mentioned above, should be regarded as a local response, mainly in the inner core
397 and in the lower troposphere, and the overall structure of the TC in Vg3 is very similar to that in
398 CTL (Fig. 8).

399 **4. Sensitivity to surface drag coefficient**

400 The results discussed in section 3 demonstrate that the vertical advection of the supergradient
401 wind from the boundary layer contributes little to the intensification of the simulated TC during
402 the primary intensification stage. Since the imbalance and the associated supergradient winds in
403 the boundary layer are largely controlled by surface friction, which is largely determined by surface
404 drag coefficient, a natural question arises as to whether the differences between CTL and Vg3
405 discussed in section 3 are sensitive to surface drag coefficient. To address this issue, we have
406 performed three additional pairs of experiments by varying the surface drag coefficient as listed in
407 Table 1.

408 As we can see from Fig. 9a, although the quasi-steady intensity increases with the decrease of
409 surface drag coefficient, which is consistent with the prediction of the theoretical MPI given in (3)
410 and the results of Peng et al. (2018, see their Fig. 11), the intensification rate during their
411 corresponding primary intensification stages is insensitive to surface drag coefficient. Figure 10
412 shows the radial-height cross-sections of radial winds and agradient winds averaged during their
413 corresponding primary intensification stages (when the storms have maximum 10-m wind speed
414 between 20–30 m s⁻¹) in all four experiments with all default model settings. As expected, the storm
415 with a larger surface drag coefficient developed stronger agradient winds and stronger inflow in
416 the boundary layer and stronger outflow immediately above. However, the intensification rate of
417 the simulated storm does not increase with the increase in the strength of supergradient winds or

418 the upward advection of supergradient wind component from the boundary layer, in contrast to that
419 expected from the boundary layer spinup mechanism of TC intensification hypothesized in some
420 previous studies. This further demonstrates that the upward advection of supergradient wind
421 component from the boundary layer should not be the dominant mechanism of TC intensification.

422 In addition, the RMW becomes smaller with larger surface drag coefficient (Fig. 10),
423 suggesting that although changes in surface drag coefficient have little effect on the intensification
424 rate, surface drag coefficient and thus surface friction contributes to the contraction of the simulated
425 TC, consistent with the results of Heng and Wang (2017). Note that the more rapid initial
426 contraction with larger surface friction can be attributed to the larger negative radial gradient of
427 radial advection of AAM (cf. Fig. 4a) because surface friction itself often prohibits the RMW
428 contraction (Li et al. 2019; cf. Fig. 4d).

429 Similar to the results discussed in section 3, the removal of the upward advection of the
430 supergradient wind from the boundary layer leads to a reduction of the quasi-steady intensity by
431 10-15% but does not cause any significant change to the intensification rate of the simulated TC
432 during their primary intensification stages in all experiments (Fig. 9). Note that a small reduction
433 (only about 4%) of the intensification rate during the primary intensification stage is shown in the
434 experiment with a relatively small C_d with the removal of upward advection of supergradient
435 wind component from the boundary layer (Fig. 9b). However, this reduction should not be
436 considered a positive contribution by the upward advection of supergradient winds from the
437 boundary layer to the overall TC intensification rate because with this small C_d the supergradient

438 winds are relative weak (Fig. 10a). The small difference in the intensification rate could be caused
439 by other changes, e.g., the relatively larger RMW (Fig. 10) in the simulations may increase the
440 sensitivity of the intensification rate of the simulated storm to small changes in any dynamical
441 aspects of the model. A detailed analysis is beyond the scope of this study. Nevertheless, results
442 from these additional experiments further confirm that the upward advection of the supergradient
443 wind contributes insignificantly to the intensification of the simulated storm during the primary
444 intensification stage. We also have checked the radial location of the average RMW in all three
445 additional pairs of experiments during their corresponding primary intensification period, and
446 consistent with that in Fig. 6, the removal of the upward advection of supergradient wind
447 component from the boundary layer leads to a larger (smaller) mean RMW in (above) the boundary
448 layer (not shown).

449 **5. Conclusions and discussion**

450 The existence of supergradient winds in the boundary layer is a common feature throughout
451 the life of a TC due to the presence of surface friction. Whether supergradient winds play a
452 dominant role in spinning up the eyewall of a TC and thus contribute to TC intensification in
453 general is under debate. Montgomery and Smith (2017, 2018) proposed that the upward advection
454 of supergradient wind from the boundary layer is a momentum source to spin up the eyewall above
455 the boundary layer, which they called the boundary layer spinup mechanism of the TC eyewall (see
456 also Schmidt and Smith 2016). However, Heng et al. (2018) argued that the upward advection of

457 supergradient wind component from the boundary layer leads to the development of an outflow
458 layer immediately above the inflow boundary layer, which spins down the supergradient winds,
459 and this is a gradient wind adjustment process and should not be a dominant mechanism of TC
460 intensification. In this study, ensemble sensitivity numerical experiments using the axisymmetric
461 TC model CM1 are performed and tangential wind budgets are conducted to quantify the net
462 contribution by the upward advection of supergradient wind component from the boundary layer
463 to the intensification and final intensity of a TC.

464 In the control experiment all default model settings are used while in the sensitivity
465 experiment the upward advection of supergradient wind component from the boundary layer is
466 artificially removed. Results from the numerical experiments show that the removal of the upward
467 advection of supergradient wind component from the boundary layer leads to little change to the
468 intensification rate during the primary intensification stage (often less than 4%) but an increase of
469 10%–15% in the quasi-steady intensity in terms of the maximum 10-m wind speed of the simulated
470 TC. The removal of the upward advection of supergradient wind component from the boundary
471 layer also largely reduces the outward agradient force and suppresses the development of an
472 outflow layer in the inner-core region immediately above the inflow boundary layer and also
473 reduces the supergradient winds in the boundary layer. This latter effect reduces the vertical shear
474 of tangential wind and thus the inward agradient force and the inflow in the surface layer in the
475 inner core. We hypothesize that it is the reduction of the inflow in the surface layer that suppresses
476 the air-sea thermodynamic disequilibrium and thus reduces the quasi-steady intensity in the

477 experiment with the upward advection of supergradient wind component removed. However, we
478 notice that the degree of thermodynamic disequilibrium doesn't actually change that much in time
479 as the inflow strength greatly amplifies. Therefore, the relationship between inflow and
480 thermodynamic disequilibrium near the surface may still need to be verified in future. We also
481 show that these results are not sensitive to surface drag coefficient in the reasonable range we have
482 tested. Considering that the magnitude of the supergradient jet is also strongly influenced by the
483 vertical mixing length (e.g., Rotunno and Bryan 2012, Stern et al. 2020), an additional pair of
484 experiments as CTL and Vg3 but using an asymptotic vertical mixing length of 100 m were
485 performed (not shown), and the results are generally consistent with those discussed herein.

486 Results from the tangential wind budget analysis show that the upward advection of
487 supergradient wind component from the boundary layer indeed induces positive tangential wind
488 tendencies in the upper part of and above the inflow boundary layer, namely contributing positively
489 to the spinup of the eyewall above the boundary layer as hypothesized by Montgomery and Smith
490 (2017, 2018). However, the positive tendencies are largely offset by the negative tendencies
491 induced by radial advection due to the resultant outflow as hypothesized by Heng et al. (2018). As
492 a result, the net contribution by the upward advection of supergradient wind component from the
493 boundary layer to the tangential wind tendencies in the inner core is quite small. Therefore, the
494 upward advection of supergradient wind component from the boundary layer should not be a
495 dominant mechanism of TC intensification. This is in support of the argument by Heng et al. (2018)
496 but is in contrast with the hypothesis of Schmidt and Smith (2016) and Montgomery and Smith

497 (2017, 2018). Our results thus demonstrate that it is the upward advection of high boundary-layer
498 tangential momentum associated with the gradient wind that is key to the spinup of the eyewall
499 above the boundary layer.

500 Results from this study, together with previous studies of Heng et al. (2017, 2018), do not
501 mean that the unbalanced boundary layer processes are not important to TC intensification. Rather,
502 the unbalanced boundary layer dynamics must play key roles in controlling the strength and radial
503 location of eyewall updraft/convection since eyewall convection in a TC is always rooted in the
504 inflow boundary layer where mass and moisture convergence and large surface enthalpy flux are
505 collocated. Note that some prior studies have found that TC intensification rate increases with
506 increasing C_d up to some threshold, e.g., $\sim 1 \times 10^{-3}$ in Peng et al. (2018, see their Fig. 11), which
507 is lower than the minimum value in our experiments (1.29×10^{-3}). This means that a certain
508 amount of surface friction is necessary for intensification of a natural TC, and as recently proposed
509 by Kepert (2017), the unbalanced boundary layer dynamics contributes to TC intensification
510 primarily through its control on the strength and radial location of eyewall updraft of a TC.
511 Therefore, more efforts should be given to discover how the eyewall convection is contributed by
512 the response of boundary layer dynamics to the TC vortex structure above the boundary layer (Xu
513 and Wang 2018).

514 **Acknowledgments:** The authors thank Dr. Richard Rotunno and three other anonymous reviewers
515 for their constructive and critical review comments. Y. Wang thanks Dr. Richard Rotunno for

516 helpful discussions in the early stage of this work. This study has been supported in part by the
517 National Key R&D Program of China under grants 2017YFC1501602 and National Natural
518 Science Foundation of China under grants 41730960, and in part by NSF grant AGS-1834300. Y.
519 Li is funded by China Scholarship Council (File 201806210324).

520 **References**

- 521 Bui, H. H., R. K. Smith, M. T. Montgomery, J. Peng, 2009: Balanced and unbalanced aspects of
522 tropical cyclone intensification. *Quart. J. Roy. Meteor. Soc.*, **135**, 1715–1731,
523 doi:10.1002/qj.502.
- 524 Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical
525 model. *Mon. Wea. Rev.*, **130**, 2917–2928, doi:10.1175/1520-
526 0493(2002)130<2917:ABSFMN>2.0.CO;2.
- 527 Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. *J. Atmos. Sci.*,
528 **21**, 68–75, doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.
- 529 Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea
530 atmosphere. *J. Climate*, **24**, 893–908, doi:10.1175/2010JCLI3496.1.
- 531 Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular
532 vortex. *Astrophys. Norv.*, **5**, 19–60.
- 533 Emanuel, K.A., 1989: The finite-amplitude nature of tropical cyclogenesis. *J. Atmos.*
534 *Sci.*, **46**, 3431–3456, doi:10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.
- 535 Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based
536 on subcloud-layer entropy equilibrium. *J. Atmos. Sci.*, **52**, 3960–3968, doi:10.1175/1520-
537 0469(1995)052<3960:TBOASH>2.0.CO;2.
- 538 Heng, J. and Y. Wang, 2016a: Nonlinear response of a tropical cyclone vortex to prescribed
539 eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone
540 Intensification. *J. Atmos. Sci.*, **73**, 1315–1333, doi:10.1175/JAS-D-15-0164.1.
- 541 Heng, J., and Y. Wang, 2016b: Reply to “Comments on ‘Nonlinear response of a tropical cyclone
542 vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications
543 for tropical cyclone intensification’”. *J. Atmos. Sci.*, **73**, 5105–5109, doi:10.1175/JAS-D-16-
544 0262.1.
- 545 Heng, J., Y. Wang, and W. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical
546 intensification. *J. Atmos. Sci.*, **74**, 2575–2591, doi:10.1175/JAS-D-17-0046.1.

- 547 Heng, J., Y. Wang, and W. Zhou, 2018: Reply to “Comments on ‘Revisiting the balanced and
548 unbalanced aspects of tropical cyclone intensification’”. *J. Atmos. Sci.*, **75**, 2497–2505,
549 doi:10.1175/JAS-D-18-0020.1.
- 550 Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location
551 of the eyewall updraft. *J. Atmos. Sci.*, **74**, 3305–3323, doi:10.1175/JAS-D-17-0077.1.
- 552 Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone
553 core. Part II: Nonlinear enhancement. *J. Atmos. Sci.*, **58**, 2485–2501, doi:10.1175/1520-
554 0469(2001)058,2485:TDOBLJ.2.0.CO;2.Kessler, E., 1969: *On the Distribution and Continuity*
555 *of Water Substance in Atmospheric Circulation. Meteor. Monogr.*, No. 32, Amer. Meteor. Soc.,
556 84 pp.
- 557 Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical
558 cyclones. *J. Atmos. Sci.*, **76**, 3229-3245. doi:10.1175/JAS-D-19-0076.1.
- 559 Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. *Aust.*
560 *Meteor. Oceanogr. J.*, **64**, 37-66.
- 561 Montgomery, T. M., and R. K. Smith, 2017: Recent development in the fluid dynamics of the
562 tropical cyclones. *Annu. Rev. Fluid Mech.*, **49**, 541–574, doi:10.1146/annurev-fluid-010816-
563 060022.
- 564 Montgomery, M.T. and R.K. Smith, 2018: Comments on “Revisiting the balanced and unbalanced
565 aspects of tropical cyclone intensification”. *J. Atmos. Sci.*, **75**, 2491–2496, doi:10.1175/JAS-D-
566 17-0323.1.
- 567 Montgomery, M.T., M.E. Nicholls, T.A. Cram, and A.B. Saunders, 2006: A vortical hot tower
568 route to tropical cyclogenesis. *J. Atmos. Sci.*, **63**, 355–386, doi:10.1175/JAS3604.1.
- 569 Montgomery, M. T., J. Persing, and R. K. Smith, 2015: Putting to rest WISHE-ful misconceptions
570 for tropical cyclone intensification, *J. Adv. Model. Earth Syst.*, **7**, 92–109,
571 doi:10.1002/2014MS000362.
- 572 Nguyen S, Smith R, Montgomery M. 2008. Tropical-cyclone intensification and predictability in
573 three dimensions. *Quart. J. Roy. Meteor. Soc.*, **134**, 563–582, doi:10.1002/qj.235.
- 574 Ooyama, K.V. 1964. A dynamical model for the study of tropical cyclone development. *Geophys.*

- 575 *Int.*, **4**, 187–198.
- 576 Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclone. *J. Atmos. Sci.*, **26**,
577 3–40, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.
- 578 Ooyama K.V. 1982. Conceptual evolution of the theory and modeling of the tropical cyclone. *J.*
579 *Meteor. Soc. Japan*, **60**, 369–380, doi:10.2151/jmsj1965.60.1_369.
- 580 Pendergrass, A.G. and H.E. Willoughby, 2009: Diabatically induced secondary flows in tropical
581 cyclones. Part I: Quasi-Steady Forcing. *Mon. Wea. Rev.*, **137**, 805–821,
582 doi:10.1175/2008MWR2657.1.
- 583 Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the
584 intensification of tropical cyclones. *J. Atmos. Sci.*, **75**, 2125–2183, doi:10.1175/JAS-D-17-
585 0382.1.
- 586 Rotunno, R., 2014: Secondary circulations in rotating-flow boundary layers. *Aust. Meteor.*
587 *Oceanogr. J.*, **64**, 27-35, doi:10.22499/2.6401.004.
- 588 Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II:
589 Evolutionary study using a nonhydrostatic axisymmetric numerical model. *J. Atmos. Sci.*, **44**,
590 542–561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.
- 591 Rotunno, R. and G.H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. *J.*
592 *Atmos. Sci.*, **69**, 2284–2299, doi:10.1175/JAS-D-11-0204.1.
- 593 Rousseau-Rizzi, R., and K. Emanuel, 2019: An evaluation of hurricane superintensity in
594 axisymmetric numerical models. *J. Atmos. Sci.*, **76**, 1697–1708, doi:10.1175/JAS-D-18-0238.1.
- 595 Schmidt, C., and R. K. Smith, 2016: Tropical cyclone evolution in a minimal axisymmetric model
596 revisited. *Quart. J. Roy. Meteor. Soc.*, **142**, 1505–1516, doi:10.1002/qj.2753.
- 597 Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. *J. Atmos.*
598 *Sci.*, **39**, 1687–1697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.
- 599 Shapiro, L. J. and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources
600 of heat and momentum. *J. Atmos. Sci.*, **39**, 378–394, doi:10.1175/1520-
601 0469(1982)039%3C0378:TROBHT%3E2.0.CO;2.
- 602 Smith, R. K. and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone

- 603 intensification. *J. Atmos. Sci.*, **72**, 3020–3031, doi:10.1175/JAS-D-15-0017.1.
- 604 Smith, R. K., and M. T. Montgomery, 2016: Comments on “Nonlinear response of a tropical
605 cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4:
606 Implications for tropical cyclone intensification”. *J. Atmos. Sci.*, **73**, 5101–5103,
607 doi:10.1175/JAS-D-16-0163.1.
- 608 Smith, R. K., M. T. Montgomery, and N. V. Sang, 2009: Tropical cyclone spin-up revisited. *Quart.
609 J. Roy. Meteor. Soc.*, **135**, 1321–1335, doi:10.1002/qj/428.
- 610 Stern, D. P., J. D. Kepert, G. H. Bryan, and J. D. Doyle, 2020: Understanding atypical midlevel
611 wind speed maxima in hurricane eyewalls. *J. Atmos. Sci.*, **77**, 1531–1557, doi:10.1175/JAS-D-
612 19-0191.1.
- 613 Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between
614 eyewall contraction and intensification. *J. Atmos. Sci.*, **72**, 1283–1306, doi:10.1175/JAS-D-14-
615 0261.1.
- 616 Wang, Y., and J. Xu., 2010: Energy production, frictional dissipation, and maximum intensity of a
617 numerically simulated tropical cyclone. *J. Atmos. Sci.*, **67**, 97-116, doi:10.1175/2009JAS3143.1.
- 618 Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. *J. Geophys. Res. – Atmos.*,
619 **84**, 3173–3183, doi:10.1029/JC084iC06p03173.
- 620 Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles:
621 development, testing, and verification. *J. Atmos. Sci.*, **68**, 990–1006,
622 doi:10.1175/2011JAS3588.1.
- 623 Xu, J., and Y. Wang, 2018: Effect of the initial vortex structure on intensification of a numerically
624 simulated tropical cyclone. *J. Meteor. Soc. Japan*, **96**, 111–126, doi:10.2151/jmsj.2018-014.
- 625

Table 1. List of numerical experiments.

Exp.	C_d	Vertical advection of tangential wind
CTL	2.58×10^{-3}	$-w \partial v / \partial z$
Vg3	2.58×10^{-3}	$-w \partial v / \partial z$ but $-w \partial \min(v, v_g) / \partial z$ if $r \leq 50$ km, $z \leq 3$ km, $t \geq 24$ h, and $-w \partial v / \partial z > 0$
Vg4	2.58×10^{-3}	$-w \partial v / \partial z$ but $-w \partial \min(v, v_g) / \partial z$ if $r \leq 50$ km, $z \leq 4$ km, $t \geq 24$ h, and $-w \partial v / \partial z > 0$
05Cd	1.29×10^{-3}	$-w \partial v / \partial z$
05Cd_Vg3	1.29×10^{-3}	$-w \partial v / \partial z$ but $-w \partial \min(v, v_g) / \partial z$ if $r \leq 50$ km, $z \leq 3$ km, $t \geq 27$ h, and $-w \partial v / \partial z > 0$
15Cd	3.87×10^{-3}	$-w \partial v / \partial z$
15Cd_Vg3	3.87×10^{-3}	$-w \partial v / \partial z$ but $-w \partial \min(v, v_g) / \partial z$ if $r \leq 50$ km, $z \leq 3$ km, $t \geq 21$ h, and $-w \partial v / \partial z > 0$
20Cd	5.16×10^{-3}	$-w \partial v / \partial z$
20Cd_Vg3	5.16×10^{-3}	$-w \partial v / \partial z$ but $-w \partial \min(v, v_g) / \partial z$ if $r \leq 50$ km, $z \leq 3$ km, $t \geq 21$ h, and $-w \partial v / \partial z > 0$

628
 629 Figure 1. (a) The radial-vertical cross-sections of the ensemble-mean tangential wind speed (v ,
 630 purple contours; m s^{-1}) and vertical advection of total tangential wind (ADV_V , shading; m s^{-1}
 631 h^{-1}) at 48 h of simulation in CTL. (b) As in (a), but for the supergradient winds [$\text{Vag} =$
 632 $v - \min(v, v_g)$] and the corresponding vertical advection [ADV_V(Vag)]. (c) Contours show
 633 $\min(v, v_g)$ and shadings show the difference between the vertical advection of total tangential
 634 wind as given in (a) and the vertical advection of supergradient winds as given in (b)
 635 [ADV_V(Vg)]. Note that each advection in (a)–(c) is diagnosed using the same finite-
 636 difference scheme in CM1 and in each individual run. Note that in order to modify the positive
 637 upward advection related to supergradient wind component only, ADV_V(Vag) is set to be
 638 zero and ADV_V(Vg) is set to be ADV_V if the ADV_V is negative. The dotted green line
 639 shows the location of the RMW at each level.

640
641 Figure 2. Time series of (a) the maximum 10-m tangential wind speed and (b) the radius of
642 maximum 10-m tangential wind speed from experiments CTL, Vg3, and Vg4, respectively. In
643 (c) and (d), time series of the maximum tangential wind anywhere in the interior of the
644 boundary layer and that at 2 km height are shown. Results from the 21 individual members
645 and the ensemble mean for each experiment are shown in thin and thick curves. The two dashed
646 black horizontal lines in (a) mark the period for the average radial-vertical cross sections
647 shown in Figs. 4–6. The blue asterisk in (a) marks the approximate onset of the primary
648 intensification stage of all three experiments, and the red and cyan asterisks mark the end of
649 the primary intensification stage in CTL and Vg3.

650
651 Figure 3. The radial-vertical cross sections of the ensemble-mean agradiant force (shading with
652 zero contour highlighted in brown; m s^{-2}), tangential wind speed (purple contours; m s^{-1}), radial
653 wind (blue contours with negative values dashed; m s^{-1}), and the transverse circulation (black
654 vectors, only with the total wind speed greater than 0.3 m s^{-1} shown, note that different
655 reference magnitudes are used below and above 0.6-km heights marked by the grey horizontal
656 line) averaged between (a) 24–25 h, (b) 42–43 h, (c) 60–61 h, and (d) 96–120 h using model
657 outputs at 6-min intervals from CTL. (e)–(h) Same as (a)–(d), but from Vg3. The dotted green
658 line shows the radial location of the RMW at each level. Note that the scale of color bar in
659 each row is different.

660
661 Figure 4. The radial-vertical cross sections of the ensemble-mean tangential wind speed (purple
662 contours; m s^{-1}) and tangential wind tendencies (shading; $\text{m s}^{-1} \text{h}^{-1}$) averaged between the two
663 dashed horizontal lines in Fig. 2a from CTL due to (a) radial advection, (b) vertical advection,
664 (c) total advection, (d) vertical mixing including friction, (e) horizontal mixing, and (f) net
665 budget. The radial wind (m s^{-1}) is also shown in black contours with negative values dashed in
666 (a). The dotted green lines show the radial location of the RMW. Note that the label bar for
667 the net budget in (f) is different from other terms.

668
669
670

Figure 5. Same as Fig. 4, but the results from Vg3 and the radial location of the RMW is shown by dotted blue lines.

671

672 Figure 6. Same as Fig. 4, but the differences between CTL and Vg3.

673

674 Figure 7. Same as Fig. 2, but (a) the maximum 10-m total wind speed, (b) the difference between
 675 the surface saturated entropy at SST and the 25-m air entropy at the RMW, and (c) the
 676 maximum 10-m inflow speed.

677
678 Figure 8. The radial-vertical cross sections of the ensemble-mean vertical velocity (shading; m s^{-1})
679 1), tangential wind speed (purple contours; m s^{-1}), and the radial wind speed (blue contour with
680 1) averaged between (a) 24–25 h, (b) 42–43 h, (c) 60–61 h, and (d)
681 1 96–120 h using model outputs at 6-min intervals from CTL. (e)–(h) Same as (a)–(d), but from
682 1 Vg3. The dotted green line shows the radial location of the RMW below 10-km height.
683

684
685 Figure 9. (a)–(d) Time series of the maximum 10-m tangential wind speed from different
686 experiments with different surface drag coefficients, indicated by legends. The two dashed
687 black horizontal lines in (a) mark the period for the average radial-vertical cross sections
688 shown in Fig. 10.

689
690
691
692
693

Figure 10. The radial-vertical cross sections of the ensemble-mean radial wind (blue contours with negative values dashed; m s^{-1}) and agradient wind (shading; m s^{-1}) averaged between the two dashed horizontal lines in Fig. 9a. The RMW for each experiment is shown by the dotted green line.