
Factors Affecting the Weakening Rate of Tropical Cyclones over 1 

the Western North Pacific 2 

Rong Fei1,2,3, Jing Xu1, Yuqing Wang3,1, and Chi Yang4  3 

 4 

1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China 5 

Meteorological Administration, Beijing 100081, China  6 

2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 7 

China 8 

3International Pacific Research Center and Department of Atmospheric Sciences, University of 9 

Hawaii at Manoa, Honolulu, HI 96822 10 

4 College of Global Change and Earth System Science, Beijing Normal University, Beijing 11 

100875, China 12 

October 26, 2019 (submitted) 13 

February 6, 2020 (first revision) 14 

May 12, 2020 (second revision) 15 

June 18, 2020 (final revision) 16 

Dateline 17 

Submitted to Monthly Weather Review 18 

 _____________________________________________________________________________ 19 

Corresponding author: Dr. Jing Xu, xujing@cma.gov.cn 20 

  21 



  

   1 

   

Abstract 22 

In this study, based on the 6-hourly tropical cyclone (TC) best-track data and the ERA-Interim 23 

reanalysis data, statistical analyses as well as a machine learning approach, XGBoost, are used to 24 

identify and quantify factors that affect the over-water weakening rate (WR) of TCs over the 25 

western North Pacific (WNP) during 1980–2017. Statistical analyses show that the TC rapid 26 

weakening events usually occur when intense TCs cross regions with sharp decrease in sea surface 27 

temperature (DSST) with relatively faster eastward or northward translational speeds, and move 28 

into regions with large environmental vertical wind shear (VWS) and dry conditions in the upshear-29 

left quadrant. Results from XGBoost indicate that the relative intensity of TC (TC intensity 30 

normalized by its maximum potential intensity), DSST, and VWS are dominant factors determining 31 

TC WR, contributing 26.0%, 18.3% and 14.9% to TC WR, and 9, 5 and 5 m s-1 day-1 to the 32 

variability of TC WR, respectively. Relative humidity in the upshear-left quadrant of VWS, zonal 33 

translational speed, divergence at 200 hPa and meridional translational speed contribute 12.1%, 34 

11.8%, 8.8% and 8.1% to TC WR, respectively, but only contribute 2–3 m s-1 day-1 to the variability 35 

of TC WR individually. These findings suggest that the improved accurate analysis and prediction 36 

of the dominant factors may lead to substantial improvements in the prediction of TC WR.  37 
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1. Introduction 38 

Intensity prediction of tropical cyclones (TCs) is known to be challenging in operational TC 39 

forecasts (e.g., Elsberry et al. 2007; Kaplan et al. 2010). In the last decade or so, many efforts have 40 

been devoted to understanding crucial issues in the predictability of intensifying TC events, such 41 

as the rapid intensification (Tao et al. 2017; Jiang et al. 2018; Knaff et al. 2018) and the intensity 42 

change associated with eyewall replacement cycles in TCs (Kossin and Sitkowski 2012; Kossin 43 

2015; Kossin and DeMaria 2016). However, less studies have focused on the weakening process 44 

of TCs in the literature. TC weakening, especially rapid weakening (RW), is one of the major 45 

sources of large intensity forecasting errors. RW is often defined as a decrease of 30 kt (15.4 m s-46 

1) or more in sustained near surface wind speed in 24 hours when the TC is over open water (Wood 47 

and Ritchie 2015). Statistical analyses show that the positive errors in official intensity forecast are 48 

often related to the TC-weakening cases, that is, their intensities are often overpredicted in official 49 

forecasts, especially for RW events (Wood and Ritchie 2015; Na et al. 2018). The overpredicted 50 

intensity forecast during the TC weakening stage may lead to overestimation of TC destructive 51 

potential and false alarm. Therefore, understanding of TC weakening processes is of great 52 

importance to improve TC intensity forecasting and destructive potential estimation. 53 

TCs often form over warm tropical oceans with sea surface temperature (SST) over 26.5oC 54 

under favorable environmental atmospheric conditions, such as weak environmental vertical wind 55 

shear (VWS) and a moist mid-troposphere (Gray 1968). After their formation, TCs generally 56 

intensify and move away from the deep tropics. Some oceanic and atmospheric environmental 57 
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conditions may become unfavorable for a TC to intensify or even maintain its intensity, and thus 58 

the TC may experience its weakening phase. Among those conditions, SST is the most important 59 

factor influencing TC intensity change because it largely determines the energy supply to a TC 60 

through surface enthalpy flux from the underlying ocean. SST also is one of the key parameters 61 

that determine the maximum potential intensity (MPI) of a TC (Miller 1958; Emanuel 1986, 1988, 62 

1995, and 1997; Holland 1997). In addition to SST, environmental atmospheric conditions may 63 

largely modulate the TC intensity, such as VWS in the environmental flow (e.g., DeMaria and 64 

Kaplan 1999; Zeng et al. 2007, 2008, 2010; Wang et al. 2015; Bukunt and Barnes 2015) and dry 65 

air in the near-core TC environment (Hendricks et al. 2010; Davis and Ahijevych 2012; Fowler and 66 

Galarneau 2017; Juračić and Raymond 2016). Strong VWS can lead to the weakening of a TC 67 

through ventilating the warm core, diluting moist air in the eyewall, and inducing large 68 

asymmetries in the inner core (Gray 1968; Frank and Ritchie 2001; Tang and Emanuel 2010, 2012; 69 

Riemer et al. 2010, 2013; Xu and Wang 2013; Fu and Wang 2017). Dry air in the near-core TC 70 

environment can lead to TC weakening if the dry air is entrained into the eyewall updraft to promote 71 

strong downdrafts, especially when large VWS exists (Davis and Ahijevych 2012; Fowler and 72 

Galarneau 2017). Moreover, some internal processes may also lead to TC intensity change, such as 73 

the development of strong outer spiral rainbands (Wang 2009) or the formation of a secondary 74 

eyewall and the related eyewall replacement cycle (Willoughby et al. 1982; Houze et al. 2007; 75 

Sikowski et al. 2011; Kossin and Sitkowski 2012; Yang et al. 2013; Kossin 2015; Kossin and 76 

DeMaria 2016). 77 

As a small-probability event of TC weakening, TC RW is often defined as the bottom 5% of 78 
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all TC intensity change rates (e.g., Wood and Ritchie 2015; Ma et al. 2019). Wood and Ritchie 79 

(2015) showed that TC RW always occurred when a TC crossed a sharp SST gradient, encountered 80 

strong VWS, or experienced dry air intrusion over the North Atlantic and the eastern North Pacific. 81 

They found that these inhibiting environmental factors contribute either individually or jointly to 82 

TC RW; decreasing SST and increasing VWS contribute the most over the North Atlantic, while 83 

decreasing SST and low low-level relative humidity contribute the most in the eastern North Pacific. 84 

More recently, Ma et al. (2019) drew some similar conclusions on the dominating effect of VWS 85 

and sharp SST gradient on TC RW over the western North Pacific (WNP). However, they found 86 

that the effect of mid-level dry-air intrusion was insignificant during RW over the WNP compared 87 

with that in the North Atlantic and eastern North Pacific. They proposed that this may be due to the 88 

lack of prevailing mid-level dry‐air layer (such as the Saharan air layer over the North Atlantic) 89 

over the WNP. The monsoon gyres are another special environmental factor that can induce TC 90 

RW over the tropical WNP. Liang et al. (2018) found that more than 40% of RW events south of 91 

25oN were associated with the monsoon gyres. They suggested the monsoon gyres affect TC RW 92 

by modulating the TC structure. 93 

Most previous studies have focused on individual factors influencing TC weakening or some 94 

weakening cases, or on composite analyses of environmental factors in classified TC intensity 95 

changes (such as RW and non RW) qualitatively. A systematic analysis of TC weakening rate (WR) 96 

as a continuous response and its relationship with the associated environmental factors over the 97 

WNP has not been conducted yet. The main objectives of this study are 1) to present the 98 

climatological characteristics of all over-water TC weakening cases, especially RW cases, over the 99 
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WNP, 2) to identify the dominant environmental factors that affect TC WR, and 3) to quantify the 100 

relative contributions of environmental factors to TC WR through sensitivity analysis based on a 101 

machine learning approach, the XGBoost method. The rest of this paper is organized as follows. 102 

Section 2 describes the data and methods used in this study. The basic climatological characteristics 103 

of TC weakening and RW are given in Section 3. The environmental factors that significantly affect 104 

TC WR are identified in section 4. The relative importance of various environmental factors to TC 105 

WR is analyzed and discussed in section 5. The main findings are summarized in the last section.  106 

2. Data and methods 107 

a. Data 108 

Persistence and environmental variables used in this study are listed in Table 1. The Joint 109 

Typhoon Warning Center (JTWC) best-track dataset for WNP TCs during 1980–2017 was obtained 110 

from the IBTrACS version 4 (Knapp et al. 2010, 2018). The period since 1980 is generally 111 

considered the modern era, because geostationary satellite coverage has been nearly global and 112 

polar orbiting satellite data has been more widely available than previous years. Uncertainties in 113 

TC intensity and position estimations have been largely reduced since then 114 

(https://www.ncdc.noaa.gov/ibtracs/pdf/IBTrACS_version4_Technical _Details.pdf). The dataset 115 

includes 6-hourly TC location and maximum 1-min mean sustained surface wind speed. Only 116 

storms with tropical nature are included in our analysis. More than 95% of their 50-kt wind radii 117 

are less than 200 km. Since the TC inner-core can be fully covered by the 50-kt wind radius, TC 118 

cases with the storm center within 200 km from any landmass were excluded to avoid intensity 119 
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change caused by significant topographic (including land) effects. Due to the contribution of a 120 

storm’s translational speed (SPD) to the maximum wind speed of the storm, the initial maximum 121 

wind speeds in the best-track data cannot represent the purely circular component of maximum 122 

wind speeds. Therefore, to minimize the influence of storm translation on storm intensity, we 123 

subtracted 40% of the storm translational speed from the initial maximum wind speed for all TC 124 

cases and used the result as the measure of TC intensity (Vmax), as done by Emanuel et al. (2004). 125 

The TC intensity changes at 24-hour intervals were calculated accordingly. Cases with intensity 126 

change in 24 hours less than zero were defined as weakening cases. Only TCs with their centers 127 

south of 40ºN while experiencing their weakening stages were considered in our analysis. In 128 

addition, to avoid the effect of short-term fluctuations in TC intensity, following Wood and Ritchie 129 

(2015), weakening cases with any 6-hourly intensification within a 24-hour window were also 130 

excluded. 131 

As in Wood and Ritchie (2015), a 30 kt (15.4 m s-1) decrease in Vmax in 24 hours was chosen 132 

as the threshold to define an RW case in this study. We used the magnitude of decrease in Vmax 133 

in 24 hours to quantify the WR (without a negative sign). Accordingly, slow weakening (SW) cases 134 

were defined as weakening cases with WR less than the RW threshold. In addition, TCs that 135 

experienced RW were simply called RW TCs and those non-RW TCs were called SW TCs. A total 136 

of 475 TCs with 3108 weakening cases, among which there were 153 RW TCs with 434 RW cases, 137 

were included in our following analyses. 138 

The 6-hourly environmental data, including horizontal winds, relative humidity (RH) and 139 

SST, was derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) 140 
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interim reanalysis (ERA-Interim), with a horizontal resolution of 0.75o×0.75o and at 37 pressure 141 

levels (Dee et al. 2011). The wind fields were filtered beforehand to remove all disturbances, 142 

including TCs, with wavelengths less than 1000 km based on the algorithm described in Kurihara 143 

et al. (1993). Specifically, the filtering algorithm is a local three-point smoothing operator applied 144 

iteratively in both the zonal and meridional directions. The TC environmental zonal wind (U) and 145 

meridional wind (V) were defined as the average over an annulus between radii of 200 and 800 146 

km from the TC center, and VWS between 200 and 850 hPa were then calculated accordingly 147 

using the averaged environmental U and V. Note that this deep layer shear is a good indicator of 148 

environmental VWS effect on TCs and is widely used in the study of TC intensity change (e.g., 149 

Zeng et al. 2010; Wang et al. 2015). Large-scale divergence at 200 hPa (DIV200) was defined as 150 

the average of divergence in a radius of 1000 km from the TC center. The SST of each TC case 151 

was defined as the average in a radius of 300 km from the TC center. The above calculations all 152 

followed those used in SHIPS model (DeMaria and Kaplan 1999). The TC MPI was estimated 153 

using the algorithm described in Bister and Emanuel (2002). 154 

b. The XGBoost methods 155 

An effective machine learning method called Extreme Gradient Boosting (XGBoost) (Chen 156 

and Guestrin 2016) was used to quantitatively evaluate the relative contributions of environmental 157 

factors to TC WR. XGBoost is an implementation of gradient tree boosting (GTB) (Friedman 2001), 158 

one ensemble learning technique that has been used in many applications. Tree-based methods 159 

partition the feature space into a set of rectangles (leaves) through recursive binary splitting, and 160 
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then fit a simple model (e.g., a constant mean) in each one (Breiman et al. 1984). The feature space 161 

partition is fully described by a single tree (also known as classification and regression tree, or 162 

CART). Essentially, a tree is a piecewise constant or linear regression model. For a given dataset 163 

𝒟  with n cases and m features, 𝒟 = {(𝐱𝑖, 𝑦𝑖)} (𝐱𝑖 ∈ ℝ𝑚, 𝑦𝑖 ∈ ℝ, 𝑖 = 1, ⋯ , 𝑛) , a tree ensemble 164 

model uses K additive functions (trees) to predict the output, 165 

𝑦̂𝑖 = 𝜙(𝐱𝑖) = ∑ 𝑓𝑘(𝐱𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ ℱ,          (1) 166 

where ℱ = {𝑓(𝐱) = 𝑤𝑞(𝐱)} (𝑞: ℝ𝑚 → 𝑇, 𝑤 ∈ ℝ𝑇)  is the space of regression trees, q represents 167 

the structure of each tree that maps a case to the corresponding leaf index, T is the number of leaves 168 

in the tree, each fk corresponds to an independent tree structure q and leaf weights w. Typically, 169 

additive models with a form as in Eq. (1) are fitted by minimizing a loss function averaged over 170 

the training data, such as the squared-error or a likelihood-based loss function. However, for the 171 

tree ensemble model, it is difficult to train using traditional numerical optimization techniques. 172 

Instead, the model can be trained in an additive manner, known as GTB. The number of additive 173 

trees K increases iteratively to make the value of loss function smaller and smaller. For a 174 

comprehensive introduction to CART and boosting methods, please refer to Hastie et al. (2009) 175 

Chapters 9 and 10. 176 

XGBoost trains the set of functions used in Eq. (1) by minimizing the following regularized 177 

objective using GTB, 178 

ℒ(𝜙) = ∑ 𝑙(𝑦̂𝑖, 𝑦𝑖)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1 ,      (2) 179 

where l is a differentiable convex loss function that measures the difference between the prediction 180 
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ŷi and the target yi; Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1  , λ and γ are the regularization parameters. The 181 

second term Ω penalizes the complexity of the model. The additional regularization term helps to 182 

smooth the final learned weights to avoid over-fitting. As a result, while achieving high accuracy 183 

in representing the training cases, XGBoost exhibits great generalization ability to predict new 184 

cases. In addition, XGBoost provides a natural measure of feature importance. Importance is a 185 

relative score that indicates the fractional contribution of each feature to the model performance 186 

measure, and is 100% when summed over all features. Denote 𝑔𝑖 = 𝜕𝑦̂(𝑡−1)𝑙(𝑦𝑖, 𝑦̂(𝑡−1)) and ℎ𝑖 =187 

𝜕
𝑦̂(𝑡−1)
2 𝑙(𝑦𝑖, 𝑦̂(𝑡−1)) for the i-th case at the t-th iteration in boosting the minimization of Eq. (2). For 188 

the split on a feature, assume that IL and IR are the case sets of the left and right nodes after the split. 189 

It can be shown that the approximate loss reduction, or the ‘gain’, after the split is given by 190 

Gain =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾,                      (3) 191 

where 𝐺𝐿 = ∑ 𝑔𝑖𝑖∈𝐼𝐿
 , 𝐺𝑅 = ∑ 𝑔𝑖𝑖∈𝐼𝑅

 , 𝐻𝐿 = ∑ ℎ𝑖𝑖∈𝐼𝐿
  and 𝐻𝑅 = ∑ ℎ𝑖𝑖∈𝐼𝑅

 . Feature importance is 192 

calculated by first summing the gain of this feature’s splits within a single tree, weighted by the 193 

number of related observations, and then averaged across all of the trees within the model. Once 194 

the model is fitted, importance is also evaluated accordingly for each feature. Even for a case where 195 

there are highly correlated features, XGBoost can also provide reliable estimates of importance for 196 

at least one of them, unlike in the multivariate linear models where their statistical significance 197 

could be “diluted” such that none of them would pass the significance test (Chen and Guestrin 198 

2016). 199 

Because of the above advantages, XGBoost has been successfully applied to investigate the 200 

nonlinear relationships between the response and features of a complex system. The fitted model 201 
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itself is much like a proxy model that encodes such relationships. To reveal a relationship of interest, 202 

visualization methods, such as Partial Dependence Plot (PDP) (Friedman, 2001) and Individual 203 

Conditional Expectation (ICE) plots (Goldstein et al. 2015), are usually applied. In practice, ICE 204 

is a series of model-predicted response curves, generated by varying the feature of interest over its 205 

value range while keeping the others fixed as observed for each training case. PDP is just the 206 

average curve of ICE curves over all cases. Other statistics of ICE, such as the quartiles, can also 207 

be plotted to reveal the variability of the response at the given value of the feature of interest. Take 208 

VWS as the example feature of interest. For each RW case, we can use the fitted model to predict 209 

TC WR for each of finely discretized values over the observed VWS range in turn, with all the 210 

other features fixed as observed. The ICE curve for each case is then achieved by linking the 211 

predicted values. If the feature of interest is almost independent of the other features, then its ICE 212 

curves as well as its PDP and quartile curves are approximately parallel (the interquartile range 213 

does not change with the feature). Otherwise, ICE curves may cross and their interquartile range 214 

may change with the feature, implying that the feature interacts with some of or all the others. It 215 

should be noted that for regression problems as we will deal with in section 5, each tree in the 216 

XGBoost model comprises of local linear regressions for individual leaves on the tree. Therefore, 217 

the ICE curves are zigzagged in nature. Since linear regressions are sensitive to outlier data, leaves 218 

containing outlier data might contribute to remarkable jumps on the predicted curves, as we will 219 

see in section 5b. 220 

In this study, we use the XGBoost method to establish an empirical model of TC WR using all 221 

identified dominant environmental factors. It should be mentioned that, unlike SHIPS or other 222 
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related models, here the fitted model is not used for forecasting. Instead, it serves as an analysis 223 

tool to investigate the nonlinear relationships between TC WR and various factors. The relative 224 

importance of these factors is evaluated accordingly. Sensitivity and variability of TC WR in 225 

response to these individual factors are investigated using the ICE method based on the fitted model.  226 

3. Characteristics of TC weakening over the WNP 227 

Figure 1a shows the spatial distribution of TC WR and the frequency of weakening cases in 228 

each 2.5°×2.5° grid box in typhoon seasons (from June to November) during 1980–2017 over the 229 

WNP. It shows that most of the over-water weakening cases are located in the region of 15o–35oN, 230 

125o–160oE and centered near 22oN, 130oE. Higher WR usually occurs north of 20oN. This is 231 

because TCs often experience their major weakening phase at latitudes north of 20oN after their 232 

intensification stages. Moreover, unfavorable environmental conditions at mid-latitudes may 233 

enhance the WR of TCs. Note that there is a local maximum in WR just off the coast of Japan, 234 

which is due to the relatively high WR of only one case falling in that grid box. Figures 1b and 1c 235 

show RW TC and SW TC tracks, respectively. The SW stages during RW TC lifetimes are indicated 236 

as grey, while the RW stages are highlighted as black. The RW stages usually start at the recurving 237 

points of TC tracks northward or northeastward, which is probably related to the sharp decrease in 238 

SST along the TC tracks or/and the change in environmental wind field. This is consistent with the 239 

results of Ma et al. (2019), who also found that the RW cases usually occur as TCs crossed a sharp 240 

SST gradient over the WNP. 241 

Note that few RW TCs were observed in the South China Sea (SCS) in our analysis. This is 242 



  

   12 

   

mainly due to relatively few strong TCs over the SCS, and the warm SST greater than 28℃ in 243 

SCS is also unfavorable for TC weakening (Figs. 1b and 1c). Only TCs that formed in the SCS 244 

were counted, while those that entered the SCS after landfall but formed outside the SCS were not 245 

included in our analysis. Note also that some RW TCs occurred in the tropical WNP, which should 246 

be related to monsoon gyres as recently studied by Liang et al. (2018). They found that although 247 

less than one-third of RW events occurred south of 25oN, more than 40% of them were associated 248 

with monsoon gyres over the WNP. They showed that about 85% of these RW events were usually 249 

observed near the center of a monsoon gyre when a TC made a sudden northward turn. Comparing 250 

Figs. 1b and 1c, we can see that there are no distinct differences in geographical distribution 251 

between the RW and SW TC tracks, particularly in the high WR regions north of 25oN, although 252 

the initial stages of SW TCs were farther southward than those of RW TCs. This suggests that the 253 

two groups of TCs were governed by other factors, such as persistence and/or environmental factors. 254 

Figure 2 displays the monthly distributions of the numbers of total weakening TCs and RW 255 

TCs (Fig. 2a), and the numbers of total weakening cases and RW cases (Fig. 2b), as well as their 256 

respective ratios. Here a weakening case refers to a 6-hourly observation of a TC with a decrease 257 

in Vmax in 24 hours, while a RW case is a weakening case with a decrease of at least 15.4 m s-1 in 258 

Vmax in 24 hours. It can be seen that the numbers of both RW TCs and RW cases increase from 259 

June to October, with 31 RW TCs out of total 87 TCs (36%) and 82 RW cases out of 555 weakening 260 

cases (15%), respectively, in October. However, the ratio of RW TCs to all TCs and that of RW 261 

cases to all weakening cases increase significantly from 14% (15 out of 110 TCs) and 5% (33 out 262 

of 675 weakening cases) in August to 49% (19 out of 39 TCs) and 25% (62 out of 250 weakening 263 
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cases) in November. In general, TC RW occurs more frequently in fall than in summer over the 264 

WNP, which is likely to be associated with the lower MPI resulting from the lower SST in fall than 265 

in summer (Ge et al. 2017), and with atmospheric variations as well, such as drier mid-troposphere 266 

and stronger vertical wind shear in fall than in summer. 267 

Table 2 compares the statistics of SW and RW TCs as a function of the weakening duration. 268 

Here we define the weakening duration as a period of ongoing weakening without any 269 

intensification of each TC, calculated as a continuous and overlapping 24-hour weakening period. 270 

It is different from a weakening case, which refers to the weakening over a 24-hour period. The 271 

average weakening duration (including both SW and RW TCs) is 67 hours per TC. The frequency 272 

of weakening TCs decreases with increasing weakening duration. TCs with their weakening 273 

duration more than 6 days account for only 6.2% of total TCs. Comparing the weakening duration 274 

of RW and SW TCs, we can find that TCs experiencing RW periods usually have slightly longer 275 

weakening duration than those only experiencing SW in their lifetimes. The average weakening 276 

duration of RW TCs is 82 hours, while that of SW TCs is only 62 hours. Totally, 434 RW cases 277 

from 153 RW TCs occurred in the WNP. This means that on average each RW TC produces about 278 

3 overlapping RW cases, or equivalently, each RW TC experiences the RW period of about 36 279 

hours since the TC best-track records used in the analysis are 6-hourly. This is comparable with the 280 

36 and 30 hours of average RW durations in the eastern North Pacific and North Atlantic, 281 

respectively, reported in Wood and Ritchie (2015).  282 

TCs that experienced long RW durations usually have a relatively high lifetime maximum 283 

intensity (LMI). As we can see from Table 2, RW TCs with weakening duration longer than 48 284 
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hours have an average LMI over 56 m s-1, while the averaged LMI of SW TCs with weakening 285 

duration longer than 48 hours is only 36 m s-1. Note that three TCs weakened for more than 192 286 

hours (8 days): KIM (1986), ELE (2002) and IOKE (2006). KIM and IOKE experienced RW 287 

periods after they reached their LMIs of 67.8 m s-1 and 70.4 m s-1, respectively. ELE experienced 288 

its relatively high maximum WR of 13.4 m s-1 day-1 after peaking its LMI of 57.5 m s-1. Further 289 

analysis indicates that the weakening phases of about 34% RW TCs (52 out of 153) lasted for longer 290 

than 96 hours in the WNP. For RW TCs with weakening duration shorter than 60 hours, the RW 291 

periods are mostly (85.8%) consecutive, while for the others whose weakening duration was longer 292 

than 60 hours among RW TCs, most (73.3%) of them are discontinuous. Moreover, there are 86.1% 293 

(409 out of 475) of TCs undergoing their first weakening phase, and about 29.4% (45 out of 153) 294 

of RW TCs undergoing their first RW period within 24 hours after they reached their LMIs. This 295 

indicates that only a minority of TCs in the WNP could maintain very high intensities after their 296 

LMIs for an appreciable period. This is probably because when a TC developed to a high intensity, 297 

it had already moved to a less favorable environment than before, such as cooler SST, stronger 298 

vertical wind shear and drier mid-troposphere. The detailed roles of the environmental factors will 299 

be further examined in the next section. 300 

4. Factors affecting TC weakening rate 301 

Weakening is often the last stage of a TC and mostly occurs when the storm moves out of the 302 

deep tropics and enters a less favorable environment. In this section, we discuss factors affecting 303 

the TC over-water WR, including both the TC persistence variables and large-scale environmental 304 
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variables (Table 3). 305 

a. Persistence factors and SST  306 

Figure 3 shows the scatter diagrams of the 24-hour WR against Vmax, SST, relative intensity 307 

(defined as the ratio of the current TC intensity to its theoretical MPI, namely Vmax/MPI, hereafter 308 

POT), 24-hour SST change along TC track (DSST), zonal and meridional translational speeds 309 

(USPD and VSPD) of all weakening TC cases, together with their corresponding fitted 50th, 75th 310 

and 95th percentiles of WRs. All the fitted percentiles of TC WRs increase with increasing Vmax 311 

(Fig. 3a), showing an approximately linear dependence of TC WR on Vmax. Very few RW cases 312 

occur for storms with intensity less than 35 m s-1 because tropical storms (TS) are too weak to reach 313 

the RW threshold of 15.4 m s-1 day−1. The significant linear correlation between TC WR and Vmax 314 

(𝑟 = 0.37) (Table 3) indicates that Vmax is an important factor determining the subsequent WR. 315 

Namely, a TC with a greater intensity at and after it reaches its LMI tends to have a greater WR. 316 

This could be due to the fact that an intense TC typically experiences a relatively long 317 

intensification stage, often moves out of deep tropics (Fig. 1), and is about to enter regions with 318 

decreasing SST or environmental atmospheric conditions unfavorable for TCs to maintain high 319 

intensity. 320 

The underlying SST largely determines the surface enthalpy flux in the inner core of a TC and 321 

thus is a key factor affecting TC intensity change. As we can see from Fig. 3b, TC WR is negatively 322 

correlated with SST (𝑟 = −0.16 ) (Table 3). In particular, the fitted 95th percentile shows an 323 

obvious decreasing trend of the upper bound of TC WR with increasing SST, confirming that SST 324 
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is an important factor contributing to TC WR. Note that large TC WR higher than 30 m s-1 day-1 325 

occurs over SST between 26.5oC and 28.5oC rather than the coldest SST (Fig. 3b). This is because 326 

TCs at relatively low SSTs are often already weak so that their WRs could not be too large. 327 

Since current Vmax and SST are both important for the subsequent WR, and SST is a key 328 

parameter determining the TC MPI, we further examine the relationship between TC WR and POT 329 

(Fig. 3c). POT represents how far the current TC intensity is from its MPI. Similar to Vmax, POT 330 

is also positively correlated with TC WR (𝑟 = 0.4) (Table 3). This implies that TCs with their 331 

intensities closer to MPI may weaken more rapidly. The greater POT indicates either stronger 332 

intensity or lower MPI, or both, which provides relatively greater potential for a TC to weaken. 333 

Particularly, greater POT implies that the real upper limit of intensity will drop below the current 334 

intensity more easily and considerably when a TC encounters detrimental environmental conditions, 335 

such as strong vertical wind shear and dry middle troposphere. Note that there are about 12.9% of 336 

the weakening cases with POT greater than 1.0, implying that some TCs are superintense (Persing 337 

and Montgomery 2003). This is not unusual because observations did show that real TCs could 338 

have intensity higher than their corresponding theoretical MPIs (e.g., Montgomery et al. 2006). 339 

This could also happen when a TC moves quickly to pass over cold water (because of limited time 340 

for the storm to adjust to its environment; Emanuel 2000).  341 

The change in SST along the subsequent TC track could be a better indication of the energy 342 

input from the underlying ocean to the TC than SST under the current TC location. Therefore, it is 343 

expected that the TC WR would be correlated with the decrease in SST more closely than with the 344 

SST itself. This is indeed the case as we can see in Fig. 3d, which shows the relationship between 345 
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the subsequent DSST along the TC track and the subsequent 24-hour TC WR. All the fitted 346 

percentiles show that TC WR increases with the decrease in SST (namely negative DSST). The 347 

negative correlation of TC WR with DSST (𝑟 = −0.26) is higher than that with SST (Table 3), 348 

suggesting that the greater decrease in SST can result in higher TC WR. This is consistent with the 349 

fact that most RW cases occurred for TCs crossing a sharp SST gradient in the WNP (Fig. 1b). 350 

The SPD of a TC is also considered a factor affecting TC intensity change (Zeng et al. 2007, 351 

2008). Previous studies have shown that too low SPD is unfavorable for rapid intensification 352 

because of the negative feedback from the cooling SST induced by upwelling (e.g., Walker et al. 353 

2014). However, a fast movement is unfavorable for TC intensification likely due in part to the 354 

generation of large asymmetries in the TC inner-core structure (Peng et al. 1999; Zeng et al. 2007, 355 

2008). As a result, we can consider that fast movement may favor TC RW, that is, WR may increase 356 

with increasing SPD. This tendency is clear in both Figs. 3e and 3f, which show the relationships 357 

between TC WR and its fitted quantiles against USPD and VSPD, respectively. Both USPD and 358 

VSPD are positively correlated with TC WR, with their correlation coefficients being 0.29 and 0.26, 359 

respectively (Table 3). This means that the TC WR becomes higher when a TC moves eastward 360 

and/or northward. This is also consistent with the fact that most RW TCs occur after they recurve 361 

northward and northeastward and enter the mid-latitude westerlies as shown in Fig. 1b. Note that 362 

the RW TCs also occur in the region where SST decreases rapidly along the TC tracks, as we can 363 

see in Fig. 1b. Therefore, contributions to the positive correlation of TC WR and SPD are not only 364 

from the fast translation itself, but also from other related changes in SST and atmospheric 365 

environment, such as VWS, as we will discuss further in section 5. 366 
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Figure 4 compares the frequency and cumulative percentage distributions of SW and RW 367 

cases against several factors discussed above. The RW cases mostly occur in TCs with Vmax 368 

between 40 m s-1 and 65 m s-1, accounting for 71.4% of RW cases; whereas 90.8% of SW cases are 369 

evenly distributed in TCs with Vmax lower than 65 m s-1 (Fig. 4a). The cumulative percentage 370 

distributions show that 80% and 50% of RW cases occur with Vmax higher than 42 m s−1 and 52 371 

m s−1, respectively, while those of SW cases occur with Vmax higher than 24 m s−1 and 40 m s−1, 372 

respectively. The RW cases tend to occur at colder SST than the SW cases do, with the highest 373 

frequency of RW and SW cases occurring at 27.5oC and 28.5oC, respectively (Fig. 4b). The 374 

majority (82.3%) of RW cases occur when POT is greater than 0.7, with their highest frequency 375 

occurring when POT is between 0.8 and 1.0, and few RW cases occur with POT less than 0.4 (Fig. 376 

4c). Compared with RW cases, SW cases are more evenly distributed over POT between 0.2 and 377 

1.0. This further confirms that the intense TCs with their intensities close to their upper limits are 378 

subject to greater potential for RW. The difference in frequency distribution between SW and RW 379 

cases is obvious with respect to DSST (Fig. 4d). A large amount (57.0%) of RW cases occur in 380 

regions with DSST less than -1oC day-1, while the majority (77.5%) of SW cases occur in DSST 381 

greater than –1oC day-1. The average DSST for the SW and RW cases is -0.81oC and -1.76oC day-382 

1, respectively. The latter is slightly stronger than the average DSST for the onset of RW in the 383 

eastern North Pacific (−1.0oC) and the North Atlantic (−1.5oC), respectively (Wood and Ritchie 384 

2015).  385 

In addition, most RW cases have SPD between 4 and 8 m s-1, while most SW cases have SPD 386 

between 2 and 6 m s-1 (Fig. 4e). About 53.5% of RW cases but only 24.6% of SW cases occur when 387 
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SPD is higher than 6 m s-1. The higher SPD of RW cases results from both the higher USPD and 388 

VSPD (Figs. 4e and 4f). Note that although USPD can be either westward or eastward for both RW 389 

and SW cases, VSPD is mostly northward and is higher for RW than for SW (Fig. 4f). The stronger 390 

northward component of motion for RW implies that the TC was moving into higher latitudes often 391 

with decreasing SST, which is consistent with the results shown in Figs. 3e and 3f. 392 

b. Environmental atmospheric factors 393 

We first examine the vertical profiles of the composite U and V over the TCs for SW and RW 394 

cases, respectively, conditional on TC POT (Fig. 5). POT represents the potential of TC weakening, 395 

as discussed above. On average, the SW group is embedded in zonal wind with easterly flow about 396 

1–2 m s-1 below 850 hPa and westerly flow above, up to higher than 5 m s-1 in the upper troposphere 397 

(Fig. 5a), and uniform southerly wind about 1–2 m s-1 throughout the troposphere (Fig. 5d). In 398 

contrast, both U and V are much higher in the RW group, with the maximum U and V higher than 399 

9 m s-1 (Fig. 5b) and 4 m s-1 (Fig. 5e), respectively, in the upper troposphere. The stronger westerly 400 

in the upper troposphere and easterly below 800 hPa imply stronger deep-layer westerly VWS in 401 

RW cases (Fig. 5b) than in SW cases (Fig. 5a). The stronger southerly wind in the upper troposphere 402 

also implies stronger deep-layer VWS in RW cases (Fig. 5d) than in SW cases (Fig. 5e). Note that 403 

the relatively stronger northerly appears for POT less than 0.65 in the RW group below 900 hPa, 404 

referring to TCs with moderate POT that encounter the mid-latitude westerly after their LMI.  405 

The differences in vertical wind profiles between the RW and SW groups can be more clearly 406 

seen from Figs. 5c and 5f. Large differences in both the westerly and southerly flow of the RW and 407 
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SW groups are present in the upper troposphere, while the difference in the lower troposphere is as 408 

small as 1.0–1.5 m s−1, especially for moderate POT. This implies stronger VWS in the upper 409 

troposphere in RW cases. Previous studies have also shown that the upper-level VWS can ventilate 410 

the warm core of a TC more efficiently (Gray 1968; Fu et al. 2019). The upper-level VWS can also 411 

act to shrink the vertical extent of the axisymmetric vortex, reducing the warm core and leading to 412 

TC weakening (Knaff et al. 2004). In addition, the slightly stronger lower- to middle-level VWS 413 

tends to enhance both the ventilation of the mid-level vortex with dry environmental air and the 414 

flushing of low-entropy air into the frictional inflow layer (Tang and Emanuel 2010; Riemer et al. 415 

2010, 2013). 416 

To estimate the extent to which VWS affects TC WR, we show in Fig. 6a the scatter diagram 417 

of TC WR against the deep-layer VWS, which is evaluated as √(𝑈200 − 𝑈850)2 + (𝑉200 − 𝑉850)2, 418 

where the subscripts “200” and “850” indicate environmental U or V at 200 and 850 hPa, 419 

respectively. In general, all the 50th, 75th and 95th percentiles of WR increase with increasing 420 

VWS. TC WR is positively correlated with VWS (r = 0.26) (Table 3), which is consistent with 421 

previous findings (Zeng et al. 2007; Wang et al. 2015). The frequency distribution of RW cases 422 

peaks at VWS about 10–12 m s-1 while that of SW cases peaks at VWS about 6–8 m s-1. The RW 423 

cases with VWS stronger than 10 m s-1 account for 65.0% of all RW cases, whereas the percentage 424 

is only 36.5% for SW cases with VWS stronger than 10 m s-1 (Fig. 6b). 425 

Mid-level humidity is another factor that is often considered to affect TC intensity and intensity 426 

change. Most previous studies have mainly explored the influence of the azimuthal-mean RH 427 

(Kaplan and DeMaria 2003; Hendricks et al. 2010; Ma et al. 2019), while some studies show that 428 
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the azimuthally asymmetric RH is more important to TC intensity change (Shu and Wu 2009; Wu 429 

et al. 2012) than only the azimuthal-mean RH. Considering the close relationship between dry air 430 

intrusion and VWS (Tang and Emanuel 2010, 2012), we examined the correlations between TC 431 

WR and RHs averaged vertically over 300–850 hPa and horizontally over an annulus with 200- 432 

and 800-km radii from the TC center in four quadrants with respect to the direction of VWS 433 

(namely, the downshear-left, downshear-right, upshear-left, and upshear-right quadrants; Table 1), 434 

respectively. Results show that the RH in the upshear-left quadrant (RHUL) has the highest 435 

negative correlation (r = –0.26) with TC WR among the four quadrants, while RHs in the other 436 

quadrants are not significantly correlated with TC WR (Table 3). We also calculated RH averaged 437 

over different layers (such as between 400 – 700 hPa and between 850 – 700 hPa) and found that 438 

the 300 – 850-hPa RH has the highest correlation with TC WR. That is to say, low RHUL has a 439 

significant negative effect on TC intensity and is likely favorable for TC weakening. This is 440 

probably because under the influence of VWS, mid-level environmental air is more likely to be 441 

transported into the TC eyewall from the upshear-left quadrant (Cram et al. 2007), lowering entropy 442 

in the eyewall and suppressing eyewall convection, thus leading to TC weakening. As we can see 443 

from Fig. 6c, which shows TC WR and various percentiles against RHUL, WR exhibits an overall 444 

decreasing trend with the increasing RHUL, which is more pronounced when RHUL is less than 445 

40%. The frequency distributions of SW and RW cases against RHUL (Fig. 6d) indicate that RW 446 

cases occur more frequently with RHUL lower than 35% while SW cases occur more frequently 447 

with RHUL greater than 45%. 448 

Large-scale divergence in the upper troposphere can also influence TC intensity change 449 
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(Hendricks et al. 2010). Therefore, we checked the relationship between TC WR and DIV200 with 450 

the results shown in Fig. 6e. It seems that TC WR is positively correlated with DIV200, but the 451 

correlation is statistically insignificant with 𝑟 = 0.07 only (Table 3). The frequency of RW cases 452 

peaks at DIV200 around 2.5×10-6 s-1, and is generally greater than that in SW cases (Fig. 6f). This 453 

is consistent with the finding of Hendricks et al. (2010), who found that the composite upper-level 454 

divergence was the greatest in the composite of weakening TCs among all the TC intensity change 455 

groups (neutral, intensifying, rapid intensifying and weakening). However, this result contradicts 456 

previous studies by Kaplan et al. (2010) and Lee et al. (2015), who found that stronger upper-level 457 

divergence provides better chance for a TC to intensify. Hendricks et al. (2010) proposed that this 458 

is mainly because weakening TCs are often interacting with upper-level troughs and are on average 459 

more intense and have larger extent of the upper-level outflow than neutral and intensifying TCs. 460 

Therefore, DIV200 is still considered as a possible factor affecting TC WR in our analysis.  461 

The above analyses demonstrate that 1) the TC WR is positively correlated with Vmax and 462 

POT, the latter can represent the potential of TC weakening; 2) TC WR is highly correlated with 463 

the storm SPD and SST gradient; and 3) the atmospheric factors, such as deep-layer VWS, RHUL, 464 

and DIV200, can also affect TC WR. Note that these factors are not necessarily independent since 465 

some factors may correlate with each other significantly. Such dependence needs to be considered 466 

if any linear regression model is to be developed. In the next section, however, we apply the 467 

XGBoost method described in section 2, to quantify the relative importance of individual factors 468 

to TC WR and to examine the sensitivity of TC WR to these factors, by making full use of its 469 

capability to capture nonlinear relationships but little affected by the dependence among different 470 
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factors.  471 

5. Relative contributions of individual factors to TC WR 472 

a. Model fitting and validation  473 

The XGBoost model described in section 2 is used to quantify the relative importance of 474 

factors to TC WR, including TC persistent factors (POT, USPD and VSPD), DSST and 475 

environmental atmospheric factors (VWS, RHUL and DIV200) identified in section 4 (Table 3). 476 

These factors are used as input features to the XGBoost model for all weakening TC cases. With 477 

some typical parameter settings (learning rate 𝜂 = 0.3, minimum loss reduction 𝛾 = 0 and the 478 

maximum depth of a tree = 7; refer to https://xgboost.readthedocs.io/en/latest/parameter.html for a 479 

detailed description), the root mean square error (RMSE) of the fitted TC WR stabilizes at 9.6×480 

10−4 m s−1 day−1 after about 600 iterations (therefore, the number of trees 𝐾 = 600). This means 481 

that the XGBoost model with the identified input factors can well reproduce TC WR in the dataset. 482 

Note that the fitting error does not indicate the prediction error. To indicate the model’s 483 

generalization (prediction) ability, a 100-fold cross validation (CV) of the same model was further 484 

carried out. The dataset was randomly divided into 100 subsamples with equal size (about 30 cases), 485 

each of which was used as testing data with all the others pooled together as training data in turn 486 

for once. The 100-fold mean RMSE of the prediction of testing data is 4.5 m s−1 day−1, which can 487 

be viewed as a measure of the model prediction performance. As a comparison, the fitting and CV 488 

RMSEs for a counterpart multiple linear model fitted to the same dataset are both around 5.0 m s−1 489 

day−1. For predictive models, there is a ubiquitous trade-off between model bias and prediction 490 
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variance (uncertainty), and linear models have the property of high bias and low variance in general 491 

(Hastie et al 2009, Chapter 2).  492 

The above comparison suggests that the very small RMSE of the fitted XGBoost model is due 493 

to its capability of modeling nonlinearity, rather than overfitting (otherwise the CV RMSE would 494 

have been much higher than that of the linear model). If used for prediction purpose, the CV RMSE 495 

could be reduced by tuning the model parameters, with a cost of increasing the fitting RMSE. In 496 

this work, however, the fitted model well captured the relationships between TC WR and the factors 497 

of interest so that it serves as a powerful tool for the analysis of relative importance of factors. 498 

b. Feature importance and sensitivity analysis 499 

Figure 7 shows the relative importance of the identified factors to TC WR, namely to what 500 

extent TC WR is contributed by each of the input factors, by using the method described in section 501 

2. We can see that POT is the most important factor in controlling TC WR, which contributes 26.0% 502 

to TC WR. The rest are DSST (18.3%), VWS (14.9%), RHUL (12.1%), USPD (11.8%), DIV200 503 

(8.8%), and VSPD (8.1%), respectively. This is broadly consistent with the descending order of the 504 

correlation coefficients shown in Table 3, except for USPD and VSPD, which could be due to their 505 

closely correlations with DSST and VWS. 506 

In addition to the overall relative importance of individual factors, we also examined the 507 

sensitivity and variability of TC WR in response to the variation in each factor by conducting 508 

several sets of sensitivity experiments based on the ICE method (section 2). Firstly, we choose a 509 

target feature xs (e.g., POT) to analyze, while keeping all other features xc for each case unchanged 510 
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as the background. By varying xs within its value range for each individual case, a set of the model-511 

predicted responses can be obtained as a function of xs, conditional on the observed xc. Secondly, 512 

we plot all ICE curves for cases from each set of sensitivity experiments (thin curves in Figs. 8 and 513 

9). Each curve reflects the predicted response to xs conditional on the observed xc for each case. As 514 

we noted in section 2, these curves are zigzagged with a few remarkable jumps due to outlier data. 515 

Therefore, we finally fit four percentiles (25th, 50th, 75th, and 95th percentiles, thick curves) to all 516 

the curves, which are much more robust, to evaluate the variability of predicted response to each 517 

factor (a set of experiments). 518 

Figure 8a shows the relationship between TC WR and POT for each weakening case in thin 519 

black curves and the corresponding 25th, 50th, 75th, and 95th percentiles of the WRs predicted by 520 

the model. The variability of the curves reveals the extent of WR’s heterogeneity with POT 521 

changing within its valid observational range, which can be considered as the WRs of a weakening 522 

TC in a unique environment with different POTs. The predicted WR increases with increasing POT 523 

and shows an approximately linear dependence on POT. Note that the model also yields a few RW 524 

cases at POT below 0.5, consistent with observations shown in Fig. 3. In particular, the variation 525 

in the median of the predicted WR is about 9 m s-1 day-1 (from 4 to 13 m s-1 day-1) as POT varies 526 

from 0.25 to 1.2, while that in the 95th percentile is 13 m s-1 (from 8 to 21 m s-1 day-1). This means 527 

that POT alone can induce a variability in WR by 9 m s-1 day-1 under the averaged environmental 528 

conditions, while under the extremely unfavorable conditions, such as strong VWS and/or sharp 529 

DSST, POT can cause a variability in WR by as much as 13 m s-1 day-1. The variability of WR, 530 

which is measured as the interquartile range between the 25th and 75th percentiles, increases with 531 
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increasing POT under the same environmental conditions. For example, the interquartile range 532 

increases from 3 m s-1 day-1 at POT less than 0.4 to 6 m s-1 day-1 at POT around 1.0 (Fig. 8a).  533 

The TC WR shows a general decrease with increasing DSST along the TC track (Fig. 8b). The 534 

predicted WR decreases with increasing DSST for DSST larger than −2℃ but changes less for 535 

DSST smaller than −2℃ (Fig. 4d). The median of WR decreases by about 5 m s−1 day−1 (from 11 536 

to 6 m s−1 day−1) and the extreme WR (the 95th percentile) decreases by 5 m s−1 day−1 (from 20 to 537 

15 m s−1 day−1) as DSST increases from −2℃ to 1℃, meanwhile the interquartile range of WR 538 

decreases from about 7 to 5 m s−1 day−1. 539 

Consistent with previous studies, VWS is a major factor leading to TC weakening. It can 540 

induce a variation in the median of WR by about 5 m s-1 day-1 (from 7 to 12 m s−1 day−1) for VWS 541 

in the observational range of 0−16 m s-1 (Fig. 8c), which is considerably smaller than that induced 542 

by POT, but is comparable with that induced by DSST. All predicted percentiles of WR increase 543 

with increasing VWS when VWS is stronger than 10 m s-1. This agrees with previously reported 544 

threshold of about 10 m s-1 above which VWS can have a significant detrimental effect on TC 545 

intensity and intensification (Zeng et al. 2007, 2008; Rios-Berrios and Torn 2017). Note that the 546 

fitted 95th percentile of WRs is more than 16 m s-1 day-1 for any VWS, implying that RW can even 547 

occur under weak VWS due to greater effects of other factors, such as large POT and negative 548 

DSST, as shown in Figs. 8a and 8b. This is consistent with the estimated relative importance of the 549 

contributing factors shown in Fig. 7. 550 

Compared with the sensitivity to POT, DSST, and VWS, TC WR seems insensitive to the 551 

other environmental factors. Changes in TC WR against RHUL and DIV200 are shown in Figs. 8d 552 
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and 9b, respectively. The median of the predicted WR changes by about 2 m s-1 day-1 with either 553 

RHUL or DIV200. In addition, TC WR is also less sensitive to both USPD and VSPD and changes 554 

by only about 3 and 2 m s-1 day-1 within their respective ranges of USPD and VSPD, respectively 555 

(Figs. 9a and 9c). The above results demonstrate that POT, DSST and VWS are important factors 556 

that dominantly determine TC WR, and as a result, TC WR is sensitive to these factors. Other 557 

factors are of secondary importance to WR. Although the linear correlations between TC WR and 558 

other factors may also comparable with those between TC WR and the dominating factors, such as 559 

VWS, their effects are often not independent of the dominating factors. This partly explains why 560 

these factors are shown to be of secondary importance to TC WR. The application of XGBoost in 561 

this study shows that this model has advantages to avoid the feature inter-dependence issue and 562 

provides more accurate estimate of relative importance compared with the widely-used linear 563 

regression model, as well as to provide an approach to sensitivity analysis. 564 

6. Conclusions and discussion 565 

The over-water TC weakening is controlled by the underlying ocean, large-scale atmospheric 566 

environmental conditions, and internal dynamical processes. In this study, both the persistence and 567 

environmental factors that affect the WR of over-water TCs in the WNP are statistically analyzed 568 

and evaluated based on the IBTrACS TC best-track data and 6-hourly ERA-Interim reanalysis data 569 

during 1980–2017. A machine learning approach, XGBoost, is used to quantify the relative 570 

importance of these factors to TC WR. In the WNP, an over-water TC weakening event can last up 571 

to 216 hours (9 days) with an average weakening duration of 66.7 hours. On average, RW TCs tend 572 
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to have a weakening duration of about 82.0 hours, which is much longer than that of 61.5 hours for 573 

SW TCs. The average RW TC undergoes the RW period for 36 hours, which is comparable with 574 

the averaged 36 hours and 30 hours in the eastern North Pacific and North Atlantic. The proportion 575 

of RW TCs to all TCs shows a distinct seasonal variation, with the maximum in November and the 576 

minimum in August. This suggests that RW occurs more frequently in fall than in summer in the 577 

WNP, which could be due to the lower MPI resulting from the lower SST in fall than in summer. 578 

Statistical analysis shows that five factors are found to be positively correlated with TC WR, 579 

i.e., Vmax, POT, VWS, USPD, and VSPD. Three other factors, including SST, DSST and RHUL, 580 

are found to be negatively correlated with TC WR. Second to POT, DSST, SPD, VWS and RHUL 581 

are also highly correlated with TC WR, while DIV200 is statistically insignificant. Consistent with 582 

the correlation analysis, a comparison between RW and SW cases indicates that RW cases often 583 

occur with higher Vmax or POT, in regions with lower SST and sharper SST gradient, and move 584 

farther eastward and/or northward than SW cases. RW cases often occur in stronger VWS and/or 585 

under greater upper-tropospheric divergence, and lower RHUL. A comparison of the environmental 586 

U and V profiles between SW and RW cases indicates that westerly wind in the upper troposphere 587 

and easterly wind below 800 hPa are stronger, corresponding to stronger westerly VWS, in RW 588 

cases.  589 

Note that as for the effect of mid-level RH on TC weakening in the WNP, our results are not 590 

in full agreement with Ma et al. (2019). They found that the role of environmental mid-level 591 

humidity is statistically insignificant probably because of the lack of prevailing mid-level dry‐air 592 

layer over the WNP. Our results show that the RH in the upshear-left quadrant has a significant 593 
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negative correlation with TC WR, while RHs in the other quadrants are not significantly correlated 594 

with TC WR, suggesting that the mid-level dry air is more likely to be transported into the TC 595 

eyewall from the upshear-left quadrant of VWS, and thus leading to TC weakening. 596 

The XGBoost model, a well-applied basic machine learning algorithm, is adopted to quantify 597 

the relative importance of the above factors, and the ICE method is used to conduct sensitivity 598 

experiments to examine the variability of TC WR in response to the variation of each factor. Results 599 

from these analyses confirm that POT is the most important factor among all the identified factors 600 

and contributes 26.0% to TC WR. DSST, VWS, RHUL, USPD, DIV200 and VSPD contribute 601 

18.3%, 14.9%, 12.1%, 11.8%, 8.9%, and 8.1%, respectively, to WR. These results are in good 602 

agreement with their ranks of linear correlations with TC WR, except that USPD and VSPD seem 603 

not as important to TC WR as shown in the correlation analysis. This is most likely because of their 604 

dependence on either DSST or VWS or both. The sensitivity experiments using the ICE method 605 

show that POT can produce variations of about 9 m s-1 day-1 in TC WR under average 606 

environmental conditions, with variations of up to 13 m s-1 day-1 under extremely unfavorable 607 

environmental conditions, such as strong VWS and sharp DSST. The dominant effect of POT on 608 

TC WR may be largely due to the fact that most TCs reach their LMIs when they are close to 609 

latitudes where mid-latitude westerly troughs, strong VWS, and sharp SST gradient often coexist. 610 

Compared with POT, both DSST and VWS are of the second importance to TC WR, contributing 611 

about 5 m s-1 day-1 to the variability of TC WR, and the other factors contribute only 2–3 m s-1 day-612 

1 on average. 613 

Results from this study demonstrate that TC WR is largely controlled by both the persistence 614 
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and preexisting oceanic and environmental atmospheric factors, among which POT, DSST, and 615 

VWS are the most important. Although other factors, such as RHUL and SPD, show significant 616 

linear correlations with TC WR, they are often not independent of either VWS or DSST or both. 617 

As a result, the variability of TC WR in response to changes in these factors is relatively small, 618 

suggesting that although the prediction of TC WR may be improved to some extent, little 619 

improvements can be achieved by improving the accuracy of those factors. In contrast, improved 620 

analysis and prediction of POT, DSST and VWS may lead to substantial improvements in the 621 

prediction of TC WR. Finally, it is unclear how effective the analysis approach adopted in this 622 

study would be if it is used to quantify TC intensification rate. Moreover, the use of XGBoost in 623 

forecasting the TC intensity over the WNP has recently been attempted (Jin et al. 2019), suggesting 624 

that it may also has potential use in the TC intensity forecasts. These will be other topics we plan 625 

to explore in our future work.  626 
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TABLE 1. The factors analyzed in this study with their units and descriptions. 825 

Variables Unit Description 

Vmax m s-1 
Initial TC intensity, calculated by subtracting 40% of SPD from the 

maximum wind speed in the best-track data 

SST ℃ 
Initial sea surface temperature averaged within a radius of 300 km 

from the TC center 

POT  
Relative intensity, calculated as initial intensity divided by the 

corresponding MPI 

DSST ℃ SST change within 24 hours along TC track 

SPD m s-1 Translational speed of the TC center 

USPD m s-1 Zonal translational speed of the TC center 

VSPD m s-1 Meridional translational speed of the TC center 

VWS m s-1 Area-averaged (200–800 km) 200–850-hPa vertical wind shear 

DIV200 s-1 Divergence averaged within a radius of 1000km from the TC center 

at 200 hPa 

RHUL % 
Area (between 200 and 800 km radii)- and vertically (300-850 hPa)-

averaged relative humidity in the upshear-left quadrant 

RHUR % Similar to RHUL but in the upshear-right quadrant 

RHDL % Similar to RHUL but in the downshear-left quadrant 

RHDR % Similar to RHUL but in the downshear-right quadrant 

  826 
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TABLE 2. Statistics of RW and SW TCs for all and each interval of weakening duration (h) during 827 

1980–2017: number of TCs (Num.), averages of weakening duration (Avg. weakening duration; h), 828 

RW duration (Avg. RW duration; h), proportion of RW duration to weakening duration (Avg. 829 

proportion; %) and lifetime maximum intensity (Avg. LMI; m s-1). 830 

weakening 

duration 

RW TCs SW TCs 

Num. 

Avg. 

weakening 

duration 

Avg. RW 

duration 

Avg. 

proportion 

Avg. 

LMI 
Num. 

Avg.  

weakening 

duration 

Avg. 

LMI 

[24-48) 33 34 28 0.83 54.1 138 30 35.8 

[48,72) 39 57 37 0.66 56.8 80 56 36.8 

[72,96) 29 81 42 0.52 66.0 47 81 38.6 

[96-120) 20 106 40 0.38 65.8 25 102 53.7 

[120-144) 18 130 39 0.30 63.1 13 130 50.9 

[144-168) 6 155 40 0.26 69.9 8 150 67.3 

[168-192) 5 176 41 0.23 65.8 9 180 56.1 

[192-216) 3 196 40 0.20 68.9 2 210 58.1 

All 153 82 37 0.55 60.9 322 62 39.9 

  831 
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TABLE 3. List of correlation coefficients between TC WR and various parameters. The p values 832 

denote the statistical confidence of the corresponding correlation coefficient. Considering the 833 

case-size dependency [p value (C)] with 6 hourly data, p values based on the degree of freedom 834 

with TC number are shown as p value (T). Correlation coefficients that are statistically significant 835 

above 99% confidence level for p value (T) are bolded. 836 

Parameters Correlation coef. p value (C) p value (T) 

Vmax 0.37 0 0 

SST -0.16 5.2×10-14 4.5×10-4 

POT 0.40 0 0 

DSST -0.26 0 8.3×10-9 

SPD 0.22 0 1.2×10-6 

USPD 0.29 0 1.1×10-10 

VSPD 0.26 0 8.3×10-9 

VWS 0.29 0 1.1×10-10 

DIV200 0.07 9.4×10-5 0.13 

RHUL -0.26 0 8.3×10-9 

RHUR -0.08 8.0×10-6 0.08 

RHDL -0.02 0.26 0.66 

RHDR -0.07 9.4×10-5 0.13 

  837 
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LIST OF FIGURES 838 

Fig. 1. (a) Spatial distributions of TC WR (shaded, m s-1 day-1) and weakening case frequency 839 

(contour) in each 2.5°×2.5° grid box in typhoon seasons (from June to November) during 840 

1980－2017. (b) Tracks of RW TCs in their lifetimes, note that the non-weakening stages are 841 

shown as white curves and the RW (SW) stages of RW TCs are marked as black (grey) curves, 842 

with the underlying shade denotes climatologically mean SST in typhoon seasons. (c) Same 843 

as (b) but for SW TCs. 844 

Fig. 2. Monthly variations of (a) all weakening TCs (grey) and RW TCs (black), and the ratio of 845 

RW TCs to total weakening TCs (curve), and (b) all weakening cases (grey) and RW cases 846 

(black), and the ratio of RW cases to total weakening cases (curve) from June to November 847 

during 1980 － 2017. The corresponding numbers are also given at the tops of their 848 

corresponding bars. 849 

Fig. 3. Scatter diagrams of TC WR against (a) Vmax, (b) SST, (c) POT (relative intensity; 850 

Vmax/MPI), (d) DSST, (e) USPD, and (f) VSPD. The fitted 95th, 75th and 50th percentiles 851 

of WRs are shown as black, green and red curves, respectively, and the curves are obtained 852 

using smoothed cubic spline approximation. 853 

Fig. 4. The frequency distributions (right ordinate) of SW (grey bar) and RW (black bar) cases and 854 

corresponding cumulative probability density (left ordinate, blue and red curves) against (a) 855 

Vmax, (b) SST, (c) POT, (d) DSST, and (e) translational speed (SPD). (f) The frequency 856 

distribution of SW (blue) and RW (red) cases against translational speed zonal (USPD; solid) 857 

and meridional (VSPD; dashed) components, respectively. 858 

Fig. 5. The vertical distributions of environmental U winds (m s-1) as a function of POT for (a) SW, 859 

and (b) RW cases and those of environmtal V winds (m s-1) for SW and RW cases are shown 860 

in (d) and (e). The differences in environmental U and V winds between SW and RW groups 861 

are shown in (c) and (f), respectively. 862 

Fig. 6. Left panels: same as Fig. 3 but for (a) deep-layer VWS (200-850hPa), (c) relative humidity 863 

in the upshear-left quadrant (RHUL), and (e) divergence at 200 hPa (DIV200); and right 864 
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panels: same as Fig. 4 but for (b) VWS (200-850hPa), (d) RHUL, and (f) DIV200. 865 

Fig. 7. Relative importance of environmental factors used in the XGBoost model. Factors are listed 866 

to the left in descending order of their relative importance. Description of these factors can be 867 

found in Table 1.. 868 

Fig. 8. The ICE plot of factors (a) POT, (b) DSST, (c) VWS and (d) RHUL, respectively. Thin 869 

curves are XGBoost model-predicted WR as functions of one factor with all the other factors 870 

fixed as observed from each individual sample. Thick curves are the 5th (black), 25th (red), 871 

50th (green), and 75th (blue) percentiles of the predicted WRs, respectively. 872 

Fig. 9. Same as Fig. 8 but for factors (a) USPD, (b) DIV200, and (c) VSPD, respectively. 873 

  874 
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 875 

FIG. 1. (a) Spatial distributions of TC WR (shaded, m s-1 day-1) and weakening case frequency 876 

(contour) in each 2.5°×2.5° grid box in typhoon seasons (from June to November) during 877 

1980－2017. (b) Tracks of RW TCs in their lifetimes, note that the weakening stages are 878 

shown as white curves and the RW (SW) stages of RW TCs are marked as black (grey) curves, 879 

with the underlying shade denotes climatologically mean SST in typhoon seasons. (c) Same 880 

as (b) but for SW TCs.  881 
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 882 

FIG. 2. Monthly variations of (a) all weakening TCs (grey) and RW TCs (black), and the ratio of 883 

RW TCs to total weakening TCs (curve), and (b) all weakening cases (grey) and RW cases 884 

(black), and the ratio of RW cases to total weakening cases (curve) from June to November 885 

during 1980–2017. The corresponding numbers are also given at the tops of their 886 

corresponding bars.  887 
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 888 

FIG. 3. Scatter diagrams of TC WR against (a) Vmax, (b) SST, (c) POT (relative intensity; 889 

Vmax/MPI), (d) DSST, (e) USPD, and (f) VSPD. The fitted 95th, 75th and 50th percentiles 890 

of WR are shown as black, green and red curves, respectively, and the curves are obtained 891 

using smoothed cubic spline approximation.  892 
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 893 

 894 

FIG. 4. The frequency distributions (right ordinate) of SW (grey bar) and RW (black bar) cases and 895 

corresponding cumulative probability density (left ordinate, blue and red curves) against (a) 896 

Vmax, (b) SST, (c) POT, (d) DSST, and (e) translational speed (SPD). (f) The frequency 897 

distribution of SW (blue) and RW (red) cases against translational speed zonal (USPD; solid) 898 

and meridional (VSPD; dashed) components, respectively.  899 
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 900 

FIG. 5. The vertical distributions of environmental U winds (m s-1) as a function of POTfor (a) SW, 901 

and (b) RW events and those of environmtal V winds (m s-1) for SW and RW events are shown 902 

in (d) and (e). The differences in environmental U and V winds between SW and RW groups 903 

are shown in (c) and (f), respectively.  904 



  

   48 

   

 905 

 906 

FIG. 6. Left panels: same as Fig. 3 but for (a) deep-layer VWS (200-850hPa), (c) relative humidity 907 

in the upshear-left quadrant (RHUL), and (e) divergence at 200 hPa (DIV200); and right 908 

panels: same as Fig. 4 but for (b) VWS (200-850hPa), (d) RHUL, and (f) DIV200. 909 
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 910 

FIG. 7. Relative importance of environmental factors used in the XGBoost model. Factors are listed 911 

to the left in descending order of their relative importance. Description of these factors can be 912 

found in Table 1. 913 
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 914 

FIG. 8. The ICE plot of factors (a) POT, (b) DSST, (c) VWS and (d) RHUL, respectively. Thin 915 

curves are XGBoost model-predicted WR as functions of one factor with all the other factors 916 

fixed as observed from each individual sample. Thick curves are the 25th (blue), 50th (green), 917 

75th (red), and 95th (black) percentiles of the predicted WR, respectively. 918 



  

   51 

   

 919 

FIG. 9. Same as Fig. 8 but for factors (a) USPD, (b) DIV200, and (c) VSPD, respectively. 920 


