

Dependence of superintensity of tropical cyclones on SST in axisymmetric numerical simulations

Yuanlong Li^{1,2}, Yuqing Wang^{2,3*}, Yanluan Lin¹, Rong Fei^{3,2}

⁴ ⁵ ⁶¹Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System
Science, and Joint Center for Global Change Studies (JCGCS), Tsinghua University, Beijing,
China.

⁷⁸ ²International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, Hawaii, USA.

9 ³State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China
10 Meteorological Administration, Beijing, China.

11 May 2, 2020 (submitted)

July 10, 2020 (first revision)

September 20, 2020 (second revision)

14 Dateline

14 Dateline

15 Submitted to *Monthly Weather Review*

16 *Corresponding author address:

17 Prof. Yuqing Wang
18 International Pacific Research Center
19 University of Hawaii at Manoa
20 404A/POST, 1680 East West Road,
21 Honolulu, HI 96822, USA.
22 Email: yuqing@hawaii.edu

Abstract

24 This study revisits the superintensity of tropical cyclones (TCs), which is defined as the excess
25 maximum surface wind speed normalized by the corresponding theoretical maximum potential
26 intensity (MPI), based on ensemble axisymmetric numerical simulations, with the focus on the
27 dependence of superintensity on the prescribed sea surface temperature (SST) and the initial
28 environmental atmospheric sounding. Results show a robust decrease of superintensity with
29 increasing SST no matter in experiments with an SST-independent initial atmospheric sounding or
30 in those with the SST-dependent initial atmospheric soundings as in nature sorted for the western
31 North Pacific and the North Atlantic. It is found that the increase in either convective activity (and
32 thus diabatic heating) in the TC outer region or theoretical MPI or both with increasing SST could
33 reduce the superintensity. For a given SST-independent initial atmospheric sounding, the strength
34 of convective activity in the TC outer region increases rapidly with increasing SST due to the
35 rapidly increasing air-sea thermodynamic disequilibrium (and thus potential convective instability)
36 with increasing SST. As a result, the decrease of superintensity with increasing SST in the SST-
37 independent sounding experiments is dominated by the increasing convective activity in the TC
38 outer region and is much larger than that in the SST-dependent sounding experiments, and the TC
39 intensity becomes sub-MPI at relatively high SSTs in the former. Due to the marginal increasing
40 tendency of convective activity in the TC outer region, the decrease of superintensity in the latter
41 is dominated by the increase in theoretical MPI with increasing SST.

42 **1. Introduction**

43 To accurately estimate the upper bound of the intensity of a tropical cyclone (TC) is important
44 for TC risk assessment and management in both weather and climate time scales. Such an upper
45 bound of the intensity that a TC can reach under favorable environmental thermodynamic
46 conditions is termed the maximum potential intensity (MPI). Over the past decades, different
47 approaches have been used to estimate the TC MPI, such as the sea surface temperature (SST)
48 based statistical analysis (e.g., DeMaria and Kaplan 1994; Whitney and Hobgood 1997) and the
49 direct analytical derivations (e.g., Emanuel 1986, 1995, 1997; Holland 1997; Bister and Emanuel
50 1998; Rousseau-Rizzi and Emanuel 2019). Because its physically based nature and low
51 computational cost and good performance (e.g., Emanuel 2000), the theoretical MPI proposed by
52 Emanuel (1986, 1997) has been widely used to study both weather and climate aspects of TCs.

53 The Emanuel's MPI theory conceptualizes a mature TC as a Carnot heat engine (Emanuel
54 1986, 1997). There are two versions of the Emanuel's theoretical MPI. The earlier version assumes
55 gradient wind and thermal wind balances and gives the steady-state maximum gradient wind speed
56 at the top of the boundary layer (e.g., Emanuel 1986, 1995). The latest version is based on the
57 energy cycle of a Carnot heat engine and provides the steady-state maximum surface total wind
58 speed (Emanuel 1997; Bister and Emanuel 1998; Rousseau-Rizzi and Emanuel 2019). Compared
59 with the earlier gradient-wind-based MPI, the latest surface-wind-based MPI is obtained with less
60 assumptions/approximations and is also more practical because the TC intensity is commonly
61 defined as the maximum near-surface total wind speed (Rousseau-Rizzi and Emanuel 2019). There
62 are two different, but related, derivations of the surface-wind-based MPI (Emanuel 1997;
63 Rousseau-Rizzi and Emanuel 2019). Although the derivation in Rousseau-Rizzi and Emanuel
64 (2019) is under debate (Montgomery and Smith 2020; Rousseau-Rizzi and Emanuel 2020), the two

65 derivations (Emanuel 1997; Rousseau-Rizzi and Emanuel 2019) yield the same mathematical
66 formula for the MPI. In both derivations, the theoretical MPI can be yielded from a balance between
67 the surface available power production and power dissipation near the radius of maximum wind
68 (RMW) and can be expressed in terms of the maximum surface total wind speed ($|\mathbf{V}_{MPI}|$) as given
69 below.

$$70 \quad |\mathbf{V}_{MPI}| = \sqrt{\frac{C_k}{C_D} \epsilon T_s (s_0^* - s_b)}|_{RMW}, \quad (1)$$

71 where C_k and C_D are the sea surface exchange coefficients of enthalpy and momentum,
72 respectively, T_s is the SST, s_0^* is the saturation entropy at the SST, s_b is the near-surface
73 entropy, and ϵ is the thermodynamic efficiency, defined as $(T_s - T_o)/T_s$ (T_o is the mean air
74 temperature of the TC's outflow). All variables in Eq. (1) are regarded as those in the steady state
75 of a TC. Note that the denominator T_s of ϵ would be replaced by T_0 if the dissipative heating is
76 considered (Bister and Emanuel 1998). In this study, the surface-wind-based MPI will be used as
77 the theoretical MPI.

78 Although the Emanuel's MPI theory has been shown to be able to reasonably estimate TC
79 maximum intensity (e.g., Emanuel 2000; Bister and Emanuel 2002), some observational and
80 numerical studies found that the intensity of TCs may exceed the corresponding MPI (e.g., Tonkin
81 2000; Hausman 2001; Persing and Montgomery 2003; Montgomery et al. 2006; Bryan and
82 Rotunno 2009a,b; Wang and Xu 2010). Such a phenomenon was called superintensity by Persing
83 and Montgomery (2003), who hypothesized that the low-level high entropy air entrained from the
84 eye into the eyewall, which is omitted in the Emanuel's MPI theory, can be an extra energy source
85 to fuel the TC heat engine. However, using an axisymmetric TC model, Bryan and Rotunno (2009a)
86 demonstrated that the contribution of the high entropy air in the low-level eye to the maximum
87 intensity of the simulated TC was less than 4% and thus should not be significant. In a follow-up

88 study, Wang and Xu (2010) proposed that the superintensity (mainly for the surface-wind-based
89 MPI) was dominantly contributed by the inward transport of power production outside the RMW.
90 They found that in the steady-state stage of the simulated TC, the available power production could
91 not balance the power dissipation due to surface friction under the eyewall (near the RMW). They
92 showed that in addition to the primary power production under the eyewall, the power production
93 outside the eyewall up to about 2–2.5 times of the RMW was needed to balance the power
94 dissipation under the eyewall. Some studies have attributed superintensity (mainly for the gradient-
95 wind-based MPI) to the unbalanced flow or the supergradient wind in TC boundary layer (Bryan
96 and Rotunno 2009b; Frisius et al. 2013).

97 In a recent study, Rousseau-Rizzi and Emanuel (2019) evaluated the TC superintensity, with
98 the focus on the surface-wind-based MPI, in axisymmetric models. They defined the superintensity
99 as the normalized excess of maximum surface wind speed of the simulated TC relative to the
100 theoretical MPI. By varying the parameterized turbulent horizontal mixing length in axisymmetric
101 simulations, Rousseau-Rizzi and Emanuel (2019) found that the superintensity only exists in those
102 simulations with weak horizontal mixing (as the mixing length lower than ~500 m) and converges
103 to a state with a marginal superintensity of ~5% in the inviscid limit as assumed in the MPI theory.
104 They showed that the simulated TC intensity is weaker than the theoretical MPI (sub-MPI) in
105 simulations with strong mixing and becomes weakly superintense with weak mixing. This is in
106 sharp contrast to ~50% superintensity reported in Persing and Montgomery (2003) and Wang and
107 Xu (2010). Some other studies have shown that the maximum intensity (and superintensity) of
108 numerically simulated TCs can be very sensitive to parameterizations of other subgrid-scale
109 processes as well (Bryan and Rotunno 2009b; Bryan 2012; Rousseau-Rizzi and Emanuel 2019).

110 We notice that most of previous studies on the superintensity have been based on simulations
111 with a given SST and a certain initial environmental atmospheric sounding. For example, using the

112 same moist tropical atmospheric sounding of Dunion (2011), the SST was fixed to be 29°C in
113 Bryan (2012), 28°C in Peng et al. (2018), and 27°C in Tao et al. (2019). With the modified Jordan
114 (1958)'s mean tropical atmospheric sounding of Rotunno and Emanuel (1987), which was neutral
115 to convection at the initial time, the SST was set at 26.13°C in Persing and Montgomery (2003)
116 and 27°C in Rousseau-Rizzi and Emanuel (2019). Note that for a given environmental atmospheric
117 sounding (even initially neutral), a higher SST implies a higher surface heat exchange and thus a
118 faster production rate of convective available potential energy (CAPE) or convective instability
119 after the model integration (Emanuel 1994), and thus a condition more favorable for the
120 development of convection in the TC environment (e.g., Sun et al. 2017). Although strong
121 convection in the inner core can maintain and enhance TC intensity, the convective activity in the
122 outer region could be detrimental to TC intensity (Bister 2001; Wang 2009; Xu and Wang 2010).
123 This suggests that the superintensity may vary with SST under a given environmental atmospheric
124 sounding. Therefore, different degrees of superintensity among previous studies could be partly
125 attributed to the use of different combinations of SST and environmental atmospheric sounding.
126 However, this possible dependence has not been studied in the literature. Furthermore, it is unclear
127 whether the TC superintensity may depend on SST in nature or vary with the initial atmospheric
128 sounding.

129 In this study, two sets of ensemble numerical experiments were performed to address the
130 above issues. In one set, experiments were conducted with different SSTs and the SST-independent
131 initial atmospheric sounding of Dunion (2011). In the other set, experiments were conducted with
132 different SSTs but using the SST-dependent atmospheric soundings obtained from observations
133 over the North Atlantic and the western North Pacific, respectively. In both sets, additional
134 sensitivity experiments with varying surface drag coefficient together with SST were also
135 performed to examine the effect of change in theoretical MPI with SST on the dependence of

136 superintensity on SST. We will show that a non-negligible superintensity appears when the power
137 dissipation is larger than the available power production locally under the eyewall, consistent with
138 the definition of superintensity in the current surface-wind-based MPI framework. However, the
139 superintensity only occurs at relatively low SSTs but becomes sub-MPI at relatively high SSTs in
140 the SST-independent initial sounding experiments. A new result is the decrease of superintensity
141 with increasing SST because of the increase in either convective activity in the TC outer region or
142 theoretical MPI or both as SST increases. The detailed model settings and experimental design are
143 described in Section 2. Main results are presented in Sections 3 and 4, respectively, for SST-
144 independent and SST-dependent initial atmospheric soundings. Conclusions and implications of
145 the results are summarized and discussed in the last section.

146 **2. Model and experimental design**

147 The model used was the state-of-the-art axisymmetric cloud model (CM1), version 19.8
148 (Bryan and Fritsch 2002). The model domain had dimensions $3100 \text{ km} \times 25 \text{ km}$ in radial and
149 vertical directions, respectively. The radial grid spacing within 100-km radius was 1 km and was
150 stretched to 12 km at the outer boundary. The model atmosphere had 59 levels in the vertical with
151 stretched grids below 5.5 km as in Li et al. (2019). An f -plane was assumed with the Coriolis
152 parameter of $5 \times 10^{-5} \text{ s}^{-1}$. The double-moment microphysics scheme of Thompson et al. (2008)
153 was used for cloud/precipitation processes, and no cumulus convective parameterization was used
154 in all simulations. Newtonian cooling, capped at 2 K d^{-1} , was added to the perturbation potential
155 temperature equation to mimic radiative cooling (Rotunno and Emanuel 1987), and dissipative
156 heating was not considered in this study. The subgrid-scale turbulent mixing was parameterized
157 using the Smagorinsky scheme (Bryan and Fritsch 2002), with the horizontal and asymptotic
158 vertical mixing lengths being fixed at 700 m (Zhang and Montgomery 2012) and 70 m (Zhang and

159 Drennan 2012), respectively. A constant exchange coefficient of 1.2×10^{-3} was used for surface
160 enthalpy flux calculation, while the wind-dependent surface drag coefficient of Donelan et al.
161 (2004) was used for surface stress calculation as

$$162 C_D = \begin{cases} C_{D0}, & |\mathbf{V}| \leq 5 \text{ m s}^{-1} \\ C_{D0} + (C_{D1} - C_{D0})(|\mathbf{V}| - 5)/20, & 5 \text{ m s}^{-1} < |\mathbf{V}| \leq 25 \text{ m s}^{-1}, \\ C_{D1}, & 25 \text{ m s}^{-1} < |\mathbf{V}| \end{cases} \quad (2)$$

163 where $|\mathbf{V}|$ is the surface total wind speed and C_{D0} and C_{D1} denote the lower and upper limits
164 of surface drag coefficient, set to 1.0×10^{-3} and 2.4×10^{-3} as the default, respectively.

165 To examine the possible dependence of superintensity on SST, two sets of experiments were
166 conducted in this study. In the first set of experiments, the moist tropical sounding of Dunion (2011)
167 was used as the unperturbed environmental atmospheric sounding, which corresponds to the
168 surface air temperature of $\sim 26.8^\circ\text{C}$ with an environmental CAPE of $\sim 2000 \text{ J Kg}^{-1}$. In this set, six
169 experiments with all default setting as described above were first performed with SSTs varying
170 from 27 to 32°C at 1°C interval, labeled as SST27–SST32. Note that with the SST-independent
171 initial atmospheric sounding, the air-sea thermodynamic disequilibrium and thus surface enthalpy
172 flux would increase rapidly with increasing SST. As a result, the production rates of CAPE and
173 convective instability in the TC environment would increase, facilitating more active convective
174 activity in the TC outer region. As we will discuss in Sections 3 and 4, in the SST-independent
175 atmospheric sounding experiments with relatively high SSTs, active convection developed in the
176 TC outer region because of the high air-sea thermodynamic disequilibrium, which is detrimental
177 to the simulated steady-state intensity but has a marginal effect on the theoretical MPI, and thus
178 the superintensity would be reduced. On the other hand, considering that the theoretical MPI,
179 namely the denominator of the defined superintensity, would also increase with increasing SST
180 (Eq. 1), the dependence of superintensity on SST may be affected by change in theoretical MPI.

181 Because $|V_{MPI}| \propto \sqrt{C_k/C_D}$ (Eq. 1) in the steady state, one method to reduce the dependence of
182 theoretical MPI on SST is to vary either C_k or C_D (namely C_{D1} as the surface wind speed
183 greater than 25 m s^{-1} ; Eq. 2) together with SST. However, changing C_k would also change the air-
184 sea thermodynamic disequilibrium. Therefore, to examine the effect of change in theoretical MPI
185 on the dependence of superintensity on SST, five additional sensitivity experiments as SST28–
186 SST32 but using different C_{D1} from SST27 or the default ($C_{D1,27}=2.4\times10^{-3}$) were performed, with
187 the C_{D1} in each SST sensitivity experiment (i) determined by

$$188 \quad C_{D1,i} = \left(\frac{|V_{MPI}|_i}{|V_{MPI}|_{27}} \right)^2 C_{D1,27}, \quad (3)$$

189 where $|V_{MPI}|_i$ and $|V_{MPI}|_{27}$ denote the theoretical MPI under the default C_{D1} (2.4×10^{-3}). In this
190 way, the new theoretical MPI in each sensitivity experiment would be similar to that in SST27.
191 The results (Section 3) further confirm that the increasing convective activity in the TC outer region
192 with increasing SST dominates the decrease of superintensity in the SST-independent atmospheric
193 sounding experiments.

194 In the second set of experiments, the realistic SST-dependent atmospheric sounding was used
195 for a given SST. The initial unperturbed environmental atmospheric sounding for each SST was
196 constructed based on the monthly mean European Centre for Medium-Range Weather Forecasts
197 (ECMWF) Interim reanalysis data (ERA-Interim, Dee et al 2011). Specifically, the vertical profiles
198 of air temperature and specific humidity and sea level pressure (SLP) in a given region were sorted
199 for each of SST bins of 1°C interval (e.g., the bin for SST of 27°C ranges between 26.5 and 27.5°C ,
200 and so on) during June–November based on the $1^\circ \times 1^\circ$ gridded ERA-Interim data during 2009–
201 2018. Two regions with active TC activities were chosen, one was the western North Pacific (WNP,
202 5°N – 20°N , 130°E – 160°E) and the other was the North Atlantic (NA, 5°N – 20°N , 20°W – 60°W). The
203 sorted soundings and SLPs were then averaged for each SST bin for the WNP and the NA,

204 respectively. For example, the averaged sounding and SLP over the WNP in the SST bin (27.5°C,
205 28.5°C] represents the sounding for SST of 28°C over the WNP. Finally, we obtained four SST-
206 dependent soundings (and SLPs) for the WNP (28–31°C) and NA (27–30°C), respectively. The
207 corresponding numerical experiments with the SST-dependent soundings were conducted with the
208 corresponding SSTs for the two basins, respectively, labeled as SST28_WNP–SST31_WNP and
209 SST27_NA–SST30_NA. Similarly, in addition to the standard experiments with all default settings
210 as described above, to examine the effect of change in theoretical MPI on the dependence of
211 superintensity on SST under the realistic atmospheric sounding, for both basins, three additional
212 sensitivity experiments, as SST29_WNP–SST31_WNP and SST28_NA–SST30_NA but with the
213 increase of theoretical MPI from SST28_WNP and SST27_NA suppressed by varying C_{D1}
214 together with SST (similar to the method in Eq. 3), were performed, respectively.

215 The initial TC vortex had a radial profile of tangential wind speed with the radial shape
216 parameter of 1.6 following Wood and White (2011). The tangential wind speed decreases linearly
217 with height from the maximum (V_{max}) of 15 m s^{-1} at the surface to zero at 18-km height, with the
218 radius of maximum wind (RMW) of 80 km in the standard run of each experiment. To minimize
219 the effect of model internal variability on our main conclusions and ensure the robustness of the
220 model results and the findings, 21 ensemble runs for each experiment were performed with the
221 perturbed initial RMW and the initial V_{max} , similar to those used in Li et al. (2020). Namely, in
222 addition to the standard run, each of the remaining 20 runs were generated by perturbing the initial
223 RMW by an increment of $\pm 0.4 \text{ km}$ (for 10 runs) or the initial V_{max} by $\pm 0.1 \text{ m s}^{-1}$ (for 10 runs).
224 Although a non-negligible variability exists for both the maximum intensity and RMW during the
225 quasi-steady state in each experiment, with an averaged standard deviation of about 4 m s^{-1} and 1
226 km (shown in those time evolution figures), respectively, our preliminary tests indicate that the

227 ensemble-mean results discussed herein are robust and insensitive to the perturbation increments
228 within reasonable ranges. Note that the experiments with the Dunion (2011)'s sounding were
229 integrated for 120 h while those with the SST-dependent soundings were integrated for 240 h to
230 ensure all runs reached their quasi-steady state. The results discussed below were based on the
231 ensemble mean from the hourly model outputs for each experiment.

232 **3. Superintensity with the SST-independent sounding**

233 Figure 1 shows the time evolutions of the maximum 10-m total wind speeds of all individual
234 ensemble runs and ensemble mean and their corresponding RMWs for each SST experiment using
235 the initial atmospheric sounding of Dunion (2011). Both the intensification rate (Fig. 1a) and the
236 contraction rate of the RMW (Fig. 1b) during the intensification period increase with increasing
237 SST, consistent with previous modeling results using SST-independent atmospheric sounding (e.g.,
238 Črnivec et al. (2016). Note that the RMW contraction stopped well before the end of intensification
239 period in each experiment, which is consistent with the observational analysis of Stern et al. (2015)
240 and the modeling results of Stern et al. (2015) and Li et al. (2019). The time reaching the quasi-
241 steady state decreases and the quasi-steady intensity increases with increasing SST (Fig. 1a).

242 Figure 2a shows the steady-state intensity of the simulated TC and the corresponding
243 theoretical MPI as a function of SST. Here, the steady-state intensity was an average of the
244 ensemble mean maximum 10-m wind speed in the period of 96–120 h for each experiment. The
245 theoretical MPI was calculated using Eq. (1) with all variables diagnosed directly from the model
246 output and averaged in the same time period of 96–120 h. Following Rousseau-Rizzi and Emanuel
247 (2019), the outflow temperature was calculated as the temperature at the intersection of the zero-
248 azimuthal-wind contour and the absolute angular momentum surface across the maximum wind
249 speed point in the ensemble mean. The simulated quasi-steady TC intensity increases with SST at

250 a rate of $\sim 3.4 \text{ m s}^{-1} \text{ }^{\circ}\text{C}^{-1}$, which is much smaller than the rate of $\sim 6 \text{ m s}^{-1} \text{ }^{\circ}\text{C}^{-1}$ of the theoretical MPI
251 (Fig. 2a). The simulated steady-state intensity is larger than the theoretical MPI at SSTs lower than
252 $\sim 29.5^{\circ}\text{C}$ but becomes smaller than at SSTs above $\sim 29.5^{\circ}\text{C}$. Namely, the simulated steady-state
253 intensity changes from superintensity to sub-MPI intensity at $\text{SST} \approx 29.5^{\circ}\text{C}$. This indicates a strong
254 dependence of superintensity on SST (Fig. 2b). Note that here as in Rousseau-Rizzi and Emanuel
255 (2019), the superintensity is defined as the normalized excess of maximum 10-m wind speed of the
256 simulated TC in the steady-state relative to the theoretical MPI [i.e., $SI = (SV_{max} -$
257 $|\mathbf{V}_{MPI}|)/|\mathbf{V}_{MPI}|$, where SV_{max} is the ensemble-mean steady-state intensity as defined above]. We
258 can see from Fig. 2b that the superintensity decreases with increasing SST, from $\sim 18\%$ at $\text{SST} =$
259 27°C to zero at $\text{SST} \approx 29.5^{\circ}\text{C}$, and then becomes negative $\sim -9\%$ (sub-MPI) at $\text{SST} = 32^{\circ}\text{C}$. Similar
260 superintensity at SSTs lower than 29.5°C has been reported in previous studies using the Dunion
261 (2011)'s mean tropical atmospheric sounding (Bryan 2012; Peng et al. 2018; Tao et al. 2019).

262 However, the superintensity is considerably larger in this study than that in Rousseau-Rizzi
263 and Emanuel (2019), who found the superintensity of 5% only in the nearly inviscid limit for SST
264 of 27°C . Note that the horizontal mixing length of 700 m used in this study was in the sub-MPI
265 regime of Rousseau-Rizzi and Emanuel (2019), who showed that sub-MPI intensity occurs when
266 the horizontal mixing length is greater than ~ 500 m. The different degrees of superintensity
267 between the two studies could be due to various factors. The first possible factor could be the
268 difference in the initial atmospheric sounding. The initial sounding used in this study for SST at
269 27°C implies an environmental CAPE of $\sim 2000 \text{ J Kg}^{-1}$ while the initial atmospheric sounding used
270 in Rousseau-Rizzi and Emanuel (2019) was neutral to convection (with nearly zero environmental
271 CAPE). However, the air-sea temperature difference near the surface in Rousseau-Rizzi and
272 Emanuel (2019) ($\sim 3.5^{\circ}\text{C}$) was much larger than in this study ($\sim 0.2^{\circ}\text{C}$), implying a larger production

273 rate of CAPE. Given that high environmental CAPE favors the enhancement of convective activity
274 in the outer region and may be negative to TC intensification and limit the maximum TC intensity
275 as previously demonstrated by Wang (2009), the higher production rate of CAPE in the TC
276 environment and thus the convective activity in the outer region may likely contribute to the smaller
277 superintensity for the same SST in Rousseau-Rizzi and Emanuel (2019) than in this study, which
278 was verified by an additional sensitivity experiment as SST27 but using the initial atmospheric
279 sounding in Rousseau-Rizzi and Emanuel (2019) (not shown). Another factor that could be
280 responsible for the different degrees of superintensity between the two studies is the different
281 algorithms used in calculating the surface enthalpy disequilibrium. In Rousseau-Rizzi and Emanuel
282 (2019), the surface enthalpy disequilibrium was approximated as the moist static energy difference
283 between the top of the boundary layer and the ocean surface. However, in this study it was directly
284 diagnosed from the model output of surface enthalpy flux, which was smaller than that using the
285 algorithm of Rousseau-Rizzi and Emanuel (2019) (not shown). This suggests that the enthalpy
286 disequilibrium at the air-sea interface and thus the theoretical MPI in Rousseau-Rizzi and Emanuel
287 (2019) could be overestimated, partly leading to the underestimated superintensity. In addition,
288 partly because Rousseau-Rizzi and Emanuel (2019) used a larger C_k and smaller C_D ($C_k = C_D =$
289 0.002) and with the inclusion of dissipative heating, the theoretical MPI in their simulations for
290 SST at 27°C with the horizontal mixing length around 700 m is much higher ($\sim 90 \text{ m s}^{-1}$; see their
291 Fig. 5) than in this study ($\sim 45 \text{ m s}^{-1}$; Fig. 2a), which could also contribute to a smaller superintensity
292 (shown below). Some other factors include the use of coarser horizontal grid spacing (2 km in the
293 inner region), uniform vertical grid spacing of 300 m, warm rain cloud microphysics scheme with
294 a constant terminal velocity of precipitating drops, and so on, in the CM1 simulations of Rousseau-
295 Rizzi and Emanuel (2019). Besides, Rousseau-Rizzi and Emanuel (2019) used single simulations
296 rather than ensemble simulations, in which the results tend to be sensitive to any other small initial

297 perturbations, as implied by the non-negligible standard deviation in Fig. 1a. Therefore, a direct
298 comparison of the degree of superintensity between the two studies seems not to be straightforward.
299 A detailed analysis is beyond the scope of this study but could be a topic for a future work.

300 Since the theoretical MPI assumes a balance between the surface available power production
301 and power dissipation near the RMW (Emanuel 1997; Rousseau-Rizzi and Emanuel 2019), the
302 superintensity thus implies an imbalance between the two by definition. Therefore, it is our interest
303 to examine the time evolution of the available power production and power dissipation near the
304 RMW and their radial distributions in the steady state of the simulated TCs in all SST experiments,
305 as done in Wang and Xu (2010). The surface available power production per unit area (PD) and
306 the frictional dissipation per unit area (DS) as a function of radius (r) and time (t) can be written as

307
$$PD(r, t) = [\rho\epsilon T_s C_k |\mathbf{V}|(s_0^* - s_b)]|_{r,t}, \quad (4a)$$

308
$$DS(r, t) = [\rho C_D |\mathbf{V}|^3]|_{r,t}, \quad (4b)$$

309 where ρ is the air density near the ocean surface and other variables have their meanings same as
310 in Eqs. (1) and (2). Note that the thermodynamic efficiency is a system efficiency and thus is radius-
311 independent. Figure 3 shows the evolutions of the diagnosed PD (red asterisk) and DS (blue asterisk)
312 at the RMW as a function of the TC intensity ($|\mathbf{V}|_{RMW}$) based on the model output in different SST
313 experiments. Consistent with Eq. (4), the PD nearly increases linearly with the TC intensity (red
314 line), because the change of both the thermodynamic efficiency ϵ and the air-sea thermodynamic
315 disequilibrium $[\rho T_s C_k (s_0^* - s_b)]$ with time are very small compared with the TC intensity (not
316 shown), while the DS increases as a cubic function of the TC intensity (blue line). Therefore,
317 although the PD is greater than the DS at lower intensity, the DS increases much faster than the PD
318 as the storm intensifies, and eventually the PD and DS intersect at some high intensity, which is
319 regarded as the theoretical MPI by definition (Wang 2012), determined by Eq. (1). In the

320 experiments with SSTs of 27–29°C (Figs. 3a–c), as the TC intensity increases, the PD and DS at
321 the RMW intersect but the DS is greater than the PD in the steady state, indicating the
322 superintensity by definition (Fig. 2b). For SST of at 30°C and above, the curves of the PD and DS
323 at the RMW do not intersect, with the PD being greater than the DS in the steady state (Figs. 3d–
324 f), indicating the sub-MPI intensity by definition (Fig. 2b).

325 Wang and Xu (2010) indicated that the superintensity is related to the negative imbalance
326 between the PD and DS (PD<DS) under the eyewall, which could be supplemented by the inward
327 transport of power production outside the eyewall. Namely, in addition to the primary power
328 production under the eyewall, the power production in the near-core environment outside the RMW,
329 where the available power production is often larger than the production dissipation (Fig. 4), could
330 be an extra energy source to the TC system and balance the power dissipation under the eyewall
331 (Figs. 4a–c). However, the negative imbalance (and thus the superintensity) decreases with
332 increasing SST. The TC reached a steady-state intensity even with the positive imbalance (PD>DS)
333 under the eyewall at SSTs of 30°C and above (Figs. 4d–f). This suggests that the excess available
334 power production was not effective to further intensify the TC in these experiments with relatively
335 high SSTs. We hypothesize that the efficiency of the available power production decreases in
336 intensifying the TC with increasing SST but increases in spinning up tangential wind outside the
337 RMW and thus increasing the TC size.

338 As already mentioned in Section 2, for a given SST-independent initial atmospheric sounding,
339 the air-sea thermodynamic disequilibrium and thus surface enthalpy flux would increase rapidly
340 with increasing SST. The increase in air-sea thermodynamic disequilibrium [$\rho T_s C_k (s_0^* - s_b)$]
341 with increasing SST is shown in Fig. 5, which shows the radial distribution of the ensemble mean
342 air-sea thermodynamic disequilibrium averaged between 96–120 h in different SST experiments.
343 Note that as implied from Fig. 3 and mentioned above, the air-sea thermodynamic disequilibrium

344 in each experiment changed very marginally with time. Consistent with the increasing air-sea
345 thermodynamic disequilibrium in the TC outer region, convective activity in the outer region
346 (mainly outside about 2–2.5 times of the RMW) becomes increasingly more active with increasing
347 SST as inferred from the precipitation rate shown in Fig. 6. This is because that a higher air-sea
348 thermodynamic disequilibrium (or surface enthalpy flux) implies faster production rate of CAPE
349 or convective instability (Emanuel 1994), and thus a condition more favorable for the development
350 of convection in the TC environment, which is maintained via consuming CAPE. Diabatic heating
351 in the outer region facilitates the low-level inflow to spin up tangential wind outside the eyewall,
352 increasing the TC size (Wang 2009; Xu and Wang 2010), but reduces the inflow toward the eyewall
353 and thus weakens the eyewall updraft, limiting the TC intensification and final intensity (Bister
354 2001; Wang 2009). This means that the contribution of available power production to TC
355 intensification and final intensity decreases while that to the TC size increases with increasing SST
356 due to the gradual increase in the production rate of CAPE and convective activity in the outer
357 region as SST increases. As expected, although the superintensity decreases with increasing SST,
358 the TC inner–core size in the quasi-steady state increases as SST increases (Fig. 1b). The overall
359 size increase can be inferred from the outward expansion of low-level tangential wind outside the
360 eyewall, which increases as SST increases (Fig. 6). This is similar to that found in Sun et al. (2017),
361 who attributed such a size increase with increasing SST to the enhanced rainband and convective
362 activity in the TC outer region as previously demonstrated by Wang (2009) and Xu and Wang
363 (2010). Therefore, the strong dependence of the superintensity on SST can be partly explained by
364 the rapidly increasing convective activity in the TC outer region resulting from the increasing air-
365 sea thermodynamic disequilibrium under the given SST-independent initial atmospheric sounding.
366 This will be further confirmed by results with more realistic SST-dependent initial atmospheric
367 soundings in Section 4.

368 On the other hand, the theoretical MPI, i.e., the denominator of the definition for
369 superintensity, also increases with SST as in Eq. (1) and Fig. 2. Considering that the storm with
370 higher theoretical MPI requires stronger radial gradients of entropy and angular momentum, which
371 are more affected by parameterized turbulence, a question arises as to whether the decrease of
372 superintensity with increasing SST is caused by the increasing theoretical MPI, or whether the
373 storm with higher theoretical MPI could be less likely to reach or exceed their MPI in simulations
374 under the same turbulence mixing length. To address this issue, five additional sensitivity
375 experiments as SST28–SST32 but with different C_{D1} were performed (Fig. 7a) as introduced in
376 Section 2. By varying SST and C_{D1} simultaneously, the theoretical MPI in each sensitivity
377 experiment was almost unchanged from SST27 (Fig. 7c) and the changes of the air-sea
378 thermodynamic disequilibrium (Fig. 7b) and thus precipitation rate (not shown) were retained as
379 those experiments with fixed C_{D1} (Fig. 5 and Fig. 6). As expected, although with a similar
380 theoretical MPI, the simulated steady-state intensity decreases with increasing SST (Fig. 7a,c), and
381 thus the superintensity also decreases (Fig. 7d), consistent with the rapidly increasing air-sea
382 thermodynamic disequilibrium (Fig. 7b) and thus convective activity (not shown) in the TC outer
383 region. However, the intersection between the simulated steady-state intensity and the theoretical
384 MPI indeed shifts to a higher temperature $\sim 31^\circ\text{C}$ (Fig. 7c) from $\sim 29.5^\circ\text{C}$ in the experiments with
385 fixed C_{D1} (Fig. 2a), and the averaged decreasing rate of superintensity with increasing SST is now
386 reduced, but slightly ($\sim 15\%$) to $\sim 4.6\% \text{ }^\circ\text{C}^{-1}$ (Fig. 7d) from $\sim 5.4\% \text{ }^\circ\text{C}^{-1}$ (Fig. 2b). This means that
387 although the storms with higher theoretical MPI indeed could be less likely to reach or exceed their
388 MPI in simulations, and thus the decrease of superintensity with increasing SST is partly caused
389 by the increasing theoretical MPI, it is the rapidly increasing convective activity in the TC outer
390 region resulting from the rapidly increasing air-sea thermodynamic disequilibrium that dominates

391 the decrease of superintensity in the SST-independent sounding experiments.

392 **4. Superintensity with SST-dependent soundings**

393 Results discussed in Section 3 suggest a strong dependence of superintensity on SST in the
394 SST-independent initial sounding experiments primarily due to the strong SST-dependent
395 convective activity in the TC outer region. This means that the dependence of superintensity on
396 SST could become negligible or reduced if the dependence of convective activity in the TC outer
397 region on SST is suppressed. To address this issue, we performed another set of experiments using
398 the SST-dependent initial atmospheric soundings based on observations in the WNP and NA (see
399 Section 2). Figure 8 shows the SST-dependent atmospheric soundings and their corresponding
400 initial CAPEs over the WNP and NA, respectively. We can see that the initial sounding over the
401 WNP shows a slightly larger CAPE than over the NA for a same SST. Unlike in the SST-
402 independent sounding experiments, the initial CAPEs in both basins increase with SST, which may
403 indicate a larger increasing rate of convective activity in the TC outer region with increasing SST
404 than that in the SST-independent sounding experiments. However, the initial CAPE of any SST-
405 dependent sounding is smaller than that in the SST-independent sounding experiments, and the
406 increasing rate of initial CAPE is slightly larger ($\sim 293 \text{ J Kg}^{-1} \text{ }^{\circ}\text{C}^{-1}$) in the NA than that ($\sim 150 \text{ J Kg}^{-1}$
407 $\text{ }^{\circ}\text{C}^{-1}$) in the WNP. More importantly, the dependences of the air-sea thermodynamic
408 disequilibrium in the TC outer region (mainly outside about 2–2.5 times of the RMW) on SST in
409 the SST-dependent sounding experiments (Fig. 9) are much smaller than that in the SST-
410 independent sounding experiments shown in Fig. 5, but with a similar dependence in the near-core
411 region. Therefore, results from this section may help confirm whether the strong SST-dependent
412 superintensity in the SST-independent sounding experiments discussed in Section 3 is primarily
413 due to the strong SST-dependent convective activity in the TC outer region and whether the steady-

414 state intensity of the simulated TC depends on the air-sea thermodynamic disequilibrium in the
415 outer region or the production rate of environmental CAPE for a given SST.

416 To address the above issues, we first examine the convective activity in all SST-dependent
417 sounding experiments. As we can see from Fig. 10, although there is an increase of convective
418 activity in the TC outer region with increasing SST, its increasing rate is much smaller in the more
419 realistic SST-dependent sounding experiments over both the WNP and NA, compared with that in
420 the SST-independent sounding experiments discussed in Section 3 (Fig. 6). This is consistent with
421 the smaller dependence of the air-sea thermodynamic disequilibrium in the TC outer region on SST
422 in the former than in the latter (Figs. 9 and 5) as mentioned above. This suggests that the relatively
423 weak dependence of the air-sea thermodynamic disequilibrium and thus convective activity in the
424 TC outer region on SST would largely suppress the SST-dependence of superintensity in the SST-
425 independent sounding experiments discussed in section 3.

426 Figures 11a–c show the time evolutions of the simulated TC intensity and the corresponding
427 steady-state (averaged in the same time period of 180–240 h) intensity and theoretical MPI as a
428 function of SST in all experiments with the SST-dependent atmospheric soundings over the WNP
429 and NA, respectively. Both the intensification rate and steady-state intensity of the simulated TCs
430 increase with increasing SST for the initial soundings of both basins (Figs. 11a-c), which is
431 consistent with observations documented by Xu and Wang (2018). Similarly, the theoretical MPI
432 also shows an increasing tendency with increasing SST (Fig. 11c), and the increasing rate in both
433 the SST-independent sounding experiments and the SST-dependent sounding experiments are
434 similar ($\sim 6 \text{ m s}^{-1} \text{ }^{\circ}\text{C}^{-1}$; Figs. 2a and 11c), because the air-sea thermodynamic disequilibrium under
435 the eyewall, which determines the theoretical MPI (Eq. 1), show a similar dependence on SST
436 among those two sets of experiments, as mentioned above (Figs. 5 and 9). However, unlike in the
437 SST-independent sounding experiments discussed in Section 3 (Fig. 2a), the increasing rates of the

438 steady-state intensity are also similar to the corresponding theoretical MPI with increasing SST at
439 $\sim 5\text{--}6.5 \text{ m s}^{-1} \text{ }^{\circ}\text{C}^{-1}$ (Fig. 11c), and the increasing rates for the WNP and NA sounding experiments
440 are very close to each other. Note that both the theoretical MPI and the steady-state intensity at a
441 same SST are slightly higher in experiment with the NA sounding than with the WNP sounding
442 (Fig. 11c), mainly because the inner-core air-sea thermodynamic disequilibrium in the WNP
443 sounding experiment is smaller than in the NA sounding experiment for a same SST (Fig. 9). This
444 is consistent with the results of Xu et al. (2019), who found the slightly higher MPI over the NA
445 than over the WNP for a same SST is due to the warmer troposphere and wetter boundary layer
446 over the WNP, as shown in Fig. 9. This suggests that there is a competition between the positive
447 role of the inner-core air-sea thermodynamic disequilibrium and the negative role of the air-sea
448 thermodynamic disequilibrium in the outer region in determining the TC steady-state intensity. In
449 addition, these results, together with those from Section 3, strongly suggest that both the TC steady-
450 state intensity and the theoretical MPI may not depend on the initial environmental CAPE,
451 consistent with Persing and Montgomery (2005). For example, for SST=28 $^{\circ}\text{C}$, the steady-state TC
452 intensities and theoretical MPIs using both the initial sounding of Dunion (2011) and that over the
453 NA are greater than those over the WNP (Figs. 2a and 11c), but the initial CAPEs in Dunion (2011)
454 and over the NA are greater and smaller than the initial CAPE over the WNP (Fig. 8), respectively.

455 Although the superintensity also decreases with increasing SST (Fig. 11d), the decreasing rate
456 is largely reduced in the SST-dependent sounding experiments compared with that in the SST-
457 independent sounding experiments discussed in Section 3. The averaged decreasing rate of
458 superintensity with increasing SST is now reduced by $\sim 60\%$ to $\sim 2.2 \% \text{ }^{\circ}\text{C}^{-1}$ for the WNP and by
459 $\sim 45\%$ to $\sim 3 \% \text{ }^{\circ}\text{C}^{-1}$ for the NA from $\sim 5.4 \% \text{ }^{\circ}\text{C}^{-1}$ in the SST-independent sounding experiments
460 (Fig. 2b). Because the increasing rate of theoretical MPI with increasing SST is almost the same
461 between the SST-independent (Fig. 2a) and SST-dependent (Fig. 11c) sounding experiments as

462 mentioned above ($\sim 6 \text{ m s}^{-1} \text{ }^{\circ}\text{C}^{-1}$), the smaller decreasing rate of superintensity in the latter is thus
463 mainly a result of the suppressed increasing tendency of convective activity in the TC outer region
464 (Fig. 6 and Fig. 10). The difference in the decreasing rate of superintensity with increasing SST
465 between the two sounding experiments, for the same SST range (28–30°C), is small (Fig. 11d).
466 This is consistent with the small difference in the dependence of air-sea thermodynamic
467 disequilibrium (and thus convective activity) in the TC outer region (Figs. 9 and 10) on SST
468 between the WNP and NA soundings. Note also that the sub-MPI steady-state intensity in the SST-
469 independent sounding experiments at high SSTs did not occur in the SST-dependent sounding
470 experiments. These results further confirm that the air-sea thermodynamic disequilibrium and thus
471 the production rate of CAPE in the outer region are detrimental to the steady-state intensity of the
472 simulated TC, while such a detrimental effect on the theoretical MPI (dominated by the inner-core
473 air-sea thermodynamic disequilibrium) is slightly weaker, resulting in an increase in superintensity
474 with increasing SST in the SST-independent sounding experiments.

475 In addition, considering that the increase of theoretical MPI with increasing SST would also
476 reduce the superintensity as analyzed above, and the increasing convective activity in the TC outer
477 region with increasing SST is much small in the SST-dependent sounding experiments (Fig. 10),
478 it is hypothesized that the slightly decreasing rate of superintensity with increasing SST in the SST-
479 dependent sounding experiments (Fig. 11d) would be dominated by the increase of theoretical MPI
480 rather than the increasing convective activity in the outer region with increasing SST in the SST-
481 dependent sounding experiments. To verify this, for both basins, three additional sensitivity
482 experiments as SST29_WNP–SST31_WNP and SST28_NA–SST30_NA but with the increase of
483 theoretical MPI from SST28_WNP and SST27_NA suppressed by varying C_{D1} together with SST
484 were performed (Section 2), respectively. As we can see from Fig. 12a, both the simulated steady-
485 state intensity and theoretical MPI show a marginal change with C_{D1} varied for both basins. As a

486 result, although the superintensity still decreases with increasing SST for both basins (Fig. 12b),
487 their averaged decreasing rates for the WNP and NA are reduced from $\sim 2.2\% \text{ }^{\circ}\text{C}^{-1}$ and $\sim 3\% \text{ }^{\circ}\text{C}^{-1}$
488 to $\sim 0.3\% \text{ }^{\circ}\text{C}^{-1}$ and $\sim 1.2\% \text{ }^{\circ}\text{C}^{-1}$ or by $\sim 86\%$ and $\sim 60\%$, respectively, in the experiments with default
489 C_{D1} (Fig. 11d). Therefore, these results, together with those from Section 3, strongly suggest that
490 the increases in both convective activity in the TC outer region and theoretical MPI with increasing
491 SST could reduce the superintensity. When there is a rapid increase in the air-sea thermodynamic
492 disequilibrium and thus the production rate of CAPE in the TC outer region with increasing SST
493 as in the SST-independent sounding experiments, it is the increasing convective activity in the
494 outer region that dominates the decrease of superintensity with increasing SST, otherwise it is the
495 increasing theoretical MPI that dominates the decrease of superintensity with increasing SST as in
496 the SST-dependent sounding experiments.

497 **5. Conclusions and discussion**

498 Previous studies have shown the existence of superintensity of numerically simulated TCs
499 under favorable environmental conditions. However, the dependence of the degree of
500 superintensity on various environmental conditions, model settings, and physical
501 parameters/processes has not been fully investigated. In this study, the dependence of
502 superintensity on SST has been examined using ensemble axisymmetric model simulations with
503 both the SST-independent and SST-dependent initial atmospheric soundings. Following Rousseau-
504 Rizzi and Emanuel (2019), we also defined the superintensity as the proportion of the excess
505 maximum surface wind speed of the simulated TC to the corresponding theoretical MPI, namely,
506 the excess steady-state intensity normalized by the corresponding theoretical MPI in terms of
507 maximum surface wind speed.

508 In the SST-independent sounding experiments, the superintensity occurs in relatively low SST

509 experiments with less active convective activity in the TC outer region but sub-MPI intensity (or
510 negative superintensity) occurs in relatively high SST experiments with strong convective activity
511 in the outer region. We show that the superintensity occurs when the power dissipation is larger
512 than the available power production locally under the eyewall in the steady state, consistent with
513 the definition of superintensity in the MPI theory. Therefore, the superintensity implies the
514 importance of the extra power production imported from outside of the RMW to balance the power
515 dissipation under the eyewall, which was not considered in the theoretical MPI, consistent with the
516 finding of Wang and Xu (2010). The sub-MPI intensity at high SSTs results primarily from the
517 excessive convective activity in the TC outer region due to the rapid increase in environmental
518 CAPE resulting from the increasing surface enthalpy flux associated with the increasing air-sea
519 thermodynamic disequilibrium with increasing SST because of the use of the same initial
520 atmospheric sounding.

521 A new finding is a robust decrease of superintensity with increasing SST no matter in
522 experiments with the SST-independent sounding or those with the realistic SST-dependent
523 soundings based on observations over the WNP and NA. It is found that the increasing convective
524 activity (and thus diabatic heating) in the TC outer region with increasing SST could result in the
525 decrease of superintensity. As a result, because of the more pronounced increasing convective
526 activity in the TC outer region with increasing SST in the SST-independent sounding experiments
527 than in the SST-dependent sounding experiments, the decreasing rate of superintensity with
528 increasing SST is considerably larger in the former experiments than in the latter experiments. The
529 more rapid increasing convective activity in the TC outer region with increasing SST is due to the
530 rapid increase in air-sea thermodynamic disequilibrium as mentioned above. Although the initial
531 CAPE increases with increasing SST in experiments with the realistic initial atmospheric soundings
532 constructed based on observations over the NA and WNP, the CAPE itself and the increasing rate

533 of the production rate of CAPE with increasing SST is much smaller than in the SST-independent
534 sounding experiments. As a result, the decreasing rate of superintensity with increasing SST is
535 largely suppressed in the realistic sounding experiments. The averaged decreasing rate of
536 superintensity with increasing SST is $\sim 2.2\% \text{ }^{\circ}\text{C}^{-1}$ for the WNP soundings and $\sim 3\% \text{ }^{\circ}\text{C}^{-1}$ for the
537 NA soundings, and $\sim 5.4\% \text{ }^{\circ}\text{C}^{-1}$ in the SST-independent sounding experiments.

538 In addition, it is found that the increasing theoretical MPI could also reduce the superintensity
539 with increasing SST, which is verified by additional sensitivity experiments with the increase of
540 theoretical MPI with increasing SST suppressed by varying the upper limit of drag coefficient
541 together with SST. Although the effect of the increasing theoretical MPI with increasing SST in
542 the SST-independent sounding experiments is minor, it dominates the decrease of superintensity
543 in the SST-dependent sounding experiments with the increasing rate of air-sea thermodynamic
544 disequilibrium and thus convective activity in the TC outer region suppressed. This means that the
545 storm with higher theoretical MPI could be less likely to reach or exceed their MPI in simulations.
546 Note that this conclusion seems to be inconsistent with the result of Rousseau-Rizzi and Emanuel
547 (2019), which shows that the increasing theoretical MPI was associated with an increase in
548 superintensity with decreasing horizontal mixing length. This is because a smaller horizontal
549 mixing length and thus a lower turbulent mixing implies stronger radial gradients of entropy and
550 angular momentum and thus stronger intensity in simulations (e.g., Bryan and Rotunno 2009b;
551 Rousseau-Rizzi and Emanuel 2019). Therefore, one possible reason for the smaller superintensity
552 with higher theoretical MPI under the same turbulence mixing lengths in our simulations is that the
553 storm with higher theoretical MPI requires stronger radial gradients of entropy and angular
554 momentum, which are more affected by parameterized turbulence. However, the detailed
555 mechanism is beyond this study and left for future work. Note that although the superintensity
556 increases with decreasing horizontal mixing length, our additional experiments with varying

557 horizontal mixing length showed that our main conclusion (i.e., superintensity decreases with
558 increasing SST) is robust.

559 Recently, Rousseau-Rizzi and Emanuel (2019) evaluated various forms of Emanuel's
560 theoretical MPI and showed that a new surface wind-based local Carnot cycle model proposed in
561 Emanuel (2018) leads to the same MPI formula with the global Carnot cycle model of Emanuel
562 (1997). Based on axisymmetric numerical simulations, Rousseau-Rizzi and Emanuel (2019)
563 concluded that the surface wind-based MPI can give a good upper bound on the simulated TC
564 intensity. The superintensity is only ~5 % at 27°C in the inviscid limit but becomes negative (sub-
565 MPI) if the horizontal mixing length is greater than ~500 m. The 700 m horizontal mixing length
566 used in this study is in the sub-MPI regime of Rousseau-Rizzi and Emanuel (2019) but results in a
567 superintensity of 12% at the same SST with the SST-dependent sounding and of 18% with the
568 Dunion (2011)'s mean tropical atmospheric sounding. This difference could be partly due to the
569 different initial atmospheric soundings, the theoretical MPI itself (partly due to the differences in
570 C_k , C_D and so on), and algorithms used in calculating the surface enthalpy disequilibrium between
571 the two studies. In Rousseau-Rizzi and Emanuel (2019), the surface enthalpy disequilibrium was
572 calculated according to the difference in the moist static energy between the top of the boundary
573 layer and the sea surface. However, all the corresponding variables near the ocean surface used in
574 the calculations of the theoretical MPI are diagnosed from the model outputs in this study. This
575 suggests that the surface enthalpy disequilibrium, and thus the theoretical MPI in Rousseau-Rizzi
576 and Emanuel (2019) was overestimated and thus the superintensity could be underestimated.
577 However, several other factors may also contribute to the difference but a detailed analysis is
578 beyond the scope of this study and could be a topic for a future study.

579 The robust decrease of superintensity with increasing SST in both the SST-dependent and
580 SST-independent sounding experiments strongly suggests that caution needs to be given when one

581 attempts to assess the possible effect of (both natural and anthropogenic) ocean warming on TC
582 intensity and structure by numerical sensitivity experiments. Our results support a hypothesis that
583 the efficiency of the available power production decreases in intensifying the TC with increasing
584 SST in expense in increasingly spinning up tangential wind outside the RMW and thus increasing
585 the TC size. Therefore, it seems that a tradeoff exists between the simulated TC intensity and TC
586 size with the change of convective activity in the outer region as a response to the change of air-
587 sea thermodynamic disequilibrium. Since both the TC intensity and the inner-core size are key
588 metrics of TC disasters in terms of damaging winds and torrential rainfall, the ocean warming
589 undoubtedly would lead to an increase in TC-induced natural disasters. In addition, our results also
590 suggest that the degree of superintensity could be affected by the magnitude of the theoretical MPI.
591 Since the theoretical MPI and convective activity in the TC outer region may be sensitive to various
592 physical processes, such as the details in cloud microphysics and planetary boundary layer
593 parameterization, it thus is not surprising that different degrees of superintensity have been reported
594 in previous studies. Finally, note that only axisymmetric simulations were used in this study, it is
595 unknown whether the results discussed in this study would be altered if more realistic three-
596 dimensional simulations are conducted. Although this is a topic that needs to be addressed in future
597 work, most of the results obtained in this study are consistent with those reported in previous studies
598 using three-dimensional models, suggesting that the main conclusions from this study should not
599 be changed if three-dimensional simulations are considered.

600 **Acknowledgments:** The authors thank two anonymous reviewers for their thoughtful review
601 comments. This study was supported in part by National Natural Science Foundation of China
602 under grants 41730960 and 41805040 and in part by the National Key R&D Program of China

603 under grant 2017YFC1501602. Y. Wang was supported in part by NSF grant AGS-1834300 and
604 Y. Li was funded by China Scholarship Council (File 201806210324).

605

References

606 Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. *J. Atmos. Sci.*, **58**,
607 3463–3476, doi:10.1175/1520-0469(2001)058<3463:EOPCOT>2.0.CO;2.

608 Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. *Meteor. Atmos.*
609 *Phys.* **65**, 233-240, doi:10.1007/BF01030791.

610 Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential
611 intensity, 1. Interannual to interdecadal variability. *J. Geophys. Res. – Atmospheres*, **107**, 4801,
612 doi:10.1029/2001JD000776.

613 Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the
614 intensity and structure of numerically simulated hurricanes. *Mon. Wea. Rev.*, **140**, 1125–1143,
615 doi:10.1175/MWR-D-11-00231.1.

616 Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical
617 model. *Mon. Wea. Rev.*, **130**, 2917-2928, doi:10.1175/1520-
618 0493(2002)130<2917:ABSFMN>2.0.CO;2.

619 Bryan, G. H., and R. Rotunno, 2009a: The influence of near-surface, high-entropy air in hurricane
620 eyes on maximum hurricane intensity. *J. Atmos. Sci.*, **66**, 148–158,
621 doi:10.1175/2008JAS2707.1.

622 Bryan, G. H., and R. Rotunno, 2009b: Evaluation of an analytical model for the maximum intensity
623 of tropical cyclones. *J. Atmos. Sci.*, **66**, 3042–3060, doi:10.1175/2009JAS3038.1.

624 Črnivec, N., R. K. Smith, G. Kilroy, 2016: Dependence of tropical cyclone intensification rate on
625 sea-surface temperature. *Quart. J. Roy. Meteor. Soc.*, **142**, 1618–1627, doi:10.1002/qj.2752.

626 Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the
627 data assimilation system. *Quart. J. Roy. Meteror. Soc.* **137**, 553–597, doi:10.1002/qj.828.

628 DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic
629 tropical cyclones. *J. Climate*, **7**, 1324–1334, doi:10.1175/1520-
630 0442(1994)007<1324:SSTATM>2.0.CO;2.

631 Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E.
632 S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds.
633 *Geophys. Res. Lett.*, **31**, L18306, doi:10.1029/2004GL019460.

634 Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea
635 atmosphere. *J. Climate*, **24**, 893-908, doi:10.1175/2010JCLI3496.1.

636 Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state
637 maintenance. *J. Atmos. Sci.*, **43**, 585–605, doi:10.1175/1520-
638 0469(1986)043<0585:AASITF>2.0.CO;2.

639 Emanuel, K. A., 1994: *Atmospheric Convection*. Oxford University Press, 580 pp.

640 Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a
641 revised steady-state model incorporating eye dynamics. *J. Atmos. Sci.*, **52**, 3969–
642 3976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

643 Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. *J. Atmos.*
644 *Sci.*, **54**, 1014–1026, doi:10.1175/1520-0469(1997)054<1014:SAOHC>2.0.CO;2.

645 Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. *Mon. Wea. Rev.*, **128**, 1139–
646 1152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

647 Emanuel, K., 2018: 100 Years of progress in tropical cyclone research. *Meteorological*
648 *Monographs*, **59**, 15.1–15.68, doi:10.1175/AMSMONOGRAPH-D-18-0016.1.

649 Frisius, T., D. Schönenmann, and J. Vigh, 2013: The impact of gradient wind imbalance on potential
650 intensity of tropical cyclones in an unbalanced slab boundary layer model. *J. Atmos. Sci.*, **70**,
651 1874–1890, doi:10.1175/JAS-D-12-0160.1.

652 Hausman, S. A., 2001: Formulation and sensitivity analysis of a nonhydrostatic, axisymmetric
653 tropical cyclone model. Tech. rep., Air Force Institute of Technology Wright-Patterson OH.

654 Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. *J. Atmos.*
655 *Sci.*, **54**, 2519–2541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

656 Jordan, C. L., 1958: Mean soundings for the West Indies area. *J. Meteor.*, **15**, 91–97.

657 Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical
658 cyclones. *J. Atmos. Sci.*, **76**, 3229–3245, doi:10.1175/JAS-D-19-0076.1.

659 Li, Y., Y. Wang, and Y. Lin, 2020: How much does the upward advection of the supergradient
660 component of boundary layer wind contribute to tropical cyclone intensification and
661 maximum intensity? *J. Atmos. Sci.*, **77**, 2649–2664 doi:10.1175/JAS-D-19-0350.1.

662 Montgomery, M. T., and R. K. Smith, 2020: Comments on “An Evaluation of Hurricane
663 Superintensity in Axisymmetric Numerical Models”. *J. Atmos. Sci.*, **77**, 1887–
664 1892, doi:10.1175/JAS-D-19-0175.1.

665 Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003):
666 New insights into the physics of intense storms. Part I: Mean vortex structure and maximum
667 intensity estimates. *Bull. Amer. Meteor. Soc.*, **87**, 1335–1347, doi.org/10.1175/BAMS-87-10-
668 1335.

669 Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the
670 intensification of tropical cyclones. *J. Atmos. Sci.*, **75**, 2125–2138, doi:10.1175/JAS-D-17-
671 0382.1.

672 Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. *J. Atmos. Sci.*, **60**, 2349–2371,
673 doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

674 Persing, J., and M. T. Montgomery, 2005: Is environmental CAPE important in the determination
675 of maximum possible hurricane intensity? *J. Atmos. Sci.*, **62**, 542–550, doi:10.1175/JAS-
676 3370.1.

677 Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II:
678 Evolutionary study using a nonhydrostatic axisymmetric numerical model. *J. Atmos. Sci.*, **44**,
679 542–561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

680 Rousseau-Rizzi, R., and K. Emanuel, 2019: An evaluation of hurricane superintensity in
681 Axisymmetric Numerical Models. *J. Atmos. Sci.*, **76**, 1697–1706, doi:10.1175/JAS-D-18-
682 0238.1.

683 Rousseau-Rizzi, R., and K. Emanuel, 2020: Reply to “Comments on ‘An Evaluation of Hurricane
684 Superintensity in Axisymmetric Numerical Models’”. *J. Atmos. Sci.*, **77**, 1893–
685 1896, doi:10.1175/JAS-D-19-0248.1.

686 Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between
687 eyewall contraction and intensification. *J. Atmos. Sci.*, **72**, 1283–1306, doi:10.1175/JAS-D-
688 14-0261.1.

689 Sun, Y., Z. Zhong, T. Li, L. Yi, Y. Hu, H. Wan, H. Chen, Q. Liao, C. Ma, and Q. Li, 2017: Impact
690 of ocean warming on tropical cyclone size and its destructiveness. *Sci Rep.*, **7**, 8154,
691 doi:10.1038/s41598-017-08533-6.

692 Tao, D., K. Emanuel, F. Zhang, R. Rotunno, M. M. Bell, and R. G. Nystrom, 2019: Evaluation of
693 the assumptions in the steady-state tropical cyclone self-stratified outflow using three-
694 dimensional convection-allowing simulations. *J. Atmos. Sci.*, **76**, 2995–
695 3009, doi:10.1175/JAS-D-19-0033.1.

696 Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter
697 precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new
698 snow parameterization. *Mon. Wea. Rev.*, **136**, 5095–5115, doi:10.1175/2008MWR2387.1.

699 Tonkin, H., G. J. Holland, N. Holbrook, and A. Henderson-Sellers, 2000: An evaluation of
700 thermodynamic estimates of climatological maximum potential tropical cyclone intensity.

701 *Mon. Wea. Rev.*, **128**, 746–762, doi:10.1175/1520-
702 0493(2000)128<0746:AEOTEO>2.0.CO;2.

703 Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? *J. Atmos. Sci.*, **66**, 1250–1273, doi:10.1175/2008JAS2737.1.

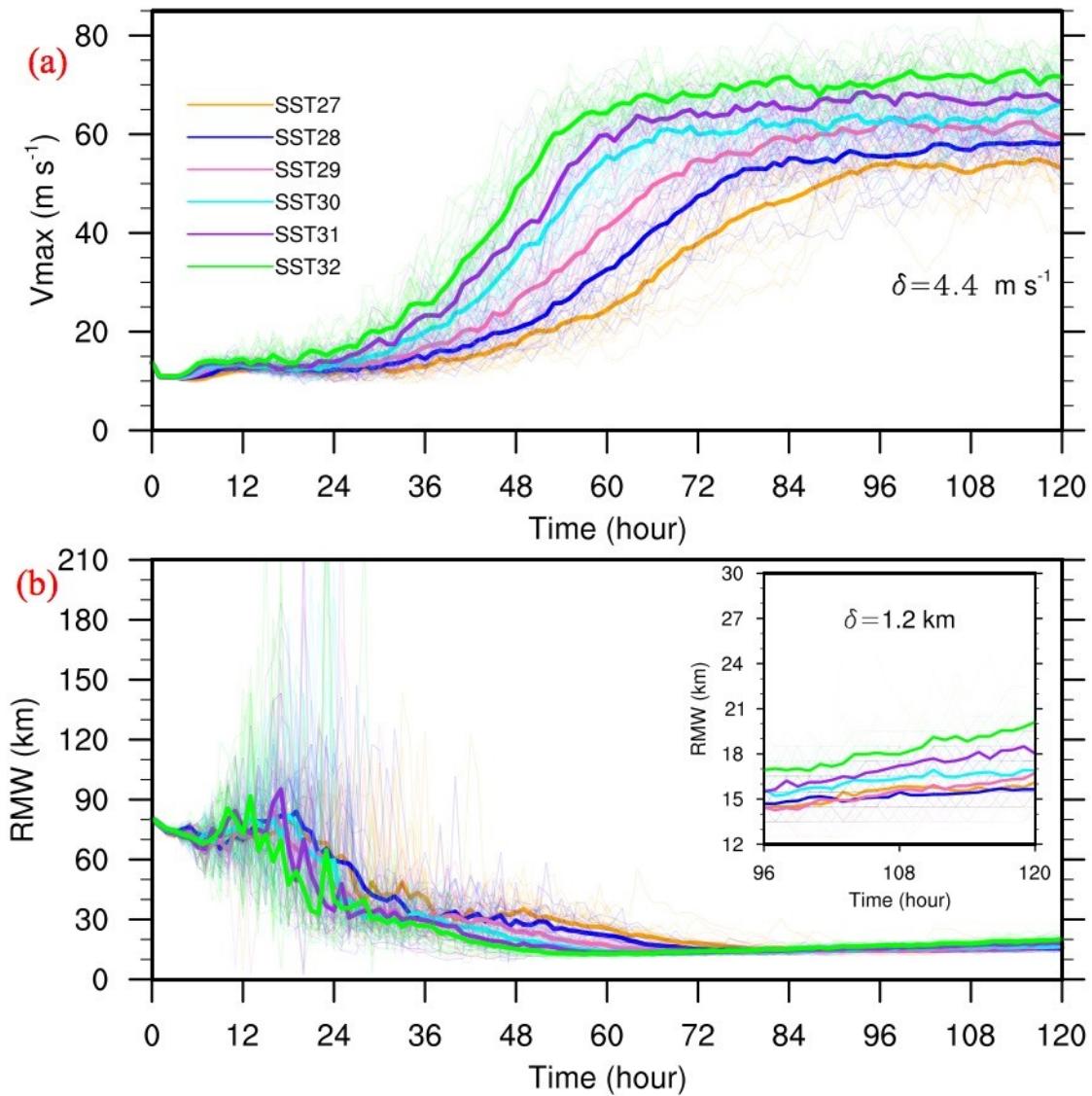
704 Wang, Y., 2012: Recent research progress on tropical cyclone structure and intensity. *Tropical cyclone Res. Rev.*, **1**, 254–275, doi:10.6057/2012TCRR02.05

705 Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a
706 numerically simulated tropical cyclone. *J. Atmos. Sci.*, **67**, 97–116,
707 doi:10.1175/2009JAS3143.1.

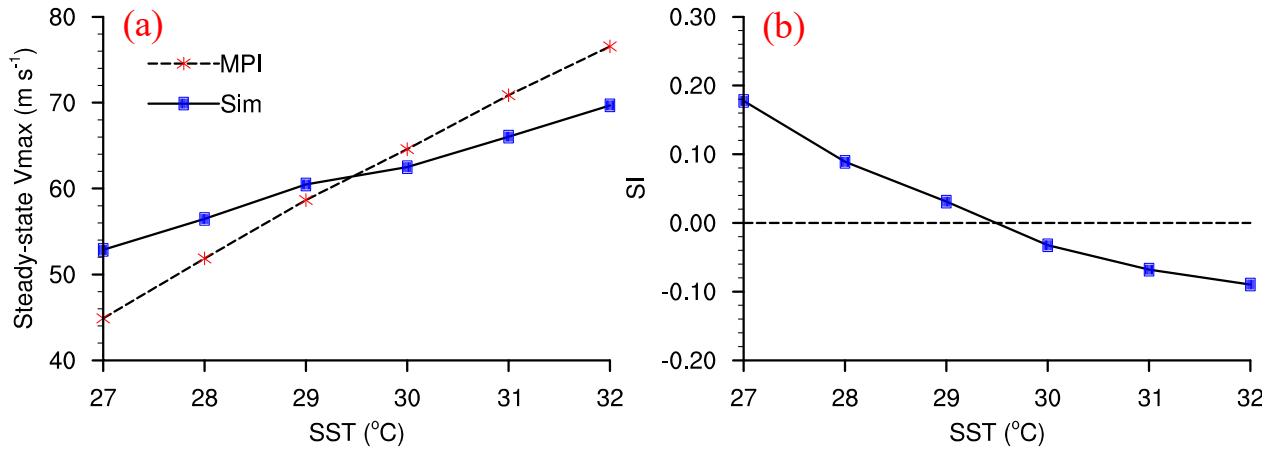
708 Whitney, L. D. and J. S. Hobgood, 1997: The relationship between sea surface temperatures and
709 maximum intensities of tropical cyclones in the Eastern North Pacific Ocean. *J. Climate*, **10**,
710 2921–2930, doi:10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2.

711 Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles:
712 development, testing, and verification. *J. Atmos. Sci.*, **68**, 990–1006,
713 doi:10.1175/2011JAS3588.1.

714 Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial
715 distribution of surface entropy flux. *J. Atmos. Sci.*, **67**, 1831–1852,
716 doi:10.1175/2010JAS3387.1.

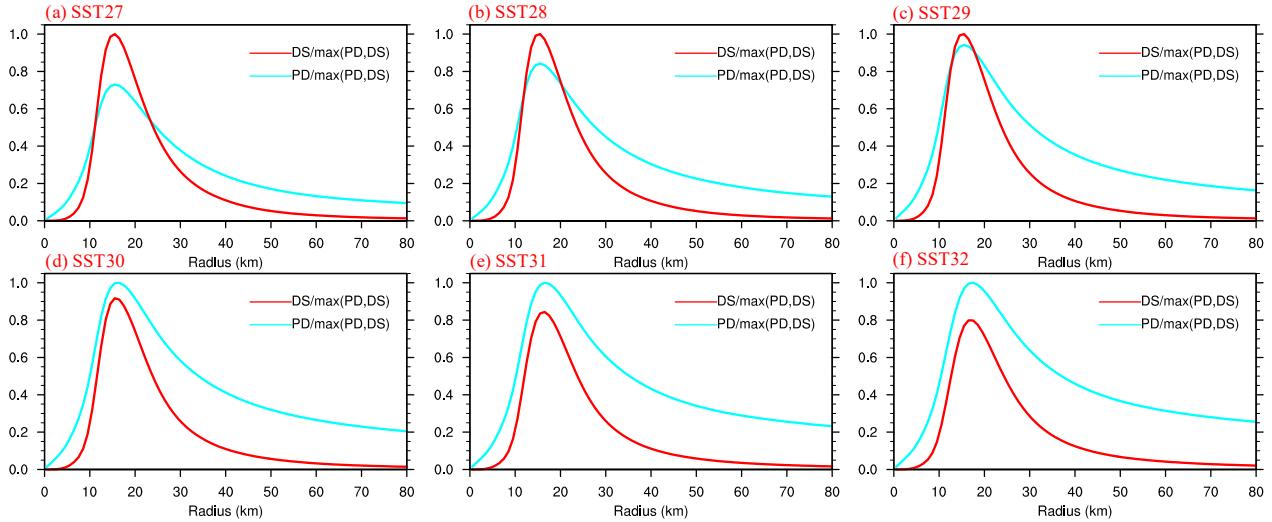

717 Xu, J., and Y. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface
718 temperature, storm intensity, and size in the Western North Pacific. *Wea. Forecasting*, **33**, 523–537, doi:10.1175/WAF-D-17-0095.1.

719 Xu, J., Y. Wang, and C. Yang, 2019: Inter-basin differences in the mean and variability of tropical
720 cyclone MPI in the Northern Hemisphere. *J. Geophys. Res. – Atmos.*, **124**, 13714–13730,
721 <https://doi.org/10.1029/2019JD031588>.

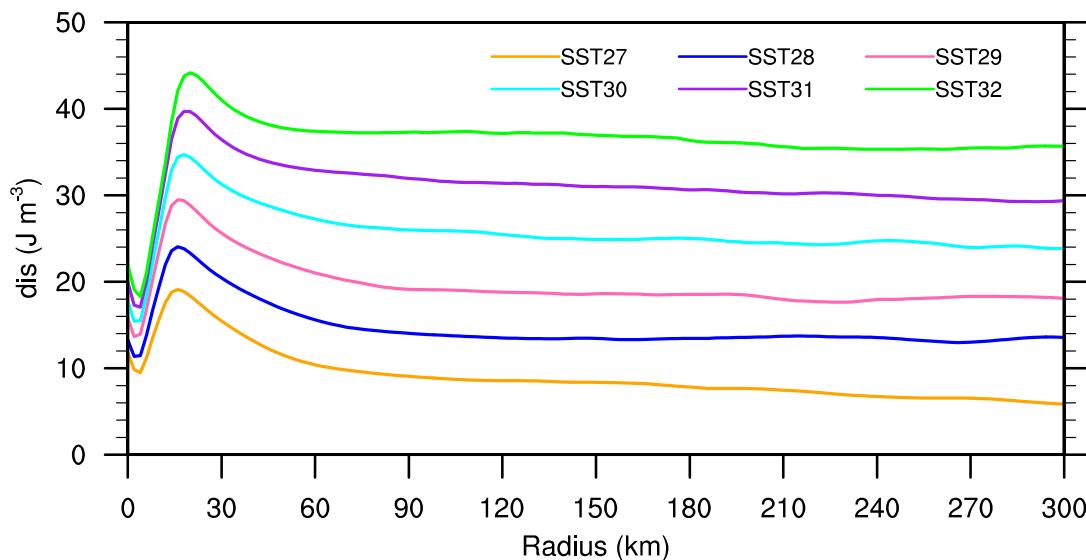

722 Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy
723 diffusivity and mixing length in the low-level region of intense hurricanes. *J. Atmos. Sci.*, **69**,
724 1306–1316, doi:10.1175/JAS-D-11-0180.1.

725 Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the
726 hurricane boundary layer. *J. Atmos. Sci.*, **69**, 3223–3236, doi:10.1175/JAS-D-11-0348.1.

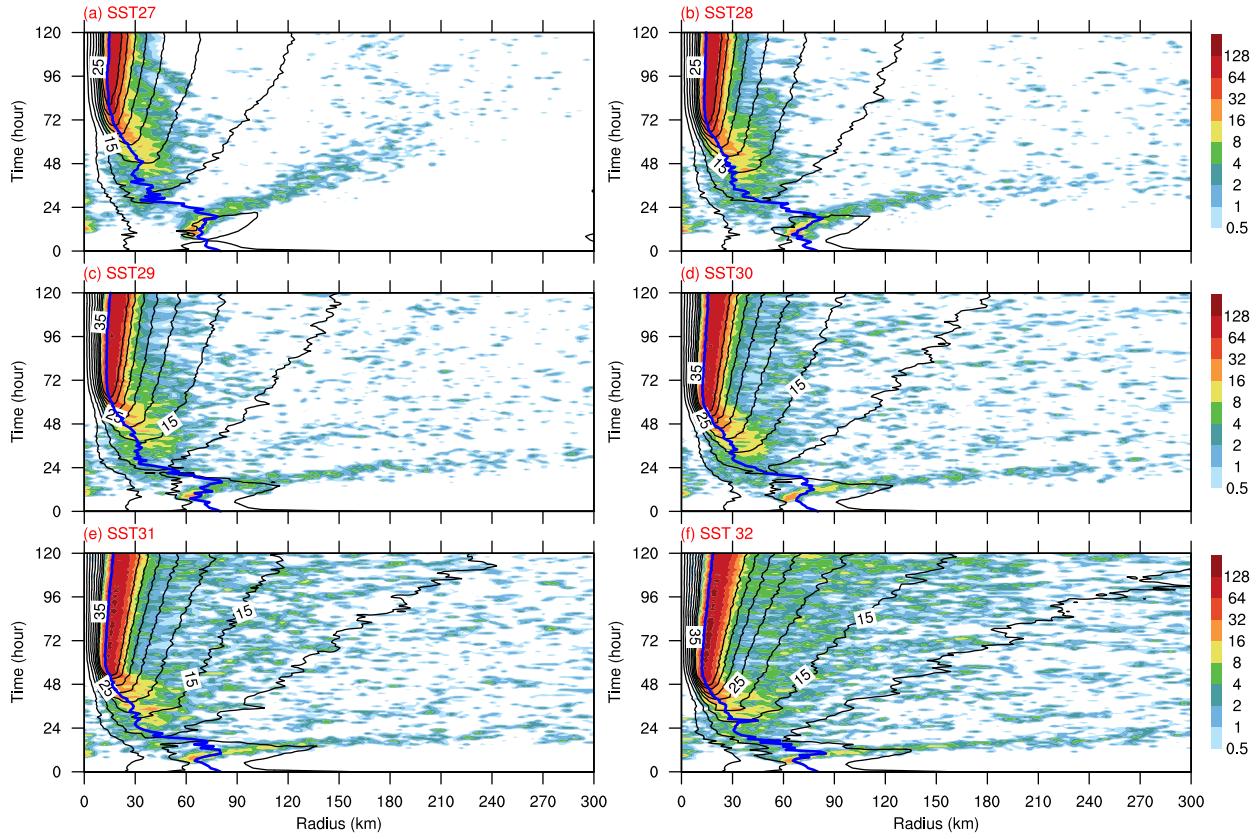
727
728
729
730


731
 732 Figure 1. Time series of (a) the maximum 10-m total wind speed and (b) the corresponding radius
 733 overlaid with the zoomed-in view of the results between 96–120 h. Results from the 21
 734 individual runs and the ensemble mean for each experiment are shown in thin and thick curves.
 735 Sigma value indicates the standard deviation for the 21 individual runs averaged among all
 736 experiments during 96–120 h.

737
738 Figure 2. (a) Ensemble-mean simulated steady-state maximum 10-m total wind speed (blue, solid)
739 and corresponding theoretical MPI (red, dashed) as a function of sea surface temperature. (b)
740 As in (a) but showing the superintensity.

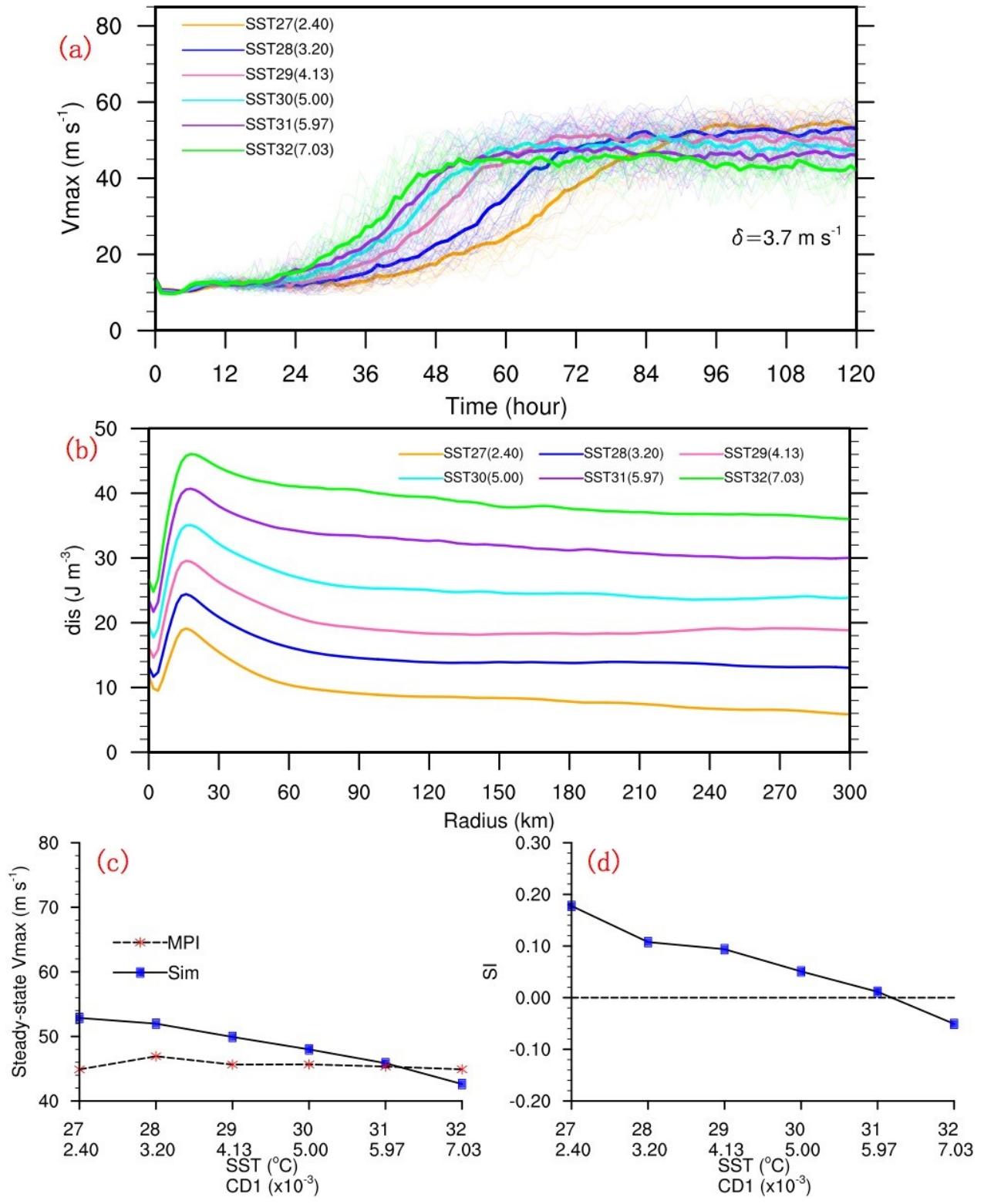


741
742 Figure 3. Ensemble-mean simulated (asterisk) and fitted (curve) available energy production rate
743 (red) and energy dissipation rate (blue) per unit area at the location of maximum 10-m total wind
744 speed, with the intersection between the fitted blue and red curves defined as the theoretical
745 MPI. The simulated steady-state maximum 10-m wind speed is marked as the red plus sign near
746 the abscissa.



747

748 Figure 4. Radial distribution of the ensemble-mean normalized available energy production rate
 749 (cyan) and energy dissipation rate (red) per unit area averaged during the steady-state stage.



750
 751 Figure 5. Radial distribution of the ensemble mean air-sea thermodynamic disequilibrium
 752 $[\rho T_s C_k (s_0^* - s_b)]$ averaged during the steady-state stage.

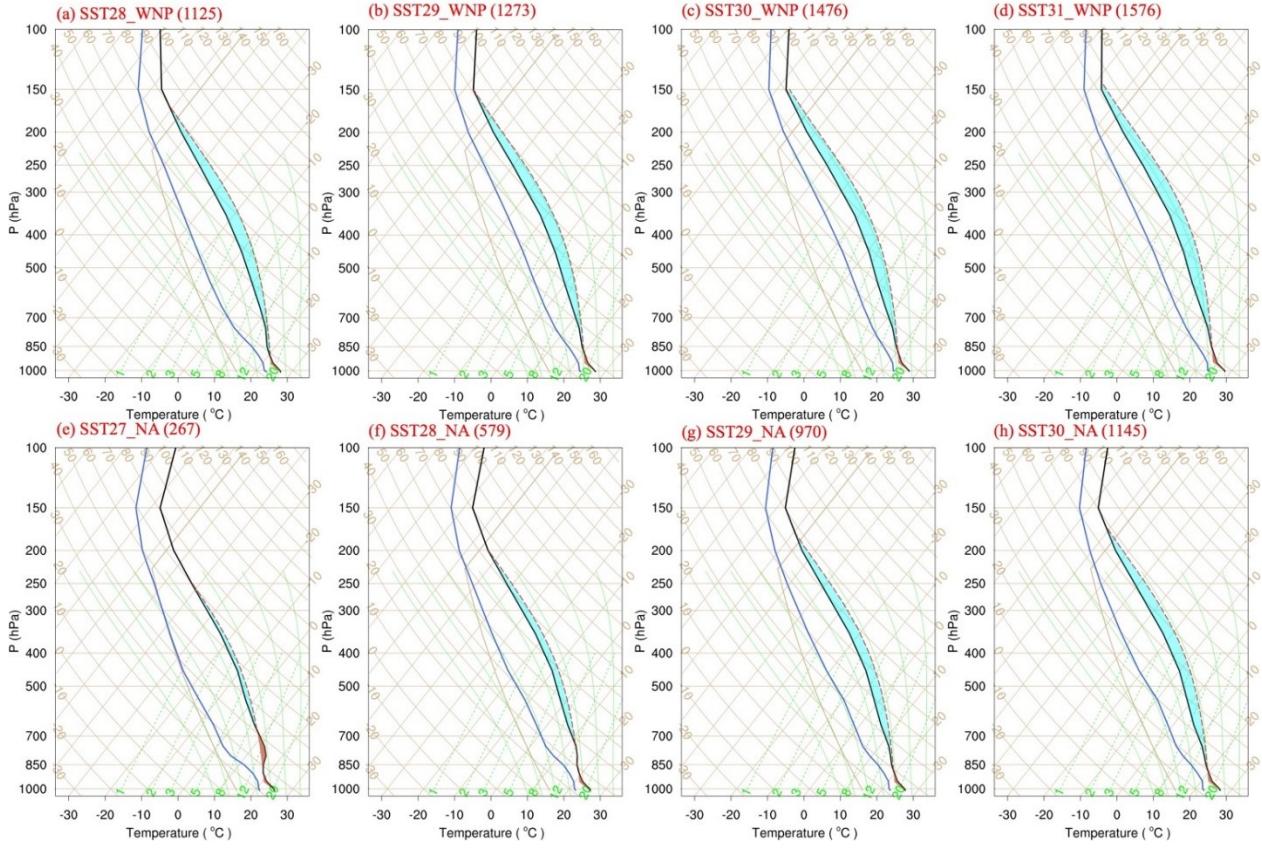
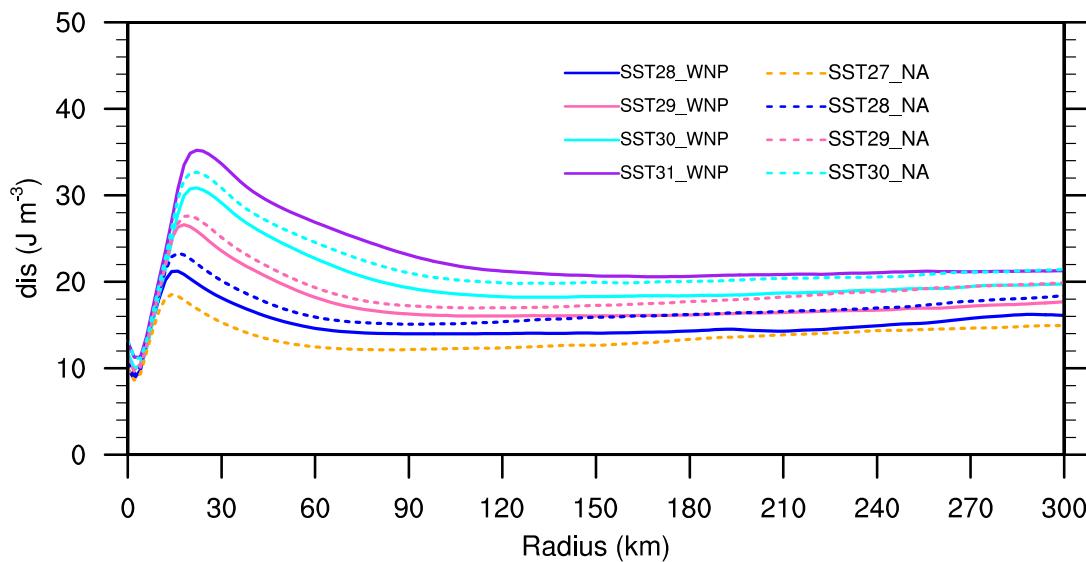
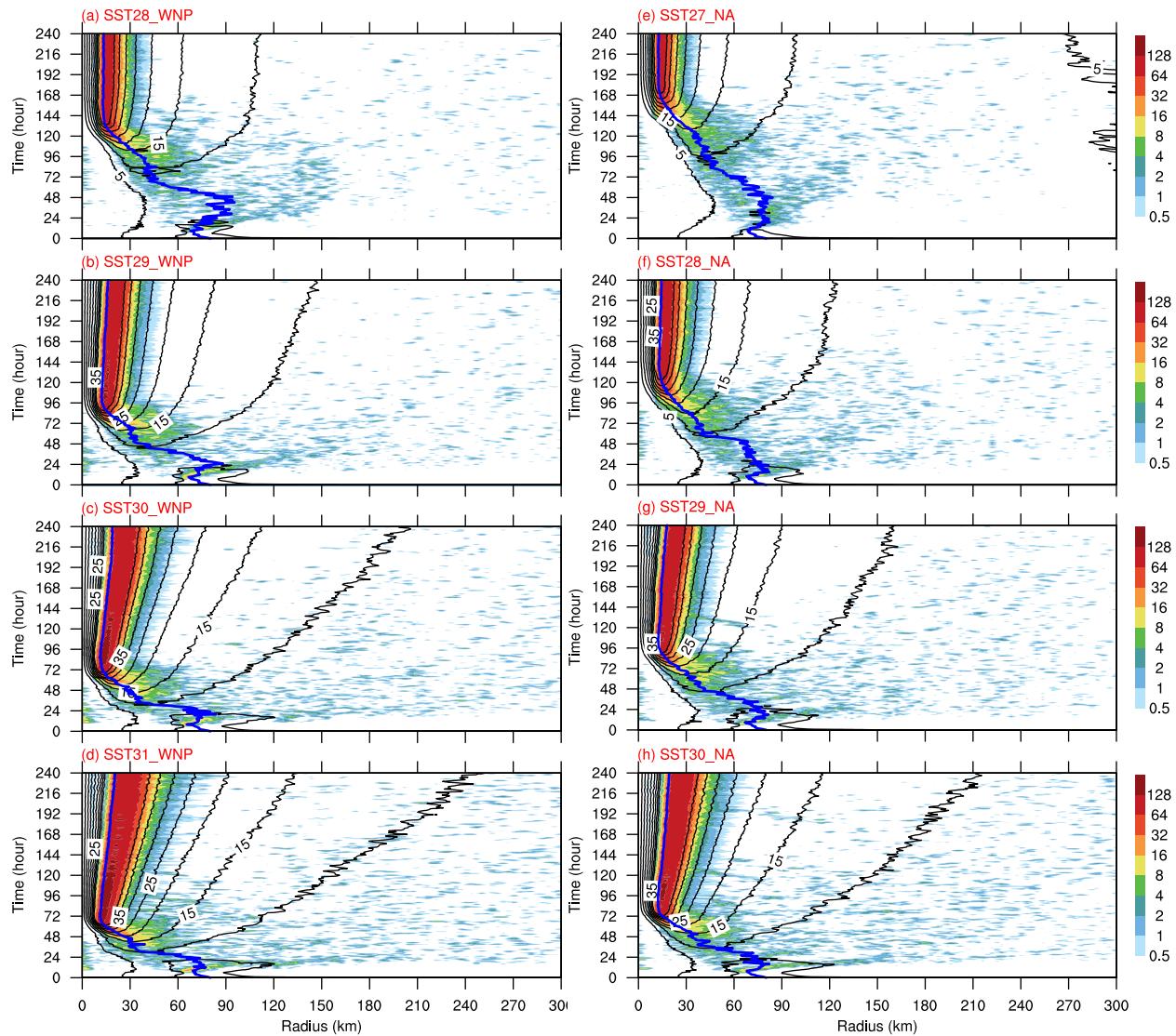

753
754
755
756

Figure 6. Radius-time Hovmöller diagram of the ensemble-mean hourly precipitation rate (shading, mm h^{-1}) and 10-m tangential wind speed (contour, at an interval of 5 m s^{-1}) with the blue line showing the location of the corresponding RMW.

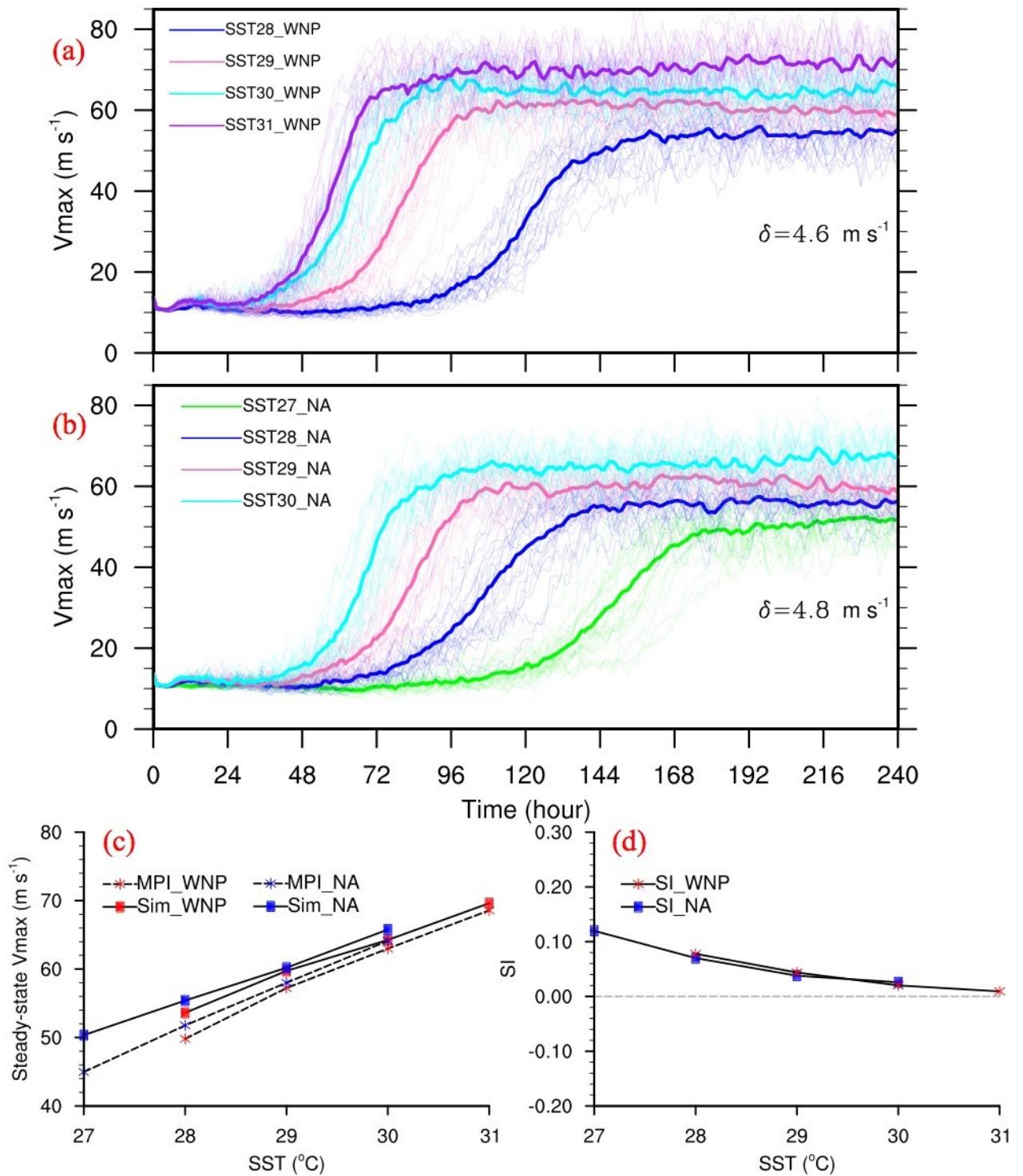


757

758 Figure 7. (a) As in Fig. 1a, (b) as in Fig. 5, and (c)-(d) as in Fig. 2a,b, but from the experiments
 759 using different upper limit of drag coefficient as shown in the brackets following the legend
 760 in (a)-(b) ($\times 10^{-3}$) and x-axis label in (c)-(d).



761
 762 Figure 8. Skew T -log p diagram averaged over (a)–(d) the western North Pacific and (e)–(h) the
 763 North Atlantic between 2009–2018. The corresponding initial convective available potential
 764 energy (CAPE, J kg^{-1}) is shown in the brackets following the title label in each panel.


765

766 Figure 9. As in Fig. 5 but for results from the experiments using the realistic SST-dependent
 767 atmospheric soundings.

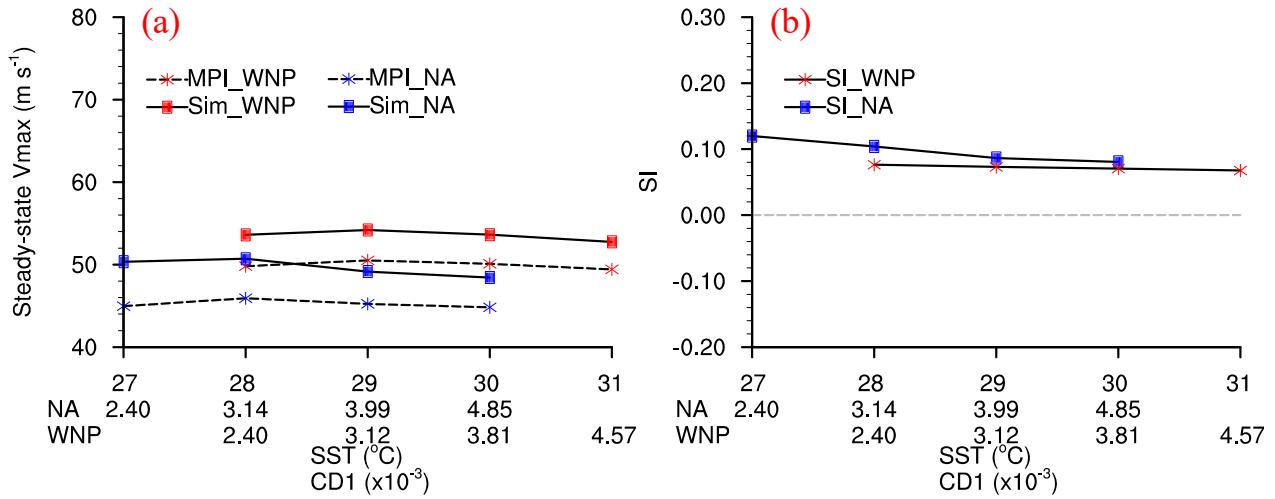

768
769
770

Figure 10. As in Fig. 6 but for results from the experiments using the realistic SST-dependent atmospheric soundings of the WNP (left column) and the NA (right column).

771

772 Figure 11. (a)–(b) As in Fig. 1a and (c)–(d) as in Figs. 2a–b, but for results from the experiments
 773 using the realistic SST-dependent atmospheric soundings over the WNP and NA, respectively.
 774 Sigma value in (a)–(b) indicates the standard deviation for the 21 individual runs averaged
 775 among all experiments during 180–240 h.

776

777 Figure 12. As in Figs. 11c–d, but from the experiments using different upper limit of drag
 778 coefficient as shown in the x-axis label.