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Abstract

Background: Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for
understanding the relationships between aquatic organisms and their environment, but more information is needed
to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry
receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a
freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by

a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency
was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or
pitch.

Results: Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than
300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary
receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the
transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m)
when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency
when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending
(pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no signifi-
cant effect when moving away from the transmitter.

Conclusion: Results suggested that much of the observed variation in detection efficiency is related to shielding of
the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the
transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that
will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding
robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refine-
ments, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments.
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and their movements typically are tracked by stationary
networks of hydrophones or acoustic receivers that can
identify acoustic-tagged animals in their vicinity [3-6].
Acoustic telemetry enables more frequent observation
(or sampling) of individuals than what can be obtained
by direct observation or sampling with traditional sur-
vey methods (i.e., trawls, gill nets). Observations from
such networks have already been used to improve con-
trol and assessment of invasive species, gain new insights
into spawning behavior and habitat requirements of fish,
and describe movements of high-valued stocks [1, 6]. In
the future, telemetry promises to address many critical
uncertainties in fishery research and aquatic ecosystems.
However, logistical and economic constraints may pre-
clude use of stationary receiver networks to fill gaps in
understanding of animal movements, especially in large
systems and extreme environments.

Autonomous surface vehicles (ASVs) and autonomous
underwater vehicles (AUVs) are becoming more com-
mon telemetry assets as receivers can be attached as a
payload, or they can be integrated for real-time detection
while simultaneously measuring physical and biological
properties of the aquatic environment [7, 8]. For example,
robotic sailboats were used to carry acoustic receivers to
quantify the spatial distribution of fishes [9], buoyancy-
driven gliders with integrated or externally mounted
receivers have been used to study sturgeon and shark
habitats [10-12], stereo-hydrophone acoustic receiver
systems have been integrated into propelled AUVs to
track and follow leopard sharks [13], and receivers and
hydrophones have also been externally mounted and
integrated into a propeller-driven AUV [14] and a wave
glider for real-time detections of tagged marine life [15].

Each of these vehicles has its unique advantages and
disadvantages. Propelled AUVs (e.g., REMUS-100 [14],
Woods Hole Oceanographic Institute, Woods Hole, MA,
USA, and Iver2 [16], L3Harris OceanServer, Fall River,
MA, USA) can overcome large currents and surface
waves, and are capable of traveling at higher speeds than
other unmanned vehicles. The main drawback for these
vehicles is the power requirement needed for the propel-
lers, limiting deployment duration in the field. Another
popular class of AUVs are wave gliders, where a surface
float that uses wave energy to move forward is attached
to an underwater sub via a tether [8]. The energy-efficient
nature of wave gliders, such as the Wave Glider (Liquid
Robotics, Sunnyvale, CA, USA) used in [15], allows them
to be deployed for months at a time. Moreover, accu-
rate positioning of the surface float is readily available
through GPS, along with reliable communication for the
duration of the mission. In addition to their large size, a
limitation of wave gliders is that the environmental sen-
sors deployed on these vehicles need to be tethered to
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the surface float, limiting the depth monitored by such
sensors. Underwater gliders are another class of energy-
efficient AUVs that travel by changing their buoyancy
and center of gravity. Underwater gliders, such as the Slo-
cum glider (Teledyne Webb Research, North Falmouth,
MA, USA) [17], have been widely used in a variety of
underwater applications [7, 10]. Like wave gliders, the
energy-efficient nature of these robots makes them ideal
for long-duration missions. However, unlike wave gliders,
no tether is involved with these robots, allowing for sam-
pling of water environment at different depths up to the
depth rating of the vehicle. The biggest challenges with
these robots involve underwater localization and com-
munication because radio-frequency signals do not pen-
etrate water effectively. Thus, vehicle position in between
surfacing events relies on dead reckoning, which is sus-
ceptible to large errors without the aid of additional sen-
sors such as the Doppler velocity log [18]. As the demand
for AUVs to study ecology of fish and other aquatic ani-
mals increases, a need exists to understand how design
elements, operational characteristics, and environmental
conditions influence detection efficiency (defined here as
the probability of detecting an acoustic signal emitted by
a tag) of telemetry-equipped AUVs.

In this paper, we describe detection efficiency of an
acoustic telemetry receiver mounted on a gliding robotic
fish, a novel type of underwater AUV [19-21], during a
series of field trials in a freshwater lake conducted prin-
cipally to evaluate hardware and software changes during
development. Like underwater gliders, gliding robotic
fish (dubbed GRACE, for Gliding-Robot-ACE) achieve
locomotion primarily through buoyancy-driven glid-
ing or spiraling. They are also equipped with an active
tail fin that can provide extra propulsion (e.g., “swim-
ming” against current), act as a rudder to improve steer-
ing during glide/spiral, and improve maneuverability via
asymmetrical flapping (e.g., tight turns on the surface or
during gliding). Consequently, gliding robotic fish com-
bine the energy-efficient nature of underwater gliders
with the high-maneuverability of robotic fish (a type of
bio-inspired surface robots) and hence hold great poten-
tial in long-duration monitoring of a broad spectrum of
aquatic environments. During field tests, we opportun-
istically collected data on detection efficiency using sta-
tionary transmitters and receivers. Objectives were to (1)
compare the detection efficiency of the AUV-mounted
receiver to that of stationary receivers and (2) determine
if the detection efficiency was related to distance between
receiver and tag, direction of travel (i.e., toward vs. away
from a remote transmitter), robot depth, and pitch during
gliding. Results were expected to inform further develop-
ment of gliding robotic fish and improve the design of
AUV-based telemetry performance assessments.
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Methods

Gliding robotic fish

An experimental prototype of GRACE, previously used
to sample crude oil and harmful algae [20, 22], was modi-
fied to serve as a mobile platform for a receiver for detect-
ing acoustic tags. The new robot design featured a carbon
fiber shell with removable front section, and aluminum
wings and tail. Sensor payloads consisted of a dissolved
oxygen and temperature sensor (In-Situ RDO Pro-X, Fort
Collins, CO USA), an underwater quantum sensor (LI-
COR LI-192, Lincoln, NE USA) for measuring Photosyn-
thetically Active Radiation, a Chlorophyll sensor (Turner
Designs Cyclops-7F C, San Jose, CA USA) and a freshwa-
ter Blue Green Algae sensor (Turner Designs Cyclops-7F
P). The sensors were bundled and connected to the robot
electronics through a waterproof connector (MarcArney
SubConn MCIL16-F/M, Esbjerg, Denmark).

A GPS sensor (Garmin GPS 18 x LVC, Olathe, KS
USA) was used for robot localization when the robot
was on the surface, while a pressure sensor (Honeywell
40PC100G2A, Charlotte, NC USA) was used to measure
the robot depth underwater. Two linear actuators were
used for buoyancy and pitch control; in particular, one
pushed water in and out of a tank for buoyancy control,
and the other moved a mass backward and forward to
pitch the robot up or down. These actuators were con-
trolled, at a low level, by an embedded microcontroller
(MCU) that operated at 7.37 MHz. The same microcon-
troller handled the reading of sensor data. An XBee wire-
less serial interface was used for communication with a

Table 1 GRACE components and specifications
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laptop on a boat located within the communication range
(typically several hundred meters). This channel was used
to send commands to the robot or query data from the
robot when it was on the surface (see summary of robot
components and specifications in Table 1).

Hardware and software design of the robot underwent
some evolution during the study period. In the 2016
trial, all robot operations (i.e., control, communication,
and data processing) were implemented on the embed-
ded MCU, and the robot sent its GPS position along
with a UTC time-stamp over the XBee channel every 5
s whenever it was on the surface. When the robot per-
formed a dive, it temporarily stored depth data that were
time-stamped and sent through the XBee channel upon
surfacing. In 2017, the robot also temporarily stored
orientation (yaw, pitch, and roll angles) information
whenever it was underwater. In 2018, we incorporated
a Raspberry Pi Zero W that performed high-level tasks
such as communication and data storage. This modifica-
tion allowed us to complement the original broadcasted
messages by storing all available data onto an on-board
SD card every 5 s. These data consisted of GPS coordi-
nates and UTC time, environmental sensor readings,
orientation of the robot (yaw, pitch, and roll angles), posi-
tions of each actuator, and battery level.

Field tests

A self-contained acoustic receiver (VEMCO model
VR2Tx; 69 kHz; Bedford, Nova Scotia, Canada) was
attached to the robot, and field trials were conducted in

Component

Description

Hull dimensions
Tail-to-nose length
Wingspan

Weight

Robot hull material
Battery capacity

Processors
Communication
Positioning

Orientation

Buoyancy tank volume
Pitch control®

Average swimming speed
Average glide speed
Environmental sensors

103 x 20 x 30 cm (L x W x H)
140 cm

60 cm

20kg

Carbon fiber

555 W H Li-ion polymer (approx. 5 days of continuous actuation with 1400
dive cycles @ 5-min intervals)

Raspberry Pi Zero W, Microchip dsPIC30F6014A MCU
XBee

GPS and pressure sensor

VN100S IMU and attitude and heading reference system
190 mL

+ 40° (pitching up), — 25° (pitching down)

25cm/s

13 cm/s (as low as 5 cm/s against current and a high of 35 cm/s with current)

Dissolved oxygen and temperature, photosynthetically active radiation,
freshwater blue green algae, chlorophyll

? Due to fabrication and balancing imperfections, the magnitude of the pitch angle when pitching down is smaller than that for pitching up
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Higgins Lake, Michigan, USA, during 2016-2018. The
receiver was mounted at the bottom of the robot, facing
forward (Fig. 1). Detection efficiency was investigated as
a function of distance between a test transmitter, or ‘tag,
and the receiver, robot direction (toward or away from
tag), robot depth, and robot pitch. Each receiver also
measured temperature (internal), tilt (degrees from ver-
tical), and environmental acoustic noise (69 kHz) every
10 min, but those variables were not used in analyses (see
Additional file 1) due to insufficient sampling frequency
to describe within-dive variation (temperature, noise,
and tilt); inability to detect rapid changes during dives
(temperature); and high correlations (redundancy) with
robot-integrated sensor data (tilt).

Tests (‘runs’) were conducted on 11 November 2016, 3
November 2017, and 14-15 June 2018 in Higgins Lake,
Michigan, where water depths ranged between 10-20 m
(Fig. 2; Table 2). These locations were selected to facili-
tate field testing of navigation and actuation systems on
a given day and not necessarily with detection efficiency
tests in mind. While these tests were primarily focused
on assessing the robot’s capabilities and identifying nec-
essary improvements, we used these opportunities to
determine the parameters that affect detection efficiency
for underwater gliders. During each trial, an acous-
tic transmitter (VEMCO model V8-4H 69 kHz; source
power level 147 dB re 1 Payu @ 1 m) was deployed on a
stationary mooring (depth ranged 1.5-7.0 m among runs)
and emitted a uniquely encoded signal every 24 s. Trans-
mitted signals were encoded using VEMCO’s 69-kHz
pulse—position—-modulation scheme (VEMCO code
space A69-1601). Once decoded, each signal’s unique ID
was recorded on the receiver along with time of detec-
tion. This tag type was used because it provided a detec-
tion range amenable to the field evaluation of the robot in
the study system. Specific tag programming (24 s trans-
mit interval) was selected to ensure that testing would
provide sufficient sample size for regression models and

— Acoustic receiver (VR2T)

: W
Environmental sensors /

Fig. 1 Gliding robotic fish. The modified version of GRACE with
bottom-mounted telemetry receiver
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to capture relatively fine-scale changes in variables of
interest (e.g., depth, pitch).

For every test, a target GPS waypoint was sent to the
robot from a laptop on a boat over the wireless commu-
nication channel, and the robot was tasked with navigat-
ing to that location through a series of dives. A depth
of 4.5 m was used as the maximum diving depth for the
robot as the depth rating had not been established for
the robot hull. Each dive was completed in approximately
3 min on average. Robot heading was controlled by
changes in tail position such that the tail acted as a rud-
der during gliding to maintain course toward the target
location. Between dives, the robot remained on the sur-
face for 20 s to ensure that a GPS lock was established,
and a new GPS position was obtained to calculate the
desired heading angle.

Mobile detection efficiency tests

In 2016, the effect of distance between receiver and tag
on detection efficiency was evaluated and compared
between mobile and stationary receivers (objective #1)
by navigating the robot-receiver system along a line of
five stationary receivers (VEMCO model VR2Tx 69 kHz).
Stationary receivers were suspended 1.5 m below the
surface (in the hydrophone-up position) and moored
via rope to weights on the lake bottom. Water depth at
stationary receiver sites ranged between 7.3 and 10.0 m.
Stationary receivers were arranged in a line with the
transmitter such that the receivers were spaced 200, 400,
600, 800, and 1000 m from the transmitter, which was
suspended 1.5 m below the surface in 11.0 m water depth.
During the first trial (run 16—1), the robot began navigat-
ing 996 m from the transmitter, in a direction roughly
parallel to the line of stationary receivers and toward
the transmitter. As the trial progressed, winds (approxi-
mately 4.9-5.8 m/s, based on a regional model) moved
the robot off-course while it attempted to obtain a GPS
fix. Magnetic disturbance, resulting from the internal
electronics and actuators, which affected the stability of
the measured heading angle using the on-board Inertial
Measurement Unit (IMU), also contributed to the robot
veering off-course. Consequently, the robot was removed
from water about 563 m from the transmitter, and then
returned to the water for a second trial (run 16-2). Dur-
ing the second trial, the robot started 411 m away from
the tag, and was removed from the water 288 m from the
transmitter.

Prior to the next field test, robot navigation problems
observed in 2016 were addressed. First, the IMU was
calibrated to reject larger magnetic disturbances, which
improved the stability of the measured heading angle.
Additionally, to combat high winds, the robot was tasked
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Fig. 2 Lake tests. a Map of Higgins Lake, Michigan, showing regions (red rectangles) where gliding robotic fish GRACE was tested 11 Nov 2016 (b),
03 Nov 2017 (c), and 14-15 June 2018 (d-f) with stationary transmitter locations (green circles), stationary receiver locations (yellow circles), and
GPS locations (pink/red circles) recorded by the gliding robotic fish during each run. GPS points are shaded along a gradient from start (pink) to end
(red) of each run
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Table 2 Summary of mobile detection efficiency trials with GRACE at Higgins Lake in 2016, 2017, and 2018 (Tag location

refers to sites identified in Fig. 2)

RunID Date time (UTC-4) Tag location Distance from tag Mean heading (deg.) Wind speed Wind heading (deg.)
(m) (m/s)

Start End Start End

16-1 11/11/16 11/11/16 T1 996 563 219° (SSW) 58 187°(S)
10:47 12:38

16-2 11/11/16 11/11/16 T1 411 288 214° (SSW) 49 182°(S)
12:52 13:30

17-1 11/3/17 11/3/17 T1 389 8 303° (WNW) 4.2 148° (SE)
12:45 14:54

18-1 6/14/18 6/14/18 T6 360 11 191 (S) 4.1 163° (SSE)
18:06 19:00

18-2 6/14/18 6/14/18 T6 44 361 3°(N) 1.7 157° (SE)
19:20 21:13

18-3 6/15/18 6/15/18 T7 408 10 8°(N) 19 324° (NW)
10:06 11:09

Mean heading reflects the bearing from the first GPS measurement toward the last GPS measurement in each run. Wind speed and direction (heading; note that this
is the direction the wind vectors are following, not “blowing from”as is customary) are coarse-scale regional estimates based on the NCEP’s Global Forecast System, as

described in methods

with “swimming” (by continuously flapping its tail) on
the surface while waiting for a GPS fix.

After these corrections, a second field trial was carried
out in 2017 to further investigate the effect of distance
on the detection efficiency for a mobile receiver (objec-
tive #1). During this trial (run 17-1), the gliding robotic
fish navigated from 389 m to less than 1 m from the tag,
in a direction roughly northwest. The tag was suspended
3.0 m below the surface in 19.8 m water depth. Station-
ary receivers were not deployed during the test in 2017
due to logistical constraints. While the windspeeds dur-
ing this trial were close to those in 2016 (approximately
4.2 m/s, based on regional model), the provisions we
took with surface swimming allowed the robot to com-
plete its task. During navigation, the tag transmitted 323
times and the robot repeatedly ascended and descended
between the surface and 4.5 m depth.

A third set of field trials were conducted in 2018 to
investigate the effect of the robot’s direction of travel,
depth, and pitch on detection efficiency (Objective #2).
In addition, four stationary receivers (R1-R4; Fig. 2) were
deployed in roughly a square-shaped pattern to explore
the utility of obtaining fine-scale robot tracks using time-
difference-of-arrival-based positioning (not evaluated in
this paper). Stationary receivers were suspended verti-
cally (hydrophone up) 4.7-19.8 m below the surface in
9.3-24.0 m water depth. A fifth stationary receiver was
collocated with the stationary tag; both were suspended
vertically (hydrophone up) 4.6 m below the water surface
in 9.1 m water depth. The robot was tasked with navigat-
ing toward the tag during two runs (runs 18-1, 18-3) and
away from the tag during one run (run 18-2). Like the

trials in 2017, the robot was tasked with swimming while
awaiting a GPS fix on the surface to counteract surface
waves that could push the robot away from its desired
course.

Water current and wind data (e.g., velocity and direc-
tion) were not measured at the site during testing, but
regional wind data were obtained from NCEP’s Global
Forecast System [23] using the R package RWind. Model-
based estimates of mean wind speed and direction dur-
ing 3-h intervals (e.g., 00:00-02:59 UTC, 03:00-05:59
UTC) at 10 m above land surface were obtained for two
locations about 24 km west (85.0° W, 44.5° N) and 17 km
east (84.5° W, 44.5° N) of the study site. Mean speed and
direction between the two locations were used to repre-
sent conditions at the study site during the 3-h interval
that contained each run.

Data analysis

Transmitter detection efficiency curves were estimated
for stationary and mobile receivers using generalized
additive models (GAMs) with binomial error struc-
ture. GAMs were used because they relax distributional
assumptions and allow greater flexibility in modeling
non-linear responses than generalized linear models
[24]. Times of missed detections (i.e., transmitted but
not detected) were estimated by sequencing every 24 s
through each detection data set to identify time stamps
that were not in the detection file for the receiver. A
binary indicator variable was used to represent detec-
tion (1) or non-detection (0). Variables describing robot
location and orientation (i.e., latitude, longitude, depth,
pitch) and water temperature (see Additional file 1) were
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estimated at time of each detection or non-detection
using time-based linear interpolation over measurements
recorded by the robot (Figs. 3, 4). Detection efficiency
curves were first described separately for each run and
for stationary and mobile receivers during each run, by
fitting a GAM to data from each run separately, except
that runs 16-1 and 16-2 were combined. These GAMs
simply estimated the probability of detection (binomial
response) as a function of distance between tag and
receiver (Fig. 5). Specifically, each model estimated the
log-odds (logit) of the probability of detecting each trans-
mitted tag signal as a function of the predictors:

logit(p) = bo + Sy¢_aist + &,

where by is the intercept; s,+ gist:4ir is @ smoothed func-
tion of distance for each direction and run, and ¢ is error
assumed from an independent draw from a normal

| I I I I B

Depth (m)

Pitch (degrees)

n
o
Loonapen bl

Water Temp. (C)

Time, (UTC - 04:00)
Fig. 3 Time-based dive profiles. Depth (a), pitch (b), and
temperature (c) profiles of gliding robotic fish GRACE during a
10-min segment of run 18-1 in Higgins Lake. Depths, pitch, and
temperature were recorded by the on-board sensors (open symbols)
and were estimated at the time of tag signal transmissions (red
symbols). Horizontal broken line in a shows depth of the stationary
transmitter at site T6. The black dot in ¢ shows a single temperature
measurement by the stationary transmitter at site T6 and the broken
line connects that observation to the previous and next temperature
measurements at that site
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Fig. 4 Distance-based dive profiles. Depth profiles of gliding robotic
fish GRACE during a selected 100- to 300-m segment of each run
(a—d) in Higgins Lake, with locations of test tag transmissions that
were detected (closed symbols) or not detected (open symbols) by
the on-board receiver. The robot navigated towards the tag in 17-1,
18-1,and 18-3, and navigated away from the tag in 18-2

distribution with mean 0 and variance ¢®. All models
were fit to data using the ‘gam’ function in the mgcv
library (v. 1.8.31) [25] in R (v. 3.6.2) [26]. The basis for
smoothing functions was a cubic regression spline
(bs="“cr” in mgcv) and 10 knots.

A GAM was fit to the data from runs 17-1, 18-1,
18-2, and 18-3 to estimate the detection efficiency as a
function of distance between receiver and transmitter,
direction of robot relative to transmitter (toward, away),
robot depth (meters below water surface), and robot
pitch (degrees from horizontal). Runs 16-1 and 16-2
were not included in the model because (1) little overlap
occurred in distances covered between those runs and
others (Fig. 5); (2) they lacked pitch data; and (3) depth
data were incomplete during those runs. Specifically, the
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Fig. 5 Detection efficiency as a function of distance for mobile and
stationary receivers. Estimated detection efficiencies for acoustic
receivers affixed to stationary moorings (red symbols are fitted values;
red shaded regions are GAM-based 95% confidence regions) and
gliding robotic fish GRACE (black lines are fitted values; gray-shaded
regions are GAM-based 95% confidence regions) in Higgins Lake,
Michigan, during field tests in 2016 (a), 2017 (b), and 2018 (c-e).
Vertical gray bars show distances between robot and the transmitter
when each coded signal was detected (1) or not detected (0)

model estimated the log-odds (logit) of the probability of
detecting each transmitted tag signal as a function of the
predictors
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are smoothed functions of depth and pitch for each
direction; and ¢ is error assumed from an independ-
ent draw from a normal distribution with mean 0 and
variance ¢°. Direction-specific smoothers were included
to estimate the partial effects of each level of each con-
tinuous predictor on the response (detection efficiency).
The run-specific smoother for distance was included to
account for run-specific variability in detection efficiency
not explained by other predictors. To eliminate con-
founding between run and direction, effects of direction
were limited to contrast between runs 18-1 and 18-2,
which occurred on the same day, and was accomplished
by treating runs 18-1 and 18-2 as a single run (“18-1
& 18-2") in the model. Thus, we assumed that differ-
ences between runs 18-1 and 18-2 were attributed to
change in direction relative to tag and no other variables
or conditions. This assumption was supported by similar
detection efficiency curves as functions of distance for
stationary receivers during those runs (Fig. 5c, d).

Run-specific variation could have been treated as a ran-
dom effect in a mixed-effects model, but we anticipated
no benefit of a mixed model with only four unique runs.
An added advantage of a run-specific smoother is that it
allows exploration of the unique shape of each curve that
might inform future hypotheses about variables influenc-
ing the shape of the curve during each run. While it is pos-
sible that some across-run variation could be explained by
wind, ambient noise, or water temperatures, our obser-
vational data set did not have replicate runs (wind, water
temperature) or sufficient within-predictor contrast
(ambient noise) and thus we did not include those vari-
ables in the model. Rather, we used those observations to
generate hypotheses from our descriptive analyses.

The basis for all smoothing functions was a cubic
regression spline with shrinkage (bs="“cs” in mgcv) and
10 knots. “Shrinkage smoothers” allow identification
of non-significant smoothers that essentially carry no
weight in the model by reducing the effective degrees of
freedom to a value as small as zero [24]. Thus, shrinkage
smoothers are an alternative to stepwise model selec-
tion procedures. All smoothers were estimated using
restricted maximum likelihood. Prior to model fitting,
data were checked for evidence of collinearity (corre-
lations among predictors). Model fit was evaluated by
checking for concurvity (non-independence) among
smoothers and evidence of non-normality among residu-
als. Significance of each smoothing term was determined

lOgit(P) = bo +dir + Srt_dist:dir + Srt_dist:run T Sdepth:dir + Spitch:dir + ¢,

where by is the intercept; dir is the fixed effect of direc-
tion; Sy gise:dir and Sy giserun are smoothed functions of
distance for each direction and run; sgepsh:4ir and Spizch:dir

based on estimated degrees of freedom and approximate

p-value for the null hypothesis that the smoothing term

was zero. The significance level for all tests was 0.05.
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Table 3 Summary of parametric coefficients (linear terms) and smoothing terms from GAM used to determine
if detection efficiency was related to distance from transmitter (tag distance, in meters), direction of robot travel relative
to transmitter (toward or away), robot depth (depth, in meters from water surface), or robot pitch (pitch, in degrees

from horizontal)

Linear terms Estimate SE z p-value
(Intercept) —4.282 0.581 —7.363 1.79E—
dir=toward 5322 0.594 8.965 3.11E-19
Smoothing terms EDF X p-value
s(rt_distance): dir=away 6.48E—04 4.85E—04 0.265
s(rt_distance): dir=toward 1.642 4345 584E—04
s(rt_distance): run=17-1 2152 6.651 3.07E—04
s(rt_distance): run=18-1, 18-2 2466 44.738 4.256—13
s(rt_distance): run=18-3 1.118 2.699 527E-03
s(pitch): dir=away 0.570 1.087 0.152
s(pitch): dir=toward 2416 33.366 3.15E-09
s(depth): dir=away 1212 9.468 8.55E—04
s(depth): dir=toward 0.209 0.255 0.247

Included for each parametric coefficient is the estimate, standard error (SE), test statistic (2), and p-value for the null hypothesis that the corresponding parameter
is zero. Included for each smoothing term is the estimated degrees of freedom (EDF), test statistic (x%), and approximate p-value for the null hypothesis that the

smoothing term is zero. Italicized p-values are significant at significance level of 0.05

Partial effects plots were used to assess the influence of
each smoother on the log-odds of detection efficiency
at each level of the predictor. Plots of fitted values were
used to assess the influence of each predictor on detec-
tion efficiency during each run on the probability scale.

Results

Estimated detection efficiency of the robot-mounted
receiver was lower than concurrently operated stationary
receivers during all three runs where stationary receivers
covered the full range of mobile runs (Fig. 5 a, ¢, d). Scale
and shape of detection efficiency curves, when plotted
against distance between transmitter and receiver, var-
ied among runs for both stationary and mobile receivers.
During 2016, when detection efficiencies were higher at
longer distances for both stationary and mobile receivers
than during any other run, detection efficiencies for the
mobile receiver were only slightly lower than the station-
ary receivers up to 600 m from the transmitter, but sub-
stantially lower at 800 m and 1000 m. The shape of the
curve for the stationary receivers was unexpected (e.g.,
higher efficiency at 800 m than 600 m), and suggested
that these stationary receivers were affected by pro-
cesses that were not quantified. During 18-1, estimated
detection efficiency was similar between stationary and
mobile receivers for distances up to 200 m but differed at
larger distances due to mobile detection range declining
much faster than stationary detection range. The great-
est difference between stationary and mobile detection
efficiency was observed during 18-2 when the robot

was moving away from the transmitter. During that run,
mobile detection efficiency for any distance was mark-
edly lower, even at 50 m—the closest distance between
receiver and transmitter during that run.

The GAM model explained 53.2% of the null devi-
ance. Detection efficiency differed by direction of travel
(Table 3) with more than a fivefold increase in the log-
odds of detection efficiency when moving toward the
transmitter than away from the transmitter. Significance
of distance-based smoothers suggested that variation in
the shape of range curves was attributed to direction of
movement and other run-specific variables not included
in the model. Pitch was significant when the robot was
moving toward the transmitter (with higher detection
efficiency for lower pitch value, regardless of pitch direc-
tion), but not when the robot was moving away from
the transmitter (Table 3a, Fig. 6¢). Depth was significant
when the robot was moving away from the transmitter
(with better detection efficiency at shallower depths), but
not when the robot was moving toward the transmitter
(Table 3b, Fig. 6d). Over the ranges of depth and pitch
observed, the effect of depth on detection efficiency mov-
ing away from the transmitter was greater than the effect
of pitch moving toward the transmitter (Fig. 7). Over-
all, the highest detection efficiency was observed when
the robot was navigating towards the tag with near-zero
pitch, while the lowest detection efficiency was observed
when the robot was navigating away from the tag and
was at large depths. However, results from data checking
(collinearity and concurvity; Additional file 2), variable
selection (shrinkage smoother degrees of freedom and
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p-values), and model selection (AIC) suggested that the
relationship among depth and pitch was complex. There-
fore, we caution against any strong conclusions about
individual effects of pitch and depth from these results.

Discussion

Understanding detection efficiency of telemetry receiv-
ers is essential for designing and conducting a successful
animal tracking project [4]. Although an animal location
can be derived from detection time differences among
multiple hydrophones [27], the location of a receiver at
the time of detection is often used to represent the gen-
eral location of a tagged animal at time of detection for
presence—absence data. Data describing the effect of
distance between transmitter and receiver on detection
efficiency are useful for interpreting spatial ambiguity

or uncertainty around detection locations, but is not
commonly collected [28]. Moreover, receivers are often
assumed omnidirectional, though several processes con-
tributing to directional or non-uniform detection areas
have been described [29]. Decreased detection efficiency
when the robot was moving away from the transmit-
ter was not unexpected due to potential shielding of the
signal based on position (bottom-mounted) and orien-
tation (forward-facing) of the receiver on the robot and
the importance of line-of-site to acoustic detection. The
magnitude of the effect, however, has important impli-
cations for the ability of an AUV in this configuration
to detect tagged fish and for inferences of fish locations
based on detection data.

Our results suggested that both depth and pitch can
influence detection efficiency, even under a narrow
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Fig. 7 Detection efficiency as a function of distance for different
depth and pitch values. Estimated detection efficiencies for acoustic
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when the robot was moving away from the transmitter (c) and pitch
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fitted values from the model with depth=2m (a, b, d) and pitch=0°
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scope of environmental conditions. Depth and pitch
are critical control parameters of AUVs that are care-
fully programmed to ensure mission success in the face
of environmental and energetic constraints. When the
objective is to detect acoustic-tagged fish, operational
adjustments may be needed to achieve favorable balance
among detection efficiency and other operational pro-
cesses (e.g., navigation, communication). Vertical gradi-
ents of environmental variables known to affect acoustic
signals in water (e.g., salinity, temperature, suspended
particulates, entrained air) exist in most aquatic systems,
but we were not aware of any such gradients during this
study. Although lack of environmental heterogeneity
may limit application of these results to other systems,
it may have improved our ability to identify relatively
small effects of depth and pitch on detection efficiency
by minimizing background variability during our study.
Moreover, observed variability that is not environmen-
tally driven may be related to variables that can be con-
trolled or modified.

We hypothesize that decreasing detection efficiency
from the surface to 4 m depth when moving away from
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the transmitter was driven by shielding of the signal by
the body of the robot at depth. As described above, this
explanation seems reasonable based on position and
orientation of the receiver on the robot. If true, then
the depth variable used in our analysis may be a proxy
for the difference in depth between the hydrophone
and transmitter. Although the range in depth difference
between receiver and transmitter in our tests (receiver
ranged O to 4 m above the tag) may be representative of
some shallow environments, potential clearly exists for
much greater vertical separation between transmitter
and receiver in many aquatic systems. For an AUV with
bottom-mounted receiver, shielding effects are expected
to be largest when the vehicle is deeper than a tagged
fish and smallest when the vehicle is shallower than the
tagged fish. Thus, effects of shielding may be minimized
by operational parameters (e.g., depth range) based on
knowledge of the ecology of the target organisms (i.e.,
remaining near the surface for pelagic fish) or structural
changes to the vehicle (i.e., positioning the receiver on
top of the AUV for surface-oriented fish).

Although the mobile receiver on the gliding robotic fish
did not perform as well as stationary receivers through-
out the entire range tested, detection efficiency over
shorter distances (300 m or less) are likely still adequate
for some active tracking needs. In practice, the distance
at which a transmitter is reliably detected can vary con-
siderably due to hardware and software differences and
environmental conditions. Future work should seek to
determine if differences between the robot-mounted
receiver and stationary receivers are caused by charac-
teristics of the robot (e.g., electrical or mechanical noise)
or interaction of the robot with the environment (e.g.,
turbulence of flow over the hydrophone). For example,
future work might seek to determine if low detection
efficiency while ascending (pitched up) was associated
with noise from the tail motor or increased turbulence
on the receiver during tail actuation. Regardless of
future improvements, however, knowledge of the robot-
mounted detection efficiencies will be useful for planning
future missions, including active tracking with a network
of AUVs.

While direct comparison of these results to similar
work using the Slocum glider in [7] and Wave Glider in
[8] in saltwater is difficult, the detection efficiency curves
obtained here can further improve our understand-
ing of such systems. Our obtained detection efficiency
results when the hydrophone was facing towards the tag
over short distances of 100 m (>80%) are close to those
reported in [8] (50-90%), and are higher than those
reported in [7] (40—0%). These results highlighted the sig-
nificance of alignment between transmitter and receiver
for a forward-facing receiver, and can help explain the
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lower detection efficiency observed in [7], as it could be
due to occasional shielding as well as other environmen-
tal differences. These result also supported the observed
improvement of detection efficiency for the vertically
mounted receivers compared to the forward-facing
receiver in [7], as forward-facing receivers are more sus-
ceptible to shielding of acoustic signals.

Although our results add to knowledge of AUV perfor-
mance as receiver platforms, much variation in detection
efficiency remained unexplained in our analysis. Unfor-
tunately, we were not able to account for the influence of
the environmental variables (e.g., wind, water tempera-
ture, ambient noise) on the results because availability of
these data were limited. Our observational data set did
not have sufficient replication (multiple runs) over envi-
ronmental variables (e.g., wind, ambient noise, thermal
stratification) to explore this aspect. Future work should
seek to obtain a balanced study design with replicate runs
over a range of environment variables, so that one can
attribute variation in the detection efficiencies to those
variables.

Conclusion

We considered parameters that affect the detection effi-
ciency of mobile receivers mounted on AUVs through
a series of trials using a gliding robotic fish, in which
a forward-facing acoustic receiver was fixed to the
robot’s hull. While the detection efficiency of the robot-
mounted receiver was expected to be lowered when the
receiver was pointed away from the tag, the impact of
this effect was significant. Results suggested that much
of the observed variation may be related to shielding
of the signal by the robot body depending on the posi-
tions and orientation of the hydrophone relative to the
transmitter.

These results inform hardware, software, and opera-
tional changes to gliding robotic fish that will improve
detection efficiency. As an example, tag-tracking
controllers should consider the directionality of the
receiver, as well as the relative position of the tag with
respect to the receiver. Other options to mitigate the
shielding effect include the use of vertically mounted
receivers, pointing upwards or downwards [7, 12], or
using two bidirectionally mounted receivers (forward-
and rear-facing). We hypothesize that such configura-
tions could still suffer from reduced detection efficiency
due to shielding, and knowledge of the ecology of the
target organisms should be considered to guide the
positioning of the receivers.

Data on the size and shape of detection efficiency
curves for gliding robotic fish will be useful for planning
future missions and should be relevant to other AUVs for
telemetry. While the detection efficiency of the mobile
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receiver, when facing the tag, matched that of stationary
receivers for distances of less than 300 m, these distances
are still adequate for several active tracking applications
using networks of these AUVs. Future work should seek
to determine if differences between the robot-mounted
receiver and stationary receivers are due to characteris-
tics of the robot or interaction of the robot with the envi-
ronment. Finally, future studies should use a balanced
study design with replicate runs over a range of envi-
ronment variables and compare the detection efficiency
using different AUVs.
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Additional file 1. Summaries of environmental noise, water temperature,
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