
Ennasr et al. Anim Biotelemetry            (2020) 8:32  

https://doi.org/10.1186/s40317-020-00219-7

TELEMETRY CASE REPORT

Characterization of acoustic detection 
efficiency using a gliding robotic fish 
as a mobile receiver platform
Osama Ennasr1* , Christopher Holbrook2, Darryl W. Hondorp3, Charles C. Krueger4, Demetris Coleman1, 

Pratap Solanki1, John Thon1 and Xiaobo Tan1

Abstract 

Background: Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for 

understanding the relationships between aquatic organisms and their environment, but more information is needed 

to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry 

receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a 

freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by 

a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency 

was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or 

pitch.

Results: Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 

300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary 

receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the 

transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) 

when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency 

when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending 

(pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no signifi-

cant effect when moving away from the transmitter.

Conclusion: Results suggested that much of the observed variation in detection efficiency is related to shielding of 

the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the 

transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that 

will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding 

robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refine-

ments, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments.
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efficiency
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Background
Recent improvements in acoustic telemetry technolo-

gies have advanced studies of spatiotemporal ecology 

and behavior of aquatic organisms [1, 2]. In acoustic 

telemetry, animals are tagged with acoustic transmitters 
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and their movements typically are tracked by stationary 

networks of hydrophones or acoustic receivers that can 

identify acoustic-tagged animals in their vicinity [3–6]. 

Acoustic telemetry enables more frequent observation 

(or sampling) of individuals than what can be obtained 

by direct observation or sampling with traditional sur-

vey methods (i.e., trawls, gill nets). Observations from 

such networks have already been used to improve con-

trol and assessment of invasive species, gain new insights 

into spawning behavior and habitat requirements of fish, 

and describe movements of high-valued stocks [1, 6]. In 

the future, telemetry promises to address many critical 

uncertainties in fishery research and aquatic ecosystems. 

However, logistical and economic constraints may pre-

clude use of stationary receiver networks to fill gaps in 

understanding of animal movements, especially in large 

systems and extreme environments.

Autonomous surface vehicles (ASVs) and autonomous 

underwater vehicles (AUVs) are becoming more com-

mon telemetry assets as receivers can be attached as a 

payload, or they can be integrated for real-time detection 

while simultaneously measuring physical and biological 

properties of the aquatic environment [7, 8]. For example, 

robotic sailboats were used to carry acoustic receivers to 

quantify the spatial distribution of fishes [9], buoyancy-

driven gliders with integrated or externally mounted 

receivers have been used to study sturgeon and shark 

habitats [10–12], stereo-hydrophone acoustic receiver 

systems have been integrated into propelled AUVs to 

track and follow leopard sharks [13], and receivers and 

hydrophones have also been externally mounted and 

integrated into a propeller-driven AUV [14] and a wave 

glider for real-time detections of tagged marine life [15].

Each of these vehicles has its unique advantages and 

disadvantages. Propelled AUVs (e.g., REMUS-100 [14], 

Woods Hole Oceanographic Institute, Woods Hole, MA, 

USA, and Iver2 [16], L3Harris OceanServer, Fall River, 

MA, USA) can overcome large currents and surface 

waves, and are capable of traveling at higher speeds than 

other unmanned vehicles. The main drawback for these 

vehicles is the power requirement needed for the propel-

lers, limiting deployment duration in the field. Another 

popular class of AUVs are wave gliders, where a surface 

float that uses wave energy to move forward is attached 

to an underwater sub via a tether [8]. The energy-efficient 

nature of wave gliders, such as the Wave Glider (Liquid 

Robotics, Sunnyvale, CA, USA) used in [15], allows them 

to be deployed for months at a time. Moreover, accu-

rate positioning of the surface float is readily available 

through GPS, along with reliable communication for the 

duration of the mission. In addition to their large size, a 

limitation of wave gliders is that the environmental sen-

sors deployed on these vehicles need to be tethered to 

the surface float, limiting the depth monitored by such 

sensors. Underwater gliders are another class of energy-

efficient AUVs that travel by changing their buoyancy 

and center of gravity. Underwater gliders, such as the Slo-

cum glider (Teledyne Webb Research, North Falmouth, 

MA, USA) [17], have been widely used in a variety of 

underwater applications [7, 10]. Like wave gliders, the 

energy-efficient nature of these robots makes them ideal 

for long-duration missions. However, unlike wave gliders, 

no tether is involved with these robots, allowing for sam-

pling of water environment at different depths up to the 

depth rating of the vehicle. The biggest challenges with 

these robots involve underwater localization and com-

munication because radio-frequency signals do not pen-

etrate water effectively. Thus, vehicle position in between 

surfacing events relies on dead reckoning, which is sus-

ceptible to large errors without the aid of additional sen-

sors such as the Doppler velocity log [18]. As the demand 

for AUVs to study ecology of fish and other aquatic ani-

mals increases, a need exists to understand how design 

elements, operational characteristics, and environmental 

conditions influence detection efficiency (defined here as 

the probability of detecting an acoustic signal emitted by 

a tag) of telemetry-equipped AUVs.

In this paper, we describe detection efficiency of an 

acoustic telemetry receiver mounted on a gliding robotic 

fish, a novel type of underwater AUV [19–21], during a 

series of field trials in a freshwater lake conducted prin-

cipally to evaluate hardware and software changes during 

development. Like underwater gliders, gliding robotic 

fish (dubbed GRACE, for Gliding-Robot-ACE) achieve 

locomotion primarily through buoyancy-driven glid-

ing or spiraling. They are also equipped with an active 

tail fin that can provide extra propulsion (e.g., “swim-

ming” against current), act as a rudder to improve steer-

ing during glide/spiral, and improve maneuverability via 

asymmetrical flapping (e.g., tight turns on the surface or 

during gliding). Consequently, gliding robotic fish com-

bine the energy-efficient nature of underwater gliders 

with the high-maneuverability of robotic fish (a type of 

bio-inspired surface robots) and hence hold great poten-

tial in long-duration monitoring of a broad spectrum of 

aquatic environments. During field tests, we opportun-

istically collected data on detection efficiency using sta-

tionary transmitters and receivers. Objectives were to (1) 

compare the detection efficiency of the AUV-mounted 

receiver to that of stationary receivers and (2) determine 

if the detection efficiency was related to distance between 

receiver and tag, direction of travel (i.e., toward vs. away 

from a remote transmitter), robot depth, and pitch during 

gliding. Results were expected to inform further develop-

ment of gliding robotic fish and improve the design of 

AUV-based telemetry performance assessments.
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Methods
Gliding robotic fish

An experimental prototype of GRACE, previously used 

to sample crude oil and harmful algae [20, 22], was modi-

fied to serve as a mobile platform for a receiver for detect-

ing acoustic tags. The new robot design featured a carbon 

fiber shell with removable front section, and aluminum 

wings and tail. Sensor payloads consisted of a dissolved 

oxygen and temperature sensor (In-Situ RDO Pro-X, Fort 

Collins, CO USA), an underwater quantum sensor (LI-

COR LI-192, Lincoln, NE USA) for measuring Photosyn-

thetically Active Radiation, a Chlorophyll sensor (Turner 

Designs Cyclops-7F C, San Jose, CA USA) and a freshwa-

ter Blue Green Algae sensor (Turner Designs Cyclops-7F 

P). The sensors were bundled and connected to the robot 

electronics through a waterproof connector (MarcArney 

SubConn MCIL16-F/M, Esbjerg, Denmark).

A GPS sensor (Garmin GPS 18 × LVC, Olathe, KS 

USA) was used for robot localization when the robot 

was on the surface, while a pressure sensor (Honeywell 

40PC100G2A, Charlotte, NC USA) was used to measure 

the robot depth underwater. Two linear actuators were 

used for buoyancy and pitch control; in particular, one 

pushed water in and out of a tank for buoyancy control, 

and the other moved a mass backward and forward to 

pitch the robot up or down. These actuators were con-

trolled, at a low level, by an embedded microcontroller 

(MCU) that operated at 7.37 MHz. The same microcon-

troller handled the reading of sensor data. An XBee wire-

less serial interface was used for communication with a 

laptop on a boat located within the communication range 

(typically several hundred meters). This channel was used 

to send commands to the robot or query data from the 

robot when it was on the surface (see summary of robot 

components and specifications in Table 1).

Hardware and software design of the robot underwent 

some evolution during the study period. In the 2016 

trial, all robot operations (i.e., control, communication, 

and data processing) were implemented on the embed-

ded MCU, and the robot sent its GPS position along 

with a UTC time-stamp over the XBee channel every 5 

s whenever it was on the surface. When the robot per-

formed a dive, it temporarily stored depth data that were 

time-stamped and sent through the XBee channel upon 

surfacing. In 2017, the robot also temporarily stored 

orientation (yaw, pitch, and roll angles) information 

whenever it was underwater. In 2018, we incorporated 

a Raspberry Pi Zero W that performed high-level tasks 

such as communication and data storage. This modifica-

tion allowed us to complement the original broadcasted 

messages by storing all available data onto an on-board 

SD card every 5 s. These data consisted of GPS coordi-

nates and UTC time, environmental sensor readings, 

orientation of the robot (yaw, pitch, and roll angles), posi-

tions of each actuator, and battery level.

Field tests

A self-contained acoustic receiver (VEMCO model 

VR2Tx; 69  kHz; Bedford, Nova Scotia, Canada) was 

attached to the robot, and field trials were conducted in 

Table 1 GRACE components and specifications

a Due to fabrication and balancing imperfections, the magnitude of the pitch angle when pitching down is smaller than that for pitching up

Component Description

Hull dimensions 103 × 20 × 30 cm (L x W x H)

Tail-to-nose length 140 cm

Wingspan 60 cm

Weight 20 kg

Robot hull material Carbon fiber

Battery capacity 555 W H Li-ion polymer (approx. 5 days of continuous actuation with 1400 
dive cycles @ 5-min intervals)

Processors Raspberry Pi Zero W, Microchip dsPIC30F6014A MCU

Communication XBee

Positioning GPS and pressure sensor

Orientation VN100S IMU and attitude and heading reference system

Buoyancy tank volume 190 mL

Pitch  controla + 40° (pitching up), − 25° (pitching down)

Average swimming speed 25 cm/s

Average glide speed 13 cm/s (as low as 5 cm/s against current and a high of 35 cm/s with current)

Environmental sensors Dissolved oxygen and temperature, photosynthetically active radiation, 
freshwater blue green algae, chlorophyll
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Higgins Lake, Michigan, USA, during 2016–2018. The 

receiver was mounted at the bottom of the robot, facing 

forward (Fig. 1). Detection efficiency was investigated as 

a function of distance between a test transmitter, or ‘tag’, 

and the receiver, robot direction (toward or away from 

tag), robot depth, and robot pitch. Each receiver also 

measured temperature (internal), tilt (degrees from ver-

tical), and environmental acoustic noise (69  kHz) every 

10 min, but those variables were not used in analyses (see 

Additional file 1) due to insufficient sampling frequency 

to describe within-dive variation (temperature, noise, 

and tilt); inability to detect rapid changes during dives 

(temperature); and high correlations (redundancy) with 

robot-integrated sensor data (tilt).

Tests (‘runs’) were conducted on 11 November 2016, 3 

November 2017, and 14–15 June 2018 in Higgins Lake, 

Michigan, where water depths ranged between 10–20 m 

(Fig.  2; Table  2). These locations were selected to facili-

tate field testing of navigation and actuation systems on 

a given day and not necessarily with detection efficiency 

tests in mind. While these tests were primarily focused 

on assessing the robot’s capabilities and identifying nec-

essary improvements, we used these opportunities to 

determine the parameters that affect detection efficiency 

for underwater gliders. During each trial, an acous-

tic transmitter (VEMCO model V8-4H 69  kHz; source 

power level 147 dB re 1 Paµ @ 1 m) was deployed on a 

stationary mooring (depth ranged 1.5–7.0 m among runs) 

and emitted a uniquely encoded signal every 24 s. Trans-

mitted signals were encoded using VEMCO’s 69-kHz 

pulse–position–modulation scheme (VEMCO code 

space A69-1601). Once decoded, each signal’s unique ID 

was recorded on the receiver along with time of detec-

tion. This tag type was used because it provided a detec-

tion range amenable to the field evaluation of the robot in 

the study system. Specific tag programming (24 s trans-

mit interval) was selected to ensure that testing would 

provide sufficient sample size for regression models and 

to capture relatively fine-scale changes in variables of 

interest (e.g., depth, pitch).

For every test, a target GPS waypoint was sent to the 

robot from a laptop on a boat over the wireless commu-

nication channel, and the robot was tasked with navigat-

ing to that location through a series of dives. A depth 

of 4.5 m was used as the maximum diving depth for the 

robot as the depth rating had not been established for 

the robot hull. Each dive was completed in approximately 

3  min on average. Robot heading was controlled by 

changes in tail position such that the tail acted as a rud-

der during gliding to maintain course toward the target 

location. Between dives, the robot remained on the sur-

face for 20  s to ensure that a GPS lock was established, 

and a new GPS position was obtained to calculate the 

desired heading angle.

Mobile detection efficiency tests

In 2016, the effect of distance between receiver and tag 

on detection efficiency was evaluated and compared 

between mobile and stationary receivers (objective #1) 

by navigating the robot–receiver system along a line of 

five stationary receivers (VEMCO model VR2Tx 69 kHz). 

Stationary receivers were suspended 1.5  m below the 

surface (in the hydrophone-up position) and moored 

via rope to weights on the lake bottom. Water depth at 

stationary receiver sites ranged between 7.3 and 10.0 m. 

Stationary receivers were arranged in a line with the 

transmitter such that the receivers were spaced 200, 400, 

600, 800, and 1000  m from the transmitter, which was 

suspended 1.5 m below the surface in 11.0 m water depth. 

During the first trial (run 16–1), the robot began navigat-

ing 996  m from the transmitter, in a direction roughly 

parallel to the line of stationary receivers and toward 

the transmitter. As the trial progressed, winds (approxi-

mately 4.9–5.8  m/s, based on a regional model) moved 

the robot off-course while it attempted to obtain a GPS 

fix. Magnetic disturbance, resulting from the internal 

electronics and actuators, which affected the stability of 

the measured heading angle using the on-board Inertial 

Measurement Unit (IMU), also contributed to the robot 

veering off-course. Consequently, the robot was removed 

from water about 563 m from the transmitter, and then 

returned to the water for a second trial (run 16–2). Dur-

ing the second trial, the robot started 411 m away from 

the tag, and was removed from the water 288 m from the 

transmitter.

Prior to the next field test, robot navigation problems 

observed in 2016 were addressed. First, the IMU was 

calibrated to reject larger magnetic disturbances, which 

improved the stability of the measured heading angle. 

Additionally, to combat high winds, the robot was tasked 
Fig. 1 Gliding robotic fish. The modified version of GRACE with 

bottom-mounted telemetry receiver
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Fig. 2 Lake tests. a Map of Higgins Lake, Michigan, showing regions (red rectangles) where gliding robotic fish GRACE was tested 11 Nov 2016 (b), 

03 Nov 2017 (c), and 14–15 June 2018 (d–f) with stationary transmitter locations (green circles), stationary receiver locations (yellow circles), and 

GPS locations (pink/red circles) recorded by the gliding robotic fish during each run. GPS points are shaded along a gradient from start (pink) to end 

(red) of each run
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with “swimming” (by continuously flapping its tail) on 

the surface while waiting for a GPS fix.

After these corrections, a second field trial was carried 

out in 2017 to further investigate the effect of distance 

on the detection efficiency for a mobile receiver (objec-

tive #1). During this trial (run 17–1), the gliding robotic 

fish navigated from 389 m to less than 1 m from the tag, 

in a direction roughly northwest. The tag was suspended 

3.0 m below the surface in 19.8 m water depth. Station-

ary receivers were not deployed during the test in 2017 

due to logistical constraints. While the windspeeds dur-

ing this trial were close to those in 2016 (approximately 

4.2  m/s, based on regional model), the provisions we 

took with surface swimming allowed the robot to com-

plete its task. During navigation, the tag transmitted 323 

times and the robot repeatedly ascended and descended 

between the surface and 4.5 m depth.

A third set of field trials were conducted in 2018 to 

investigate the effect of the robot’s direction of travel, 

depth, and pitch on detection efficiency (Objective #2). 

In addition, four stationary receivers (R1–R4; Fig. 2) were 

deployed in roughly a square-shaped pattern to explore 

the utility of obtaining fine-scale robot tracks using time-

difference-of-arrival-based positioning (not evaluated in 

this paper). Stationary receivers were suspended verti-

cally (hydrophone up) 4.7–19.8  m below the surface in 

9.3–24.0  m water depth. A fifth stationary receiver was 

collocated with the stationary tag; both were suspended 

vertically (hydrophone up) 4.6 m below the water surface 

in 9.1 m water depth. The robot was tasked with navigat-

ing toward the tag during two runs (runs 18–1, 18–3) and 

away from the tag during one run (run 18–2). Like the 

trials in 2017, the robot was tasked with swimming while 

awaiting a GPS fix on the surface to counteract surface 

waves that could push the robot away from its desired 

course.

Water current and wind data (e.g., velocity and direc-

tion) were not measured at the site during testing, but 

regional wind data were obtained from NCEP’s Global 

Forecast System [23] using the R package RWind. Model-

based estimates of mean wind speed and direction dur-

ing 3-h intervals (e.g., 00:00–02:59 UTC, 03:00–05:59 

UTC) at 10 m above land surface were obtained for two 

locations about 24 km west (85.0° W, 44.5° N) and 17 km 

east (84.5° W, 44.5° N) of the study site. Mean speed and 

direction between the two locations were used to repre-

sent conditions at the study site during the 3-h interval 

that contained each run.

Data analysis

Transmitter detection efficiency curves were estimated 

for stationary and mobile receivers using generalized 

additive models (GAMs) with binomial error struc-

ture. GAMs were used because they relax distributional 

assumptions and allow greater flexibility in modeling 

non-linear responses than generalized linear models 

[24]. Times of missed detections (i.e., transmitted but 

not detected) were estimated by sequencing every 24  s 

through each detection data set to identify time stamps 

that were not in the detection file for the receiver. A 

binary indicator variable was used to represent detec-

tion (1) or non-detection (0). Variables describing robot 

location and orientation (i.e., latitude, longitude, depth, 

pitch) and water temperature (see Additional file 1) were 

Table 2 Summary of mobile detection efficiency trials with GRACE at Higgins Lake in 2016, 2017, and 2018 (Tag location 

refers to sites identified in Fig. 2)

Mean heading reflects the bearing from the first GPS measurement toward the last GPS measurement in each run. Wind speed and direction (heading; note that this 

is the direction the wind vectors are following, not “blowing from” as is customary) are coarse-scale regional estimates based on the NCEP’s Global Forecast System, as 

described in methods

Run ID Date time (UTC-4) Tag location Distance from tag 
(m)

Mean heading (deg.) Wind speed 
(m/s)

Wind heading (deg.)

Start End Start End

16–1 11/11/16
10:47

11/11/16
12:38

T1 996 563 219° (SSW) 5.8 187° (S)

16–2 11/11/16
12:52

11/11/16
13:30

T1 411 288 214° (SSW) 4.9 182° (S)

17–1 11/3/17
12:45

11/3/17
14:54

T1 389 8 303° (WNW) 4.2 148° (SE)

18–1 6/14/18
18:06

6/14/18
19:00

T6 360 11 191 (S) 4.1 163° (SSE)

18–2 6/14/18
19:20

6/14/18
21:13

T6 44 361 3° (N) 1.7 157° (SE)

18–3 6/15/18
10:06

6/15/18
11:09

T7 408 10 8° (N) 1.9 324° (NW)
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estimated at time of each detection or non-detection 

using time-based linear interpolation over measurements 

recorded by the robot (Figs.  3, 4). Detection efficiency 

curves were first described separately for each run and 

for stationary and mobile receivers during each run, by 

fitting a GAM to data from each run separately, except 

that runs 16–1 and 16–2 were combined. These GAMs 

simply estimated the probability of detection (binomial 

response) as a function of distance between tag and 

receiver (Fig.  5). Specifically, each model estimated the 

log-odds (logit) of the probability of detecting each trans-

mitted tag signal as a function of the predictors:

where b0 is the intercept; srt_dist:dir is a smoothed func-

tion of distance for each direction and run, and ε is error 

assumed from an independent draw from a normal 

logit(p) = b0 + srt_dist + ε,

distribution with mean 0 and variance σ2. All models 

were fit to data using the ‘gam’ function in the mgcv 

library (v. 1.8.31) [25] in R (v. 3.6.2) [26]. The basis for 

smoothing functions was a cubic regression spline 

(bs = “cr” in mgcv) and 10 knots.

A GAM was fit to the data from runs 17–1, 18–1, 

18–2, and 18–3 to estimate the detection efficiency as a 

function of distance between receiver and transmitter, 

direction of robot relative to transmitter (toward, away), 

robot depth (meters below water surface), and robot 

pitch (degrees from horizontal). Runs 16–1 and 16–2 

were not included in the model because (1) little overlap 

occurred in distances covered between those runs and 

others (Fig. 5); (2) they lacked pitch data; and (3) depth 

data were incomplete during those runs. Specifically, the 

Fig. 3 Time-based dive profiles. Depth (a), pitch (b), and 

temperature (c) profiles of gliding robotic fish GRACE during a 

10-min segment of run 18–1 in Higgins Lake. Depths, pitch, and 

temperature were recorded by the on-board sensors (open symbols) 

and were estimated at the time of tag signal transmissions (red 

symbols). Horizontal broken line in a shows depth of the stationary 

transmitter at site T6. The black dot in c shows a single temperature 

measurement by the stationary transmitter at site T6 and the broken 

line connects that observation to the previous and next temperature 

measurements at that site

Fig. 4 Distance-based dive profiles. Depth profiles of gliding robotic 

fish GRACE during a selected 100- to 300-m segment of each run 

(a–d) in Higgins Lake, with locations of test tag transmissions that 

were detected (closed symbols) or not detected (open symbols) by 

the on-board receiver. The robot navigated towards the tag in 17–1, 

18–1, and 18–3, and navigated away from the tag in 18–2
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model estimated the log-odds (logit) of the probability of 

detecting each transmitted tag signal as a function of the 

predictors

where b0 is the intercept; dir is the fixed effect of direc-

tion; srt_dist:dir and srt_dist:run are smoothed functions of 

distance for each direction and run; sdepth:dir and spitch:dir 

logit(p) = b0 + dir + srt_dist:dir + srt_dist:run + sdepth:dir + spitch:dir + ε,

are smoothed functions of depth and pitch for each 

direction; and ε is error assumed from an independ-

ent draw from a normal distribution with mean 0 and 

variance σ2. Direction-specific smoothers were included 

to estimate the partial effects of each level of each con-

tinuous predictor on the response (detection efficiency). 

The run-specific smoother for distance was included to 

account for run-specific variability in detection efficiency 

not explained by other predictors. To eliminate con-

founding between run and direction, effects of direction 

were limited to contrast between runs 18–1 and 18–2, 

which occurred on the same day, and was accomplished 

by treating runs 18–1 and 18–2 as a single run (“18–1 

& 18–2”) in the model. Thus, we assumed that differ-

ences between runs 18–1 and 18–2 were attributed to 

change in direction relative to tag and no other variables 

or conditions. This assumption was supported by similar 

detection efficiency curves as functions of distance for 

stationary receivers during those runs (Fig. 5c, d).

Run-specific variation could have been treated as a ran-

dom effect in a mixed-effects model, but we anticipated 

no benefit of a mixed model with only four unique runs. 

An added advantage of a run-specific smoother is that it 

allows exploration of the unique shape of each curve that 

might inform future hypotheses about variables influenc-

ing the shape of the curve during each run. While it is pos-

sible that some across-run variation could be explained by 

wind, ambient noise, or water temperatures, our obser-

vational data set did not have replicate runs (wind, water 

temperature) or sufficient within-predictor contrast 

(ambient noise) and thus we did not include those vari-

ables in the model. Rather, we used those observations to 

generate hypotheses from our descriptive analyses.

The basis for all smoothing functions was a cubic 

regression spline with shrinkage (bs = “cs” in mgcv) and 

10 knots. “Shrinkage smoothers” allow identification 

of non-significant smoothers that essentially carry no 

weight in the model by reducing the effective degrees of 

freedom to a value as small as zero [24]. Thus, shrinkage 

smoothers are an alternative to stepwise model selec-

tion procedures. All smoothers were estimated using 

restricted maximum likelihood. Prior to model fitting, 

data were checked for evidence of collinearity (corre-

lations among predictors). Model fit was evaluated by 

checking for concurvity (non-independence) among 

smoothers and evidence of non-normality among residu-

als. Significance of each smoothing term was determined 

based on estimated degrees of freedom and approximate 

p-value for the null hypothesis that the smoothing term 

was zero. The significance level for all tests was 0.05. 

Fig. 5 Detection efficiency as a function of distance for mobile and 

stationary receivers. Estimated detection efficiencies for acoustic 

receivers affixed to stationary moorings (red symbols are fitted values; 

red shaded regions are GAM-based 95% confidence regions) and 

gliding robotic fish GRACE (black lines are fitted values; gray-shaded 

regions are GAM-based 95% confidence regions) in Higgins Lake, 

Michigan, during field tests in 2016 (a), 2017 (b), and 2018 (c–e). 

Vertical gray bars show distances between robot and the transmitter 

when each coded signal was detected (1) or not detected (0)
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Partial effects plots were used to assess the influence of 

each smoother on the log-odds of detection efficiency 

at each level of the predictor. Plots of fitted values were 

used to assess the influence of each predictor on detec-

tion efficiency during each run on the probability scale.

Results
Estimated detection efficiency of the robot-mounted 

receiver was lower than concurrently operated stationary 

receivers during all three runs where stationary receivers 

covered the full range of mobile runs (Fig. 5 a, c, d). Scale 

and shape of detection efficiency curves, when plotted 

against distance between transmitter and receiver, var-

ied among runs for both stationary and mobile receivers. 

During 2016, when detection efficiencies were higher at 

longer distances for both stationary and mobile receivers 

than during any other run, detection efficiencies for the 

mobile receiver were only slightly lower than the station-

ary receivers up to 600 m from the transmitter, but sub-

stantially lower at 800  m and 1000  m. The shape of the 

curve for the stationary receivers was unexpected (e.g., 

higher efficiency at 800  m than 600  m), and suggested 

that these stationary receivers were affected by pro-

cesses that were not quantified. During 18–1, estimated 

detection efficiency was similar between stationary and 

mobile receivers for distances up to 200 m but differed at 

larger distances due to mobile detection range declining 

much faster than stationary detection range. The great-

est difference between stationary and mobile detection 

efficiency was observed during 18–2 when the robot 

was moving away from the transmitter. During that run, 

mobile detection efficiency for any distance was mark-

edly lower, even at 50  m–the closest distance between 

receiver and transmitter during that run.

The GAM model explained 53.2% of the null devi-

ance. Detection efficiency differed by direction of travel 

(Table  3) with more than a fivefold increase in the log-

odds of detection efficiency when moving toward the 

transmitter than away from the transmitter. Significance 

of distance-based smoothers suggested that variation in 

the shape of range curves was attributed to direction of 

movement and other run-specific variables not included 

in the model. Pitch was significant when the robot was 

moving toward the transmitter (with higher detection 

efficiency for lower pitch value, regardless of pitch direc-

tion), but not when the robot was moving away from 

the transmitter (Table 3a, Fig. 6c). Depth was significant 

when the robot was moving away from the transmitter 

(with better detection efficiency at shallower depths), but 

not when the robot was moving toward the transmitter 

(Table  3b, Fig.  6d). Over the ranges of depth and pitch 

observed, the effect of depth on detection efficiency mov-

ing away from the transmitter was greater than the effect 

of pitch moving toward the transmitter (Fig.  7). Over-

all, the highest detection efficiency was observed when 

the robot was navigating towards the tag with near-zero 

pitch, while the lowest detection efficiency was observed 

when the robot was navigating away from the tag and 

was at large depths. However, results from data checking 

(collinearity and concurvity; Additional file  2), variable 

selection (shrinkage smoother degrees of freedom and 

Table 3 Summary of  parametric coefficients (linear terms) and  smoothing terms from  GAM used to  determine 

if detection efficiency was related to distance from transmitter (tag distance, in meters), direction of robot travel relative 

to  transmitter (toward or  away), robot depth (depth, in  meters from  water surface), or  robot pitch (pitch, in  degrees 

from horizontal)

Included for each parametric coefficient is the estimate, standard error (SE), test statistic (Z), and p-value for the null hypothesis that the corresponding parameter 

is zero. Included for each smoothing term is the estimated degrees of freedom (EDF), test statistic (χ2), and approximate p-value for the null hypothesis that the 

smoothing term is zero. Italicized p-values are significant at significance level of 0.05

Linear terms Estimate SE Z p-value

(Intercept) − 4.282 0.581 − 7.363 1.79E−13

dir = toward 5.322 0.594 8.965 3.11E-19

Smoothing terms EDF χ2 p-value

s(rt_distance): dir = away 6.48E−04 4.85E−04 0.265

s(rt_distance): dir = toward 1.642 4.345 5.84E−04

s(rt_distance): run = 17–1 2.152 6.651 3.07E−04

s(rt_distance): run = 18–1, 18–2 2.466 44.738 4.25E−13

s(rt_distance): run = 18–3 1.118 2.699 5.27E−03

s(pitch): dir = away 0.570 1.087 0.152

s(pitch): dir = toward 2.416 33.366 3.15E−09

s(depth): dir = away 1.212 9.468 8.55E−04

s(depth): dir = toward 0.209 0.255 0.247
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p-values), and model selection (AIC) suggested that the 

relationship among depth and pitch was complex. There-

fore, we caution against any strong conclusions about 

individual effects of pitch and depth from these results.

Discussion
Understanding detection efficiency of telemetry receiv-

ers is essential for designing and conducting a successful 

animal tracking project [4]. Although an animal location 

can be derived from detection time differences among 

multiple hydrophones [27], the location of a receiver at 

the time of detection is often used to represent the gen-

eral location of a tagged animal at time of detection for 

presence–absence data. Data describing the effect of 

distance between transmitter and receiver on detection 

efficiency are useful for interpreting spatial ambiguity 

or uncertainty around detection locations, but is not 

commonly collected [28]. Moreover, receivers are often 

assumed omnidirectional, though several processes con-

tributing to directional or non-uniform detection areas 

have been described [29]. Decreased detection efficiency 

when the robot was moving away from the transmit-

ter was not unexpected due to potential shielding of the 

signal based on position (bottom-mounted) and orien-

tation (forward-facing) of the receiver on the robot and 

the importance of line-of-site to acoustic detection. The 

magnitude of the effect, however, has important impli-

cations for the ability of an AUV in this configuration 

to detect tagged fish and for inferences of fish locations 

based on detection data.

Our results suggested that both depth and pitch can 

influence detection efficiency, even under a narrow 

Fig. 6 Partial effects of robot depth and pitch on detection efficiency. Estimated partial effects of robot depth and pitch on the log-odds of 

detection efficiency when the robot was moving away from (a, b) or toward (c, d) a stationary transmitter in Higgins Lake, Michigan. Black lines are 

fitted values from the model. Shaded regions are 95% confidence regions
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scope of environmental conditions. Depth and pitch 

are critical control parameters of AUVs that are care-

fully programmed to ensure mission success in the face 

of environmental and energetic constraints. When the 

objective is to detect acoustic-tagged fish, operational 

adjustments may be needed to achieve favorable balance 

among detection efficiency and other operational pro-

cesses (e.g., navigation, communication). Vertical gradi-

ents of environmental variables known to affect acoustic 

signals in water (e.g., salinity, temperature, suspended 

particulates, entrained air) exist in most aquatic systems, 

but we were not aware of any such gradients during this 

study. Although lack of environmental heterogeneity 

may limit application of these results to other systems, 

it may have improved our ability to identify relatively 

small effects of depth and pitch on detection efficiency 

by minimizing background variability during our study. 

Moreover, observed variability that is not environmen-

tally driven may be related to variables that can be con-

trolled or modified.

We hypothesize that decreasing detection efficiency 

from the surface to 4 m depth when moving away from 

the transmitter was driven by shielding of the signal by 

the body of the robot at depth. As described above, this 

explanation seems reasonable based on position and 

orientation of the receiver on the robot. If true, then 

the depth variable used in our analysis may be a proxy 

for the difference in depth between the hydrophone 

and transmitter. Although the range in depth difference 

between receiver and transmitter in our tests (receiver 

ranged 0 to 4 m above the tag) may be representative of 

some shallow environments, potential clearly exists for 

much greater vertical separation between transmitter 

and receiver in many aquatic systems. For an AUV with 

bottom-mounted receiver, shielding effects are expected 

to be largest when the vehicle is deeper than a tagged 

fish and smallest when the vehicle is shallower than the 

tagged fish. Thus, effects of shielding may be minimized 

by operational parameters (e.g., depth range) based on 

knowledge of the ecology of the target organisms (i.e., 

remaining near the surface for pelagic fish) or structural 

changes to the vehicle (i.e., positioning the receiver on 

top of the AUV for surface-oriented fish).

Although the mobile receiver on the gliding robotic fish 

did not perform as well as stationary receivers through-

out the entire range tested, detection efficiency over 

shorter distances (300 m or less) are likely still adequate 

for some active tracking needs. In practice, the distance 

at which a transmitter is reliably detected can vary con-

siderably due to hardware and software differences and 

environmental conditions. Future work should seek to 

determine if differences between the robot-mounted 

receiver and stationary receivers are caused by charac-

teristics of the robot (e.g., electrical or mechanical noise) 

or interaction of the robot with the environment (e.g., 

turbulence of flow over the hydrophone). For example, 

future work might seek to determine if low detection 

efficiency while ascending (pitched up) was associated 

with noise from the tail motor or increased turbulence 

on the receiver during tail actuation. Regardless of 

future improvements, however, knowledge of the robot-

mounted detection efficiencies will be useful for planning 

future missions, including active tracking with a network 

of AUVs.

While direct comparison of these results to similar 

work using the Slocum glider in [7] and Wave Glider in 

[8] in saltwater is difficult, the detection efficiency curves 

obtained here can further improve our understand-

ing of such systems. Our obtained detection efficiency 

results when the hydrophone was facing towards the tag 

over short distances of 100 m (> 80%) are close to those 

reported in [8] (50–90%), and are higher than those 

reported in [7] (40–0%). These results highlighted the sig-

nificance of alignment between transmitter and receiver 

for a forward-facing receiver, and can help explain the 

Fig. 7 Detection efficiency as a function of distance for different 

depth and pitch values. Estimated detection efficiencies for acoustic 

receivers affixed to gliding robotic fish GRACE in Higgins Lake, 

Michigan, during field tests in which evidence (GAM model results) 

suggested that detection efficiency was influenced most by depth 

when the robot was moving away from the transmitter (c) and pitch 

when the robot was moving toward the transmitter (a, b, d). Lines are 

fitted values from the model with depth = 2 m (a, b, d) and pitch = 0° 

from horizontal (c)
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lower detection efficiency observed in [7], as it could be 

due to occasional shielding as well as other environmen-

tal differences. These result also supported the observed 

improvement of detection efficiency for the vertically 

mounted receivers compared to the forward-facing 

receiver in [7], as forward-facing receivers are more sus-

ceptible to shielding of acoustic signals.

Although our results add to knowledge of AUV perfor-

mance as receiver platforms, much variation in detection 

efficiency remained unexplained in our analysis. Unfor-

tunately, we were not able to account for the influence of 

the environmental variables (e.g., wind, water tempera-

ture, ambient noise) on the results because availability of 

these data were limited. Our observational data set did 

not have sufficient replication (multiple runs) over envi-

ronmental variables (e.g., wind, ambient noise, thermal 

stratification) to explore this aspect. Future work should 

seek to obtain a balanced study design with replicate runs 

over a range of environment variables, so that one can 

attribute variation in the detection efficiencies to those 

variables.

Conclusion
We considered parameters that affect the detection effi-

ciency of mobile receivers mounted on AUVs through 

a series of trials using a gliding robotic fish, in which 

a forward-facing acoustic receiver was fixed to the 

robot’s hull. While the detection efficiency of the robot-

mounted receiver was expected to be lowered when the 

receiver was pointed away from the tag, the impact of 

this effect was significant. Results suggested that much 

of the observed variation may be related to shielding 

of the signal by the robot body depending on the posi-

tions and orientation of the hydrophone relative to the 

transmitter.

These results inform hardware, software, and opera-

tional changes to gliding robotic fish that will improve 

detection efficiency. As an example, tag-tracking 

controllers should consider the directionality of the 

receiver, as well as the relative position of the tag with 

respect to the receiver. Other options to mitigate the 

shielding effect include the use of vertically mounted 

receivers, pointing upwards or downwards [7, 12], or 

using two bidirectionally mounted receivers (forward- 

and rear-facing). We hypothesize that such configura-

tions could still suffer from reduced detection efficiency 

due to shielding, and knowledge of the ecology of the 

target organisms should be considered to guide the 

positioning of the receivers.

Data on the size and shape of detection efficiency 

curves for gliding robotic fish will be useful for planning 

future missions and should be relevant to other AUVs for 

telemetry. While the detection efficiency of the mobile 

receiver, when facing the tag, matched that of stationary 

receivers for distances of less than 300 m, these distances 

are still adequate for several active tracking applications 

using networks of these AUVs. Future work should seek 

to determine if differences between the robot-mounted 

receiver and stationary receivers are due to characteris-

tics of the robot or interaction of the robot with the envi-

ronment. Finally, future studies should use a balanced 

study design with replicate runs over a range of envi-

ronment variables and compare the detection efficiency 

using different AUVs.

Supplementary information
Supplementary information accompanies this paper at https ://doi.

org/10.1186/s4031 7-020-00219 -7.

 Additional file 1. Summaries of environmental noise, water temperature, 

and receiver tilt data collected during field tests of gliding robotic fish in 

Higgins Lake, 2016–2018. 
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eralized additive model fit to detection data collected during field tests of 

gliding robotic fish in Higgins Lake, 2016–2018.
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