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Collapsing Ricci-flat metrics on elliptic

K3 surfaces

GAO CHEN, JEFF VIACLOVSKY, AND RUOBING ZHANG

For any elliptic K3 surface § : K — P!, we construct a family of
collapsing Ricci-flat Kéhler metrics such that curvatures are uni-
formly bounded away from singular fibers, and which Gromov-
Hausdorff limit to P! equipped with the McLean metric. There are
well-known examples of this type of collapsing, but the key point of
our construction is that we can additionally give a precise descrip-
tion of the metric degeneration near each type of singular fiber,
without any restriction on the types of singular fibers.
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1. Introduction
1.1. Background and main results

A K3 surface, by definition, is a compact complex surface with trivial fun-
damental group and zero first Chern class. Since all complex K3 surfaces are
Kahler [48], it is a consequence of Yau’s resolution to the Calabi conjecture
[51] that every K3 surface admits Ricci-flat Kdhler metrics called Calabi-
Yau metrics. Our particular interest in this paper is to study an elliptic K3
surface § : K — PL. It is well-known that there are no exceptional curves on
K, and no fiber over the base is multiple [31, Section 11.1]. The generic fiber
is an elliptic curve, and there are singular fibers which can be of type Ij, 1I,
IO, TV, IT*, 11T, IV*, 1, and I} for v € Z, , over a finite set S C P! [34].

For an elliptic K3 surface which has 24 singular fibers of Type I; in
Kodaira’s list, Gross and Wilson in [24] constructed a family of Calabi-Yau
metrics with bounded diameters which are collapsing to the base P! in the
Gromov-Hausdorff sense, that is,

(11) (IC795) G—H> (PlvdML)v as 0 — 07

where djz, is the McLean metric on P!, see Definition 2.3. Moreover, away
from 24 singular fibers, g5 are collapsing with uniformly bounded curvatures.
This is consistent with the general theory of the degeneration of Einstein
metrics in dimension four in that the sequence collapses with bounded cur-
vature away from finitely many singular points in the Gromov-Hausdorff
limit [7], and the limit is a Riemannian orbifold away from the singular
points [41]. However, the general theory does not provide a description of
the degeneration near the singular fibers.

The case of 24 fibers of type I; is the generic case, but there are many
interesting K3 surfaces with non-generic configurations of singular fibers.
In [23], the construction of Gross-Wilson was extended to general elliptic
K3 surfaces, see also the recent work [43]. Namely, families of Calabi-Yau
metrics were constructed which Gromov-Hausdorff limit (P!, dysz,) with uni-
form curvature estimates away from finite singular points. Our primary goal
in this paper is to describe the precise nature of the degeneration near the
singular fibers, by describing all possible canonical bubble limits, see Defini-
tion 6.4.

We next recall some details regarding complete non-compact hyperkahler
four-manifolds. Under the curvature decay condition |Rm| < Cr=27¢ for
some € > 0, complete non-compact hyperkéhler 4-manifolds were classified
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in a series of works [8-10, 35, 40]. Under this curvature decay condition, the
volume growth rates must be O(r%), O(r®), O(r?) or O(r). They are called
ALE (asymptotically locally Euclidean), ALF (asymptotically locally flat),
ALG, or ALH (“G” and “H” are the letters after “E” and “F”) respectively.
However, there are also complete non-compact hyperkahler 4-manifolds with
curvature decay rate exactly O(r~2) and volume growth rate O(r*/3) as
well as complete non-compact hyperkahler 4-manifolds with other curvature
decay rates [1, 27, 50]. The hyperkdhler 4-manifolds with volume growth
rates O(r), O(r3), O(r*/3) and O(r) have been realized as the bubbles of
degenerating Calabi-Yau metrics on the K3 surfaces [9, 13, 16, 28, 36]. The
deepest bubbles in our construction are ALE Eguchi-Hanson metrics (see
[14]), ALF Taub-NUT metrics (see [26]), as well as a certain class of ALG
hyperkéhler metrics, which are isotrivial and are ALG of order at least 2,
see Subsection 5.2. The main result in this paper is the following.

Theorem 1.1. For any elliptic K3 surface § : KK — P, with singular fibers
over the finite set S C P, there are a family of Ricci-flat Kdihler metrics gs
on K with Diamg, (K) = 1 and Voly, (K) ~ §2 such that

(1.2) (K, g5) S (P, dyrr),  asd — 0,

where dyrr, is the McLean metric. Moreover, the following properties hold:

1) For any p € P\ S, the fiber §~1(p) is regular and homeomorphic to
T? with Area(F'(p)) ~ 62.

2) Curvatures are uniformly bounded away from singular fibers, while cur-
vature 1s unbounded in a neighborhood of any singular fiber.

3) Near singular fibers with finite monodromy, rescalings of the metrics
converge to ALG hyperkdhler metrics.

4) Near singular fibers of type 1,,v > 1, there are v copies of Taub-NUT
metrics which occur as rescaling limits.

5) Near singular fibers of type I,,v > 1, v copies of Taub-NUT metrics
plus 4 Equchi-Hanson metrics occur as rescaling limits.

Remark 1.2. Theorem 1.1 partially answers [27, Problem 1.11]. We note
also that Theorem 1.1 only states the non-collapsing bubble limits; in this
case the pointed Gromov-Hausdorff convergence is equivalent to pointed
C*°-convergence. However, there are also numerous collapsing bubble limits,
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and we refer the reader to Section 6 for the complete description of all
possibilities.

1.2. Outline of the proof

We next give an outline of the main steps involved in the proof of Theo-
rem 1.1. For a general elliptic K3 surface § : K — P!, there does not exist a
global holomorphic section. However, Kodaira [34] proved that § : K — P!
determines an elliptic surface J: 7 — P! with a global holomorphic sec-
tion, which is called the Jacobian of the original elliptic K3 surface. The
Jacobian J (called the basic member by Kodaira) has the same functional
and homological invariants as the original surface . In Section 2, we will
briefly review a construction of Greene-Shapiro-Vafa-Yau ([21]) which gives
explicit hyperkahler metrics ggf on the regular region of 7 such that the area
of each T?-fiber equals 6. These metrics are also known as semi-flat metrics,
and their construction relies on the existence of a holomorphic section. In
Section 3, we will use a global diffeomorphism between the original elliptic
K3 surface I and its Jacobian J so that the semi-flat metrics ggf can be
naturally translated to a hyperkahler metric géA on the regular region of the
original K3 surface K.

The above procedure yields collapsing hyperkahler metrics on the regular
region of the original elliptic K3 surface § :  — P!. These semi-flat metrics
are singular at the singular fibers; the next goal is to replace 934 in the
singular regions with smooth metrics by a gluing procedure. In Section 4 we
will do this in the I, and I} cases. In the I, case, this is done by gluing in a
generalization of the Ooguri-Vafa metric, which we call a multi-Ooguri-Vafa
metric. In the I} case, we glue in a resolution of a Zy quotient of a multi-
Ooguri-Vafa metric, which is inspired by Kodaria’s work [34, Section §].
We note that the resolution of the infinite monodromy fibers can be done
with respect to a fixed complex structure; the resulting Kahler form will be
denoted by wf, with associated metric gf.

The metric 953 will still have singularities near the fibers with finite mon-
odromy. In Section 5, near these singular fibers, we will glue in a certain class
of ALG hyperkahler 4-manifolds. Namely, we require that the ALG manifold
is isotrivial, that is, the functional invariant is constant, and furthermore,
that the metric is ALG of order at least 2. After this procedure, we will
obtain a family of “approximately” Calabi-Yau metrics on X which are col-
lapsing to the McLean metric on P!, and denoted by g(gc. An important note
is that this step cannot be done preserving the original complex structure
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(because K is not isotrivial), so in this step, the 2-form wg is only symplec-

tic, but not necessarily Kéahler. Therefore, we have to use the definite triples
originated in [12], to find out the approximately hyperkéhler metric géc. This
technique was also used, for instance, in [10, 15, 16, 28]. To explain this, let
(M*,dvoly) be an oriented 4-manifold with a fixed volume form dvolg. A
triple

(1.3) w = (wy,ws,ws) € B (M*) @R3

is called a definite triple if the matrix @ = (Q;;) defined by

1
(1.4) 5(4}@ ANwj = Qi]’ dvoly
is positive definite. The triple is called closed if dw; = 0 for ¢ = 1,2, 3. For
a definite triple w on (M*, dvolp), let us define the associated renormalized
volume form and coefficient matrix by

(1.5) dvoly, = (det(Q)) dvoly,

(1.6) Qu = (det(Q)) 2 Q.
Immediately, det(Q.) =1 and @, is independent of the choice of dvoly.

Definition 1.3. Given an oriented 4-manifold M*, a closed definite triple
w = (w1, ws, w3) € P?(M*) @R3 is called hyperkdhler if Q. = Id. Equiva-
lently,

1 1
(1.7) QWi Nwj = ééij(w% + W% +W§)v

for every 1 <¢ <5 < 3.

Remark 1.4. A definite triple w induces a Riemannian metric g,, such that
each wj is self-dual with respect to g,, and the volume form of g, is dvol,,. By
[29, Lemma 6.8], the metric g, is hyperkahler if and only if w = (w1, w2, w3)
is a hyperkéhler triple. In this case, wy + v/—1lws is a holomorphic 2-form
with respect to the complex structure determined by w;.

In our construction we will take wo + v/—1ws = 6Qc, where Qx is a fixed
holomorphic 2-form on K. This together with wg is a definite triple and
determines a metric g(sc. Section 6 will then focus on the bubbling analysis
of géc. We will quantitatively analyze the reqularity scales around each type



2024 G. Chen, J. Viaclovsky, and R. Zhang

of singular fibers, which will be achieved by explicitly classifying all possible
bubble limits on K. This leads us to canonically define a class of weighted
Holder spaces, which will be the key to our perturbative analysis.

Section 7 will be devoted to the proof of vanishing theorems on various
bubble limits, which we will refer to as Liouwville theorems. In Section 8, we
will carry out the perturbation of our family of approximately hyperkahler
metrics ggj to a family of Calabi-Yau metrics g(’? , using the implicit function
theorem (Lemma 8.1). To carry out the perturbation, in Proposition 8.7
we will establish uniform estimates for the linearized operator in the geo-
metrically canonical weighted spaces defined in Section 6. The proof will be
based on contradiction arguments and bubbling analysis, which will reduce
the proof to the various Liouville theorems on each type of bubble limits.

We will end with some remarks in Section 9. First, we will count the
parameters involved in our construction, and show that they add up to
the expected dimension. Then we will also describe some other possible
bubbles which can arise by other choices of the parameters involved in our
construction.
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2. Semi-flat metric on a Jacobian K3

In this section, we describe the semi-flat metric on an elliptic K3 surface
with holomorphic section. It was originally constructed by Greene-Shapere-
Vafa-Yau in [21]. We begin with a brief review of elliptic K3 surfaces.

2.1. Elliptic K3 surfaces

To begin with, we review Kodaira’s work on elliptic surfaces in [34]. For each
elliptic curve C = C/(Zty @ Z72), we can view the number o = 79/71 as an
element of H/ SL(2,Z), where H = {7 € C|Im 7 > 0} is the upper half plane.
Let § : K — P! be an elliptic K3 surface with a finite singular set S C P!.
Then ¢ = 79/71 is a multi-valued holomorphic function on P! \'S. Recall
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that the j-invariant maps ¢ € H/SL(2,Z) to j(o) € C, so the j-invariant is
a holomorphic function on P! \ § which extends to a meromorphic function
on P, and is called the functional invariant, denoted by ¢ : P! — PL.

The sheaf R'F.Z is the first direct image sheaf of the constant sheaf Z
on K, which is the sheaf on P! associated to the presheaf with sections over
U C P! being HY(F1(U),Z). The sheaf R'F.Z is called the homological in-
variant of K, and is locally constant over P! \ S. The homological invariant is
equivalent to a representation p : 71 (P! \ S) — SL(2,Z), which is called the
monodromy representation. There is a compatibility relation between these
invariants, see [34, Section 8]; the sheaf R'F.Z belongs to the meromorphic
function ¢#.

By [34], given an elliptic surface § : K — P!, there exists a unique elliptic
surface J : J — P! with a holomorphic section oy which has same functional
and homological invariants as IC. It was called the “basic member” by Ko-
daira [34] but was called “Jacobian” by other authors [24].

The space K is obtained from C by replacing the singular fibers with
only the irreducible components with multiplicity 1 (minus the singular
points and intersection points with other components). A section of the
elliptic surface J : J — P! is a holomorphic mapping o : P! — 7 such that
J oo =Idp, which is equivalent to a holomorphically embedded P' C J#
which has intersection number 1 with fibers of J#. Therefore a section og
distinguishes a point in every fiber of J#. For p € P!, the fiber of J# over
P, jp# =0, Y(p) N J#, is an abelian group with identity oo(p), see [34, Sec-
tion 9]. The subset jo# C J# is defined as the subset of J# consisting of
the identity component of each fiber group.

Let m: Op:1(—2) — P! be the line bundle of degree —2 over P!, which
can be identified with the cotangent bundle of P!.

Proposition 2.1. Given the global section og : P! — J, there is an asso-
ctated holomorphic mapping

(2.1) fo: Om(-2) = I,

satisfying J o fo = m such that restricted to a fiber, this mapping induces a
group homomorphism, with kernel equal to Z ® 7, Z, or {0}. Furthermore,

(2.2) fo Q2 = Qcan

where § is a nonzero holomorphic (2,0)-form on J, and Qcan is the canon-
ical holomorphic (2,0)-form on Op:(—2) = T*P!.
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Proof. The image of the section is a submanifold ¥ = oo(P!) C J. To iden-
tify the normal bundle of ¥, use the adjunction formula

(2.3) Ky = (K7)|s ® Ny

but the canonical bundle of jo# is trivial, so Ny = Ky = Op:1(—2). Then we
get fo: Opi(—2)y = Ny — jo# by the fiberwise Lie group exponential map.
The second statement is proved in [22, Proposition 7.2]. O

2.2. Construction of semi-flat metrics

By definition, fy : Opi(—2) — jo#, maps the zero section of Opi(—2) to the
global holomorphic section og : P! — 7. By (2.2), we can write

(2.4) foQ = Qcan = —dx A dy,

where {z} is the canonical holomorphic fiber coordinate of the cotangent
bundle Op:(—2) and {y} is the holomorphic coordinate of the regular base
region P! \ & C C. Note that our sign convention for €2 is opposite to that
of [24].

For each small constant § > 0, Greene-Shapere-Vafa-Yau’s work in [21]
gives hyperkéahler metrics gf‘;f on the union of the regular fibers

(2.5) R=31P'\S) cJ,

which we can describe as follows.

The holomorphic periods are defined as 7;(y) = f% dx, where ~y; are a
basis of the first homology of the torus fiber, ¢ = 1, 2. Note that this depends
on the choice of basis, so we will consider these as multi-valued functions.
After exchanging 71 with 72 if necessary, we assume that Im(7) > 0. In the
above coordinates, the left action of (m,n) € I' = Z @ Z on the regular part
is given by

(2.6) (m,n) - (y,7) = (y,z +m71(y) +nma(y))-

For each § > 0, let

B )
(2.7) = m7
(2.8) b= —% (Im(m:f)(?yﬁ + Im(ﬁx)(?yTg),
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then Greene-Shapere-Vafa-Yau’s semi-flat metric with bounded diameter is
the metric g(ssf associated to the Kahler form and holomorphic 2-form

V=1 I
(2.9) wif = =5 (W(dx + bdy) A dz 1 bdy + W Ldy A dg),
(2.10) Qs = —6-dx Ndy = 09Q.

Remark 2.2. The semi-flat metric is independent of the choice of 71,2,
and the choice of local holomorphic coordinate .

Let z = 2171 (y) + z2m2(y) for z1,29 € R/Z, then the Kéhler form can
be rewritten as follows. First, (2.8) can be simplified as
211) b= ()9 + o2 In(Rim)0 )
: = TTm(nn) 1 Im(7271)0y 71 + 22 Im(7172)0y T2
= —(z1- Oy + 2 - OyT2),

which implies dz + bdy = 71(y)dz1 + T2(y)dz2. So wi can be simplified as

212 wf = L5 (Windn + n)de) A7) T )i

LW ldy A dg)
=62 dxy Ndzy + \/;T Im(7ym2)dy A dy.
The holomorphic volume form €25 is expressed as
(2.13) Qs =—0- <Tl(y)da:1 + Tg(y)d.%'g) A dy.

It is easy to verify that both wgf and ()5 are I'-invariant and hence they
descend to the region R. We will use the same notation for these descended
forms.

Notice that there are constants Cy > 0 independent of § > 0 such that

1 .
(2.14) 60 § Dlamng (R) S Co

(2.15) Area(C/T) = 62,

where C/T" 2 T? is the regular torus fiber.
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Definition 2.3. The McLean metric is the Riemannian metric gps;, on
P!\ S associated to the Kihler form
v—1

(2.16) WML = T -Im(ﬁﬁ)dy/\d@.

The induced distance function on P! is denoted by dar,.

We refer the reader to [22, 30, 38] for more details about the McLean
metric. Note that as § — 0, (J \ J71(S), g57) converges to (P! \ S, gny) in
the Gromov-Hausdorff distance.

2.3. Rescaling and equivariant convergence

The semi-flat metrics gfsf constructed in Section 2.2 are hyperkahler and
collapsing with bounded curvatures away from the singular fibers. For our
purpose, we need to take a closer look at the convergence of the metrics
and the lattices by unwrapping the collapsing torus fibers. To describe this,
we will use a standard notion, called equivariant Gromov-Hausdorff conver-
gence. We refer the readers to [19, Section 3] for other definitions and more
details.

For j € Z4, let (M J”, gj,p;) be a sequence of Riemannian manifolds with
| Rmy, | < 1 such that

n GH

where X% is a k-dimensional Alexandrov space, then there exists some uni-
form constant sy = so(n, psc) > 0 such that we have the following diagram

(218)  (Bu(0):35 T y) — " (Y2, oo Doc e
(BSO (pj), gj) = (Bso (Poo) dOO)

and the local Riemannian universal covering map pr; : (Bs, (pj), §;) = Bs, (p5)
converges to the submetry pry : Y2 — I'oo\YZ = By, (pso). In the above
diagram, I'; = m1(Bs,(p;)), and the limiting group I' is a closed subgroup
in Isom(Yo’é/).\The equivariant convergence means that the isometry actions
of I'; on By, (p;) converge to the isometry action of I'ss on Y} with respect
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to their Gromov-Hausdorff convergence. Moreover, the local universal covers
(Bs,(p;), Gj, D) are non-collapsing and hence C1®converge to the manifold
Y2 for any a € (0,1).

Next, we will realize the above picture for the semi-flat metrics ggf under
the rescaled lattice I's = (0Z) @ (0Z). First, let 51 = 6x1 and x52 = 0xa.
Then

(2.19) x5 = 0z = T1(y)ws1 + T2(Y)Ts2-
The lattice I'; gives a left action on C x C as follows,
(2200 (6m,on) - (g,w5) = (o5 + I () + I 1a(y) ).

Let us recall that the semi-flat Kéhler form and the corresponding holomor-
phic volume form are given by

v—1
(2.21) wf;f =dxsy Ndxss + - Im(772)dy A dy,
(2.22) Qs = — (Tl(y)dw(;,l + Tg(y)diﬂ(;,g) A dy.

One can check that both wgf and s are I's-invariant and they descend to
the regular region of the K3 surface R = §~ (P! \ S) C J, still denoted by
wgf and ()5 for convenience.

Notice that the Kéahler form wgf and the holomorphic 2-form €25 are
written in coordinates (z5,y) on the cotangent bundle 7 : Op:(—2) — PL.
In the following, we will view wgf and €25 as 2-forms on the local universal
covering space of R C J. To see this, take a ball By(p) C P! which is diffeo-
morphic to a 2-disc D C C. Using the holomorphic map fy : Op:(—2) — «70#7
there is an open subset Vs = 77 1(Bs(p)) C Opi(—2) which is biholomorphic
to Bs(p) x C and naturally gives a universal covering map

(2.23) prs : Vo — 37 (Bs(p)).

Now the equivariant Gromov-Hausdorff convergence diagram in our context
reads as follows,

eqGH

(2:24) (Ve 5t T5) (¥.9v.T0)

Prs i J{pro

(3‘1(35 (), ngj) oy (BS (p), dML),
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where the limiting group I'g = R @& R acts isometrically and freely on the 4-
manifold ). In the above diagram, due to the elliptic regularity for Einstein
equations in the non-collapsed context, the metrics g(ssf on the local universal
covers converge to the limiting metric gy in the C*-topology for any k € Z..

To finish this section, we carry out some local computations for the
semi-flat metrics, which will be used for the weighted analysis in our later
arguments. Let 7 € Q1(J) be a real differential 1-form such that 1 can be
written as

in the regular region of 7, where y = y; + \/—713/2,

(2.26) e' = /Im(7172)dys,
(2.27) 62 = \/Im(fng)dyQ,
1

(2.28) e = (Re(71)dxsy + Re(me)dxs 2),
Im(’f‘lTQ>
1
(2.29) et = ———(Im(1)dws1 + Im(m2)dzs2).
Im(f’ng)

Since 7 is a real 1-form, so it holds that f @ = f). Let us define

(2.30) e®) = ¢ed 4 /1t = — (11 -dxsy + 12 - dzs),
\/Im 172

@ _
\/Im 172

(2.31) e@ =’ — /1! =

(71 - dwsy + T2 - das2)),

so that n can be represented as
(2.32) n= f(y)dy + f@)dy 4 Re(F(x) . e(x)),

where F®) = @) — /ZTf@_ Also it is straightforward that the coframe
{e!,e?, €3 e} is a standard hyperkiihler basis such that

(2.33) Wil =el ne? +eP Aet,

(2.34) Qs = (! +vV—=1e?) A (e + v/ —1eh).

Lemma 2.4. Let the real differential 1-form n € QY(J) satisfy the repre-
sentation (2.25) in the regular region. If f@ @ G @ gre functions
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depending only on y, then the following local formulas of d™n and d*n hold:

(2.35) dtn = (0,f% — 8, f¥))(dy A dy)*
e [ 2 Im(il?).F(I))dyAe“) ,
Im( 17'2)
s 2 5 ) @)
(236) d 77 - Im(7_'17'2) (ayf Y "‘ayf Y )7

where €Y = (€ 4+ x£)/2 for any 2-form &, dtn = (dn)*, d* is the L*-adjoint
of d, all computed with respect to the metric gfsf.

Proof. First, we compute d*7. Notice that the coefficients of 1 depends only
on y so that we have

(2.37) dn = (9, f@ — 8

 f ><dyAdy>+Re<d< (®) . el@)y)
D) — 5, f®)

@ 9 dy A dy)

0y f
+ Re d( VIm(77) - (x)))
Im 7’17’2

3f§) af(y) )(dy A dij)
F

+ Re 7) ~d(y/Im(7172) - (”))
Im(’ng) !

(z)
+ /Im(7172)0, <F_> dy A e®

VIm(7172)
_ (=)
+ /Im(Am)d, (@) dij A e<w>>.

Now we are ready to compute the self-dual part of dn. One can verifies that
dy A e is self-dual and dj A e\ is anti-self-dual, so it holds that

(2.38) d*n = (0, f P — 8,f¥))(dy A dy)
Fl=)
+ Re | VIm(Ti72)0y | ———= dy A e®)
Im(7172)

()
+ Re (IF_ . d+( Im(’i_'lTQ) . e(x))> .



2032 G. Chen, J. Viaclovsky, and R. Zhang

The next is to simplify the third term in (2.38). By (2.30), it follows that
(2.39) d(v/Im(T172) - e(m)) = OyTidy N dxsy + Oymady N dxso.

By (2.30) and (2.31)

(2.40) dxsy = \/7 \/ﬁ 7'26 — Tgm)’
(2.41) dxso = 27T, m (7re®) — Tle(x))
Therefore,
(2.42) d(\/Im(7y73) - e®)

BN \/ﬁ( (11072 — 72071 )dy A e

(TgayTl — TlayTg)dy A W)
Im(7
_ 9yImnm) 4y @)
Im(Tng)

2FW

where we used the property that 7 and 7 are holomorphic in y. Since
dy A e\ is self-dual and dy A e(®) is anti-self-dual, so we have

(120yT1 — T10yT2)dy A @,

6y Im(7_'17'2)

(2.43) A (v/Im(7172) - €@ = dy A e,
Im(’7_'17'2)
Finally, we have
(2.44) dtn = (0,f9 = 0,f)(dy ndy)*
@)
+ Re \/ IHI 7'17'2 8 ]
Im (7’17’2)
F@) . 8y Im(’]_'ng)
(z)
Im(7172) Jy 1
(2.45) = 0y fY = 0, W) (dy N dy)*

Im(7 . @)
+ e <8y< mrin) PO, em) |
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Next, we compute the term d*n. To begin with, it is straightforward that

) dvol = et Ae? A e A et = Tm(Fim)dyy A dya A dzsy Adzsg,
(2.47) x (dy) = —v/—1dy A e® N et = —/—1dy A dxsy A dosa,

) x (dy) = V—1dg N e> N et =/ —1dyg A e A dusy A dess,

)

v—1
s()=elnePnet = - Im(7172) - dy A dj A e,
v—1
(2.50) x(eM)=—etnePned = 5 Im(717%) - dy A dij A €3

So it follows that

(2.51) = -1 ( Dy — fWdy) A dasy A dass
—” ) Im(7i72) - dy Ady A e’
- —”;f @ Im(7im) - dy A dy A €,
and hence
dxn=v=1-(,f@ +8,fW) . dy AdyAdzsy Adrss
(2.52) =2 Oy fD + 8, fW) - dyy Adya A dsy A dass.
Therefore,
(2.53) A= — v dsn=——2(3,f% + 0, fD)
Im(7_'17'2) Y Y ’
and the proof is complete. O

3. Semi-flat metric on a general elliptic K3

In the previous section we have described the Greene- Shapere Vafa-Yau’s
semi-flat metric g on J. In this sectlon we translate wj} f by local sections
to get a semi-flat Kahler form w5 on K. In general, K does not have any
global holomorphic section. However, it always admits a smooth section.

Theorem 3.1. Consider an elliptic K3 surface § : K — P, not necessarily
with a holomorphic section. Then there exists a C> section 0o : Pt — K7,

Proof. This theorem is essentially proved in [18]. By [18, Lemma 1.5.11], [18,
Theorem 1.5.1] and the paragraph before [18, Theorem 1.5.13], we know that
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the elliptic K3 surfaces with the same Jacobian J form a single deformation
equivalence class, with base parametrized by H?(J,07) = C. Then by [18,
Remark I1.1.4 |, we know that there exists a C° section 04 : P! — K#. O

In the following, we will let J: J — P! be the associated Jacobian K3
surface. Then there exists a unique diffeomorphism map ¥ : K — J which
maps 0o to 0y, satisfies J o ¥ = § and maps each fiber analytically to an-
other fiber. Define ICZ?E by replacing the singular fiber with just the compo-
nent of K# intersecting the section 0. We have the following analogue to
Proposition 2.1.

Corollary 3.2. Let §: K — P! be any elliptic K3 surface. Consider the
C* mapping f : Op(—2) — IC#, defined by f = W~ o fy, where fy is as in
Proposition 2.1. Then

(3.1) F5Q = Qean + T,

where § is a non-zero holomorphic (2,0)-form on IC, a is a smooth 2-form on
P!, and Qean is the canonical holomorphic (2,0)-form on T*P' =2 Op: (—2).

Proof. This is proved in [22, Proposition 7.2]. O

Recall that there is a group structure on J# such that og is the identity
element of this group action [34]. We choose a good open cover U; of P! such
that each U; contains at most one p € S. Notice that U; N U; is contractible
because U; is a good cover, so we can find two periods 7 and 75 on each
U; N Uj. The next goal in this section is, given B € H'(P!, R'J.R), to find
o; € C*(U;, «70#) such that o; — o; € HY(J~1(U; N U;),R) represents B. To
make sense of this goal, we lift o; to sections s; of Op1(—2) over U;, and we
would like to write the difference on any U; N U; as

(3.2) 8i — 8j = a1+ bijTQ,

where a;;,b;; € R are constants. To view this difference as a Cech cocycle
with coefficients in the sheaf R'J,R, for constants a,b € R, and

(3.3) T = T1T1 + T272,
we choose the identification
(3.4) aty + bry — [—bdxy + adzs],

where the right hand side is an element of H(J~}(U; N U;),R).
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If we can find such local smooth sections s;, then L(s; — s;)*w§l = w§ on

I7Y(U; N U;) by (2.12), where L(s;)(s) = s; + s is the group action. It implies
that L(s;)*w§! is a well defined form on J because L(s;)*w§l = L(s;)*wil on
371U NU;). We will define wj' using this form.

Theorem 3.3 (Leray-Serre). There is a spectral sequence whose second
page 18

(3.5) EY = HP(P' R3,R)
and which converges to
(3.6) EPY = HPYI( T, R).

Furthermore, we have an exact sequence

0 > E3° » HY(J,R) ———— E3!
(3.7) da j

[» EX — Ker{H2(J,R) — E$2} y EM y B30,

Proof. This is standard, see for example [37]. The exact sequence (3.7) is
also known as the “seven-term exact sequence” associated to a converging
spectral sequence. O

We next analyze this exact sequence. First, H(J,R) = 0 since J is simply
connected. Also

(3.8) EP = B3P 3,R) =0
because P! has a good cover with all 4-fold intersections vanishing. Next,
(3.9) EY = HO(P', R'3,.R) = 0,

because this is equal to (R @ R)? (the group of invariants) where we view
p as a 2-dimensional real representation of 71, and this is easily seen to
vanish [47, Proposition 2.1]. Note that J,R = R (this is R with the discrete
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topology), so we have

(3.10) EX = H?(PL,R) =R.

The first mapping F2° to H%(J,R) is just the pull-back
(3.11) 3 H*(PYLR) — H*(J,R).

Therefore, the seven-term sequence yields a short exact sequence
(3.12)

0 —— R Y Ker{H*(J,R) — E9?} —— H'(P!, R'3,R) —— 0.
Next, we have
(3.13) E® = H°(P', R*3.R)
and the mapping from H?(7,R) — HY(P!, R?J,R) is described as follows.
Fix a finite good cover {U;} of PL. An element of h € H*(P', R2J,R) is a
0-cycle h; € H*(371(U;),R) such that h; = h; in H2(J71(U; N U;),R). The
mapping from H?(J,R) to H(P', R?J,R) is just w — w|y-1(¢,)- So the mid-
dle term is
(3.14) K ={w] € H*(J,R) : w|y-1(y,) = 0 € H*(J ' (Vi) R)}.

So we have arrived at the following.

Corollary 3.4. There is a short exact sequence

(3.15) 0 E-Y, K y HY(P!, R'3,R) —— 0,

where E = H?(P',R). Consequently,

(3.16) HY(P',R'3,R) = K/E.

Remark 3.5. Note that the natural mapping from K to H'(P!, R'J,R) is
to write w; = da; on J~1(U;), and then map to the 1-cycle given by a; — a;

on U; N Uj, which is clearly an element of H'(J~1(U; N U;), R).

Now we are ready to describe the construction of wf. First, recall that
by Corollary 3.2, there exists a diffeomorphism V¥ : X — J and a 2-form
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a € H%(P!) such that § = Jo ¥ and
(3.17) QIC = \I/*Qj + S*Oz.

Define

(3.18) %:{BGK/E‘ /jIB%/\QJ:—/ a}.
o

Note that ijB% A Q7 is well defined because for any 8 € E = H?(PL,R), we
necessarily have [, 3*(8) A Q7 =0.

Let k1 denote the number of fibers with finite monodromy, ko denote the
number of I, fibers, and k3 denote the number of I, fibers.

Proposition 3.6. The space £ has dimension
(3.19) dim(AB) = 2ky + ko + 2ks — 5 > 0.

Proof. The dimension of H?(J,R) is 22. The quotient by E reduces the
dimension by 1. Then the restriction

(3.20) /JBAQJ:—/WOZ

reduces the dimension by 1 again. The integral of w vanishes on each regular
fiber, which reduces the dimension by another 1. For each U;, we have the
restriction

(3.21) wly-1(,) =0 € H* (3~ (Uy), R),

but the vanishing of the integral of w vanishes on each regular fiber is already
counted, so there are dim H?(J~(U;), R) — 1 restrictions left on each U;, and
we have

(3.22) dim(#) =22 - " (dim H*§'(U;),R) — 1) — 3.

Since the sum of the Euler characteristics of the singular fibers must be 24,
it follows that

(323) 22— (dimH* (37" (U;),R) — 1) — 3 = 2ky + ky + 2k3 — 5.

%
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To see the strict inequality in (3.19), the Shioda-Tate formula implies that
(3.24) p(TJ) =26 — 2k; — kg — 2k3 + rank( MW (7)),

where MW () is the Mordell-Weil group of J and p(J) is the Picard num-

ber, see [31, Chapter 11]. Since p(J) < 20, and rank(MW (7)) > 0, this im-
plies the inequality

(3.25) 2ky + ko + 2k3 > 6,

so dim(Z#) > 0. O
Consider the exact sequence of sheaves

(3.26) 0 — RIJ.R —— C®°(Op(-2)) —— F —— 0,

where RJ,R is the first direct image sheaf of the constant sheaf R on
J, which is identified as a subsheaf of C*°(Op1(—2)) using (3.4), and F' is
the quotient sheaf C*(Op:(—2))/R'J.R. Since H (P!, C>®(Op:(—-2))) = 0,
the mapping from H°(P', F) to H'(P', R'J,R) is surjective. Therefore any
element B € % has a preimage {s;} in H°(P!, F). So as mentioned above,
we can define wf' = U*L(s;)*w§, which is well-defined on K.

We next want to compute L(si)*wgf — wf;f. Write a section s; as

(3.27) S; = 8;1T1 + 8;,2T2

locally. Then the 1-form 7; defined as

1
(3.28) N = (52 <8i71d$2 — Si,gd.%'l + 5(81‘71618@‘72 — Si,2d8i71)>

is SL(2,Z) invariant and is therefore well defined on J~1(U; \ S). By (2.12),

(3.29) L(si)*wf’;f — wgf = 52d(:c1 +si1) Nd(x2 + 8i2) — 62dxy A dxoy = dn;.

In general, L(s;)*wsl — wil is singular near the singular fibers. However, we
can choose a smooth cut-off function yx; supported in U; such that x; =1
near points in S, if there is any such point in U;, and x; = 0 on 3*1(Uj) for
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all j # i. Then the form
(3.30) wy = L(si)"wf —wff — d(xim)
is well-defined and smooth on J. Note also that, on J~!(U;), we have

(3.31) wy = d((1 = xi)m),

so wg belongs to K because (1 — x;)n; is smooth on J~1(U;). We want to
compute the projection of w(]SB to K/E. As mentioned in Remark 3.5 above,
the natural map from K to H!(P!, R'J.R) = K/E is defined by choosing 1-
forms on each U; as (1 — x;)n; and then taking the difference between them.
On U; N Uj, using (3.2), we have

(332) mi—n = 52 ((SZ’71 —sj1)dzy — (si2 — sj72)dx1> mod {dy, dy}
=42 (aijdasg - bijdxl) mod {dy, dy}.

So the de Rham class of n; — n; is represented by §?(—b;;dz1 + a;;dzs). Using

the identification (3.4), we see that wf projects to 6°B in K/E.

We can also define Q? as L(s;)*Qg. Then Qf} is well defined. There
exists a 2-form & on P! such that we get Q? = Q7 4+ J*¢. We then have

(3.33) 0:/79§A(w1)*w§

:/J(Qy + 3 A (W5 +wj) =67 (/JQJAM/PI 5>'

To see this, the first equality in (3.33) is true because (\I’_l)*w(’;4 and Qé are
locally the pull back of a hyperkéhler triple using the same map L(s;). The
second equality in (3.33) is true because

39) [ (07 +3°€) AdGn) = lin (@ +3°€) A i
J "SI lyl=r}

= lim Qj VAN 52(51'71611132 — Sigdl‘l)
03 lyl=r}

= lim 8%s;dzy A dxs A dy
0S5 lyl=r}

= lim 82sidy = 0
r—0

ly|=r
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assuming that y = 0 at the point in S N Uj;, if such point exists. The third
equality in (3.33) is true because

(3.35) /QJAW(S;fZO, /3*§Aw§f=52/ £, /3*&&%5:07
J J P! J

and wf;E is a representative of §°B. We conclude that f]pl &= prn a. Since
H2(P',R) = R, [¢] = [o] € H2(PL,R). So

(336)  [QF] =107 + 3¢ = Q7 + 3] = (Y1) "] € H*(T,R).

By the Torelli theorem for K3 surfaces [5, 46], we can define a complex
structure on KC using W*Qf}, which is biholomorphic to the original complex
structure on K. Without loss of generality we may therefore assume that
this biholomorphism is the identity map and \I!*Qé = Q because we can
always pull back forms and metrics using this biholomorphism. Then it is
natural to define wi' as W*(L(s;)*w§l) on F~1(U;).

Remark 3.7. The 2-form w(‘;‘ is Kahler with respect to the original complex
structure on K and therefore determines a Riemannian metric ggl.

4. Singular fibers with infinite monodromy

In the previous section, we have described a process to get a (1, 1)-form wgl
on K using the 2-form w§f on J by wi' = ¥*(L(s;)*wgl). In this section, we
will give the construction to resolve singular fibers with infinite monodromy
of type I, and I}, for v € Z. The gluing construction near the singular fibers
with finite monodromy will be done in Section 5.

4.1. Resolving fibers of type I,

We begin with the following lemma regarding the Green’s function with
multiple poles on a product flat manifold R? x S', which will be the key
input for the Gibbons-Hawking ansatz.

Lemma 4.1. Let (Q3 gg:) be a product space Q> =R?* x S' =R? x R/Z
with the flat product Riemannian metric ggs = duj + duj + duj. Given a

finite set P = {p1,...,p,} C {0} x S1, there exists a unique Green’s function
G, on R? x St such that

1) =BG =27 32 by,
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2) There are constants R > 0 and C > 0 such that
(4.1) Gy (u) — vlog lup + vV—Tug| 1| < Ce 2mlmtv=Tu|

for any u = (u1,us,u3) € R? x S satisfying dgys (u, P) > R.
3) For any (u1,us) € R?,

(4.2) / (Gy(u17u2,U3) —vlog|uj + \/—1U2|_1)dU3 =0.
{(u1,u2)}xS?

Proof. This is obtained using superposition of the Green’s functions in [24,
Lemma 3.1]. O

Next, let § : K — P! be an elliptic K3 surface. Near a singular fiber §~*(p)
of Type I, there exists a local holomorphic section ¢;. We can choose a local
coordinate y on the base P!\ S and a local coordinate = on the universal
cover of the T?-fiber which gives the holomorphic 2-form Qean = —dz A dy.
Assume that y =0 at p€ S and 2 =0 on ;. Let 71(y) and 72(y) be the
two functions of periods, which are holomorphic in y. Assume that 7 is
single-valued and 79 is multi-valued. After replacing y by fé’ 71(2)dz, we can
without loss of generality assume that 71(y) = 1. Then

v

2my/—1

for some holomorphic function A(y).
Throughout this section, for fixed v € Z,, we always relate the param-
eters 0 < § < 1 and T > 1 by

(4.3) To(y) = log [y| + h(y)

(4.4) T = —vlogd.

The following is an obvious generalization of [24, Proposition 3.2] to the case
of several monopole points, and the construction is known as the Gibbons-
Hawking ansatz.

Proposition 4.2 (Gibbons-Hawking ansatz). Let Q3 = R? x S be the
product space equipped with the flat metric ggs = gre @ gsr such that
Diamg,, (S1) = 1. Given a set of finite poles P = {p1,...,p,} C {0?} x S,
let Gp be the Green’s function given by Lemma 4.1. For any sufficiently
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large constant T = —vlogd (equivalently sufficiently small §), let us define
(4.5) VT(ul, ug, U3) =T+ Gp(ul, ug, U3) + 27 Imh(é(ul =+ —1UQ)>,

where h is the holomorphic function in (4.3). Fiz a small constant 6y > 0 of
definite size. Let O be the set

(4.6) 0= {u c Q3’|5(u1 v/ Tu)| < 250} c Q5.
Then the following holds:
1) Vr > 1 on O\ P. Moreover, there is a principal S*-bundle map
(4.7) St NP L 0\ P
with a S'-connection 1-form 0 satisfying the monopole equation
(4.8) df = x@gs o dVr.

Recall that a 1-form 6 on N,f is called a connection 1-form if it is
Sl-invariant and

(4.9) / 6 =2
=1 (u)

for allu e O\ P.

2) The above connection 1-form 6 induces a hyperkéhler triple

1

(4.10) Wsy = 2—(du3 A0+ Vpdug A d’LLQ)
T
1

(4.11) wo sy = %(dul A0 + Vipdug A dU3)
1

(4.12) w35y = %(dUQ A8+ Vipdus A duy),

with associated incomplete Riemannian metric

1

4.1 v =
(4.13) o = 5

(V- (duf + duj + du3) + V; '6?)

on the total space ./\/'lﬁL

3) The hyperkdhler metric gs, extends smoothly to the closure N = ./\773.



Collapsing Ricci-flat metrics 2043

Given a parameter 0 < § < 1, the hyperkahler metrics gs, given in the
above proposition will be called the multi-Ooguri- Vafa metric in our discus-
sions throughout the paper. We also make the remark that there is some
constant C' > 0 such that for sufficiently large T'= —v log d,

1
(4.14) o 6~' < Diamg, , (N)) < C, -6

Based on the above construction, we are ready to write down a family of
collapsing incomplete Gibbons-Hawking metrics with prescribed scales for
the collapsing T?-fibers. For sufficiently small §, let us rescale the Gibbons-

Hawking metric gs, by ggy =42. gs,»- The hyperkéahler triple is rescaled
by

(4'15) (wg,w wg,&,w wg,é,y) = §? ((/.)57,,, W25, (/.)375,1,).

Then with respect to the rescaled metric gg ,» there is some constant C}, > 0
such that for all § > 0,

1
(4.16) — < Diam

C gg)v(NIiL)SCV'

The function y = 6(u1 + v/—1uz) describes a map from N} to a small neigh-
borhood of 0 in C, which is an elliptic fibration, and moreover, the area of
each fiber using the rescaled metric ggu is

52
27 Jrr ({(uruz)}x S1)

= (52/ dU3 = (52.
{(u1,u2)}xS*

As in [24], after the choice of a local holomorphic section ops on A}, there
exists a local coordinate = such that

(4.17) (VTdu1 A dug + dug N (9)

(4.18) —ddz Ndy = wh s, + V1w,

and 2 = 0 on the image of o1 By [24, Proposition 3.2], for a suitable choice
of 0, the two periods are 1 and 7(y) = ﬁ log |y| + h(y) because

1

(4.19) =
27 J{(uruz)} xS

VTdU3 =Im T2 (y)
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So the periods on N are the same as the periods on K, and the map
(zna,yna) = (zic, yx) is biholomorphic from N} to an open subset of K
which maps o2 to o; and maps the 2-form wg? su T \/ng s to the given
holomorphic 2-form €2 on K.

We remark that the choice of o is not unique. By [24, Lemma 4.3],
there exists a choice of oas such that for the biholomorphic map induced

by ON%
(4.20) wit — W}, = V—190y5,,

for some function @%jy on {0 < |y| < 200} = 1(Bas,(p)) C K.

Now we return to the elliptic K3 surface § : K — P! and assume that
there is singular point p € S such that the singular fiber §~!(p) is of Type
I, for some v € Z, . For each sufficiently small parameter 0 < § < 1, around
the above singular fiber F~'(p), we will glue the semi-flat Kihler forms
w? with the rescaled multi-Ooguri-Vafa Kahler forms w%}u constructed in

Proposition 4.2. This is analogous to the Ij-case in [24].

Proposition 4.3 (Approximate metrics around I,-fibers). Let§ '(p)
C K be a singular fiber of Type 1, for v € Z,. For each sufficiently small
parameter 0 < § < 1 and &, around the singular fiber F~1(p), the semi-
flat Kdhler form w? induced by F : I — P! can be glued with an incomplete
multi-Ooguri- Vafa Kdahler form wgw = 0% w5, on N2 such that the glued
Kihler form wf on Vis, = § 1 (Bus,(p)) C K is constructed as follows. Let
goli’;’y be the potential on F~(Bus,(p) \ {p}) satisfying

(4.21) wit =W}, + V1005,
Then
wit in § " (Aas,,45,(P));
(4.22) wy =, +V=100(x - ¢,) in §H(As 25 (),
Wi, in §1(Bs, (p)),

where x is a cutoff function satisfying

~J0, inFH(Bs, (D)),
(4.23) X= {1, in K\ § 1 (Bas, (p))-
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4.2. Resolving fibers of type I},

In this subsection, we will resolve the singular fibers of Type I}, (v € Z,.).
Let §: K — P! be an elliptic K3 surface such that the base P! has a finite
singular set S. Let € be a fixed holomorphic 2-form on K and assume that
there is a singular fiber F~1(p) of Type I for some p € S and v € Z,..

First, we describe the orbifold structure induced by the I -singular fiber
3 (p). By [34], for some dy < 1, there is an elliptic surface

(4.24) 3: K — By, (p) C P!

with a local section g; : Bas, (p) — K such that K is locally biholomorphic
to Res(K/Zs), the resolution of K/Zs, near the singular fiber ! (p). More
precisely, let (Z,7) be the local coordinates of K such that g is the local
coordinate on the base and Z is the local coordinate on the fiber. Assume
that {7 = 0} corresponds to the singular fiber and {Z = 0} gives the section
;. Then the Zs-action on K is given by (Z,9) — (—&, —7) so that there are
four fixed points

(4.25) 20:{(0,0), (%1(0)/2,0), (%2(0)/2,0), ((%1(0)+%2(0))/2,0>}

C K.
Hence there is a biholomorphism
(4.26) R : Res(K/Zs) — V,

from the resolution of the four orbifold singular points on IE/ Zy to some
neighborhood V of F71(p).

We remark that given the holomorphic 2-form 2 on K, the pullback JR*(2
on Res(IC /Zs3) naturally induces a holomorphic 2-form € on the covering
space K. Indeed, denote by ¥z, the projection of the fixed point set 3o
in (4.25) under the quotient I — K/Zs. So there is map

(4.27) S : (K/Zs) \ Lz, — Res(K/Zs)

such that the puncture (K/Zs) \ 3z, is biholomorphic to its image under &.
Now the pullback holomorphic 2-form &*9%*(2 on the puncture (K/Zs) \ ¥z,
can be extended to a holomorphic 2-form €2 on the Zsy-lifting J. Meanwhile,
using the above pullback operations, for each 0 < § < 1, the semi-flat metric
g(‘;‘ on K induces a Zo-invariant semi-flat metric g;;‘ on K whose area of each
regular fiber is 6.
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Now we are ready to describe the construction of the orbifold Gibbons-
Hawking metrics on K/Zs. Denote by Q* = R? x S! the product space with
the flat product metric ggs = du} + du3 + du3. Let ¢ : R? x S — R? x §?
be the involution map given by

(4.28) v (ur, ug, ug) — (—u1, —ug2, —us),

which has two fixed points ¢— = (0,0,0) and ¢ = (0,0, %)
Choose a finite set of disjoint poles

(429) P = {p17ﬁ17p27ﬁ27 e 7pV7ﬁV} S ({02} X Sl) \ {q_,q+}

which satisfies ¢(p;) = p; for any 1 < i < v. By Proposition 4.2, we obtain a
multi-Ooguri-Vafa metric

1
(4.30) Jso0 = %(VT(du% + du3 + du?) + (V) 716?)

on the completion Ny, = /(Tfy as in the Iy, case, where
(4.31) St Ny, B o\Pc@?

is a principal U(1)-bundle. Then the two periods are 1 and 7 (&(u1 ++/—1usg))
after replacing 6 by 6 + cdus if necessary (as in [24, Proposition 3.2]). The
group U(1) acts on /\D/'fy from the right, so we will denote this action by %,
for v € U(1). Recall that a connection 6 € Q'(N2) is a real 1-form on N3,
such that \/—16 takes values in the Lie algebra u(1) =+/—1-R. Now the

connection satisfies the following properties:

1) /=16 restricted to the fiber 7=!(u) is v/—1 - duy, where uy is a local
coordinate on U(1) = R/27Z.

2) A0 = 0. Since the group is abelian, the curvature 2-form of the con-
nection is given by Qy = df € v—1H?*(N3,,R), and this forms de-
scends to O\ P.

Note that we have chosen the Green’s function Vp to be invariant under ¢.
Then

(432) L*Qe = L*(*QS o dVT) = — *Qs OdVT = —Qg,

since ¢ is orientation-reversing on O \ P.
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Since J\E‘V is a U(1)-bundle, it has a first Chern class ¢; (N24V) in the
cohomology group H2(O \ P;Z). It is well known that ny is determined up
to smooth bundle equivalence by c; (./\/'241,) By Chern-Weil theory, the image
of ¢1(N4) in v—=1H2(O\ P;R) is cohomologous to Qy, for any connection
0 on N,

Consider the pull-back bundle L*/\Of24,/. By naturality,

(4.33) (' Ng,) = Fe(Ng,) = () = =[] = —e1(N3,).

Consequently, there exists a bundle equivalence A : L*Nfﬁly — /\0/241,, which is

an equivariant map covering the identity map on O\ P, and ./\0/24V is the con-
jugate bundle. Denote by 7y the natural map o : t:*Nat — N2t and choose

an identification C : /\0/241, %/\7’241,, which is fiberwise complex conjugation.
This is summarized in the following diagram.

4 C . Na AT sxa 4
NZV NQV LN2I/ N2V

(4.34) l l l lw

o\r 4, 0\P s 0\P 5 0\P,
The pull-back
(4.35) 0 =C* (A~ Ym0
is a connection on 7 : N — O\ P. Since my 0 A~ o C' covers ¢, we have

(4.36) Qp =di =d((ma0 A7 0 0)*0)
= (mp0 A7 0 0)* Qg = 1*(Qy) = — .

This shows that d(0" + ) = 0. Since ¢’ + 6 descends to O \ P, we can write
(4.37) 0 =—0— -1 -7*df + cv/—17*(dus),

for some constant ¢ € R, and f : O\ P — R, since H*(O \ P;R) is generated
by dU3.

Define a bundle map B : Nii, — N3 by Bv=wv-eY~1 (right action).
Choosing a local fiber coordinate uy and writing 6" as 0] + v/ —1 - duy, we
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have

(4.38) B*0' = B*(0) + V—1- duy)
=0} +V—1B*duy
= 0y + v/ —1(dug + 7*df)
=0 +vV—1-7%df = —0+ cx/—ilﬂ*(du;Q

Therefore, the mapping

(4.39) U=moAloCoB
is a mapping covering ¢ which satisfies

(4.40) U*0 = —0 + cv/—17*dus.

Next, notice that W2 : /(./241, — /(’/5; is a bundle mapping covering the identity,
so we must have

(4.41) P2(v) = v eV 1k

for some function h: O\ P — R. As above, this implies that
(4.42) (2)*0 = 0 + /—1r*dh.

But from (4.40), we have

(4.43) (T2)*0 = U*(V*0) = T* (—6 + cv/—1n*dus)
=0 — cv/—17*dus + cﬁ@*(w*dw)
=0 — ev/—17*dus + e/ —17* 1 dus
=0 — 2¢v/—17*dus.

We conclude that

(4.44) m*dh = —2crm*dus.
Equivalently,
(4.45) 7" (dh + 2cdug) = 0.

Since m, is surjective at any point on /\0/24,,, this implies that

(4.46) dh + 2cduz = 0
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on O\ P, but since H'(O\ P;R) is generated by dus, we conclude that
¢ =0, and dh =0, so h = hy = constant, since O \ P is connected.
We have shown that

(4.47) U =—0
(4.48) V2(v) = v eV lho,

The first equation shows that ¥ is an isometry of gs2,. Moreover, ¥ fixes
the complex structures I,.J, K. We next show that hy =0, i.e., ¥ is an
involution.

Proposition 4.4. The lifting ¥ satisfies U2 = 1d.

Proof. Let uy be a local coordinate on the S! = R/27Z fibration. Restrict
to the fiber over ¢_ = (0,0,0). Then ¥(0,0,0,u4) = (0,0,0,C — uy) for a
constant C. But then W2(0,0,0,u4) = (0,0,0,u4), which means that the
constant hg = 0. ]

With the above involution ¥ on N3, we are able to define the orbifold
Gibbons-Hawking metrics on the Zo-quotient. For simplicity, first we study
the metric gs2, on N24V at large scales such that

(4.49) co -6 < Diamyg,, (Na,) <& -6 1.
Notice that there are four fixed points {q1, g2, ¢3, ¢4} under ¥ € Zs such that

(4.50) m(q1) = 7(q2) = q-, 7(g3) =7m(q4) = g+

Let Zy = {Id, U}, and since the quotient N, /Zs is an elliptic fibration over
the orbifold By, /5(0%)/Zy (the radius is given in Proposition 4.2), by [34],
there exists a local holomorphic section. Its preimage is a Zs-invariant lo-
cal holomorphic section. By the proof of [24, Lemma 4.3], there exists an-
other Zs-invariant local holomorphic section such that if we identify I with
N3, using this new holomorphic section, then d)g‘ — Wiy = \/—71854,05,2,, for
some function ¢s9, on {0 < |§| < 2d0}. After replacing 52, by the average
%(@572,, + U*ps59,), we can assume that s, is Zp-invariant. So it descends
to a biholomorphic map between the orbifolds K/Zy and N, /Zs, then the
Ooguri-Vafa metric gs 2, descends to an orbifold hyperkaher metric gs, on
N241//Z2'

Now the hyperkihler orbifold (N3,/Z2, ds.), as the Zo-quotient of the
smooth Gibbons-Hawking region (N3, gs2,), has 4 orbifold singularities
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with tangent cone isometric to R*/Zs. Correspondingly, the orbifold Kihler
form s, is related to the semi-flat Kéhler form w(‘;‘ by

(4.51) Wi = Ws, + V—100ps,,.

In a small neighborhood of the singular fiber, K is obtained complex
analytically by the resolution of these orbifold singularities, In the next
subsection, we describe the resolution of N /Zs and we will construct a
family of approximately hyperkahler metrics on it, by gluing on Eguchi-
Hanson metrics.

For carrying out the gluing construction, we need the following approx-
imation estimates for the orbifold metric and the Eguchi-Hanson metric.
Given an orbifold singularity gy € Nit /Zy for A € {1,2,3,4}, denote by
ra(x) = dg, , (x, gx) the distance between x and ¢y under the orbifold metric
g5, From now on, we fix sufficiently small parameters ey € (0,1) for each
A€ {1,2,3,4} which will be eventually determined in Section 8.4.

Near gy, the (1,1)-form ws,, can be written as \/—71651%,1, locally. In the
local normal complex coordinates {&}7_;,

; [&1]? + [&f?
(4.52) ‘ o <¢,L, 122>

{owﬁﬁ,k:aLzs
gon s o(1), k> 4,

where 7y € [0,¢,] and ¢y € (0, 1) satisfies

< 7o :
~ (vlog(1/d))>

for some sufficiently small constant g > 0 independent of § > 0. Note that
the above upper bound of ¢y comes from the length of the collapsing S'-fiber
at the orbifold singular point ¢, which is comparable with (vlog(1/d))"2

Next we exhibit some estimates for the hyperkéahler Eguchi-Hanson space
(X%, ggn). To begin with, let C2/Zs be a flat cone so that we blow up the
origin to get the minimal resolution. Take the standard Euclidean coordi-
nates (21, 29) of C? and let r(z1,22) = \/|21|2 + |22]? be the distance to the
origin. Then the Kahler potential for the Eguchi-Hanson metric is explicitly
given by (see [4] for instance)

(4.53)

(4.54) ern(21,22) = = <\/ 1+ rt+2logr —log(l+ V14 7“4)>

so that the Kahler form wgy of the Eguchi-Hanson metric ggn is given by
wEn = vV —100pgn. Note that as r — 400, wgy is very close to the Euclidean
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Kéhler form wga /7, = \/—165(% of the flat cone C2/Zq = R*/7Zy with the

asymptotic order
1
k 2
VgCQ/Zz ((PEH — §T >

forall ke N=4{0,1,2,3,....}, as r — oo.
Let (X*, ggn) be the hyperkihler Eguchi-Hanson space.

Ck

(4.55) 2

<

9c2/z,

x4\ <1><[2e;1, +oo))

be a large region in the Eguchi-Hanson space with diameter comparable with
e;l. To glue this piece with the above Gibbons-Hawking region, we need to
rescale the metric as follows. Denote by O,,.5(gx) the rescaled region with
the rescaled Eguchi-Hanson metric g%H = e‘){ .62 - ggn. Then the diameter
has the scale

1
(4.56) Fo ce) 0 < DiangH(OeA.g(p)) < Do ce) )

for some uniform constant Dy > 0 independent of § and e).

Now we return to the elliptic K3 surface § : K — P! and assume that
there is singular point p € S such that the singular fiber F~1(p) is of Type
I}, for some v € Z4. In the following, we glue the semi-flat metric with an
orbifold Ooguri-Vafa metric, and further resolve the orbifold singularities by
gluing 4 copies of hyperkahler Eguchi-Hanson metrics.

Proposition 4.5 (Approximate metrics around I*-fibers). LetF '(p)
C K be a singular fiber of Type I, for v € Z, then for each sufficiently small
parameters 0 < 6,00 < 1, there is a Kdhler form wP on Vs, = §1(Bus,(p))
C K around the singular fiber 1 (p) which can be constructed by gluing the
semi-flat Kdhler form w? induced by § : K — P, the rescaled orbifold multi-
Ooguri-Vafa Kdhler form dzgﬂj = 5%&%7” on N3t /7y and 4 copies of rescaled
Eguchi-Hanson Kdhler forms

(4.57) WIbEH = 52 : e‘){ * WEH

around the orbifold singularities on Ny, /Zs. Let gbl(’;,l/ be the Kahler potential
on FY(Bus,(p) \ {p}) such that the semi-flat Kdhler form w3 differs from
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the orbifold multi-Ooguri-Vafa Kdhler form dzgﬂj by

(4.58) wit = @%, + V10055,
Then
(4.59)
)
wj' in <A260,450 (p))7
@3, +V—100(x - ¥5,) in § ' (As, .25, (),
B _ ‘ 1
wo =N aj, in §(Bs,()) \ U Baeys(an),
=1
_ . 4
VI00((1=0) 03, + X ) in U Baeslan)
=1

where the function 1[)% y = 5. 1/3571, 1s the rescaled Kdhler potential of(bg .. the
function cpjbEH = e? - 0% - pgn is the rescaled Kdihler potential of the Egquchi-
Hanson metric, x is a cutoff function satisfying

_ {o, in 371 (B3, (p)),

(4.60) 1, in K\ § '(Bas,(p)),

and X is a cutoff function satisfying

4
17 Zn U Be,\é(qA)7
(4.61) X = =

0, K\ U Bes(qn).
A=1

Remark 4.6. The 2-form wf is Kahler with respect to the original complex
structure on K and therefore determines a Riemannian metric g? , which is
hyperkahler outside the gluing transition regions or “damage zones.” In
Section 8.2, we will prove the uniform estimates in appropriate weighted
Holder spaces for the deviation of gf from being hyperkéhler in the damage
zones (see Proposition 8.2).

5. Singular fibers with finite monodromy
Given an elliptic K3 surface § : K — P! with a fixed holomorphic 2-form €,

we have constructed a family of collapsing metrics gf which are defined away
from singular fibers with finite monodromy. Our main goal in this section is
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to construct a family of collapsing metrics g(? associated to definition triples
(w§,Re(6 - Q2),Im(d - ©2)) on K which are also well-defined near the singular
fibers with finite monodromy. The main technical point is that, near the
singular fibers with finite monodromy, we will construct ng by gluing wf
with ALG Ricci-flat Kéhler forms, so that some effective error estimates
hold in the gluing process and the metrics g? are collapsing to the McLean
metric dys7, on P!, that is,

(5.1) (K. g§) <5 (P, dasr)-
5.1. Estimates on the semi-flat metric

In the following discussion, we will assume for example that the singular
fiber is of Type IV. The constructions and estimates in other cases are very
similar, so we do not include a detailed analysis of all cases here.

Near a singular fiber §~!(p) of Type IV, we use the local holomorphic
section o; from Section 3. We can choose a local coordinate y on the base
P!\ S and a local coordinate = on the universal cover of the T2-fiber such
that —dx A dy is the pull back of €2, the given holomorphic 2-form on K.
Assume that y =0 at p € S and = = 0 on ¢;. We define new coordinates by

(5.2) (u,v) = (yz/g, ;):vyw’) :

and note that Q = du A dv.

Recall that the periods are defined as 7;(y) = f% oy, where oy, is holo-
morphic (1,0)-form on the fiber, and ~; are a basis of the first homology of
the torus fiber, ¢ = 1,2. In Section 2, we chose a, = dz to be the canonical
form to define the periods. However, in the following, we will instead choose
the holomorphic (1,0) form by «, = %yéd:c to define the periods.

The function ¢ = 79/7 is a multi-valued holomorphic function in y. By
[34], we can make a new choice of y such that there exists h =2 (mod 3)
satisfying

Vs Y EL
_T2_ e 3 —e 3 Y
(5.3) oly) = = = e :

Note that the notation used in [34] is slightly different from ours. In
[34], the coordinate ¢ on the fiber is given as ¢ € C/(Z @ Zp) while in our
notation, the coordinate v on the fiber is given by v € C/(Z7; & Z72). Then
relationship is simply v = 71C.
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Letting ¢ = y'/3, then o(y) = o(¢?) is a single valued function of . So
we can define

(5:4) F={(0:ceCeC/(Z Lo},

and consider the Zs-action on F given by

(5.5) (6,¢) = < VeI _QC_J .

Note that there are exactly three fixed points on F, given by

1 2 2 2 2r 1
(5.6) po=1(0,0), p1= (O, geﬁ? + 3> y P2 = <0, ge\/jl? + 3> :

Let F/Z3 be the blow-up of F/Z3 at the three fixed points as in [34]. Letting
Fo denote the central fiber, then F(/Z3 induces an exceptional curve © on

P

F/Zs3. Then K is locally the blow-down of F/Zs3 at ©. A computation shows
that there is a Zg invariant holomorphic form

(5.7) QrF = 25(1 — ¢")ds A d¢

—_—

on F. We claim that the ratio between the pull back of Qi to F/Zs and the

pull back of Qr to F/Zs is never 0 and never infinity. In fact, the vanishing
order of Qr is 1 on © because © can be written as {¢ =0} locally. The
vanishing order of k¢ is also 1 on © because © is an exceptional curve.
As for the vanishing order of Qr on the preimage of pgy, we can define
Co=(1-¢"Casin [34] then Qr = 2¢ds A d(y and moreover, the Zs action
maps (s, (o) to (e VeI S, eVTIE o). Note the resolution is locally called N3
in [34, page 582]. It is easy to see that the vanishing order of Qr = 2¢ds A d(p
is 0 on the preimage of pg. It is the same as the vanishing order of Q.

A similar calculation is also true on p; and ps, Thus the ratio of these
2-forms is a non-zero holomorphic function k. It is invariant on the fiber
direction since a holomorphic function on compact manifold is a constant.
So k is in fact a holomorphic function in y, and we can write

(5-8) k(y) = k(0) + O(ly]),
as |y| — 0. Thus the given (2,0)-form Qx on K can be written as

(5.9) Q= 2k(y)s(1 = <")ds A d,
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which implies that

(5.10) 1 =k(y)(1 - ") = k@¥?)(1 - u"?)
and
(5.11) Ty = k(u?’/Q)(e‘/jlz'Tw — e‘ﬁ%uhﬂ).

After rescaling y as well as u = y?/3 and ¢ = y'/3, we can assume, without
loss of generality, that

(5.12) - ﬂ%a +O(ul))
then
(5.13) = ﬂ%“ +O(lul)),

as |u| — 0, where 7 = eV=1% in the IV case, and we have used h > 2 in
the estimate. Note that this expansion is also given in [27, Table 1] which
includes analogous expansions for the other fiber types.

Definition 5.1. The distortion order Ag is the smallest constant so that
(5.14) Im(7172) — 1 = O(Jul™)
as |u| — 0, in the coordinates (u,v) = (y°, %xylfﬁ), and where the peri-

ods are computed with respect to oy = %yl_ﬁdaz. The list of the optimal
distortion orders is found in Table 5.1.

o |pm oo [o]ve|[1v
1 1 5 1 3 1 2

Blals s 12|31 3|35

Mel2(4 2] 2 2] 1|1

Table 5.1: Distortion order.
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Our next goal is to estimate the difference between the 2-form wf and
the flat model 2-form w?é}é, in the flat model metric, which are defined as

v—1
(5.15) wiit =62 - dvy Advy + ~—— dundi
(5.16) gg"}ct = 0%(dv} + dv3) + du? + dul.

For the gluing construction, we also need the following refined estimate
in an annular region surrounding the singular fiber.

Lemma 5.2 (Annulus estimate). Given an elliptic K3 surface § : K —
P! with a finite singular set S C PL. Let 1 (p) be a singular fiber with finite
monodromy for some p € S. For any sufficiently small ro > 0, we choose an
annulus

5 17 A%’Aro (p) = gil(A—OATO (p)),
(5:17) Am74r0(p)z{%0<\u|<47’0}C]P’1\S.

There exists a 1-form n® € QY (A, 21, (p)), independent of §, such that
(5.18) wf — wg% = dn?,
and for any k € N,

Ag+1—k
19 w [P <G
’ 8,K

.Aro 270 (P)

where Cy, > 0 is independent of J.

Proof. Recall that in Section 2.2, using the real coordinates (v1,v2) along
the T?-fibers, the collapsing semi-flat Kéhler forms wf are given by

-1
(520) wf = 52 . dU]_ A dvg + \/; . Im(f—17-2) . du A du
-1
= wg,?ct + \/; (Im(7172) — 1) - du A da.

From Definition 5.1, we have

(5.21) Im(7172) — 1 = O(Ju|™),
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as |u] — 0. Note that the difference

v—1
(5.22) wf — w?f}é =5 (Im(ﬁTg) — 1)du A du

= (Im(ﬁTg) — 1) rdr A df

is in fact the pullback of a closed 2-form on the base P!, where u = reV—1¢
for 0 € [0, 27 3]. Define

(5.23) 77(7“6\/?19) = </T{Im(7‘1(sem9)fz(seﬁ9)) - l}sds> de.

Then n® = F*n satisfies the required estimate using the expansions of 71, T
given in (5.10), (5.11). O

5.2. ALG hyperkahler 4-manifolds

In this subsection, we introduce some background material regarding ALG
spaces. To begin with, let us define the notion of standard ALG model.
Roughly, it is a singular flat space in dimension 4, which can be viewed as
a T2-bundle over a flat sector in R2.

Definition 5.3 (Standard ALG model). Given parameters 3 € (0,1]
and 7 € H= {r € C|Im7 > 0} in Table 5.2. Let Cg, be the manifold ob-
tained by identifying (%, %) with (eV=128%/ ¢=V=128) in the space

(5.24) {(%,7V) | argZ €10,2n6]} C(CxC)/(ZD7Z),
where Z @ Z acts on C x C by

m —+ nT

ImTr

(5.25) (m,n)- (%, V) = (%,7/+ > , (m,n) €L L.

Then there is a singular flat hyperkahler metric hfi2t

form and a holomorphic 2-form

(5.26) witat — —”2_1(%/ NAYU +dV NdY),

(5.27) Qlat — ay Adv.

on Cg, with a Kéhler

Each flat space (C/g,T,hﬂat) given as the above is called a standard ALG
model.
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0 I IT* 1T o | m | Ive v
50 I 11 IT* Imr | | Iv v*
1 1 5 1 3 1 2
Be(01] | 3 § & i 1 3 3

TeH Any eVTIE | VLY V-1 |+v-1 VLA | VLA

Intersection | - ~ - ~ - - -
D4 Eg Ao E7 Al E6 A2

matrix

Table 5.2: Invariants of ALG spaces.

There is a holomorphic map % : Cg, — C defined as # = % é, which
provides a singular elliptic surface structure. We can resolve the singularity
in the central fiber as Kodaira has done in [34], to obtain a smooth elliptic
surface G called an isotrival ALG manifold. The types of the central fibers
are listed in the row 0 of the table. The pull back of dZ A d?¥ provides a
holomorphic 2-form 09 = w2g + \/ng on the ALG manifold G outside the
central fiber. It can be extended to a nowhere vanishing holomorphic 2-form
on all of G, as we will see in Lemma 5.9

An isotrivial ALG manifold G has a complex analytic compactification.
For example, the isotrivial ALG manifold with central fiber of Type II is
the complement of a rational elliptic surface minus a fiber of Type IT*. The
type of the fiber at infinity is listed in the row oo of the Table 5.2

Any isotrivial ALG manifold deformation retracts to the central fiber.
By [34], the intersection form on H?(G) forms an extended Dynkin diagram
in the last row of Table 5.2. In particular, the rank of H?(G) is the subscript
of the extended Dynkin diagram plus 1. In other words, the rank of H?(G)
is 5,9,1,8,2,7,3 respectively.

Definition 5.4. A complete 4-manifold (G, ¢9) with a hyperkihler triple
(wg,wg ,wg ), is called ALG hyperkéahler of order n > 0 if there exist R > 0,
a compact subset K C G, and a diffeomorphism

(5.28) S:{(%,V)€ECs; | |%| >R} -G\ K
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such that

(5.29) | Vi (0799 — B4 = O(% |7,
(5.30) | Vo (@ w9 — 19|, =02 |F ™),
(531) ’Vzﬂat (@*QQ - Qﬂat)}hﬂac = O(|%’_k_n)v

as |%| — oo, for any k € N, where QY = w2g + \/—1w3g, and pflat flat Qfiat
are as in Definition 5.3 on Cg , for some (3, 7) in Table 5.2.

Given any ALG flat model space Cg -, there are many known examples
of complete non-compact hyperkihler ALG spaces (G, g9) with asymptotic
geometry given by Cg ; in the sense of Definition 5.4. For the developments
in this direction including the construction techniques, the analysis on ALG
spaces and related classification results, we refer the readers to [3, 4, 10, 11,
17, 27, 50] and also the references therein.

In the known constructions, when the fiber at infinity has Type IT*, IIT*
or IV*, the optimal asymptotic rate of convergence is given by

(5.32) n=2-_,
B

see [9, Theorem 4.6]. However, in our gluing constructions in later sections,
we will see that, the slow convergence rate (5.32) gives a large error term
which is not enough for applying the implicit function theorem. Therefore
we will restrict to the following class of ALG hyperkahler metrics:

1) (G,g) is isotrivial,
2) (G, g) is ALG hyperkahler of order at least 2.

Note that there do exist examples in all cases which are ALG of order
at least 2 [27, Remark 1.7 (ii)].

In the gluing construction near a singular fiber with finite monodromy;,
we also need an approximation estimate between a hyperkahler ALG metric
and its asymptotic model metric. In our case, the isotrivial ALG space (G, g)
has a central fiber of Type IV and singular fiber of Type IV* at infinity.
Therefore, the asymptotic cone TG is isometric to the 2-dimensional flat
cone C(S; /3) Moreover, the standard ALG model of G is the singular flat

space Cg, for B = % and 7= eV"1% . We also identify the model space
Cp,» with the topological product space (0, +00) X E , Where 23 is a flat
manifold which is diffeomorphic to T3/Zs. So the deﬁmtlon of the ALG
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space gives a diffeomorphism
(5.33) ®:(R,+o0) x L} . > G\ K

for some R > 0 and compact subset K C G.

Now we are in a position to calculate the approximation order between
the 2-forms ®*wY and w on the model space Cg,r. To achieve this, we need
a general standard lemma for estimating the approximation between closed
2-forms.

Lemma 5.5. Consider a topological product space X = (rg,+00) X Y with
a coordinate system x = (r,y) and a Riemannian metric g. Let wy and w be
closed 2-forms on X satisfying the property that for some n > 1,

(5.34) |V’;(w —wo)|g O -7 F as r — oo,

holds for all k € N. Then there exists a 1-form n such that w —wy = dn and
for any k € N,

(5.35) |V§7}|g < Cp -7k as r — oo
Proof. In terms of the coordinates (r,vy), we can write
(5.36) w—wo = +dr AN,

where ¢ is a 2-form and v is a 1-form satisfying 0,10 = 0,119 = 0. Notice
that condition dw = dwy = 0 implies

(5.37) dy(p = 0, dr(p = dyw.
Moreover, by (5.34), for some n > 1 we have
(5.38) ]V’;w]g <Crp-r " Fasr - 400

for any k£ € N. Now we define a 1-form

(5.39) = / " .

The asymptotic behavior of ¢ gives the integrability of (5.39) and hence
7 is well-defined. To verify dn = w — wy, it suffices to check

(5.40) dn = ¢ +dr N,
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which follows directly from the definition of 7 and (5.37). Therefore, 7 is the
desired 1-form satisfying the asymptotic behavior

(5.41) IVEnly < G- 717" F as 1+ — 40,
for any k € N. d

Since we will glue rescaled ALG spaces with semi-flat metrics on K which
have bounded diameter, we need to work with the ALG space and prove the
approximation estimate at small scales. Based on Lemma 5.5, we have the
following.

Proposition 5.6. Let (g,gg) be a complete hyperkdhler isotrivial ALG
manifold of order 2 with a corresponding Kdhler form w9 such that for some
B € (0,1] and T € H there is an ALG coordinate system

(5.42) ®:{(%,V)€ECs; | |%| >R} = G\ K,

outside a compact set K C G equipped with a model ALG Kdhler form wit

on Cgr. Let 0 < § < 1, we rescale the metrics and Kdhler forms by

(5.43) gg = 6249, wg = 629
(5_44) higat _ (52hﬁat, wgat — 62wﬂat,

then there exists a 1-form ns satisfying
(5.45) d*wy — Wit = dn,
with respect to the rescaled metric hgat

1
6-|%]|

1+k
(5.46) [ Viauns] o (%, V) gok.52< > , 0-|%| =6 R

for any k € N, where Cy. is independent of §.

Proof. Under the map @, the complement G \ K is diffeomorphic to a topo-
logical product (R, +00) X E%J, where E%J is a compact flat 3-manifold. So
the coordinate r in Lemma 5.5 can be chosen as the distance function to
the origin. Now the asymptotics immediately follows from Lemma 5.5 and
standard rescaling computations. O
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5.3. Construction of approximate solutions

With the above technical preparations, we are ready to construct the ap-
proximate metrics around singular fiber with finite monodromy.

We first choose a diffeomorphism which identifies a large ball in the ALG
metric with a tubular neighborhood of the singular fiber in K. Define a local
diffeomorphism ¥ from Cg , to F/Z3 by

1 T \/T 27 )
=+ 3
vV ImTU1 vV ImT 2
= (u,v) = (0%, 11 (0% )v1 + T2 (U )v2)

(5.47) \ (% ¥ =

for v1,vy € R/Z. Since ¥ maps the fixed points to the fixed xed points, it induces

a local diffeomorphism U from the resolution Cg - to F / Zs. It maps @va
to @ -, 80 it induces a local diffeomorphism ¥ from the isotrivial ALG
mamfold G to K which satisfies

(5.48) U (wish) = wit, U*(giy) = hg™,

away from the singular fiber.

The initial step of constructing gluing metrics is to fix the size of the
gluing region. From now on, we fix a parameter ¢ € (0,1) which will be
determined later. Let §: /K — P! be the fixed elliptic K3 surface with a
singular fiber F~1(p) of Type IV. Let § € (0,1) be sufficiently small, then
we work with a small neighborhood of the above singular fiber

(5.49) Ogs¢(p) =F '(Base(p)), Bas(p) C P,
such that for some ¢y, ¢y > 0,
(5.50) 5" < Diam,s (ow( )) <o

Therefore, for fixed 0 < § < 1 and ¢ € (0,1), we choose a large cutoff region
in G as follows

(5.51) G =g\ @((#—1, 0) X zgﬁ)
so that
(5.52) W G6'Y) — Ou5e(p) C K,

(5.53) o - 6771 < Diamge (G(6°71)) < & - 671
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To proceed with the gluing construction, we also need to make the scales
consistent. For this purpose, we rescale the complete ALG metric by choosing
gg = 62¢9 so that the T2-fiber at the infinity of G has diameter proportional

to d. Also let us denote by wg the Kéahler form with respect to the rescaled

ALG metric gg. Then the rescaled region (g(éﬁ),gg)) = (5-G(6°71), 62 -gg)
satisfies

(5.54) ¢y - 8 < Diam g (G(6)) < ¢o - 0.
Therefore, under the diffeomorphism
(5.55) W G(6°) — Ose(p)
we obtain a metric VU, gg and a Kihler form \li*wg on the open set
Oyt (p) c K.
By Lemma 5.2 and Proposition 5.6, there are 1-forms 77((5; = ®,n5 and 17(]53

in the annulus region Ags: o5¢(p) = F 1 (Ase25¢(p)) C K such that the follow-
ing holds in A557254 (p):

and for any k € N,
‘v]‘;g{ﬁkﬁ (\P*n(g)’gﬂ . S Ck) . 52—Z(k+1)’

(5.57) o x
Vi ()

< Ck . 5€(>\5+1—k).
flat
9s5.K

Then 2-form wac is then defined as follows.

Proposition 5.7. Let §: K — P! be an elliptic K3 surface with a fixed
holomorphic volume 2-form §2. For 0 < § < 1, there are a family of 2-forms

\I/*wg, on Ogse(p),
(5.58)  w§ = wikt+ d(x Wmf 4 (1= x) - nf?), on Ase 250 (p),
wy, on K\ Oas:(p),

satisfying the error estimate in transition region Ase os¢(p)

(5.59) sup ‘V’;Q% (W§ — wg’?ct)

Aéf,zsl (»)

< Ck . (52—@(/€+2) + 5(()\5—]6))7

flat
95,
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for k € N, for C}, independent of &, and where the smooth cutoff function is
defined by

(5.60) 0, on K\ Oge(p).

1, on O(gz (p),
X =
Remark 5.8. By Remark 1.4, since we have a holomorphic (2,0)-form
Qs = 0Qk, there is a Riemannian metric gg associated to wéc.

For a rescaled ALG space (G, gag) with an infinity model Cg , the push-
forward \I/*gg on Ogse(p) does not give a hyperkéhler metric with respect
to the complex structure of K. Indeed, the error term is of polynomial rate
given by the above distortion order A\g. We next give some quantitative esti-
mates of this error term. To begin, note we can also do the above resolution
procedure as in Subsection 5.1 on the isotrivial ALG manifold G, which we
again illustrate in the case of type IV. Then F/Zs is replaced by Cg , for
8= % and 7 = e¥V~1% and the blow up of G is CﬁA/T

Lemma 5.9. The pull back of QY to C/ﬁ; is the same as the pull back of
A% NdV .

Proof. In this case, og = T, so all the terms involving h disappear, and
(5.61) Qfet — ocde A dC = dw N dY,

where ¢ = #1/3 = 91/2 and f — ¥. Then we see that the pull back QY of
09 satisfies

(5.62) QY = kg(#)Qt,

where Qflat is the pullback of Qflat, We know that kg — 1 as % — oo, so by
the maximum principle, kg = 1. O

We end this section with the following proposition which give precise
error estimates in the ALG regions.

Proposition 5.10. Let R be the fized constant in Definition 5.4 only de-
pending on g9, then for all k € N, there exists a constant Cl, independent
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of 0, for § sufficiently small such that on Osgr(p), we have
(5.63) V346 (0 = 8009y oo < Cpos*
(5.64) VEc (9§ — Wagf)lge < Cios
and on Asga5: () = Osst (p) \ Osp(p), we have

(5.65) V3, g9 (0% — W09y 4o < Crluls ™",
(5.66) Vi (95 — Wagd)ge < Cplul>™"

Proof. We again use the type IV case as an example. First, we use the metric
v, gg" in the deep region Os:(p) given by the pushforward metric from the
rescaled ALG space.

We first consider the region |%| < R. In this case, we can pull back
everything to Cg ;. Recall that Cp ; is the blow up of G and {¢ = 0} is the
exceptional divisor. A straightforward calculation shows that there exists a
constant C' > 0 such that the pull back §5g of gg =62¢9 to (g, satisfies

(5.67) 3§ — C710% (|6 (dv + dv3) + (dReé)? + (dIm¢)?)
is positive definite. By (2.13), we know that
(5.68) 0Qx = ddy A (T1dvy + Todve) = 25¢ds A (T1dvy + Todvs).

From Lemma 5.9, the pull back of 62Q9 to C?T is

(5.69) 26%¢dé A ( ﬁdvl + \/7d”U2> .

However, recall that ¢ = u = 6% = §¢?

(5.70) _— %m +O(ul),
and
(5.71) Ty = —I:TT +O(ul).

So we see that

(5.72) 09 — 520 Q% 4o = O(5)
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inside |%| < R in the IV case. Here the bounds may depend on R. In general,
we will have

(5.73) |6Q — 82, Q% o = O(6™)

where A\g is the distortion order. Recall that from Table 5.1, the minimal
order A\g is equal to %

Next, we look at the region R < |%| < §‘~!. In this region, the ALG
metric ¢Y is equivalent to the flat metric hfi#t. A similar calculation as above
shows that

(5.74) 160k — 62009y o = O(lu).

By a similar argument, we can obtain the bounds on higher order derivatives,
the detailed calculations are omitted.

To compare the metric géc with \Il*gg, recall that the metric g(? is de-
fined as the metric associated to the triple (\Il*wg,Re((SQ;C),Im(éQ;C)) in
the region Og:(p) and the metric ¥, g5g is associated to the triple

(W,w§, Re(620,09), Im(6%0,09)) .

The metric error estimates then follow from the previous estimates.
Finally, by Lemma 5.2 and Proposition 5.6, we get the required estimates
in the damage zone region Ase o5¢(p) = Oa5¢(p) \ Os¢ (). O

6. Metric geometry and regularity of the
approximate solutions

In this section, we will analyze the singularity behavior for the collapsing
Ricci almost-flat metrics constructed in Section 4 and Section 5 in a quan-
titative way. Specifically, in each of the above cases, we will give uniform
estimates for the regularity scales in terms of the collapsing parameters.
Based on these effective estimates, we will set up the package of the weighted
analysis which will be used for the perturbative analysis in Section 8.

6.1. Singularity behavior and decomposition of
the approximate metric

To begin with, we introduce some basic notions for discussing the singularity
behavior in a quantitative way. The following concept of regularity scale is
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commonly used and very convenient to study the singularity behavior for a
sequence of metrics in both non-collapsing and collapsing settings.

Definition 6.1 (Local regularity). Let (M",g) be a Riemannian mani-
fold. Given r,e > 0, k € N, a € (0,1), we say (M™,g) is (r, k + «, €)-regular
at x € M™ if the Riemannian metric g is at least C*® in By,.(x) such that

—

the following holds: let (Ba,(z),%) be the Riemannian universal cover of
By, (x), then B,.(z) is diffecomorphic to a Euclidean disc D™ C R™ such that
the lifting metric ¢ in coordinates satisfies for each 1 <1i4,j < n,

(6.1) 19i5 — Sijloom @y + > ™0™ g5 |c0 B, (2))
Im|<k

k o
+ 7 Gislone (B, (2)) < €
where m is a multi-index, and the last term is the Holder semi-norm.

Definition 6.2 (C*“-regularity scale). Let (M",g) be a Riemannian
manifold with a smooth Riemannian metric g:

1) The C*“-regularity scale at z € M™, denoted by 7 o (), is defined as
the supremum of all 7 > 0 such that M" is (r, k + a, 10~?)-regular at
x.

2) We can also define the € curvature scale r| gy, |(7) at x as the supremum
of all 7 > 0 such that - |Rm| of g in B,(z) is bounded by 107°.

Remark 6.3. It is well known that there exists a constant C' > 0 only
depending on n, k, « such that if g is Ricci-flat, then by taking local universal
covers and using standard Schauder estimate, it follows that

(6.2) O™ 1R (2) < Tha(@) < C 1R (@),

(see [44] or [45] for more discussions about this). Also note that the regularity
scale 7y, o is 1-Lipschitz on a Riemannian manifold (M", g), i.e.,

(6.3) 7ka(®) = Thaly)] < dg(2,y), Va,y € M",
see [7, Section 1].

We will also need the following notion of canonical bubble.
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Definition 6.4 (Canonical bubble limit). Let (M}, g;,x;) be a se-
quence of Riemannian manifolds, and let 7; = 14 o(z;) be the regularity
scale at x;. Then (Xo,doo,Too) is called a canonical bubble limit at x; if
passing to a subsequence, the following pointed Gromov-Hausdorff conver-
gence holds,

(6.4) (MP, 75205, 25) s (Xoe, oo, 200).
Remark 6.5 (Noncollapsing bubble limits). Let g; be Einstein and
let the rescaled sequence be non-collapsing, i.e. Volg, (By(x;)) > vo > 0 with
g; = r;ng. If X is smooth, then the e-regularity for non-collapsing Ein-
stein manifolds tells us that the Gromov-Hausdorff convergence (6.4) can be
improved to C*-convergence for any k € N. If g; satisfy the uniform Ricci
curvature bound |Ricy, | < n — 1, then in the non-collapsing setting, (6.5)
can be improved to C'1®-convergence. For more details, see [6, Theorems 7.2
& 7.3].

Now, let us return to our context and consider a fixed elliptic K3 sur-
face § : K — P! with a finite singular set S C P!. In the previous sections,
we have constructed a family of approximately hyperkahler metrics ggj. Our
main goal in this section is to understand the quantitative singularity behav-
ior of gf by obtaining effective estimates of the reqularity scale for each point
x € . This is a necessary technical part for implementing the weighted
analysis in Section 8.

Next, we outline how to prove the effective regularity scale estimates.
The fundamental strategy is to analyze the bubble limits by appropriately
rescaling the collapsing sequence. We first assume that Ricge = 0. This is of
course not true. For example, in the deep region Og:(p) in Section 5, ggj is
not the same as the Ricci-flat metric \Il*gg. However, in this case, we can
study the regularity scale of ‘I/*gg and use Proposition 5.10 to study the
regularity scale of g(;o. Similar method applies to the damaged zone in all
cases.

To start with, let us consider the case of codimension 1 collapse: assume
that for the rescaled space (K,g,x) with a reference point € IC and a
rescaled metric § = A% - gdc which satisfies Ric; = 0 on Bj(x), the sequence
satisfies the following Gromov-Hausdorff behavior for a sufficiently small
number € > 0,

(6.5) dar(By(x), Ba(x)) <€, Ba(xs) C R
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In this case, it is known that I'c(x) has a finite-index cyclic subgroup either
Z or Zy, (p € Z4) so that rank(I'c(x)) < 1, where

(6.6) Te(@) = Image[ri (B (z)) — m1(B{ ,(x))],

see [33, Theorem 6.1]. In the general setting, we define the nilpotent rank
for a finitely generated nilpotent group.

Definition 6.6. For a finitely generated nilpotent group N/, its nilpotent
rank is defined as the sum of the abelian ranks rank(A;) arising from the
lower central series

(6.7) N =Ny N> Ny DN():{G}, A; E./\/‘j_l/_/\/‘j.

For any finitely generated group T, all finite-index subgroups N share the
same nilpotent rank. In this case, we just define rank(I") = rank(N) for any
nilpotent subgroup N satisfying [[" : N] < oo.

The regularity at @ can be related to the topology at x in the following
way (see [42, Theorem 1.1] or [28, Lemma 7.7]).

Lemma 6.7. There is some 1073 > ¢y > 0 such that if (6.5) holds for e < ¢
and the group T'c(x) satisfies rank(I'c(x)) = 1, then

(6.8) sup |Rmg| < Cy
Bi/s(x)

for some absolute constant Cy. Conversely, assuming the same Gromov-

Hausdorff behavior (6.5), then (6.8) implies rank(I'c(x)) = 1.

Now we return to our regularity scale estimates, which will be proved us-
ing the following general argument. First, the upper bound estimate of ry
is given by the following. Lemma 6.7 tells us that, as e sufficiently small, if
['¢(xo) has finite order, then rank(I'c(x()) = 0 and hence curvatures around
xo become unbounded. Using the estimate (6.2) and the Lipschitz property
(6.3), we conclude that 7y o(z) < 2 for any & € Bf(x(). On the other hand,
if dj(z,20) > 1 and rank(I'c(x)) =1, then Lemma 6.7 and the estimate
(6.2) also tell us that ryo(x) > vy ,, where v, , > 0 is a uniform constant
independent of e. Therefore, with respect to the original metric gs, the reg-
ularity scale estimate vy , - A™! < g (@) < 2271 holds if rank(T(x)) = 1
and rank(I'c(xo)) = 0 with 1/2 < dj(z, zo) < 1.
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If higher codimensional collapsing occurs, the main theorem in [42] gives
the following generalization of Lemma 6.7.

Theorem 6.8 ([42]). Let (M",g,x) be Einstein with |Ricg| <n—1 and
let (Zk, h,z) be a k-dimensional Riemannian manifold, then there is some

constant 0 < eg < 1073 depending only on n and the injectivity radius at
z € Z¥ such that if

(6.9) deu(Ba(z), B2(z)) <€

holds for € < o, then T'e(z) = Image[m(Bc(x)) — m1(By/4(x))] has a nilpo-
tent subgroup N with rank(N') < n — k. Furthermore, the following regular-
ity property holds: rank(N') = n — k is equivalent to the uniform curvature
estimate

(6.10) sup |Rmg| < Cp
Bi/s(x)

for some uniform constant Cy > 0 depending only on n and the injectivity
radius at z € Z*.

We will next apply the above ideas in our situation. For each x € K,
we will appropriately choose metric rescaling factor with respect to x so
that the rescaled convergence has singularity @y with definite distance away
from z. For each parameter § € (0, 1), the space (K, g§) is divided in the
following regions:

1) For each p € P! corresponding to a singular fiber of Type I, for some
v E€Zy, let Si,(p) =3 1(Bas,(p)) be the region equipped with the
approximate metric g(sc which satisfies the diameter estimate

1
(6.11) — < Diam¢ (51, (p)) < Co
Cy S
for some uniform constant Cy > 0 independent of 4.

2) Similarly, near each singular fiber of Type I’, for some v € Z,, we can
define Sy (p) such that

(6.12) Cl'o < Diamgg («51; (p)) < Coy

for some uniform constant Cy > 0 independent of the parameter 9.
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3) For each type of singular fibers with finite monodromy, as constructed
in Section 5, denote by Sir, S, Srv, S+, Srre, Srv+ and SIS’ the
corresponding small neighborhoods of singular fibers such that the
diameter is comparable with 6¢ as 6 — 0.

4) For each J, denote by R;s the complement of the above regions in
the total space K, on which the approximate metrics ggj are semi-flat
metrics.

The main technical part is to compute the regularity scales and the
bubble limits of each singular region in the above list. First, we study the
regularity scale 1, in Rs as 6 — 0. It directly follows from Theorem 6.8
that curvatures are uniformly bounded in any compact subset of Rs which
has definite distance to the union of singular fibers F~!(S). Around each
boundary component of R, let F~1(p) be the closest singular fiber to ORs.
Fix some small constant dg > 0 independent of §, then we define a smooth
function sz (x) by

(6.13) sr () = {Cf(w’gl(p))’ d(x, 5 (p)) < 8%

) d(w7g_1(p)) Z 16507

with smooth interpolation in the annulus. We claim that there are uniform
constants vy , > 0 and Uk o > 0 depending only &k and « such that

Tk ()
573(:8)

(6.14) Uy < < Tpa

Indeed, at the point € R, if we take the rescaled metric gg = sR(w)*Qg(SC,
it follows that = has unit distance to F~!(p) under the metric Q(SC. Since
rank (T, (x)) = 2 for small enough 0, all € Rs and the constant €y in The-
orem 6.8, we can obtain the curvature estimates with respect to gg,

(6.15) sup |Rmyge | < Co,
Bi/s(x)

and hence in terms of the original metric g(;c, we have

Co

(616) sup ’ngéc ‘ S W,

Bsg (@) (%)
8
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where Cjy > 0 is independent of §. This implies that

Tko(T)
573(:13)

for some uniform constant vy, , depending only upon k and «. The upper
bound estimate of r; o, follows immediately from the 1-Lipschitz continuity
of 1o and the fact that curvatures are unbounded in terms of J around
singular fibers.

The inequality (6.14) completely describes the regularity scales of the
regular region Rs. In the following subsections, we will discuss in detail
the regularity scales and bubble limits of the collapsing metrics gg in the
singular regions K\ R

6.2. Regularity scales in the cases of finite monodromy

In this subsection, we will compute the regularity scales near the singular
fibers in the cases of finite monodromy. As discussed before, there are seven
types of singular fibers in this category: II, III, IV, II*, IIT*, IV* and Ij.
It can be seen from the construction in Section 5 that the regularity scales
of the singular regions in all those cases behave in the similar way, so the
singular regions in the above cases are uniformly denoted by

(6.18) Sarc = St U S U Sty U Spr+ U Sy U Sty= U SI(*;.

Let us briefly recall the construction of Sarg introduced in Section 5.
Let (G, g9, p) be an ALG space with a fixed reference point p € G. For fixed
¢ € (0,1) and small ¢, as in Section 5.2, we pick a large compact set

(6.19) GO =g\ cp(((sf—l, 0) X 23).
Here ® is the map defined in Proposition 5.6. It immediately follows that
(6.20) o - 071 < Diamgye (G(6°71)) < & - 67!

for some constants ¢, > 0 and ¢y > 0 independent of the parameter 4. In the
gluing construction in Section 5.3, we rescaled the large subset G(6°~!) and
glued it with wéB around the corresponding connected component of ORs so
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that Sy is diffeomorphic to G(6/~!) and its diameter yields to the estimate
(6.21) ¢ 0° < Diamge (Sara) < & - 6"

The proposition below gives the bubbling analysis and regularity scale
estimates for the points in the region Sarc.

Proposition 6.9 (Regularity scale and bubble limits near finite
monodromy fibers). For any small parameter 6 < 1, let gg be the ap-
prozimately hyperkdhler metric on Sara, then the following holds:

1) Given k € N and a € (0,1), there are uniform constants vy, , > 0 and
Upo > 0 independent of § >0 such that the (k,a)-regularity scale
Tka(x) at x € Sarg has the following bound

(6.22) Uk " 5G() < Tha(®) < Upa - 5G(),

where the function sg(x) is smooth on Sarc and explicitly given by

d dc (T <45

(6.23) sg(z) =" gc (V(p), ) <9,
x) > 26.

2) The canonical bubble of (K, x) for any x € SaLg is either a com-

plete hyperkdhler ALG space G or its asymptotic 2-dimensional cone
T+ (G) = C(S%w) with the flat metric dc ars.

Proof. The proof can be achieved in the following way. Now suppose the
rescaled sequence at @

(6.24) (K, 5(2) 205, ) ZL (X oo, doo, Too), 0 — 0,

satisfies the property that the regularity scale at & with respect to the
rescaled metrics are uniformly bounded from above and below. Then un-
der the original metric gg, the regularity scale at @ is comparable with s(x)
and )A(OO is the canonical bubble limit at . Notice that by Proposition 5.10,
the rescaling argument is the same for géc and \Il*gg.

To accomplish this, we will divide the above singular region Sar,g into
several pieces.

Region Sa1,c1 (deepest ALG bubbles):
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This region consists of the points & € Savg satisfying dge (x, ¥(p)) < 6. As
0 — 0, taking any sequence of points s € Sarq,1, We rescale the metric géc
by

(6.25) s = 6775 .

By Proposition 5.10,

(6.26) (K, 3, w5) =5 (G, g9, a0) as 6 — 0,

where the limit space is a hyperkéahler ALG space and the convergence is in
the pointed C*-topology for any k € N. Since (G, g9, x) is not flat, so under

9%

(6.27) Vo < Tha(T) < Uk a-
Changing back to g(;C, we have

(6.28) 0 Vo S Tha(x) <6 Vpq0

and hence the function s(x) in Sarg,1 can be simply chosen as 4.
Region Sarc2 (ALG bubble damage zone):

The points « in this region satisfy
(6.29) dge (z, ¥(p)) > 26.

Now we consider the rescaled metric for a sequence of reference points x5 in
SALG,2;

(6.30) 35 = dye (¥(p),@s) 2 g5 .
Then there are two different rescaled limits depending upon the distance
dg(;c (\I/(p), 165)2
Case (a): As 0 — 0, the sequence {x;} satisfies that there is some o¢ > 0
. s 1
independent of & > 0 such that 0 < oy < W <3
In this case, the rescaled limit ()? , cf, @) is a complete ALG space which
is a finite rescaling of the original ALG bubble (G, g%, p).

Case (b): As § — 0, the sequence {25} satisfies 7’5y — 0.
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In this case, the rescaled limit is isometric to a flat cone (C/(S; B)’ dc2xB, L)
in R? which is exactly the asymptotic cone of the ALG space (G,g9,p).
Notice that in this case, we have dco.5(2,0%) =1 and the ball Bijg-s(&)
is contractible in the flat cone (C (S%ﬂﬁ),dcvgﬂg). So for the fixed constant
e = 107%¢y with €y given in Theorem 6.8, for small enough §, the group
Image[m (Be(€)) — m1(Bio-3(&))] is Z & Z, where the geodesic balls B (&)
and Bjp-3 (&) are measured under the rescaled metric gg. So by Theorem 6.8,
we get the required lower bound on the regularity scale. On the other hand,
the upper bound on the regularity scale comes from Remark 6.3 and the
calculation in Region Sarg 1.

This completes the proof of the proposition. O

6.3. Bubbling analysis around the singular fiber I,

We will next study the regularity scales and classify the canonical bubbling
limits in the singular region Sy, for some fixed v € Z which is a neighbor-
hood

(6.31) S, =F ' (Bus, (p))

of the singular fiber §~!(p) of Type I,,, where & is a constant independent
of 4.

In Region &t , as shown in Section 4, there are approximately hyperkéhler
metrics gf (which agree in this region with the metrics glsc constructed in
Section 5), which are constructed by gluing the multi-Ooguri-Vafa metric
on N with semi-flat metrics, so that for some constant Cy > 0 independent
of 4,

1
(6.32) 50 < Diamgdc (SI,,) < C().

Remark 6.10. In the following, for the convenience of computations, the
metrics géc will be parametrized in terms of

(6.33) T = —vlogé,

and denoted by gr.
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Recall that the metric g7 in §!(Bs,(p)) coincides with the Gibbons-
Hawking metric

1 _or
(6.34) 950 = %6_7 . (VT - (du? + dud + du3) + (VT)_192),

(ul,UQ,U3) cOcC R? x Sl,
where the region O consists all points

(6.35) x = (u1,ug,u3) € Q> =R? x §*

satisfying |6(u1 4+ v/—1uz)| < 28p. Let us denote by mg: the S'-principal
bundle map

(6.36) St NP2 0 cR2x S

which sends every x € N} to = mgs(x) C O.
We need the following conventions and notations:

1) Denote by dgs : @3 x Q3 — [0, +00) the distance function induced by
the flat metric on Q3 = R? x S'. Then we obtain a smooth function
t: Q3 — R, by slightly mollifying the distance function dgs as follows:

For z € 3,
T, dg:(z,p;) < T~ for some p; € P,
(637) t(@) — dQ3 (ga p;)v 2T?1 < dQ3 (@7 pl) STQ) for some pi € P7
dQ3 (@7 0 )7 TO < dQ‘3 (gap’b) <ew for all pi € P7
eT;Q, dgs(x,pi) > e for all p; € P.

Here P = {p;}/_, C @Q? is the finite set of monopole points and
1 . . .
(638) lo = 5 min {dQJ(Ppr) | Di,Pj € Q37 4 7é j}v
(6.39) To = 2max{dg: (pi,0°) | pi,p; € Q%, 1 <i < v},

2) Let Lo : [0,4+00) — R be a smooth function satisfying

—vlogr, r >4,
6.40 Lo(r) =
(6.40) ofr) {07 oo

and let

(6.41) Ly(z) = T + Lo(dgs (mgs (), 0°)).
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We next describe the regularity scales and classify the canonical bubble
limits for all € &, .

Proposition 6.11 (Regularity scale and bubble limits near I, fibers).
Given any large parameter T > 1 (equivalently 6 < 1), let gr = ggj be the
approximately hyperkdhler metric on S1, as the above, then the following

holds:

1) Given k € N and o € (0,1), there are uniform constants vy, , > 0 and
Uk,q > 0 independent of § >0 such that the (k,«)-reqularity scale
Tka(®) at € S1, has the following bound

Tk ()
s, (x)

(6.42) Upo <

Kl < I_Jk,ou

where the function s,(x) is explicitly given by
(6.43) sy(@) =e v - Lp(x)? - v(zm).

2) As T — +oo (equivalently § — 0), all the canonical bubbles of (K, x)
for x € St are as follows: the Ricci-flat Taub-NUT space (C2, grn),
the flat spaces R®, R? x S', R2, and singular limit (P, dyp) with
bounded diameter.

Proof. The basic framework is similar to the proof of Proposition 6.9. We aim
at obtaining the required estimate of the regularity scale for every « € Sy,
so it suffices to show that for all T"— +oo (or equivalently § — 0) and for
all x € 51, there is a rescaled limit

(6.44) (K50 (2) 205 2) 5 (Ko, doo, oo,

so that the regularity scale at & with respect to the rescaled metrics s(z) =2 gg

is uniformly bounded from above and below.

Remark 6.12. For the convenience of the discussion, we will take a se-
quence Tj — +oo and denote g; = g7, in the following proof.

The singular region Sp, will be further divided in the several pieces:

Region S, 1 (deepest ALF bubbles):
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This region consists of the points & € Sy, satisfying dgs (z, p;) < Tfl for
some 1 <i < v, where £ = mgs(x). Let x; be a sequence of reference points
in this region and we rescale the metric by g; = )\? - g; with

s
=

(6.45) Aj=e T
If we rescale the coordinates by
(646) (11]_,'[22,’113) :7?7 : ((U]_,UQ,Ug) _p2)7

then the rescaled metrics converge in the pointed C*°-topology,

oo

(6.47) (K, Gy, z5) “, (C% 97N, Too),

where the limit (C2, grn, ©oo) is a rescaled Taub-NUT metric. By definition,
the Taub-NUT metric is the hyperkadhler ALF metric given by the Gibbons-
Hawking ansatz over R3 with a single monopole point and harmonic function
V =1+ (2r)71, see [26]. The rescaling computations are straightforward
and hence we skip the details here, see [28, Lemma 7.9] for more details.
Since the (C2, g7v) is not flat with bounded curvatures and the convergence
is C°°, the regularity scale at x; with respect to the original metrics g;
satisfies

N =

(6.48) Uk Tf <rral®j) < Vg - 17,

where v, , > 0 and vy o, > 0 are uniform constants independent of 7.
Region Sp, 2 (ALF bubble damage zone):

This region contains all the points € Sy, satisfying 27 < dgs(z, p;) < v
for some 1 <4 <v. Now take a sequence of reference points x; in Region
81,2 and let us denote

(6.49) tj = t(z;)

for &; = mgs(x;). The rescaled metrics g; = )\?gj is given by

(6.50) Aj=e

To effectively work with the explicit rescaled metric tensor g;, we also rescale
the coordinates by taking

(6.51) (@1, T2, U3) = pj - ((u1, u2, uz) — pi),
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where the coordinate rescaling factor is chosen as

1

i
To understand the rescaled limits under the above rescaled metric g;, we
need to consider the following cases and study the rescaled limits separately:
Case (a): there is some oy > 0 such that 2T{1 <t < ﬁ -171.
Case (b): t; satisfies

.
(6.53) T—{l — 400, t; — 0.
J

Case (c): there is some uniform constant 79 > 0 such that 9 < t; < ¢0.

Case (a) is similar to Region &j, 1, so the rescaled limit is the Ricci-flat
Taub-NUT space. The metric tensor can be written explicitly in terms of
the rescaled coordinates.

In Case (b), we take a fixed region in Q3 where = (u1, ug, u3) satisfies
dgs (z, pi) < 1o and investigate the Gromov-Hausdorff convergence under the
rescaled metrics g;. First, the Sl-fibers are collapsing as j — +o00. Moreover,
it can be directly verified that, up to local universal covers, the rescaled
metrics converge in the C*-topology for any k € N. This in particular implies
that the rescaled coordinate system (i, o, u3) € @3 in fact converges to
some limiting coordinate system (u1 o0, U2 00, U3,00). After a fixed rescaling so
that the limiting reference point &, satisfies dg__ (€ oo, 03) = 1, with respect
to the limiting coordinates, the limiting metric tensor g, can be written as

(6.54) oo = dui o + du o + du3 .,

which is precisely the Euclidean metric in R3. Detailed computations about
this can also be found in the bubbling analysis in Region II of [28, Sec-
tion 7.3]. Moreover, the Gibbons-Hawking ansatz gives an S*-fibration over
Bgr(03) C R? for any large R > 0, which is smooth away from 03. Since
0% & B:(Z), it immediately follows from the S!-principal bundle structure
that, for sufficiently small ¢,

(6.55) Image[m (BY (x;)) = m1(B)5(w5))] = Z

so that its rank is 1. Then Lemma 6.7 shows that curvatures at x; are
uniformly bounded and hence ry o(x;) with respect to the rescaled metrics
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g; is uniformly bounded from below. To see the uniform upper bound of
Tk,o(), it suffices to use the 1-Lipschitz continuity of ry, o, and the calculation
in Region &y, 1.

Now we study the canonical bubble in Case (c). We will work a domain
in NV} which consists of the points & € S, satisfying

(6.56) v(z) < T

for & = mgs(x). Notice that, by our definition of the metric rescaling fac-
tor A; and the coordinate rescaling factor p;, it follows that the rescaled
coordinate system (uj, Uz, Us) is a bounded rescaling for the original one
(u1,ug,us). Therefore, the limiting metric g is up to a fixed rescaling,
given by

(6.57) oo = duf o + duj o + duj

which is the standard flat product metric on R? x S*. This corresponds to
the case of T? x R in [28, Section 7.3]. The remainder of the arguments are
the same as Case (b) by noticing that there are v monopoles of the Green’s
function on R? x S! and a has definite distance to those monopoles under
the rescaled metrics.

This completes the bubble classification in Region i, ».

Region &i, 3 (large scale regions):

This region consists of the points @ € &1, which satisfy
(6.58) dgs(z,p;) > Ty and Lr(x)) > 2,

where £ = mgs(x) € Q3. For a sequence of reference points x; € Sy, 3 with
projected coordinates x; = (u1,5,u2j,us;) € Q3, let us define the rescaled
metric g; = )\? - gj by

L -3 -1
(6.59) Nj=er Lt
where
(6.60) Lj = Lr,(x;) and t; =t(x;).

For the purpose of explicit computations, we will also rescale the coordinate
system z = (u1,us,u3) € N and center around the reference point ; with
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base coordinate x; = (u1j,us,j, u3;) € Q> to

(6.61) ’L~L1 = Mj s U, ﬂz = /Lj s U2, ﬁg = Mj - u3,

where the rescaling factor ; is chosen as p; = tj_l.

In the following computations, Region Sy, 3 will be further subdivided
in the following cases depending upon the location of x;:

Case (a): There is some Ry > 0 such that % <t; < Rp.

Case (b): This case is given by the condition
(6.62) t; =+ +oo and Lj; — +oo.

Case (c): There is some Ty > 0 such that 2 < L; <Tj.

In Case (a), the metric rescaling is equivalent to Case (c) of Region Sy, ,.
Moreover, the coordinate system is rescaled by uniformly bounded constants
p; which gives the rescaled limit R? x S with up to a fixed rescaling, the
standard flat product metric

(6.63) Joo = duf o + du o, + duj .

Let P C R? x S! be the finite set of monopoles, then x; has definite distance
to P = ﬂé}(P) So applying the same argument as in Case (c) of Region
81, 2, we have

(664) V.o < Tk,a(mj) < Vk,a

with respect to the rescaled metrics g;. Therefore, changing back to g;, we
have

6.65 V€ v o L2ov <rpolxi) <Upo-€ v - L
k J a\Lj ;

o4

Sowle

where v , > 0 and v o > 0 are uniform constants independent of 7.
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In Case (b), for any fixed £ > 1 we choose a sequence of large regions in
N} defined by

(6.66) U(€) = {a,- eENH e

. dQs(g,OS) S f, xr = 7TQ3(CC)}.

We will show that g; on U; (f), up to a fixed rescaling, converges to the
Euclidean metric on Bg(0%) C R%. The rescaled metrics are given by

_ 1, 1 )
(6.67) g5 =gy =517 — (VT (du + dud + du2) + (Vi) 192)
J

Vr, -

J

J
11 _
27? du1 + dU2 + dU3) (VT]) 102) .

Let

(6.68) Vi(€) = {:13 ENH| et dgs(@,0%) <7, @ = ng(m)}.

In the following, the main part is to show that for each x € U;(&) \ V;(§), it
holds that as j — +oo,

(6.69) S S 1L

Indeed, let us take any arbitrary point & € U;(§) \ V;(§) over & = (u1, ug, us)
€ @3, we have

(6.70) <<

So it follows that

(6.71) VTiiw) —1- Lijlog <t(:)> +o(1) =1+ o(1).

Since ¢ is arbitrary, and lim limsup Diamg, V;(§) = 0, this tells us that g;
§—00  jo0
converges to

up to a fixed rescaling, where (41 o0, U2 00) is the canonical coordinate system
on R? which corresponds to the limit of the rescaled coordinates (U1, a2).
Moreover, the finite set of monopoles P converges to 02 € R? and x; con-
verges to @, € 0B1(0%) C R2.
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To finish Case (b), the regularity scale estimate at x; can obtained from
Theorem 6.8. Topologically, Bf;Q(azj) is the trivial torus fibration over the
base. Let € = €(n) > 0 defined in Theorem 6.8, it is easy to see that

(6.73) Image[m (BY (x;)) = m1(B},(w)))] 2 Z & Z.

It has rank 2. So we get the required lower bound on 7y o () by Theorem 6.8.
The upper bound on 7y, o(x;) follows from Remark 6.3 and the calculation
in Case (a). So the proof in Case (b) is done.

The rescaled geometry in Case (c) is much simpler. In fact, the metric
rescaling factor A; is uniformly bounded in this case so that the rescaled
limit is (P!, dpsr, Too) such that the McLean metric dysg, is singular on a
finite set S C P! and the limit of the reference points zo, € P\ S. The
uniform estimate for the regularity scale at «; just immediately follows.

This completes the proof of the proposition. O

6.4. Bubbling analysis around the singular fiber I}

This subsection is dedicated to the analysis of the singularity behavior
around a singular fiber of Type I, for some v € Z. The associated singular
region Sp» was constructed in Section 4.2 which was given by resolving the
four singular points from an orbifold multi-Ooguri-Vafa region. In terms of
the elliptic fibration § : K — P!, the singular region Sr= can be represented
as the tubular neighborhood Si- = §~!(Bus, (p)) of the singular fiber F~*(p)
of Type I, (v € Z4).

To be precise, given a family of small parameters 0 < § < 1, let g? be the
approximately hyperkédhler metrics on the resolution of the orbifold region
N3, /Zy, which are constructed in Section 4.2 which is the model of Si-.
Recall that the main geometric features of the region can be summarized as
follows:

1) Denote by (N, gs2,) the incomplete domain endowed with a family
of collapsing multi-Ooguri-Vafa metric g5 2, with v-pairs of monopoles
such that A3, is a principal S'-bundle over an open subset in the
product space @3 = R? x S! with circles vanishing at monopole points
P ={p1,p1,---,0v,Dv} C Qg-

2) N3, admits an isometric Zs-action which descends to @3 = R? x 1
such that the four S'-fixed points {q1, g2, q3,q4} on Na, \ 7@31 (P) are
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sent to the two S'-fixed points

(6'74> Q3 (Q1) =73 (QQ) =q- = (07 0, 0)7

(6.75) Qs (q3) = T3 (qa) = q+ = (0,0, ;)

on the base Q3 = R? x S'.

3) The Zy-invariant multi-Ooguri-Vafa metric g2, has a natural Zs quo-
tient orbifold metric gs, on Nél, /Zs. To resolve the four orbifold sin-
gularities, we constructed in Section 4.2 a family of approximately
hyperkahler metrics, denoted by g(sc, by gluing four copies of Eguchi-
Hanson metrics with g5, around the four singular points.

Following the notation in Section 6.3, let T' > 1 satisfy § = e~ 2 and let
the approximate metrics g(;C parametrized in terms of 7', denoted by gr. We
introduce the following notation in the current I}-case:

1) Let g2v,7 be the rescaled metric go, 7 = ev gr, which has diameter
comparable with ez for T > 1. There are positive constants t5 > 0
and 7o > 0 such that for i,5 € {1,2,3,4},

(676) 7 : T_% S dgzy,T(Qia QJ) S Lo T_%
L0

if TI'Qs(qi) = 71'@3((]]'), and

N =

(677) 4- o - T% < dg2y7T (Qla w) < T

S~

if dgs(mgs(qi), mgs(x)) = to, where ¢g is half times the minimal dgs
distance between two different points in P U {q_, ¢y}, the union of
monopole points with the Zo fixed points.

2) Given any sufficiently small parameter 0 < € < T_%, we slightly mol-
lify the distance to the orbifold singularities and obtain a smooth func-
tion as follows,
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(6.78)

e)\’ dQQV,T(q)\7$) S 2%
for some 1 < A < 4,

_ min;&:l dg2u,T (:B7 Q)\); dgzu,T (Q)n m) >
() = -

dQQV,T (Q)\v $)

22?\ foralll1 <A <4 and
%'[{)'Té for some 1 < X\ <4,

1 - 1
§-L0-T2
4.

Téa dgzy,T(q)nm) 2
foralll1 <A<

With the above preparations, we are ready to give the regularity scale
analysis around an I}-fiber in the following proposition.

Proposition 6.13 (Regularity scale and bubble limits near I}, fibers).
Given any large parameter T > 1 (or equivalently § < 1), let gp = gdc be the
approzimately hyperkdhler metric on Sy-, then the following holds:

1) Given k € N and a € (0,1), there are uniform constants vy, , > 0 and
Uk.o > 0 independent of 6 > 0 such that the (k, «)-regularity scale vy, o
at © € 8= has the following bound

ko ()

(6.79) e

IA
=1

Qk;7a — k},Oé’

where the function s},(x) is explicitly given by

¢

T
e 2w '0*(513), dQT(Q)\um) <o
for some 1 <

il

|
¥l
N~
M

(6.80) s)(x) =
ez -LT(a:)% ct(mgs(x)), dgr(gn, ) > 210 - e~ T3
forall1 < X < 4.

2) As § — 0, the canonical bubbles of (K,x) for x € St» can be listed as
follows:
(a) the Ricci-flat Taub-NUT space (C2, grn),
(b) Euclidean space R?,
(¢) ALE Eguchi-Hanson space (X35, gpH),
(d) flat orbifolds R* /7o, (R? x S1)/Zy, R3 )7y, (R? x SY)/Zs and R? /7,
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(e) the McLean metric (P!, dy) with bounded diameter.

Proof. The proof is very similar to that of Proposition 6.11. Most of these
bubbles also appeared in Proposition 6.11, so in the following proof, we will
mainly focus on the cases where new type of bubbles limits occur. Notice
that, the singular region Sp+ can be subdivided into the deepest ALF bubble
region 8- 1, the bubble damage zone region Sp- 2 and the large scale region
Sr: 3. In addition, in our current case, the large scale region Sy 3 will be fur-
ther subdivided into two more pieces for analyzing the singularity behavior
around the ALE bubbles.

Given a sequence T; — +o00, let g; = g7, be a sequence of approximately
hyperkéhler metrics on Sp+ given by the gluing construction in Section 4.2.
First, let us summarize the rescaled geometries as follows which is similar
to the regularity and bubbling analysis around Io,-fibers:

Region Si- | (deepest ALF bubbles):
This region consists of the points x € Sp» satisfying dgs(z, p;) < Tj_1 for

some 1 < i < v, where & = mgs(x) € Q3. It was shown in the proof of Propo-
sition 6.11 that, if the rescaled metric g; = A?gj is given by A\; = e -Tf,
then the canonical bubble limit in this region is the Ricci-flat Taub-NUT
space (C%, g7n, Too ). The regularity scale estimate just follows from the non-
flatness of (C2, grn, Too) and the C*-regularity of the convergence.

Region Si: o (ALF bubble damage zone):

This region contains all the points € Si- satisfying 2Tj_1 <dgs(z,pi) <o
for some 1 <i <wv. Let us choose the rescaled metric g; = /\ngj with the
rescaling factor

(6.81) Nj=ew -T2t l,

then the canonical bubbles arising in this region are listed as follows:

(a) If a sequence of reference points x; satisfy that there is some o¢ > 0
such that

(6.82) 2T 1 <t <

then the canonical bubble is a Ricci-flat Taub-NUT space (C2, g7n, Zoo),
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(b) If a sequence of reference points x; satisfy the condition

s
(6.83) — = +oo and t; =0,
J
then the canonical bubble is the Euclidean space (R3, grs, o) such
that the limiting reference point . satisfies dg, (03, o) = 1.

(¢) Now we consider the complement of the Case (a) and Case (b). That
is, for any sequence of reference points x;, there is some rg > 0 such
that 79 < t; < ¢o. In the case, the canonical bubble is the flat orbifold
(R? x S1Y)/Zs, gat, Too ), Where ggat is the Zo-quotient of the standard
flat product metric on R? x S™.

The remaining computations coincide with those in the proof of Proposi-
tion 6.11.

Region Si- 3 (large scale regions):

In comparison with the large scale region Sp-3 in the proof of Proposi-
tion 6.11, we need two additional pieces to characterize the rescaling geom-
etry around the ALE bubbles, which are removed from this region for the
moment. That is, Region Sy 3 contains all the points « € Sp- determined by
the following conditions

(6.84) dy, (,q)) > 2e) - €72, YA, 1 < A <4,
(6.85) dos (2, pi) > 20, Vi, 1 <i <,
(6.86) Lp(z) > 2.

To analyze the regularity scales in Region Sp- 3, we will choose two dif-
ferent rescaling metrics depending on if the reference points x; are close to
the orbifold resolution loci {qi,...,q4}.

Case (A):

First, we consider the case that a sequence of reference points x; € S+ 3 far
from any point in {q1, g2, ¢3, ¢4}, that is, x; satisfies

(6.87) dy, (2j,q0) > 200 - ¢ 2 - T7 forall 1 <A < 4.

The arguments in this case are similar to the case of I, -fibers and the rescaled
metrics g; = )\]2 - gj are determined by

(6.88) Nj=e L7l
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The canonical bubbles far from ¢, can be classified as follows:

1) If ; satisfies % < t; < Ry, then the canonical bubble is the flat Rie-
mannian orbifold ((R? x S1)/Zs, gfiat, Too) such that the distance from
the limiting reference point &, to the orbifold singularity equals 1.

2) If x; satisfies t; — 400 and L; — +o0o, then the canonical bubble is
the flat cone (R?/Za, gfiat, Too) such that the distance from o, to the
cone vertex is equal to 1.

3) If x; satisfies 2 < L; < T for some positive constant Ty > 0 inde-
pendent of T, then the canonical bubble is (P!, dysz, oo) such that
Too € P1\ S and S is the finite singular set in P*.

The remaining computations are exactly same as the proof of Proposi-
tion 6.11 and hence we omit the details. To see the regularity scale estimates
at x;, we can observe that I'c (x;) has maximal rank in each of the above
cases, where ¢ is the constant in Theorem 6.8. So Theorem 6.8 gives uniform
curvature estimate at «; and hence 1y o(;) > U >0 uniformly bounded
from below. On the other hand, around the orbifold singularities, one can
use the curvature blowing-up behavior of the Eguchi-Hanson space and the
Lipschitz property of 7 , which guarantees that

(6.89) rk.ya(a:j) < 2.

Rescaling back to the original metrics g;, the desired regularity scale esti-
mate follows immediately.

Case (B):

Next, we will handle the case that a sequence of reference points x; satisfy
(6.90) dy, (25, q0) > 2ex - €5

foralll1 < A <4and

(6.91) dy (zj,q0) <io- e~ T3

for some 1 < A < 4. In this case, we will use another rescaling to see addi-
tional bubbles around gy. Let g; = )\ngj be the rescaled metrics given by

(692) )\] = dgj (w]#q)\)il?

then rescaling geometries can be further subdivided into the following cases:
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1) If «; are chosen such that

2 od (x
(6.93) ¢ gj_(fj’q)‘) — 0 for some 1 < \ < 4,
T. 2
J

then the rescaled limit is the asymptotic cone of the Eugchi-Hanson
space which is isometric to the flat cone (R*/Zs, gfat, Too) such that
the distance from x,, to the cone tip is equal to 1.

2) This case contains the points x; which satisfy the condition that there
is some constant oy > 0 such that

T;

(6.94) o, @i 5 L
—1 pu
Tj 0
forall 1 < )\ <4 and
(6.95) EALNCALY
Tfi

for some 1 < A < 4. The canonical bubble in this case becomes the flat
orbifold ((R3 x S1)/Za, gat, Too)

3) In this case, x; satisfies the condition that there is some ¢y > 0 such

that
% ~dy (x5,
(6.96) ¢ gi(l’ YNNI
1"‘7 2
foralll1 <A <4and
627'{ : dg]- wj?Q)\)

—0

(6.97)

R SIT PN

T

for some 1 < X\ < 4. The canonical rescaled limit is isometric to the
flat orbifold (R3/Zs, gat, o) and the orbifold metric gqa; is the Zo-
quotient of the Euclidean metric grs, where Zs C Isom(R?) acts on R?
by rotation with angle 7 and acts on R by reflection so that there is

only one orbifold singular point 03. Moreover, d,. ., (€, 0%) = 1.
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4) In this case, x; satisfies the condition that there is some 0 < ¢ < ;—‘6
such that
T; 1
(6.98) dg,(xj,qn) > co-e 2 - TJ?

forall 1 <A <4 and

Tj

(6.99) dy, (5, 00) <0 5 - T},

N

for some 1 < X\ < 4. Then it is straightforward to check that the rescaled
limit is ((R? x S1)/Z2, gfiat, Too) With dg,., (T, 03) = 1.

The regularity scale estimates just follow from the same arguments as before,
hence the bubble classification in Region S+ 3 is done.

Next, we will finish the proof by computing the regularity scale around
the four ALE gluing loci inside Region S+ 3.

Region Si- 4 (deepest ALE bubbles):

This region contain the points @ satisfying dgg(x, ) < e%\ . e_;i for some
1 < X < 4. Now take a sequence of reference points x; in this region. So it
straightforward follows from the construction of the gluing region that if we
rescale the metric g; by

(6.100) gi=etev g

then the rescaled limit is isometric to a Ricci-flat Eguchi-Hanson space
(Xél—ngH’xOO)'

Region Sr- 5 (ALE bubble damage zone):

T T
In this region, all the points @ satisfy 2¢% - e~ 3 < dgo (T, qn) <ex-e 2
for some 1 < A < 4. Now the metrics g; will be rescaled by

!

(6.101)
(6.102)

2
* 95,

j= Ay
i =dg; (x5, q0)-

>

This region can be decomposed into two pieces:
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1) If «; are chosen such that there is some op > 0 such that

T.

(6.103) 23 - e72 < dge (z,qx) < 00 - ¢ . e 2,

then the rescaled limit is isometric to an Eguchi-Hanson space
(X%HagEHa$oo)-

2) If x; satisfies

o oo and dge(@,q)) Sen-e

(6.104)
3 e 2w
then the rescaled limit is the asymptotic cone of the Eugchi-Hanson
space which is isometric to the flat cone (R*/Zs,gat, Too) with
dgp.. (Too,0%) = 1, where 0* is the cone tip of R*/Zs.

Jflat

This completes the proof of the proposition. O

Remark 6.14. Recall that the scale parameter ¢y in the definition of 9, (x)
satisfies the constraint (see (4.53))

(6.105) ex <o 177,

where 79 > 0 is sufficiently small but independent of 7. For simplicity, in
1

our paper, ¢) is further required to satisfy e¢y/7~2 — 0 as T'— +oo which

will give four copies of Eguchi-Hanson bubbles. However, our arguments still

hold if

(6.106) ny < ex/T72 <o

for some definite constant My > 0 as T'— +o0. It is possible to show that
in this case, two copies of ALF-Ds spaces will appear as bubble limits. See
Section 9.3 for more discussions corresponding to the second case.

6.5. Weighted Holder spaces

In this subsection, we define weighted Holder space using the regularity
scale function. In general, the weighted Holder space can be defined in the
following way.

Definition 6.15 (Weighted Holder spaces). Let (M, g) be a Rieman-
nian manifold. Let p > 0 be a smooth function. Let K be any subset of
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M, then for any k € N and « € (0,1), with respect to the function p, the
weighted Holder norm of a tensor field x € TP4(M) on K is defined as fol-
lows:

k
(6.107) Xl cte ey = D Hp‘”m : me‘ + [Xleko (k)
m=0

Co(K)

where the weighted C*“-seminorm is

(6.108) [X] e (1) = sup sup

o [VFX(2) = VEx(9)]
sup {pk+ () - a ‘

a(,

7))
(S Bma x)/2( ) \{x}}

where & denotes a lift of 2 to the universal cover of B,,  (z), the difference
of the two covariant derivatives is defined in terms of parallel translation in
By, () /2( Z) along the unique geodesic connecting  and g, and ¥, g are the
lifts of x, g, respectively.

We will choose the function p on K as the global smooth function s(x)
defined as follows,

sg(x), € Sara,
5,,(:1:), T c SI,,

( )a T Slja
sr(x), =€ Rs.

(6.109) s@) =47

The previous subsections give explicit estimates for the C*®-regularity scales
k.o () for all points @ in . We have proved that there are uniform constants
Uk > 0 and g o > 0 independent of § > 0 such that

Tka(T)

s(z)

We next prove a uniform weighted Schauder estimate for the elliptic
operator

(6.110) Vg < < Tp -

(6.111) die - Q1K) — QLK)



Collapsing Ricci-flat metrics 2093

defined by
1
(6.112) d;&Cn = 5(dn + %o dn)
with
A1 — 1 * _
(6.113) QLK) = {n € Q' (K)|dzen = 0},

which will be used in the weighted analysis in Section 8.

Proposition 6.16 (Weighted Schauder estimate). For any sufficiently
small positive parameter 6 < 1, let g(sc be the approrimately hyperkahler met-
ric on IC. Then there exists C' > 0 independent of 6 > 0 such that for any
n € QLK) it holds that

(6.114) 7Mooy < Cllldgenlicos ooy + Inllcoge))-

Proof. The proof follows from the explicit expression of the C*®-regularity
scales in the above discussions. Under the canonical rescaling,

(6.115) 3§ =rral@) 2 gf

the geodesic ball B; /Q(m) under the rescaled metric géc has uniformly bounded
Cka_geometry (independent of §) for each o € (0,1) and k € {0,1}. So there
is a uniform constant C' > 0 (independent of §) such that the standard
Schauder estimate holds for every n € SOZI(IC) and x € K under the rescaled
metric g?,

(6.116)  [Inllcr+ia(B, u@) < C(|’d;5c77ﬂc'vva(31/2(m)) + H77||C’0(B1/2(m)))~

Then the global weighted Schauder estimate (6.114) just follows from rather
standard rescaling arguments. In fact, the only crucial point is to verify that
for every @ € K, the function s is roughly a constant in the ball B1,, (4 (x),
in the sense that there is a uniform constant C' > 0 such that for any y in

Birk‘a(m) (IIZ),
(6.117) O™ s(x) < s(y) < C-s(x).

The verification of (6.117) follows from (6.110) and Remark 6.3. The re-
mainder of the proof is almost identical to those given in [28, Section 8] or
[49, Section 4]. O
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7. Liouville theorems

The proof of Theorem 1.1 will require vanishing theorems on various bubble
limits, which we refer to as Liouville theorems. In Subsection 7.1, we will
consider the case of non-compact bubble limits. Then in Subection 7.2, we
will consider the case of a compact limit.

7.1. Liouville type theorems on non-compact spaces

First, we will prove a Liouville type theorem on flat sectors in R2. This
vanishing result will be used in proving the uniform injectivity estimate
as the contradiction sequence concentrates around the ALG bubbles. In
addition, it will also be used to prove Proposition 9.3.

To begin with, we fix some notation. Given a real number 3 € (0, 1] and
the polar coordinate z = (r,0) € R? \ {02}, let us denote by

(1) See(d) = {(r,0) € R2\{0%} | r € (0,+0), 0 € (0,278)},

a flat open sector and its closure by Sec(/3). We also denote by

(7.2) Sec(8) = Sec(B) \ {02}

the punctured sector. In terms of polar coordinates in R?, the Euclidean
metric on Sec(f3) is

(7.3) go = dr? +r2d6?, 6 € (0,270).

Given an angle parameter § € (0,1], the flat sector (Sec(8),g0), as a
warped product, has a compact cross section [0,273] at r = 1. The lemma
below gives the spectrum and the associated Fourier expansion with pre-
scribed boundary condition.

Lemma 7.1 (Fourier series on flat sectors). Given 8 € (0,1] and a real
number o, let {p;(0)}jez be a complete orthonormal basis of L*([0,2m3])
which solves

(7.4) —¢(0) = Aj - 0;(0)
with the boundary condition

(7.5) p;(2mB) = VI i(0).
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Then the following holds:
1) For each j € Z, ¢;(0) = e VINO with,

(7.6) A =

and Aj = A?.
2) Let U(r,0) be a complex-valued C*-function on Séc(ﬁ) satisfying

(7.7) U(r,2nB) = eV~ 12 . U(r,0), >0,
then the Fourier series

(7.8) > Uj(r) - ¢;(0)

JEZ

converges to U(r,0) in the C*-topology in any compact subset of
Sec(3), where

_ 1 273
C 2B o

(7.9) U;(r) Ul(r,0) - p;(0)do.

Proof. First, we compute the eigenvalues and eigenfunctions. For any j € Z,
let us take ¢;(0) = e V=140 then ©;(0) is a solution to (7.4) when we
choose A; as )\3. Now the boundary condition (7.5) gives rise to the relation

(7.10) 2n(Nj-B+o)=j-2m, jEL,

and (7.6) follows from this. Moreover, {¢;}jcz is an orthogonal basis of
L%([0,273]) with

1 2B
(7.11) W/o 0i(0) - Pr(0)d0 = 5.

The convergence result in Item (2) then follows from standard Fourier theory.
O
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Proposition 7.2 (Liouville theorem on flat sectors). Given 8 € (0,1]
and o € R, let us define a positive number 15, by

1/8, o€,
(7.12) 3o =4 (0 —10])/B, o —lo] € (0,
([U]+1_U)//8a O'—[O']G(%,

],
).

[ N

LetU(r,0) = f(r,0)++/—1-h(r,0) be a complez-valued function on the punc-
tured sector Sec(8) C C such that both f(r,0) and h(r,0) are real-valued
harmonic functions on Séc(,@). Also assume that U satisfies the boundary
condition

(7.13) U(r,B) = eV~ 12 . U(r,0), Vr > 0.

Then the following properties hold:

1) With A\; and ¢; as in Lemma 7.1, U has the following types of C°-
converging Fourier expansions

(7.14) U(r,0) = Ko+ co - logr + Z(Cj PN cr- ) 0;(0), 0 €Z,
i#o
(7.15) U(r,0) = Z(Cj N c: MY i(0), o & L.

JET

2) If there is some p € (0,t3,,) such that for any x € Séc(ﬁ),

(716 V@) < o

then uw =0 on the whole closed sector Sec(f3).

Proof. First, we prove Item (1). We will compute the expansion of U by
using separation of variables and Fourier series in Lemma 7.1 along the cross
section [0, 275]. The Euclidean Laplacian A¢ in terms of polar coordinates
x = (r,0) € C with 6 € [0,27f] is given by

U 1 oU 1 0*U
1 ANT=2LL T
(7.17) ot/ 2 + r Or + r2 062
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Since the harmonic function U is C* in the punctured sector Séc(ﬁ), (7.8)
gives a C'*°-converging Fourier series of U,

(7.18) U(r,0) = Y Uj(r)e;(6).
JEZL
Plugging the above expansion into AqgU = 0, we obtain the Cauchy-Euler

equation for Uj(r),

(7.19) Ul(r) + Uir) AU 0,

r r2

where \j = (j — 0)/B. The indicial equation of (7.19) in m; is given by
(7.20) m; — A\ =0, j €Z,
which gives the indicial roots

(7.21) m; = iAj, JjEZ.

So there are two types of expansions depending on the indicial roots.
First, if o € Z, then m; = A; vanishes at j = 0. In this case,

(7.22) Uj(r) = {“O +cologr, J=o0,
. j(r) =

Cj o —l—CJ* '7"7)‘7', j #o.
Therefore,

(7.23) U(r,0) = ko +co -logr + > (Cj - +CF -1 - 0;(0).
j#o

Next, we consider the case o € Z, which gives the solutions

(7.24) Ui(r)=Cj 1™ +C5 Y, jeL.

Hence, U has the expansion

(7.25) U(r,0) = (Cj - +C;-r72) - ;(0).
JEL
This completes the proof of Item (1).

We will next prove Item (2). In accordance with the Fourier expansions
obtained in Item (1), there are two cases to analyze.
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First, if o € Z, then the minimal nonzero indicial root is
(7.26) mp =\ = +1/5.

If there is some p € (0,1/5) such that U satisfies the growth condition

(7.27) |U(x)| < Va € Sec(),

r(z)e’
then cp = kg = 0 and C; = C;f =0 for all j € Z. Therefore U = 0.

Second , we consider the case o ¢ Z, so we have |\;| > 0 for each j € Z.
The minimal nonzero |\;| among j € Z is achieved at j = [o] or j = 1+ [o],
which gives

o
—_ N

(0 —1[o])/5, o—[o] € (
(o] +1-0)/8, o—[o]€(

]?
).

(7.28) min [ \,| = {

I

D=

Finally, the growth condition on U in this case reads
C

(7.29) |U(r,0)| < L Vr >0
r

with p <15, = miél |\j|, which implies C; = Cr =0 for all j €Z. So we
j€

have proved that U vanishes on Sec(f3) in Case (2).
This completes the proof of the proposition. O

Since Sec(1) = R2, Proposition 7.2 immediately implies the following
corollary.

Corollary 7.3. Let u be a real harmonic function on R%\ {0%}. Assume
that there is some p € (0,1) such that u satisfies the following growth con-
dition

C
(7.30) lu(z)| < T vz € R?\ {0},

x

then u =0 on R2.

The following removable singularity result involves the harmonic func-
tions with slower growth rate than the Green’s function, which is rather
standard in the literature, see for example [20].
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Lemma 7.4. Let (M™,g) be a Riemannian manifold with n > 3. Given a
point p € M™, assume that u is a harmonic function on B,(p) \ {p} which
satisfies

o
(7.31) lu(z)] < W

for every x € By, (pi) \ {pi},
for some so € (0,7) and p € (0,n — 2), then u extends to a harmonic func-
tion on By(p).

As a quick corollary of the above removable singularity lemma, we have
the following Liouville type result for harmonic functions, the proof of which
follows easily from the maximum principle.

Corollary 7.5. Let (M",g) be a complete non-compact Riemannian man-
ifold. Given a finite subset S C M"™ Assume that u is a harmonic function
on M™\ S satisfying

(7.32)

(@) < e @ € Bay(p)\ (i},
fua)] — 0. dy(,8) = +o0,

for some so >0 and p € (0,n —2), then u =0 on M".

We finish the discussion of this subsection by the following vanishing
result for harmonic 1-forms.

Lemma 7.6. Let (M",g,p) be a complete non-compact Riemannian man-
ifold with Ricy > 0. If n is a harmonic 1-form on M™ such that |n(z)| — 0
as dg(p, ) — oo, then n = 0.

Proof. The proof is routine. Applying Bochner’s formula for the harmonic
1-form n,

1 .
(7.33) 5 Ag[nl* = V| + Ricy(n, 1) > 0,

then |n|? is subharmonic. Since  lim  |n(x)| = 0, so the maximum prin-
dg(p,z)—r00

ciple implies that n =0 on M™. O
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7.2. A Liouville type theorem on the P! limits

In this subsection, we prove a Liouville type theorem in the context that a
sequence of approximate metrics gjc on the elliptic K3 surface X Gromov-
Hausdorff converging to the compact limit (P*, dyr,)

(7.34) (K, g9) <25 (B, darr),

where dj7, is the McLean metric on P! with bounded diameter and non-
smooth along a finite singular set S C P*.

Consider a sequence of co-closed real 1-forms 7; € QLK) and we will
identify n; with a 4-tuple of functions away from the singular fibers. Follow-
ing the notation in Section 2, in terms of the holomorphic coordinates y and
xs, given by the holomorphic section,

(7.35) = fPdy+ 10+ 1P+ f P et

where €3 and e* as chosen in Subsection 2.3, such that fj(y) = f;g) and f](g),
f @ are real. Therefore, the 1-form 7; on Ry, is identified with the functions

( f](y), fj@ , f]@), fJ(A‘)). Based on the above discussions, the convergence of 1-
forms can be converted to the convergence of functions on Rs,. We also
remark that as §; — 0,

(7.36) (Rs,,95) <2 (P'\ S, dary).

Moreover, curvatures are uniformly bounded in any compact subset which
has definite distance (independent of ¢;) away from singular fibers.

The lemma below gives a notion for the convergence of functions away
from the singular set, using the concept of equivariant-Gromov-Hausdorff
convergence, which was discussed in Subsection 2.3. The assumptions below
can be weakened, but for our purposes, the following version will suffice.
Since this is rather standard, we will omit the proof.

Lemma 7.7. In the above notation, let (lC,ng) collapse to (P, dyp) with
a finite singular set S C P! such that for any qoo € P\ S, there exists s > 0
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such that the diagram of equivariant convergence holds

eqGH

(7'37) (BZS(Qj)7§f7Fj7ij) (YooagomroquocJ

prjl J{Prw

GH
(BZS(Qj)7g?7qj) (BQS(QOO)7dML’q00)'

Let f; be a sequence of smooth functions on Rs, and assume that for each
t € (0, 100) there exists a constant Cy > 0 mdependent of j such that

(7.38) I fillcrar, < Ct,

then there is a function foo € C1(P\ S) for any o € (0,a) with the fol-
lowing properties: Denote by fj the lifting of f; on Bag(q;), then passing to a
subsequence, fj converges to a Lao-invariant function fog € CH (Y) in the
C1 _topology for any o € (0,q) such that foo descends to fo with respect
to the projection pr.,

Next, we have our main Liouville theorem in the case of a compact limit
space.

Proposition 7.8. Let (K, gjc) be a collapsing sequence with bounded diam-
eters which are constructed in Section 4 and Section 5 such that as j — +00,

(7.39) (K, gS) Z5 (P!, dasr).

Let n; € QLK) be a sequence of coclosed 1-forms satisfying [m5llcopey <1
and

(7.40) Hd;zcﬁchgfl(;q — 0,
for 0 < u < 1. Under the representation

7) ;- 4
(7.41) n ="y + £ dg+ 1P+ fY

in Rj, there are limiting functwns f(y), ég), éi’), CEO) € CO(P'\ S) in the
sense of Lemma 7.7. Then foo = fé;’i) = fég) = fOO =0 on PL.

Proof. By Proposition 6.16, ||77J'”C};“(IC) < C. By Lemma 7.7, for any point
goo € P\ S, there is some s > 0 such that the diagram (7.37) holds, where
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Bas(gss) C PH\ S. Moreover, there are functions fég), éé), éé’) c COPL\S)
and a 1-form 7., € Q'(Y,,) with a coordinate representation

(7.42) Moo = fWdy + [Py + 1 - & + fQ -,
such that
(7.43) 0 o =0, 2o = 0.

It follows from Lemma 2.4 that, on Y, the I'o-invariant functions

(7.44) VIm(mm) - FO = im(mm) (19 — v=1£3)

and fég) are holomorphic in y so that they descend to the quotient space

B2s (QO0> .
By the above discussions, the function |noo\§oo is I'so-invariant and hence

it becomes a function on the base P! \ S. By Bochner’s formula,

(7.45) Agec o0

2

By the I'o-invariance and the Kéhler identity in terms of holomorphic co-
ordinates, it turns out that on the punctured quotient space P!\ S

(746) AdML’nOO‘goo = 282451/‘7700’390 = Aﬁmmoo,goc 2 0.

We claim that the function |ne|s. is vanishing globally on P!. For example,
near an I,-fiber, we can choose local coordinate y such that m =1 and
Ty = —”\2/? logy. Under the growth assumption, |15, = O(|y|™*) near
y = 0 for some p € (0,1). On the other hand, Woo@w can be computed in

terms of local coordinates,

1
2 (3))2 (4))2 (y)|2

So both fég) and +/Im(7;72) -Féf) are holomorphic across y = 0. It fol-

lows that both fo(é/) and /Im(772) - o(ff } are bounded around y = 0. Thus,
|77oo|§oc — 0 as y — 0. Similarly, the same condition holds near fiber of type
Iy, II, III, IV, IT*, IIT*, IV*. Thus by the maximum principle, \7700]?]00 =0.
This completes the proof.
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8. Existence of collapsing hyperkahler metrics

We will focus on the proof of Theorem 1.1 in this section. The main idea of
the proof is to use an appropriate version of the implicit function theorem
in order to perturb the approximate solutions to the genuine solutions. Sub-
section 8.1 outlines the framework of the perturbation. In Subsection 8.2, we
will prove error estimates in weighted Holder spaces, which effectively mea-
sure how far the approximate solutions are from genuine ones. We will prove
the main uniform estimates for the linearized operator in Subsection 8.3, em-
ploying the Liouville Theorems which were proved in Section 7. Finally, in
Subsection 8.4 we will complete the proof Theorem 1.1.

8.1. Framework of the perturbation analysis

Recall that in our context, we begin with an elliptic K3 surface I with an
associated elliptic fibration § : K — P! such that there is a finite singular set
S C PL. In the gluing construction, we have fixed a holomorphic (2, 0)-form
Qx given by the complex structure of K. Then we define wy 4+ v/—1ws = 5§,
which satisfy

(8.1) Wi = w3, wy Awsz = 0.

Let dvoly = w3 = Jw?. From Remark 1.4, the family closed 2-forms w§
yields a family of approximately hyperkéhler metrics gf induced by the
definite triple w§ = (w§, wo,w3). Recall that w§ might not be a (1, 1)-form
because this property is destroyed in the case of finite monodromy. For
0 < 1, the definite triple ng is very close to being a hyperkéhler triple in
the sense that

(8.2) |Que —Id [leok) < 1,

but a more precise statement quantifying this in weighted Holder spaces will
be proved in Proposition 8.2 below.

The goal of the perturbation procedure will be to find a closed 2-form
6 = (01,0,0) such that wp = wac + 0 is an actual hyperkahler triple on iC,
which is equivalent to the system

1 1

(8.3) 5 (W5 +01)? = Swb,
1 1

(8.4) 5(00504-91)/\(,02:§(w§+91)/\W3:0.
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Let us write 61 = HfL + 0, , where QT, 0, are the self-dual and anti-self-dual
parts of 61 with respect to gg, respectively. Then equations (8.3) and (8.4)
can be written as

1 1
(8.5) 3 (291+ AwS + 07 A ef) = §(w§ — (W§)? =07 AOT),
1 1
1 1
(8.7) §9f A ws = —5w50 A ws.

Let us denote
(8.8) Q'(K) = {n € Q" (K0)|d*n = 0},
and let H%(K) be the space of self-dual harmonic 2-forms on K, which is

of dimension 3, since by (K) = 3. For i, € Q4(K) and & € H2 (K), it follows
from Hodge theory that a solution of following gauge-fixed system

1 - -
(8.9) dtm +¢& = ﬁo(z(wg — (W2 —dm Ad i,
—w(gc/\wg,—w(;c/\wg)>,

yields a solution 6 = dn; + & of the system (8.5)—(8.7). Here the operator
9o is defined as follows. Let

(8.10) G : Q2 (K) — Q4K) x Q1K) x Q4(K)
be the map
(8.11) Bo(67) = 5 (267 N§ + 67 ABF 67 Ao, O A ws).

Note that, restricted to every point of IC, ¢ : R? — R3 is a local diffeo-
morphism at 0 € R?, and the map $)g is then defined as a pointwise local
inverse near zero to ®.

For a parameter p € (0,1) (the precise range of u will be fixed later), we
define the following Banach spaces,

(8.12) A= Ch(QNK)) & HA(K),
(8.13) B =Y (AT(K)),
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where 2 is equipped with the following norm: for (n, &%) € 2,

(8.14) 1, €l = lnll e ey + 16 oo, i)
and where the weighted Holder space are defined in Definition 6.15, with

weight function is given by (6.109).
We define the operator %5 : 24 — B by

_ _ 1 _ _
(8.15) Fs(n, &) =dn+E" - f’)o(Q(w% — (w§)? —d pnd T,
—w(;c/\wz,—w(;c/\wg)>,

so that a zero of %5 solves the system (8.9). The linearization of %5 at (0, 0)
is the operator

(8.16) S=dteld: A — B.

The nonlinear part of .%; is given by
— 1
Aa(E) = 0 ( 5068 = 2.~ A )
1 _ _
(8.17) — o <2(w% — (W2 —d pAndn, —w§ Aws, —w§ A w3)> .

The main tool is the following standard implicit function theorem (see
for example [4]).

Lemma 8.1. Let 7 : A — B be a map between two Banach spaces such
that

(8.18) F(x) — F(0) = L(x) + N (x),
where the operator £ : A — B is linear and A (0) = 0. Assume that

1) & is an isomorphism with ||.£ 7| < Cy,

2) there are constants r > 0 and Cy > 0 with r < ﬁ such that

a)
(8.19) A7 (@) = A (Y)lls < Co - (lzlloc + [1Ylla) - 12— yll

for all x,y € B-(0) C 2,
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b) |7 (0)lls < 57,

then there exists a unique solution to % (x) = 0 in A such that
(8.20) zfla < 2C1 - [[7(0)]| 5.

In the following subsections, we will show that all of the assumptions in
Lemma 8.1 are satisfied when § is sufficiently small.

8.2. Weighted error estimates
As noted above, wéo = (wg, wo,ws) is hyperkdhler away from the regions
SaLa, and the damage zone regions in Sy, and Sp-. The following proposition
gives precise estimates for the error term with respect to the weighted Holder
spaces.

Proposition 8.2 (Weighted error estimates). Let §:K — P! be an
elliptic K3 surface with a family of collapsing metrics gac induced from w(sc

such that
(8.21) (K, 95) < (P darr).

Let Sava, 81, and Sy be the regions chosen in previous sections which sur-
round the singular fibers of §. Then the weighted error estimate is listed as
follows:

1) In the singular region Sarc near a singular fiber ~1(p) with finite

monodromy,
(8.23) 1Qug —1dllcoe (a., .o < C- (5G4 gtu—1)+2y

where Oge(p) = 1 (Base (p)), Ase 250 (p) = S_I(A(;z’%z (p)), and SarLc

in the union of these two sets.

2) Near a singular fiber of Type 1, for some v € Zy, the approzimate
triple in the singular region Sy, yields to the estimate

(8-24) 1Qug —1d [l (51 Ay, apy (1)) < Cre” %,
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3) Near a singular fiber F~1(p) of Type I, for some v € Z, the approi-
mate triple in the singular region Sy= yields to the following estimate,

—Cy /6
(8:25)  Qug —1dllcos (5-1(agy aryrp) < C1 7€,
(8.26) 1Qug —Idlgoe (D) < C- (MH LUECY 5)’”3),

where Dpy = {z € Klead < dye(,qr) < 2exd, 1 < A < 4} denotes the
transition region for gluing the Equchi-Hanson metrics wbEH.

Proof. For Item (1), note that the components of Que —Id in O (p) are
(827)  (Twi)? - %52% Ay = %54\1/*% ATLOG — %52% A O
and

(8.28) wi NS = Taw§ A (6Qk — 620,Qg).

Thus, to estimate Q¢ — Id in Ope (p), it suffices to compute 62 — 62V, Qg
using the norm defined by the metric gdc. Using the weighted norm, it follows
immediately from Proposition 5.10 that

(8.29) |69 — 52@*991\@&(0&[ ) < ColGH),

m

Next, in addition to the above complex structure distortion, the error term
|Que — Id | in the annulus transition region Ags: a5¢(p) also arises from the
difference |wg - wglat|. By Proposition 5.6,

(8.30) lowog — w5 llco(aye aps 1) < CO*7,

(8:31) [Wf — Wi™lom (g0 e ) < COPHOF2),

So it follows that

(8.32) [Que —1d ”C“fl(Adg oy SC- (501G 1) 4 §tn=1+2)

In Item (2), the error term |Q,¢c — Id| around a singular fiber of Type
I, has an exponential decaying rate. The estimate (8.24) in the special case
v = 1 was proved in [24, Theorem 4.4]. The computations for obtaining the
exponential decaying rate in the general I, case are along the same lines.
Indeed, the exponential decaying rate essentially arises from the asymptotic
behavior of the Green’s function in Lemma 4.1.
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Finally, we prove Item (3). The exponential error estimate on
T 1(As, 26,(p)) is the same as the error estimate in Item (2), so we omit
it. It suffices to prove the error estimate near the Eguchi-Hanson bubbles.
In this region, the approximate metric is constructed by gluing 4 copies of
Eguchi-Hanson metrics with the quotient multi-Ooguri-Vafa metric near the
orbifold points with the flat tangent cone R*/Zs. To estimate the size of the
error [Que — Id| in the damage zone

(8.33) {a:elC ‘ &0 < dye (@, 1) < 2605, 1 §A§4},

we need to analyze the asymptotic behavior of the rescaled Eugchi-Hanson
metric gIbEH and the local behavior of the quotient multi-Ooguri-Vafa metric
ggy around the singularity. By the approximation estimate (4.55) for the
Eéuchi—Hanson metric, we have

(830)  [VE (i -whgn)|, =C SN
) It /2, WEH — WR4/7, Gan (ex - 0)4FF - 5k -

On the other hand, for the metric approximation around orbifold singulari-
ties, (4.52) implies

o <O (en-0)*R
R4/Zo

(8.35) V5 (b — oz

g]R4 /Zo

Therefore, the weighted estimate in the damage zone (8.33) is given by
(8.36) |Qug —Td [l e, < C (5#“ 4 (e 5)ﬂ+3).
This completes the proof. [l

8.3. The uniform injectivity estimates

In this subsection, we will establish the uniform injectivity estimates for the
linear operator d... The crucial part in proving such estimates is to use the
Liouville theorems in Section 7 in the contradiction arguments.

To begin with, we give a more accurate upper bound for weight param-
eter p € (0,1). In our following weighted analysis, the upper bound of the
weight parameter p € (0,1) is determined by the Liouville type theorems
in Section 7.1. By Proposition 7.2, for each punctured sector Séc(ﬁ) with
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B € (0,1), the growth parameter p is chosen such that

1, g€ (0,1/2],

(8:37) O<p<tiss= {g ~1, Be(1/2,1).

Here 8 € (0, 1) corresponds to the angle parameter in the ALG spaces asso-
ciated to the singular fibers of type II*, IIT*, IV*, II, III, IV and Ijj. Hence
the possible range for § is

1115321
(838) 6 € {6747376747372}7

which gives 153 > % Therefore, from now on, the weight parameter is will
be chosen so that p € (0, 1).

Proposition 8.3 (Uniform injectivity estimate). Given 0 <0 < 1,

a € (0,1) and p € (0,1), there exists C = C(a) >0 independent of § > 0
such that for every n € QY(K),

(8.39) Il ey < Clidgenllco, -
Proof. By Proposition 6.16, it suffices to show the uniform estimate
(8.40) Inllcowey < Clidgenllos, -

We will prove it by contradiction and suppose that no such a uniform con-
stant C' > 0 exists. That is, there are contradicting sequences:

1) a sequence of manifolds (IC, gjc) with a sequence of parameters d; — 0
satisfying

G
(8.41) (K, g5 ;) E5 (Xoo, darr, Too)-

2) a sequence of 1-forms n; € Ql(./\/lgl) satisfying

(8.42) ldgenillcos, o) = 0
(8.43) Injllcope) =1,
(8.44) |s(a5)" - mj ()] = 1,

as j — oo.
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Then, centering around the reference points x;, we will rescale the metrics
by

(8.45) 9 = (X)*g5
(8.46) )\j =5

To guarantee rescaling invariance of (8.44) and the weighted Schauder es-

timate, we will simultaneously rescale the contradicting 1-forms 7; and the
functions s by

< -1
$=5. -85,

(8.47) _ p—1
N = Kj 1Ny, /{jEﬁj .

In terms of these rescalings, the contradiction assumptions become the
following:

(1) There is some constant Cy > 0 independent of j € Zy such that the
rescaled metrics QJC satisfies

1
8.48 — < sup |Rmge | < Cy,
(8.48) Co — Bl(£)| a7 | = Co
(8.49) (K, G5 25) 25 (Moo, doos o)

for some complete metric space (Moo, cioo, Too)-

(2) The rescaled contradicting 1-forms 7j; € QI(M?) satisfy

(8.50) ||d;z_c77chjf1(/C) =0,

(8.51) 175llco ey = 1,

(8.52) [5(;)" - 1 (x5)| = 1.
as j — 00.

Under the rescaled weighted Holder norm, applying (2) and the weighted
Schauder estimate in Proposition 6.16, we have

(8.53) 175l e iy < C-

Our contradiction arguments will be done in various regions of K around
the singular fibers of type I, I) (v € Z. ) and the fibers of finite monodromy.
Recall those regions were denoted by Sy, , 81 and Sapg in Section 6, respec-
tively.
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Region Sarc (singular fibers of finite monodromy):

We will further divide region into Sar,g,1 and Sarag,2 according to the
discussions in Section 6.2.

Sub-region Sara 1t

As in the proof of Proposition 6.9, the rescaled spaces (I, gjc, x;) for x; in
Sara,1 satisfy the pointed convergence

(8.54) (K, 55, 25) <5 (G, 99, 200),

where (G, oo, o) is the complete hyperkiahler ALG space determined by
the corresponding singular fiber with finite monodromy.

Combining the above smooth convergence of g]f? with uniform Cbe-
estimate (8.53) for 7);, then for every v € (0, a), 77; converges to some limiting
1-form 7, € O (G) in the C'7-topology which satisfies

dF 7joc =0
(8.55) |§oo(woo)u : ﬁoo(moo)’ =1
170sllco(gy =1,

and § converges to the limiting function

1, T € By(x)

(8.56) §(x) = { ds_(z,2s0), @€ G\ Ba(woo).

Notice that the above norm bound implies that for all x € G\ Ba (),
(8.57) 7100 (®)] < (dgo (®, To0)) ™"

Since 7 € Ker(dg'w), immediately 7)o is harmonic with respect to the hy-
perkahler metric go, on the complete ALG space G. Applying Lemma 7.6,
we have 7o, = 0.

Sub-region Sara,o:
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In this sub-region, the rescaled sequence (K, gjc,a:j) is collapsing to TG,
the asymptotic cone of the corresponding ALG space G. That is, as j — +o0,

- GH
(8.58) (K. 35, 25) == (C(S3ap): do,2mp, Too)

where d¢ 2,5(% o0, 0%) = 1 and (C(S%Trﬁ), dc2x3) is a flat cone for some angle
parameter

1153211
(859) 66{674767473737}’

Let Sec(3) C R? be the open sector obtained from the flat cone C(Szlﬂﬂ)
removing rays # = 0 and 0 = 273. So we can take a sequence of open subsets
U; C K such that

- GH
(860) (ujvgjcvm]) E— (SGC(B),QO,:BOO)-
Moreover, U; can be chosen such that it has a natural torus bundle structure
(8.61) T? — U; = Sec(p)

with the standard holomorphic coordinate system {u, v}, where u and v are
the holomorphic coordinates on the base and the torus fiber, respectively.
Restricted to U, the contradicting sequence 7;, as real-valued 1-forms, can
be written in terms of the complex coordinates

(8.62) fi; = fjdu+ fjdu + hjdv + hjdv,

where f; and h; are complex-valued functions on ;. Taking any point g in
Sec(f) and letting q; — goo for g € U;, then there is some s > 0 depending
on ¢ such that the universal covering of Bas(g;) is non-collapsing and the
following equivariant-Gromov-Hausdorff convergence holds:

— . R GH R R
(8.63) (Bgs(qj),gjc,l“j,qj) 2 (YooagvaOO7QOo>
prjl J{Prw
GH
(Basla), 9505 (Bas(ae), darrs e )

where I'; = Z? and T'y, = R?. Remark that the convergence on the universal
covering space Bag(g;) can improved to be C*°.
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Denote by

(8.64) Ml = Fjdu + Fydu + H;dv + H;dv

—

the lifting of the 1-forms 7; on Bas(¢;), then combining the contradiction
assumption (8.52) and the above C*°-convergence of the local universal

covers, we have that 7); € So)l(Bgs(qj)) converges t0 oo € (Vo) so that
d;‘m Moo = 0 on Yo,. Then by direct computations,

(8.65) A Re(Fxo) = Ay Tm(Fi) = Ay Re(Hao)
=A;. Im(Hy) =0 on Y.

The definition of ALG space shows that the torus bundle restricted to
Bos(q;) = Bas(go) is almost a metric product, which implies that any I'o-
orbit is totally geodesic in Y. So (8.65) descends to Bas(geo) C Sec().

By Lemma 7.7, there are global limiting functions f., and ho on the
open sector Sec(3) satisfying

(8.66) | Re(foo) ()] + [Tm(foo) (2))]

+ | Re(hoe) ()] + | (o) (2)] < o

where r is the distance to the origin. Moreover,

(8.67) Foo(r, B) = 712 £ (1, 0)
(8.68) hoo(r, B) = €V~ 12 B h (1, 0).

We have just shown that on Sec(f),
(8.69) Ag, Re(foo) = Ay, Im(foo) = Ay, Re(hoo) = Ay, Im(hoo) = 0.

Recall that we have chosen u € (0, %), then Proposition 7.2 implies that in
any case of 8 in Table 5.2, we have

(8.70) Re(fso) = Im(fs) = Re(hoo) = Im(hoo) = 0.

On other hand, this contradicts to the weighted control

(8.71) s(x;)! -1 (25)| = |7

cogy = L,

which completes the proof in this region.



2114 G. Chen, J. Viaclovsky, and R. Zhang

Region &, (singular fibers of type I, v € Z):

By the regularity scale analysis in Section 6.3, the region Sp, can be subdi-
vided into Sly,l, SIV72 and SI,,,S'

Sub-region &i, 1:

As z; € 51,1, we have the following C'°°-convergence for the rescaled metrics
~ (Ghad
(872> (IC,ng,:p]) — (CzugTvaoo)a

where (C2, grn, ®oo) is the Ricci-flat Taub-NUT space. The remainder of
the contradiction arguments immediately follow from Lemma 7.6, which is
almost verbatim to the proof in Sub-region Sarg,1, so we omit the details.

Sub-region &, o:

In this sub-region, depending upon the distance to the singular fiber, there
are three types of rescaled limits:

(a) the Ricci-flat Taub-NUT space (C2, g7y, Too),
(b) the Euclidean space R3,
(c) the flat product space R? x S*.

The argument in Case (a) is identical to Sy, ;. In Case (b), the rescaled
metrics yield to

- G
(8.73) (K. 55, 25) <5 (R, grs, 2oc)

with dgs (€0, 0%) = 1. Moreover, the convergence keeps curvatures uniformly
bounded away from the origin 03 € R3. Our basic strategy is to reduce the
convergence of the 1-form 7); to the convergence of the coefficient functions.
Let p;,i = 1,2, ...,v, be a fixed monopole in Sy,. For any fixed £ > 1, define

g5 g5
(8.74) U = B, (pi) \ B (i)
where ¢; = ¢71- dgjc(wj,pi) and §; =€ - dgjc(a:j,pi), then U; is naturally a
circle bundle. Now with respect to the rescaled metrics

1

8.75 i =22 o= —
( ) g] jg] ) ] dgf(mj,p1)7
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5C 5C
the open subsets U; become large punctured balls Bgﬂl(pi) \ ng (pi) and
since £ is arbitrary,

(8.76) U, 55 ;) <5 (R {0%), ggs, oo

Therefore, restricted to U/, the contradicting 1-forms 7); can be written as
~ 1 1 2 2 3 3 4 pd

where 0]1-, 9]2, 05-’ and 9;-1 are the orthonormal basis defined as the rescaling of
the pull back of du, dug, dug and the connection 1-form for (uy, ug, us) € R3.

Given the contradiction assumption (8.52), applying the similar argu-
ments as Lemma 7.7, we obtain limiting functions f1, f2, f3, and f on

R\ {03} which satisfy

(8.78) Agafo(x) = Apa f2 () = Aps f2 ()
= Apsfl(x) =0, Vo € R?\ {03},

with the growth condition
—p
(879)  (f%l+ 121+ 2] + 1D @) < O (dgo(@,0%)
ve € R3\ {0%}.
Since p € (0, %), Corollary 7.5 implies

(8.80) fo=T% =% =foc=0onR".

This contradicts to the property
(8.81) s(x;)" - 0(x;)| = 1n5llcocy = 1,

which completes the proof of Case (b).
The rescaled limit in Case (c) is a flat product space R? x S!, so the
proof in this region is almost identical to Case (b), details are omitted.

Sub-region &i, 3:

The large scale region Sy, 3 can be divided into three cases of rescaled limits:
(a) the flat product R? x St,
(b) the Euclidean plane R?
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(c) the compact space (P!, dy/, Too), Where dyyp, is the McLean metric.

The proof are almost identical to the Sub-region &i, o. Here we just point
out the differences: In Case (b), the contradiction arises from the Liouville
theorem on the Euclidean plane, which is guaranteed by Corollary 7.3. The
rescaled limit in Case (c) is compact, so we apply Proposition 7.8 to obtain
the desired contradiction.

Region S;- (singular fibers of type I}, v € Z,):
In this region, we have classified all the bubbles into the following 5 types:

1) the Eguchi-Hanson space (X#.,grm) and the Taub-NUT space
(C2agTN)7

2) 4-dimensional flat orbifolds: R*/Zs and (R? x S')/Z,
3) 3-dimensional flat orbifolds: R3, R3/Zs and (R? x S')/Z
4) 2-dimensional flat orbifolds: R?/Z,

)

the compact space (P!, dysr, ©oo), Where dyyp, is the McLean metric.

In Type (1), one can use Lemma 7.6 to obtain the contradiction. In
Types (2)-(4), one can apply Corollary 7.5 on the Zs-covering space when
necessary. Finally, the contradiction in Type (5) follows from Proposition 7.8.

This completes the proof of the proposition. O

8.4. The proof of the existence theorem

In this subsection, we will complete the proof of the main existence theorem.
To start with, we restate Theorem 1.1 with more precise descriptions of
choices of parameters, uniform estimates and bubbling behaviors.

Theorem 8.4. Let ; (1/5) <K \/W w e (0, 110) € (0,1) be pa-

rameters, and fir £ = 5. Let §: K —> P! be any elliptic K3 surface with
a fixed holomorphic 2 form Q. Let g be the family of approximately hy-
perkdhler metrics with the error estimates in Proposition 8.2 such that

(8.82) (K, 98) S5 (P, dygr), as 6 — 0.

Then for any § < 1, there exists a hyperkdhler metric gé) induced by a hy-
perkdhler triple (w¥ ,Re((5 2),Im(d - Q)) such that the following properties
hold:
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1) Under the hyperkihler metrics gf, (K, gP) are collapsing to (P, darr,)
with a finite singular set S C P! such that curvatures of gf are uni-
formly bounded away from singular fibers, but are unbounded around
singular fibers.

2) The hyperkdhler metrics géj satisfy the uniform weighted estimate

1
8.83 P — g§l| o e
( ) 95" — 95 HCO ) < (log(1/5))1/47

where C’g’a norm means the weighted C/lf,’a norm for k=0 and @' =0
as in Definition 6.15.

3) If §1(p) is singular with finite monodromy, then rescalings of g(? con-
verge to a complete hyperkdhler isotrivial ALG metric of asymptotic
order at least 2.

4) When §Y(p) is singular of type 1, for some v € Z., then rescalings
of g5D converge to v copies of complete Taub-NUT metrics.

5) When F~1(p) is singular of type I, for some v € Z, then rescalings of
gé) converge to v copies of complete Taub-NUT metrics plus 4 copies
of Equchi-Hanson metrics.

Remark 8.5. We choose the parameters to ensure

(8.84) max {56(%“‘) + gl D+2 gutl - max e§+5 + (miix ey - 5)“+3}

(6 - miny e3 )+
(log(1/0))'/4

<

We will see the application of this estimate in the proof of Theorem 8.4.
We remark that if there are no I’, fibers, the estimates may be improved
to some polynomial rate in terms of §. However, for simplicity, we define
maxy ¢y = miny ey = W in that case so that our proof can be stated

(log
in a uniform way.

Remark 8.6. In the special case that all singular fibers are of Type I,
(v € Z4), it is easy to see that the deviation estimate (8.83) can be improved
to

(8.85) 198 = 9§ lovqey < C - e P40
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See Item (2) of Proposition 8.2 and Lemma 8.1. In this case, an alterna-
tive treatment of the higher order estimate can be found in [32], which is
based on a refined C2-estimate for the Kihler potential compared with [24,
Lemma 5.3].

First, we will verify Property (1) in Lemma 8.1 and we will prove that
the linearized operator %5 is an isomorphism from 2 to B.

Proposition 8.7. Let (lC,g(SC) be a collapsing elliptic K3 surface with the
family of approximately hyperkdahler metrics ggj, then there exists some con-
stant C' > 0, independent of &, such that for every self-dual 2-form €T € B,
there exists a unique pair (n,&1) € A such that

(8.86) L5, &) =¢F
and
(8.87) Il ey + 1€ coe i) < ClIE o, k)

where p € (0, 1—10) and a € (0,1).

Proof. First, the surjectivity of the linear operator £ : % — B immediately
follows from the standard Hodge theory. Indeed,

(8.88) Q3 (K) = HL(K) @ dH(Q'(K))
(8.89) QLK) = d(Q°(K)) @ QY(K),

where SO)I(IC) denotes the space of divergence-free 1-forms on K, therefore
(8.90) 02 (K) = H2(K) @ dT (Q4(K)).

It follows that

(8.91) Ls=d"old: A — B.

is surjective.
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Therefore the main part of the proof is to establish the uniform injec-
tivity estimate (8.87). By Proposition 8.3,

(8.92) Inllepe o) < CHd;gangfl(ic) =Clg" = ¥l k-

So we only need to prove

£+ +
(8.93) 1€ lcoe ey < ClIET e, i) -
Since the definite triple
(8.94) w§ = (w1, w2, w3) = (W§,Re(d - Q),Im(J - Q))

is self-dual harmonic and hence constitutes a basis of #% (K) at every point,
we can write

(895) éﬂr = Mw1 + Aaws + Agws.
It follows from the definition of the triple wéc that for every 1 < p,q < 3,
(8.96) wp A wg = Qpq dvol,e .

By the error estimate in Proposition 8.2, the estimate (8.84), and the fact
that the weight s(z) > & - min, ¢3, we have the estimate

(5.97) 1904 ~ dlleny < o

With respect to the Kéhler metrics ng, we have the volume estimate
(8.98) O~ 1% < Vol,, (K) < 062

Therefore

(8.99) 2, = /}C Quy dvol

has an inverse matrix whose norm is bounded by C§~2.
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On the other hand, we know that £ is the L2(K) projection of £, so

3 3
(8.100) / EF Awy = / M hwg =) Ap/ Qpq dvolye =D Ay 2y,
Kc K p=1 K p=1

for ¢ = 1,2, 3. Therefore,

1/2 5 /2

3 2 !
(8.101) D A <o) (/ ' /\wq>
g=1 K

q=1

<5 /’C s dvolyg ) - €4 llgos, o

< ClE o, i)

because ||wgllcoge) < C and [.s7+ 1 dvol,e < Cs.
Next,

(8.102) Hng”Cﬁfl(ic) = || Aiw1 + Aowe + )\3W3Hcgf1(lc)
< Ml llwilleoe ooy + 2l - lwzllcoe )
+As] - llwsllgoe (x)-
Since for every 1 < g < 3,
(8.103) lwgll oo, (k) < C
the above implies that
(8.104) 1€ o, o) < ClE Nlons, )

and the proof of the proposition is done.

O

Next we prove a uniform weighted estimate for the nonlinear term .45,

which is given by the following elementary calculations.

Proposition 8.8 (Nonlinear errors). Given the collapsing sequence
(IC,g(;C), then there exists some constant C' > 0, independent of ¢, such that
for every vi = (n1,&) € B.(0) C A and vy = (102,&5) € B-(0) C A, where
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§-miny e2)#+!
r = gty we have

) —(p+1)
(8.105) [ As(or) — A(en)]lw < O (6 min eA)
X ([lvrlla + [Jvalla) - [[vr — 2l

Proof. By definition, for any v = (w,{1),

1
A5(6) = 0 (503 (6%~ N, )

1
(8.106) — o (2(w% — W) —d pAndn, —w§ Aws, —w§ A w3)> .

Since £ : O C R® — A (K) is smooth, so there is some universal constant
C > 0 such that

(8.107) | A5(v1) — A5(v2)| S Cld ™y« d"my — d mp x d”ng
< C(ld™m|+[d n2l) - |d” (m — m2)|-

Multiplying by the weight function s(x)**!,

(8.108) s(@) T A5 (1) — As(v2)]
< C-s(@) - (|d m| + |d7na]) - [d™ (m —m2)l.

Since the weight function s(x)**! has a minimum (& - min) ¢3)* "1,

(8.109) s(@) - A5 (01) — As(v2)]
<O (0 4)0 ) (s(@) ! (Jd ] + d ) )

% (s(@)tt - Jd=(m —me)l).

Taking sup norms,

(8.110) [A5(v1) = A5(v2)lco, (k)
<C-(6-e3)" (D). <||U1!|ci(x) + ||U2”C;(IC)>

% (o1 = valloy))-
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By similar computations, we also have the estimate for the Holder seminorm

(8.111) [,/1{5(1)1) - C/V(;(m)}co,alm

<0 (5 (Jullegege +loallopee)
X (Hm - U2||c;‘*(l€))'

So we obtain the effective estimate (8.105) for the nonlinear errors. O

With the above preparations, we are ready to complete the proof of
Theorem 8.4.

Proof of Theorem 8.4. We start with the metrics gg induced by the approx-
imately hyperkahler triples

(8.112) w§ = (W§,Re(d-Q),Im(d - Q))

on the K3 surface K with a fixed homolomorphic 2-form €. Then we will
prove the existence of a genuine hyperkahler triple

(8.113) wP = (WP, Re(6-Q),Im(5 - Q)).

This will be accomplished by applying Lemma 8.1 to perturb the approxi-
mate solutions, which requires us to combine all the uniform weighted esti-
mates obtained in this section. Proposition 8.7 gives the isomorphism and
uniform weighted estimate for the linearized operator .£5. Next, Item (2)
of Lemma 8.1 holds by (8.84) for our choice of parameters. Therefore, ap-
plying Lemma 8.1, the 2-form ng can be perturbed to w(;D such that the
triple (wf,Re(d-Q),Im(d-2)) is a hyperkéhler triple. Moreover, the im-
plicit function theorem also gives the uniform error estimate in the weighted
Holder space

(6 - miny 3 )1
(log(1/0))'/
Next, we will analyze the Gromov-Hausdorff behaviors of (K, gP). Re-

mark that the weight §(x) > § - miny ¢3. So the above error estimate imme-
diately implies that

(8.114) lws” = w5 llez, o) <

1

D C o - -
(8.115) |ws” — ws HC’O’ ) < (log(1/5))1/4.
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By the definition of géc and géj , it is easy to see that

1
8.116 5 = 95 g (log(1/8))/+"
(8.116) 195" = 95"l ey ie) < (og(i/ay)i7a

By the uniform estimate (8.116), we conclude that, with respect to the
hyperkahler metrics ggj , all the bubbles around singular fibers coincide with
the corresponding bubbles occurring in the collapsing of g(;c. By Section 6,
it follows that the deepest bubbles around singular fibers are precisely given
in the statement of the theorem. Then Theorem 6.8 for Einstein metrics
implies that curvatures are uniformly bounded away from singular fibers.
This completes the proof of the theorem. O

9. Remarks on moduli

In this section, we give a count of the parameters involved in our construc-
tion.

9.1. ALG moduli

In this subsection, we compute the dimension of the moduli space of isotrivial
ALG metrics which are ALG of at least order 2 near a fixed such space G.

Definition 9.1 (Isotrivial ALG moduli). Given an isotrivial ALG man-
ifold G with holomorphic (2,0)-form Q9 = w§ + /—1w§ which is identified
with d% A d? on the model space Cg . outside the central fiber (see Lemma
5.9), define U as the space of closed 2-forms wy on G such that

(9.1) (1) = (W)} wi Awy =wi Aw§ =0,
and
(9.2 V(w1 — ) e = O(2|+2),

as |%| — oo, for any k € N.

We now fix w9 € U and study the neighborhood of w9 in U. Let g9 be
the metric induced by the hyperKéahler triple (w9, wgg ) wg ).
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The weight function on G is

1, d(p, )

<1,
d(p,x), d(p,x)>2,’

(9.3) p(x) = {

smoothly extended to G, and the weighted W*2 norm of a tensor 7 is defined
by

k
(9.4) Inllrz(g) = /g o722, Anllwergy = D V™ 3l12: . (g)-
m=1

Proposition 9.2. The indicial roots of Age on T2-invariant functions are
Aj = B7Y,j € Z. The indicial roots of Aye on T?-invariant (1,1)-forms are
given by

1) N=p81,j€,
2) N\j=pB"1j+2,j€Z.

Furthermore, for p not equal to an indicial root, then Age : Wff’Q — Wf;;’Q
s Fredholm.

Proof. For functions, this follows directly from Proposition 7.2 with ¢ = 0.
For (1,1)-forms, we write a harmonic (1, 1)-form as

95) &= h(%Z))or(arg % )dU NAU + (1% |)p2(axg % )dU N dV
+ 3% ) p3(arg % )dV N AU + f4(|U ) ba(arg % )dV NV,

and note that £ is well-defined on the model space if and only if

$1(278) = $1(0),  ¢2(2mf) = e~V "Lg5(0),
¢3(2mB) = ™V p3(0),  pa(21B) = 64(0).

By Proposition 7.2, we get the first class of indicial roots for ¢1, ¢4, and the
second class of indicial roots for ¢s, ¢3.

The Fredholm property is proved in [25, Proposition 16]. We also note
that the estimate

(9.6)

(9.7) 16llwz2g) < CU1Agedllz2,,(g) + I1llL2(Br))

for some R >0, and p non-indicial is proved in [8, Theorem 4.11]. The
Fredholm property then follows from this in a standard fashion, see [2, 39)].
([
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Define L?H? as the space of 2-forms & € L? such that d¢ = 0 and d*¢ = 0.

Proposition 9.3. There exists a small neighborhood U C U around w9
such that there exists an isomorphism from U onto a small ball in L*H2.

Proof. First, let p > 0 be sufficiently close to zero. By elliptic regularity of
distributions and Proposition 9.2, the cokernel of the mapping

(9.8) Ago : WE2 5 Wi 22,

can be identified with harmonic functions in Wlfi So let h € Wlfi, then
(9.9) h=clog|Z|+ca+O(%|°)

as % — oo. By integration by parts, we see that ¢; = 0, and therefore h = ¢y
is a constant. The mapping in (9.8) therefore has a 1-dimensional cokernel

spanned by the constants. To overcome this, let x(|%|) be a smooth function
which is 1 when |%| > 2R and is 0 when |%| < R for a large radius R. The

mapping
(9.10) Ago : WE2 @ R(x(|% ) log | |) = Wi 3",
is then surjective since the element Age(x(|%|)log|%|) pairs nontrivially

with 1 under the L? pairing. We claim that this mapping is moreover an
isomorphism. To see this, suppose that c € R and f € W,]f 2 satisfies

(9.11) Ago(f + e(x(12 ) log | %) = 0.

By elliptic regularity, we can assume that k is very large. Then

(9.12) 0= /WKRAgg(f+C(x(!%\)10g!“2/\)

- /|%|R 6871(f +cx(|%]) log |%]),

where a% means the derivative in the normal direction. So ¢ = 0. By maxi-

mum principle, f = 0.
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The condition wy A wg =wi A wg is the same as w; being (1,1). For any
w9 €U, let V as the linear space

(9.13) {€ € AMN(G),dE = 0,6 Awd =0,|VRE = O((|%| +1)F72),k e N}

using the norm defined by the metric g9 induced by (w9, wg ) wg ). Then for
any small enough & € V, by a standard application of the implicit function
theorem (Lemma 8.1), there exists a unique ¢ € Wf’Q OR(x(|Z|)log|%]|)
such that

(9.14) (W9 + € + V=189¢)? = (w§)2.

By elliptic regularity, w9 + € + /=190 € U. This provides a local diffeo-
morphism from a small neighborhood of 0 in V to a small neighborhood of
w9 in U.

Next, we will show that L?H? = V. For any element & € V, we know that
¢ is anti-self-dual. So

(9.15) dyo€ = — *go od 0 %40 = *go 0 d§ = 0.

Therefore V C L?*H?. On the other hand, for any ¢ € L?H2, Age& = 0. So by
Kahler identities (for example, see the proof of [10, Theorem 5.1]), the coef-
ficient of the self-dual part of £ is also harmonic. It must vanish by maximal
principle. In other words, ¢ is anti-self-dual. Since L? = L? |, we just need to
analyze the indicial roots between —2 and —1. By [25, Proposition 16] (see
also [9, Theorem 4.6] for a similar result), we have existence of harmonic
expansions. For 8 < 1/2, there is no indicial root in the above range, so we
are done. For 8 > 1/2, from Proposition 9.2, we have the harmonic leading
terms

(9.16) WYY naw ., w M Bay A dY,

and their conjugates. However, we require that £ is not only harmonic, but
moreover closed and coclosed because we can do the integration by parts. It
is clear that the first term in (9.16) is not coclosed, and the second term in
(9.16) is not closed. Consequently, there is no non-trivial linear combination
of these 4 leading terms with is both closed and co-closed. So the leading
term of £ can not be of order —1//. In the cases § =2/3 or 5 = 3/4, the
next indicial root is —2, so we are done in these cases. In the case = 5/6,
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the next indicial root is —8/5. The corresponding leading term is
(9.17) (X)) 3Pdw NadY,

or its conjugate. Any non-trivial linear combination of these terms is not
closed, so the leading term cannot be of order —8/5. The next indicial root
is —2, so we are done in this case as well.

We have shown that in all cases, the leading term of & must be of order
at least —2. By elliptic regularity, £ € V, and this finishes the proof. O

Theorem 9.4. The dimension of the isotrivial ALG moduli space U is
ba(G) — 1.

Proof. Recall that from [25], there is an isomorphism
(9.18) L*H? = Image(HZ,(G) — H*(G)),

so by Proposition 9.3, we just need to compute the dimension of the right
hand side, which is a topological invariant. Note that G deformation retracts
onto a large ball B C G, and set S = 9(B,(R)). Consider B as a compact
manifold with boundary S. We claim that

(9.19) HY(S;R) = H*(S;R) =R.

To see this, recall the action is (%, %) — (e2™V 1% e 2"V=159) 50 on
S x T2, the action is a rotation on the first factor. Then it is easy to see
that the pull-back of df from S* is the only invariant harmonic 1-form under
this action. Since the action is free, we can identify the cohomology of the
quotient with the invariant cohomology.

The long exact sequence in relative cohomology, with real coefficients
gives

(9.20) 0— HYS) — H*(B,S) — H*(B) = H*(S) — 0.
This is because by Poincaré-Lefschetz duality for manifolds with boundary,
(9.21) H3(B,S) = H,(B) = H(G) =0

and H'(B) = H*(G) = 0 since G deformation retracts onto B. Also by du-
ality we have

(9.22) H*(B,S) = Hy(B) = Hy(G) = H2,(G).
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So the above exact sequence can be written as

(9.23) 0—-R— Hcpt

(G) = H*(G) = R — 0.
Consequently, we have

(9.24) dim{Image(prt(g) — HQ(Q))} =be(G) — 1.

9.2. Parameter count

Our family of Calabi-Yau metrics depends upon the following parameters.
For each ALG space G;, we have an open set U; of dimension by(G;) — 1 as
discussed in the previous subsection. Note that these parameters correspond
to the area of the holomorphic curves in the finite singular fiber of each
ALG space, of which there are b2(G;), but we subtract 1 since the area of
the singular fiber is fixed to be 6% (after scaling). For each I, fiber, we can
also parametrize the multi-Ooguri-Vafa metric by V; which is an open set
in R¥~! which corresponds to the areas of the holomorphic curves, minus
1 constraint. We can vary these parameters by moving the monopole points
along the S! direction. For the I fibers, we have an open set W; in R¥ i+4
given by the areas of the holomorphic curves of multiplicity two (of which
there are v] + 1), subtracting 1 constraint, together with the areas of the
(—2)-curves in each Eguchi-Hanson metric (of which there are 4).

Recall that k; denote the number of fibers with finite monodromy, ko
denote the number of I, fibers, and k3 denote the number of I}, fibers. The
Kéhler cone H(K) C Hp V1K) = R is a convex cone. By taking the Kiihler
class [wl] of the Calabl Yau metric obtained in Theorem 8.4, we have a
mapping

k1 ko ks
(9.25) O: 1 x B x (H%) X (Hvi) % (Hm) — H(K),
=1

i=1 =1

where § € I = (0,d), for dy sufficiently small, and the space & is defined
in (3.18) above. Note that, dim(Y;)=b2(G;) —1, dim(V;) =v; —1 and
dim(W;) = v/ +4, so

(9.26) Z dim(U;) + Z dim(V;) + Y dim(W;) = 24 — 2k — ko — 2ks.
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Combining this with (3.19) from above, we conclude that the domain of ®
is 20-dimensional, which is the same dimension as H(K).

Remark 9.5. We expect that [wf] — [wg] as § — 0, where [wg] denotes
the Poincaré dual of a fiber, and the image of ® is an open set in H(K). This
is intuitively clear from our construction, but a detailed analysis of this is
very lengthy, so we do not include this here.

9.3. More bubble limits

We can find other possible bubble limits which occur by slightly changing the
gluing data. First, near an I, -fiber (v € Z.), recall that the singularity model
comes from the multi-Ooguri-Vafa metrics. In this case, we can change the
locations of the monopoles so that they cluster together at points, so that one
can also see multi-Taub-NUT ALF-Aj metrics instead of having v copies of
Taub-NUT bubbles. It is also possible to obtain nontrivial bubble tree struc-
ture. For instance, one can make the monopole points cluster together at
different rates, which can give an ALF orbifold with orbifold points and the
deepest bubbles are given by multi-Eguchi-Hanson metrics. As mentioned
above in Remark 6.14, near a singular fiber of Type I’, (v € Z.), one can also
change the scales of the Eguchi-Hanson bubbles so that the ALF-Ds type
bubbles appear, which is identified with the resolution of (R® x S')/Zs. See
[4] for more details about the Kummer construction of the ALF-Dy space.
Moreover, if the monopole points approach the ALF-Ds space, it is also pos-
sible to get ALF-Dy, spaces for larger k. See [9] and the references therein
to see more details about ALF-Dj, hyperkihler 4-manifolds.
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