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Abstract. In this paper, we will explore the geometric effects of conformally covariant
operators and the induced nonlinear curvature equations in certain nonlocal nature.
Mainly, we will prove some regularity and rigidity results for the distributional solu-
tions to those equations.
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1 Introduction

In conformal geometry, a primary goal is to understand both analytic and geometric
properties of the conformally covariant operators. Specifically, let (M",go) be a Riemanni-
an manifold of dimension n and equipped with a conformal structure [go]. For example,
in the case of second order differential operators, the most classical conformally covariant
operator is the conformal Laplacian. For n >3, it is defined as

(n—2)
Poo =L ==Beo 35, =7) Rew (1.1)
where Rg, = (4(’;—__21))*ng0 (1) is the scalar curvature of the metric go. In the context of con-

formally compact Einstein manifolds, geometric scattering theory gives a much more gen-
eral manner to study the conformally covariant operators. That is, for each y € (0,n),
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there is a well-defined conformally covariant operator P>, of order 2y which is called
the fractional GJMS operator, see Definition 1.2 below. Similarly, the scalar function
Q2 = (”327)*1P27(1) is called the nonlocal Q curvature of order 27. In particular, when
¥ =2, the operator P, is called the Paneitz operator. Correspondingly, Q4 is called Bran-
son’s Q curvature which naturally arises from the Chern-Gauss-Bonnet integral on a 4-
manifold and hence deeply related to the geometry and topology of the underlying man-
ifold. There are a lot of fundamental works in this direction (see, e.g., [1, 3, 6, 18-21, 24]
and the references therein).

To start with, we introduce some background materials of the conformally compact
Einstein manifolds and the precise definition of the nonlocal curvature Q»,.

Definition 1.1. Given a pair of smooth manifolds (X”“,M”) with M"=9X"*+1 we say a
complete Einstein metric g4 on X" is conformally compact Einstein if it satisfies

Ricg, =—ng (1.2)

and there is a conformal metric § = u?g, which smoothly extends to the boundary M"
with a restriction

h05u2g+]Mn. (1.3)
The conformal manifold (M",[h]) is called the conformal infinity.

Establishing effective connections between the conformal structure of the conformal
infinity (M",[ho]) and the Riemannian structure of the Einstein filling-in (X"*!,¢. ) is al-
ways a central topic of conformal geometry and the theory of AdS/CFT correspondence.
A crucial tool in understanding the above structure is the conformally covariant opera-
tors defined on a conformally compact Einstein manifold. Due to Graham-Zworski [16]
and Chang-Gonzélez [5], there are a family of conformally covariant operators called the
fractional GIMS operators (see [2, 5]). Specifically, in the context of Definition 1.1, we define
the operator as below.

Definition 1.2 (Fractional GJMS operator). Given any real number y € (0,%),

Pay[g+,h0] =277

-S(g—i-'y), (1.4)

where S is the scattering operator which is essentially a Dirichlet-to-Neumann opera-
tor (we refer the reader to [5] and [16] for the more detailed definition of the scattering
operator).

In this case, let 1= vﬁho and let 1327 be the fractional GJMS operator with respect to
fl, then

n+2y

Py (1) =v " 21 Py, (uv), (1.5)
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for any u € C*(M"). Let P, be in (1.4) with 7y € (0,%), then the function

n—2y
2

Qay =( )Py (1) (1.6)

is defined as the nonlocal Q curvature of order 2-y. Note that in the critical case, ¥ =7, the
above definition also gives a well-defined conformal invariant. We define

)Py (1). (1.7)

Moreover, it follows from the computations in [16] that the following conformal covari-
ance property always holds in the critical case: if h=e?"hy then,

"™ Q= Qn+P(u). (1.8)

The above relations are essentially given by the meromorphic property of the scattering
operator, see [16] for more details. In the literature, there are extensive studies in the
analytic aspect regarding the nonlocal operators and curvatures in recent years. Howev-
er, in the literature, so far the geometric properties and applications have not been well
and enough explored even in the simplest case. Conformally flat manifolds are the most
natural objects such that the nonlocal operators can play their effective roles.

In a recent paper [28], the second author has obtained some topological obstructions
for the manifolds admitting conformally flat metrics with positive nonlocal curvatures.
Moreover, in the lower dimensional case, the second author proved some topological
rigidity theorems for the conformally flat manifolds (M",h) with positive nonlocal cur-
vatures. In our current paper, we will further explore the metric aspect of the nonlocal
curvatures. More precisely, we will prove some isometric rigidity theorems under the
assumption that the nonlocal curvature of the critical order Q,, is a positive constant.

1.1 Main results

In this section, we will present our main theorems. We start with a regularity and rigidity
theorem for the distributional solutions to the critical order Yamabe equation in IR".

Theorem 1.1. Given any integer n>2, let u be a solution to
(=A)"2u=(n—-1)le"®,  xeR" (1.9)
in the distributional sense which satisfies

/ eMdx < oo, (1.10)

lu(x)|=o0(|x|?) as |x| — co. (1.11)
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Then there exists some A >0 and xo € R" such that

2A
u(x)=log 1

—_— 1.12
+]x—x0]2 ( )

In particular, u is smooth in R".

Remark 1.1. It is well known that there are examples of solution to (1.9) which are not of

the form
2A

When n =4, Chang and the first author proved in [4] that there are non-standard radial
solutions satisfying

/ ¢4 4y < Vol (84), (1.14)

with the asymptotic behavior
u(x)=0(|x|?). (1.15)

Such counterexamples tell us that the growth rate condition in Theorem 1.1 is optimal.

A similar classification result was first obtained by Chen-Li in [13] in the case n =2
under a weaker condition

/ 240 g < oo, (1.16)

Chang and Yang proved the rigidity result in [9] for higher dimensions under stronger
decaying condition

u(x) zlog%w—kw(g(x)) (1.17)

for some smooth function w defined on 5". In [23], for dimension n =4, Lin weakened
condition (1.17) to

/4e4u(x)dx<oo and u(x)=o(|x|*) for |x| large (1.18)
R

and classified the solutions. In [26], Wei and Xu generalized Lin’s result to all even dimen-
sions. Xu obtained in [27] the rigidity result in all dimensions under a stronger regularity
assumption u € C*°(R"). As a comparison, in Theorem 1.1, we only need to assume that
equation (1.9) holds in the distributional sense.

Next we consider the geometry of the nonlocal curvature Qs in the case n =3, where
the curvature Qs is deeply connected to the topology of the underlying conformally com-
pact Einstein manifold (X*,M?3,¢ ) via the following version of the Chern-Gauss-Bonnet
formula. In our specific context of conformally compact Einstein manifold (X4, M3, 9+),
it is a combined result due to [14] and [8] that the following generalized Chern-Gauss-
Bonnet formula holds,

82 (X4) = /X WP dvol,. +2 /M3 Qs(ho,g+ ) dvoly,, (1.19)
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where (M3, [h]) is the conformal infinity. In a special context that the Einstein filling-in is
specified as a hyperbolic manifold with constant sectional curvature —1, the second author
proved in [28] a conformal sphere theorem regarding positive Q3.

Theorem 1.2 (Zhang, 2018). Let (M?>,¢) be a closed locally conformally flat manifold with
R¢>0and Q3 >0, then (M3,g) is conformal to S® or RPS.

We also refer the reader to [28] for more geometric and topological rigidity theorems
on the nonlocal curvatures. Based on the conformal sphere theorem, we can obtain an
isometric sphere theorem by assuming the nonlocal curvature Qj3 is a positive constant.

Theorem 1.3. Let (M?3,g) be a closed locally conformally flat manifold with
R¢ >0, Q3=2, (1.20)

then (M?3,g) is isometric to the round sphere S° or the projective space RP? with constant sec-
tional curvature secg, =1.

Proof of Theorem 1.3. Since we have assumed
R¢>0, 03=2>0, (1.21)

by Theorem 1.2, (M3,g) is conformal to $* or RP®. In particular, applying the stereo-
graphic projection, one can write
g=e*"|dx|? (1.22)

such that
/ A1) dx < oo (1.23)
1R3

and u(x) — —2log|x| as |x| — +00. Moreover, the following curvature equation holds
globally in IR3,
(—A)2u=2¢%". (1.24)

Theorem 1.1 implies that g is isometric to the standard metric on > or RP? with constant
sectional curvature +1. O

We should emphasize that in the nonlocal cases of the above isometric rigidity theo-
rems, we need to specify the Poincaré-Einstein filling-in which are hyperbolic manifolds
in our context. Otherwise, constant Q,, does not imply the sphere theorems. A standard
example is the following AdS-Schwarzschild space.

Example 1.1 (The AdS-Schwarzschild space). Let (M3,hg) = (S! xS?,dt?> g1 ), there are a
family of Einstein metrics on the topological product IR? x 5% called the AdS-Schwarzschild
metrics, which has the explicit expression

_dr?
Em=y ()

+Vu(r)dt* +-1%g1, m>0, (1.25)
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where V,,(r) =14+r*—2} and g is the round metric on $? with sec,,, = +1. In the
above, the positive constant m > 0 is called the ADM mass of the AdS-Schwarzschild s-
pace. Then one can check that Ric,,, = —3g;, and (M?, [h]) is the conformal infinity of the
AdS-Schwarzschild space (R? x S2,g,,).

We denote by rj, > 0 the horizon of the AdS-Schwarzschild space which is the positive
root of V. Then one can compute that the nonlocal curvature Q3 is a positive constant
when r,€(0,1). See [7] for the detailed computations. We also notice that, when the ADM
mass m = 0, the metric g, degenerates to a hyperbolic metric on the topological product
S!'xR*=H*/Z with secy,, = —1 . In this case, one can also compute Q3 =0. See [28] for
more details in this case.

1.2 The analysis of the fractional GJMS operators

In this section we will illustrate the analytic part of the paper, which is the technical
foundation in proving the above sphere theorems.

To start with, let (X",¢ ) be a conformally compact Einstein manifold with a con-
formal infinity (M",[ho]). If we make the conformal change /i = ¢%*h, correspondingly
the fractional GJMS operator of order n yields the covariance equation,

€"'Qun=Qu+Pu(u), (1.26)

where Q,, is the nonlocal curvature with respect to the conformal metric 1. Now we
consider conformal covariant equation (1.26) in the model case. That is, let (X"*1,¢, )=
(H"*!,¢_1) be the hyperbolic space with curvature = —1 such that the Euclidean space
R" is its conformal infinity. In this case, with respect to the Euclidean background metric
ho = |dx|? on IR", we aim to obtain a conformal metric & = ¢?*|dx|> with positive constant
curvature Q,,

Qu(e|dx|*) = (n—1)!=Q,(S",81). (1.27)

Plugging (1.27) into the conformal covariant equation (1.8), we have the nonlocal Yamabe
equation
(=A)2u=Q,-e"™. (1.28)

Based on the above discussion, now the nonlocal Yamabe equation on the universal
covering space is given by the following semi-linear equation

(—A)"2u=(n—1)1e"®, xcR", (1.29)
where the dimension 1 >2 is an arbitrary positive integer. When 7 is even, (—A)"/? is a
poly-harmonic operator; while 7 is odd, it is a nonlocal fractional operator. For n=2m+1,
we define

—
|
>
~—
NI=

(—A)"o(—A)1/? (1.30)
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with () —u(y)
A2 —c,pv. | B THY, 1.31
()l =Cupy. [y (131
where “P.V.” stands for the Cauchy principal value. We say that u is a solution of (1.29)
in the distributional sense if

n

/ () () p(x)dx = / (n—1)1e"™@p(x)dx, ¥ € CT(R?). (1.32)

In the case when 7 is even, first a Pohozaev type identity was obtained and employed
to derive the exact asymptotic behavior of the solution u near infinity, then the method of
moving planes was applied to prove the radial symmetry of u, and finally, by the unique-
ness theory of ODEs, the classification of solutions was established [13, 23, 26].All these
are based on local analysis and are no longer at our disposal in the nonlocal setting when
the space dimension # is odd. To our knowledge, there is no corresponding Pohozaev
identities except in the case u is identically zero outside a finite domain (see [25]) and
the ODE theory are no longer applicable to radial solutions for fractional equations [15].
To overcome these difficulties, we apply the method of moving planes and moving spheres in
integral forms to classify solutions and unify the proofs in all dimensions. As is known
to the people in this area, when applying the usual method of moving planes, the higher
the order of the operator, the more analysis is required. While its counter part in integral
forms treat all orders, including fractional orders indiscriminately.

The method of moving planes in integral forms was introduced in [12], and since then it
has been applied widely to obtain symmetry, monotonicity, non-existence, and classifica-
tion of solutions for various higher order and fractional order equations. However, the
equation here is the so called “critical order” (the order of the operator is the same as
the dimension of the space) where the fundamental solution is in the form of logarithm,
hence one needs to approach it in an entirely different manner.

1.3 Outline of the proof of Theorem 1.1

The proof of our main classification result (Theorem 1.1) is rather involved, so we outline
its structure here.

First, we introduce some notions which naturally appear in our proof. When n is
odd, for the higher order fractional Laplacian, there are several equivalent definitions.
For instance, when n =3, as we mentioned before, one can define

(=A)3?u=(—=A)"20(-A)u, (1.33)
or by using a single integral (see [22])

u(x) —u(y) + 55 A (x)|x —y?

_A)3/2 =C,-
(=A)*“u(x)=C,-P.V. . Ty

dy; (1.34)
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or via Fourier transform
Fl(=au)*?u) (§) = [ Flu(x)] (1.35)

for u € S, the Schwartz space of rapidly decreasing C* functions in IR”; and in this space,
one can show that all the above three definitions are equivalent. One can extend this
operator to a wider space of distributions.

Let

_ 1 (Re |u(x)]
Ezs—{MELlOC(R )| andx<oo}. (136)

Then in this space, one can define (—A)*u as a distribution by

<(—A)Su(x)/¢>Z/nu(x)(—A)s<l>(x)dx, v ey (R"). (1.37)

In order the integral on the right to converge, one requires u € £,,. Hence, throughout this
paper, for odd integer 1, we assume that the solution u of (1.29) is in £,,. For a solution u
of equation (1.29), let

i=nu+log[n(n—1)!], (1.38)
then one can easily verify that
(=A)"2q=¢"¥), xeR" (1.39)

Hence for the simplicity of writing, in the sequel, we consider

—A)"Py=e"¥), xeR" 1.40
(—4) / (1.40)
under the condition
/ e dx < oo. (1.41)
Let c,, be the constant such that cnlogﬁ is the fundamental solution of (—A)"/? in
R"”, that is
(—A)"/2 <C”10g|x—y]> =d0(x—y), xyeR™ (1.42)
Let
v(x)=cy /W log |’Z|—+y1] eWdy. (1.43)

We first consider the case where

u(x)=o(|x|?), for |x| large. (1.44)
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We only assume that u € £,, be a distributional solution, it is locally integrable, but may
not be locally bounded. Without local boundedness assumptions on u, v(x) may not be
well defined for every x € R" and it may even be unbounded locally. We will first prove
that it is locally integrable and then in £,,. Through a quite complex process involving
several new ideas, we prove that

u(x)=ov(x)+c (1.45)
is bounded from above uniformly in R", and
u(x)=—(a+o(1))log|x|, for |x|large, (1.46)
where

zx:cn/ e“(y)dy. (1.47)

The asymptotic behavior of u near infinity depends on the value of &, and to deter-
mine it, in the case when 7 is even, it was done by using Pohozaev identities (see [23, 26]).
However, when 7 is odd, due to the nonlocal nature of the fractional operator (—A)"/2,
there are no such identities. To circumvent this nonlocal difficulty, we employ some new
ideas. We first apply the method of moving planes in integral forms to deduce a > 2n, then
use the method of moving spheres in integral forms to prove « <2n and thus arrive at

Proposition 1.1. Under condition (1.44), we have that
a=2n. (1.48)

With this exact value of x, we will be able to apply the method of moving spheres again
to classify all the solutions and establish Theorem 1.1.

In Section 2 and 3, we will focus on the case u(x) =o0(|x|?). The asymptotic behavior
and regularity of distributional solutions will be derived in Section 2, while the classifi-
cation of solutions will be established in Section 3. In Section 4, we will consider the case
u(x)=0(]x|®) and obtained symmetry of solutions.

2 Asymptotic behavior of distributional solutions when u(x) =
o(|x[?)

In this section, we investigate the asymptotic behavior and the regularity of the distribu-
tional solutions and establish.

Theorem 2.1. Assume that u € L,, is a distributional solution of equation (1.40) and

u(x)=o(|x|*) for |x| large. (2.1)
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Then u(x) is continuous, differentiable, uniformly bounded from above in R", and

u(x) — tXECn/ e”(y)dy. (2.2)

im —
x| o0 lOg | x|

The proof of this theorem is quite complex. It consists of 9 lemmas. Now we give an
outline of the proof as follows.

Outline of the Proof. Let

v(x)zcn/nlog {Z'_—i_;’ e"Wdy. (2.3)

Without assuming that u is locally bounded, this v(x) may notbe defined everywhere.
We first show that it is locally integrable and in £,, and then it satisfies the equation

(=A)"?p=¢"¥), xeR" (2.4)

in the sense of distributions.
Let w=u—v, then

(=A)"*w(x)=0, x€R" (2.5)

Applying the Fourier transform to this temper distribution w, we deduce that w(x) must
be a polynomial.
It is elementary to show that

v(x) > —clog|x|, for |x|large. (2.6)
This together with the condition
u(x)=o(|x|?), for |x| large, (2.7)

imply that w has to be a first degree polynomial, and hence

u(x):v(x)—kiaixi—i—c. (2.8)
i=1

Combining the finite volume assumption
/ Iy < o0 2.9)

and (2.6), we derive that all a; must be zero and

u(x)=v(x)+c almost everywhere in R". (2.10)
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Based on this, we are able to estimate u#(x) and prove that it is uniformly bounded
from above in R". This is a crucial step involving some interesting ideas. Only after this,
can we derive that v(x) is defined everywhere, continuous, and differentiable, and so
does u(x).

Under the global bounded-ness (from above) of u(x), we derive

im Y5, 2.11)
x| o0 lOg | x|

which apparently also holds for u(x). This is a needed behavior later in carrying out the
method of moving planes and moving spheres to classify the solutions. O

In the following, we state the lemmas and present their proofs.

Lemma 2.1. v(x) is in L,, that is, vE L}

loc

(R™), and

[o(x)]

Proof. We first prove that v(x) is locally integrable. For any given R >0, we show that

/ lo(x)|dx < co. (2.13)
|x|<R
To this end, let us define
X X
Al_{ny y|<| |} and AZE{ny—y|>|2—|}. (2.14)
Then it follows that
L[ o) ax
n J|x|<R
<[ | |ig YT ) gy +/ / |y’+1 "W dydx
|x|<RJA; |x|[<RJ A,
=: L+1D.

For |x| <Randy€ A,,

3|X|
< <= 2.15
l<ly—xl+ix <22 <28, 215)
hence
2_2_ ly|+1 < ly|+1 <3R/241 (2.16)

R= x| = [x]/2 = Jx=y| = |x—y[
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Therefore
11§/ / lo yl+1 dxe"Wdy < co.
y<3r/2Jjx<r| 7 X =Yl
For [x| <Rand y€ Ay,
ly|+1 < |x|+|y—x|+1 < |x|+1+1§3+i’
[x—yl [x—yl |x[/2 x|

while on the other hand

yl+1 o yl+1 Iy!+ e,

> >0.
lx—y| = |x|+|y| ~ R+y|

It follows that

Iy! ‘
10 <C+log(1+|x

and consequently
zzg/ [c+1og(yxy+1)]dx/ 0y < oo,
|x|<R R”

Combining (2.15), (2.17), and (2.21), we arrive at (2.13).
Now the remainder is to show that

1 ly|+
- 1
/L>Ru+wﬂV"/? ©

W) dydx < .
g!x—yl Y

For each x €¢R", let

A=yl -yl <1}, Az—{yu<wx m<’”}

_ s 1
m-{ww >

We have that
1 y|+1
S ——— 1
‘ﬁbRu+uwwﬁl°|x
S/ eu(y) [/ | log(!y|+1)+|logIX—y||dx} dy
n y—x|<1

(+ Tl
<c/ lslyltn,,
R~

e"Wdydx

1
Wayt+c [ ) U lowlx—vlidel d
(T STCEar I R Ll

< 0.

429

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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3[x|

For y € Ay, we have |y| < =5, and hence

clyl+1 _ lyl+1 <3yxy/z+1

<3|x|/2+1. (2.25)
TS S Sy <
Consequently,
‘log :Z’j_;’ ' <C+log(|x|+1). (2.26)
It follows that . s
y (v)
—_— lo Ydydx < co. 2.27
[ r A yaz<oo 227
Choose R >2. For |x| >2 and |y| >2,
[x—y| <|x[+[y| <[x|[yl, (2.28)
and hence . . .
yl+1 lyl+1 1 (2.29)
lx—y| ~ |x[ly] ~ |x|
For |y| <2,
Iy!+1Z ly[+1 > 1 (2.30)
lx—y[ ~ [x[+]y] ~ |x[+2
On the other hand, for |[x—y|> %,
i+ vl x o)
|x— y! [x—y| [x—yl| |x[/2
Combining (2.29)-(2.31), we derive
‘log ;y|+y| ‘ <C+log(|x|+2), for |x|>2andyeE As. (2.32)
It follows that . vl
y+ ()
—_ log Yidydx < 2.33
/x>z<1+|x|>2n/Aa Yarse (2:33)

Now, (2.22) is a direct consequence of (2.24), (2.27), and (2.33). This completes the proof
of the lemma. O

Lemma 2.2. v(x) satisfies
(=A)"?v(x)=e"™), xeR" (2.34)

in the sense of distribution.
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Proof. By the definition of the distributional solutions, it suffice to show that, for any
¢ € Cy(R"), it holds

/n |:C11 log ]’ch|+y| dy} (—A)”/24>(x)dx:/ne“(")gb(x)dx. (2.35)
Using the fact that
n 1
(—=A)"2¢(x)=CP.V. / (P]x i )dyw A for |x| large, (2.36)

where K is the (compact) support of ¢(x), and by a similar argument as in the proof of
the previous lemma, one can exchange the order of integrations on the left hand side of
(2.35) to arrive at the right hand side. This completes the proof of the lemma. O

Based on Lemma 2.2, w =u—v is n/2-harmonic in R", i.e
(—=A)"?w(x)=0, x€R", (2.37)
in the sense of distributions.

Lemma 2.3. If a tempered distribution w(x) is s-harmonic in R" for some positive real number
s, then it is a polynomial.

Proof. The proof is similar to that in [10] in which 0 <s <1, for readers convenience, we
provide it here.

Since w is a tempered distribution, it admits a Fourier transform F (w). We will show
that F(w) has support at the origin, hence it is a finite combination of the Dirac’s delta
measure and its derivatives. Therefore w is a polynomial (see for instance [17]).

In fact, from

((—A)Sw,@Z/WW(X)(—A)S#’(X)EZXI vy eCy (R"), (2.38)
and the fact that

F((=A»9) (@) =I5*F(p)(E)  for peS, (2.39)

we observe that (—A)*w =0 means that for any €S

0= (=B wy)= [ w(x)(~a)p)dr= [ w(@)F (EFFE)@dr. (240

n

We claim that

F(w),¢>=0  forany ¢€ C5°(R"\{0}). (2.41)
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Indeed let g€ C5°(IR"\{0}). The function ¢(¢)/|¢|* belongs to C{*(R"\{0}) CS. There-

fore there exists ¥ € S such that F(¢) (&) =¢(¢) /|Z|*.
Now, since w is a tempered distribution and from (2.40), we have

F(w),¢p>=<F(w )!C!zsf( )>=<w,F([E*F(y)) >

= [ () F (g F(y)) (x)dx=0.
This implies that

supp{F(w)}=1{0},
and thus we complete the proof.

Lemma 2.4. We have
v(x)>—cqlog|x| for|x|>3

for some positive constant cy.
Proof. For |x|>2and |y|>2,
=yl <|x|+lyl < |*[lyl,

hence

yl+1_lyl+1 1
|x— y|—|x||! |x|

Therefore for |x| >3

ly|+1 lyl+1
v(x)> ¢y, / lo ey+c / lo Wy
) w2 O lx—y] y! YT a8l =] Y

> —log|x|cn/ el )dy—cn/ log(|x—yl|)e"¥
ly|>2 lyl<2

> —cqlog|x|.

This completes the proof of the lemma.

Lemma 2.5. Assume that u is a distributional solution of (1.40) and
u(x)=o(|x|?) for |x| sufficiently large.

Then

for some constant C, where

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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Proof. Since u € L, w(x) =u(x)—v(x) is a tempered distribution, and hence by Lemma
2.3, it is a polynomial. Condition (2.47) implies that w(x) is of at most degree one. Then
under the finite volume assumption (1.41) and Lemma 2.4, w(x) has to be a constant.
This completes the proof of the lemma. O

Lemma 2.6. Assume that u is a distributional solution of (1.40) and
u(x)=o(|x|*) for |x| sufficiently large. (2.50)

Then for any point x° € R", we have

/B ( O)exp [L(x)] dx<C(7), (2.51)

eIl 1 (By(x0))

where vy is any positive number less that - and C(7y) is a constant depending on vy but indepen-
dent of x°.

Proof. Based on the finite volume assumption (1.41) and by the Jensen’s inequality, we
have, for every x° € R",

dx dx
< et 22 <, 252
P |:‘/Bl x°) ( )|Bld /Bl(x”) |Bl, a ( )

As a consequence, there exists a constant A;, such that

/( )u(x)dngl for all x’ € R". (2.53)
B1 x°
Express
_ y—x[+1 , / v+l )
M(X)—Cn ]Rnl W dy+Cn logm dy+C
y—x[+1 )
J 0B T ey AGe) +
ly— XOH' W)
=y log~————e"Wdy+1(x,x°)+ A +C. (2.54)
o8 g ) 4G
Here
w[+1
0y u(y)
A(x%) cn/]Rnlog - on_16 dy, (2.55)

0
1
I(x,xo)zcn/ Me

Wdy. 2.56)
BSGe) O [x—y] Y (
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From condition (2.53),

x°
A2 / / ’—H Wdydx
B1 x" B2 - |

/B( , ( )dx+A( °)|By|+C|Bu]. (2.57)

Changing the order of integration, one can easily show that there is a positive constant
C4, such that

ly—x°[+1
Cn log L= 1" Wgy| <y, (2.58)
/Bl(xﬂ /B§<xo> & ay] Y=

and one can also verify that there is a positive constant Cy, such that
|I(x,x°)|<Cp forall x’eR", x&B;(x°). (2.59)
For x € B1(x°) and y € B (x?),

A0
’y x |+1>log

ly—x°|+1
x—y| ~ 3 -

log > —log3. (2.60)

Consequently, the first integral in (2.57) is uniformly bounded from below. Hence by
(2.57), there is a constant A, such that

A(x?) <A forall x°eR". (2.61)

Then it follows from (2.54) that
u(x) < cn/ lo gM Ydy+Cy, VxeBi(x°), forall x° € R". (2.62)

Ba(x%) [x—y|
Let
= wyg (2.63)
a e ) )
By(x?) Y

Then again by Jensen’s inequality, we derive, for any b >0

lx—yl

<C (!y x°!+1>”"c" ')
>~ L3
By(x) \ [x—l a

—x° u(y)
() < Czexp / abc,log y—x+1e dy
By(x0) a

dy.
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Consequently, for any positive number b < -, we have

o) abcn u(y)
/ ebu(x)dxg C3/ / <’y X |+1> e dydx
By (x°) Bi(x) JBy(x) \ |x—Y| a
_y0 abey u(y)
:C3/ / <7|y * ’+1> dx | dy
By(x) | JBi(x) \ X =Y a
aben ) gu(y)
< C3/ / <i> dz e—dy
Ba(x?) | /Bs(0) \ |2] a

<cC ()™
=G /B () (b) P

= C3C(b). (2.64)
Now letting v =ab, we complete the proof of the lemma. O

Lemma 2.7. Assume that u is a distributional solution of (1.40) and

u(x)=o(|x[*) for |x| sufficiently large. (2.65)
Then u(x) is bounded from above, that is there exists a constant C, such that
u(x)<C forall xeR". (2.66)
Proof. Entirely similar to the proof of (2.62), one can show that, for all x’ € R",
u(x) Scn/ logwe“(y)dy+Cz, Vx€Byn(x°). (2.67)
Bix) Xyl

It follows that, for any x € By /»(x°),

1
u(x Scn/ log—e"Wdy+C
R

1/2 » 1/2
Cn log|x— zd} [/ ez"yd} +C
[, oglx—y2ay| [y e

1/2
<Gy [ / ezu(y)dy} +Cs. (2.68)
By (x°)

IN

In Lemma 2.6, choose v = 5-. Due to the bounded-ness of the total volume, we can

replace u by u—c if needed, so that
s (2.69)
e HLl(Bz(x”))

Applying (2.68) and Lemma 2.6, for any x € By /»(x°), we have that u(x) <C. Since x° is
arbitrary, we conclude that for every x € R", u(x) < C. This completes the proof of the
lemma. O
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Lemma 2.8. Assume that u is a distributional solution of (1.40) with
/ " dx < oo (2.70)

and u(x) =o(|x|?). Then u is continuous and differentiable.

Based on Lemma 2.7, u is bounded from above, then it is elementary to show that

ly[+1
v(x)=c, [ lo ey (2.71)
(%) /IRn g]x—y| Y

is continuous and differentiable, and so does u(x).

Lemma 2.9. As |x|—o0

ﬂ—>—0czcn/ e"Wdy. (2.72)
log]x] ;
Hence
wx) (2.73)
log|x|
Proof of Lemma 2.9. Express
o(x) ra=c, [ loglyl Tloglx —ylHoglxl gy —.py 4y, @79y
log|] R log[]

where [1,>, and I3 are integrals in the following 3 regions respectively:

Di={y|ly[>R,[x—y|>1}, Dr={yl|ly—x[<1},
Ds;={y||y| <R}, with R<|x|. (2.75)

In the following, we use C to denote various constants that are independent of x.

i) In D1, we have
log|y| —log|x—y|+log|x]|
log|x|

<C. (2.76)

To see this, one may consider two cases: |y| <2|x| and |y| > 2|x|. Moreover, it follows
from (2.76) that

L<C / "W dy—0, as R—sco. 2.77)
ly|>R

ii) By Lemma 2.7, u is uniformly bounded from above in R", therefore, in D, we have

1
L<C / Wy — / log|y—x|e“®)d
? y—x|<1 Y log |x| Jjy—x|<1 Bly=~| Y

C
SC/ etWg ——/ log|x—vyl|d
ly—x|<1 Y logla] Jy-x<1 glx—yldy

C

< C/ ) gy — :
B \y—x|s1e Y log|x|
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It follows that
IL—0, as|x|—oo. (2.78)

iii) In D3, for each fixed R,

log|y| —log|x—y|+log|x|
log|x|

—0, as|x|—oo. (2.79)

Consequently, due to bounded-ness of the total volume,
I3—0, as |x|—oo. (2.80)

Combining (2.77), (2.78), and (2.80), we arrive at

) L0, as |x|—roo. (2.81)
log |x|
This completes the proof of the lemma. O

3 Classification of solutions in the case u(x)=0(|x|?)

In this section, we will prove the main classification result and complete the proof of
Theorem 1.1

Due to the local bounded-ness of u (see Theorem 2.1) and by Lemma 2.5, we can also
write

u(x):cn/nlog|x|z’y’e”(y)dy+c, (3.1)
and we still denote
szcn/ne“(y)dy, (3.2)
then Theorem 2.1 implies
u(x)=—(a+o(1))log|x|, for |x|large. (3.3)

We will show that a = 2n, in two stages. First, using the method of moving planes in
integral forms, we will prove the following inequality.

Lemma 3.1. Let « be the constant defined in (3.2). Then it holds that

a>2n. (3.4)
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Proof. Suppose that a« < 2n, then we will prove that u is radially symmetric about any
point by the method of moving planes, hence it has to be a constant, this would contradicts
the equation.

In order to apply the method of moving planes, we need the solution to decay fast e-
nough near infinity. However at this moment, we do not know the exact value of «. To
circumvent this difficulty, we make a Kelvin transform centered at a given point x°. Let
x—x

m%—x )—2n10g]x—x"|. (3.5)

ﬂxo(x):u<

Then we have that 1,0 (x) ~ —2nlog| x| near infinity.

We want to show that i, (x) is radially symmetric about x°, and so does u itself.
Without loss of generality, we may take x° =0 and denote iiy(x) simply as i(x). By a
straight forward calculation, one can verify that

i(x)=c /log’ ’y|| Ydy+1—log|x|, (3.6)
where
—C /IR log|yle"dy (3.7)
is a constant, and y=2n—a >0. Let
ZA:{xelR”|x1<A}, TA:{xelR”]xlz/\}. (3.8)

Let x* = (2A—x1,X2,--+,X;,) be the reflection of x about the plane T), and

wy (x) =a(x") a1 (x) =i (x) —i(x).

For any x €, through an elementary argument, we derive

0< —wy(x 2/ log|x* —y|* —log|x—y| )[ —eMly )}dy 'ylog’|x}\||
e (A— AV log XL
=2c,(A xl)/Z (Axy)e (—wa(y))dy ’ylog| oY
§2cn(/\—x1)/ A y12 W) |w) (y)|dy — ylog ——- %] (3.9)
z [x =yl x|
Here we have applied the mean value theorem to both
log|x* —y|?—log|x—y[> and e"¥) —eM¥), (3.10)

where t(A,x,y) is valued between |x* —y|? and |x—y|?, while &, (y) is between i, (y) and
(y)-
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Now we describe the main steps.

Step 1. We show that for A sufficiently negative,
wy(x)>0, Vx€X,, (3.11)
by demonstrating that, the set where the inequality is violated,
Yo ={xeX,|wy(x)<0}=0. (3.12)
In this step, we only need the following consequence of inequality (3.9):

A=y g

0<—w)‘(x)§2cn(/\—x1)/27 We“”]au(yﬂdy. (3.13)
A

In a usual process of the method of moving planes in integral forms, one simply take the
L7 norm of both side of inequality (3.13) (see for example, [12] and [11]). However, this
does not work in our case, because w, (x) is not integrable in the whole space. The other
difference is the presence of the function (A —x;) on the right hand side. To circumvent
this difficulty, we first turn (3.13) to

[wa(x)] im0 / A—y1 g
<Cc | 2Lt dy, 3.14
A—xq e = s |x_y’26 ’ZUA(]/” Y ( )

due to the upper bounded-ness of i in X, (this bound may become large as A comes
closer to 0, however, for all A <—c¢, <0, the bound is uniform). Applying first the Hardy-
Littlewood-Sobolev and then Holder inequalities to (3.14), we derive

w)\(x)eag_m
)\—xl

Li(Z))

_ B (x) n
< [[(A=x1)wa(x)e ”LWq—zm(zg)

2 2ii(x) ZUA(X) a(x)
S CH(/\—Xl) e 3 ||Lﬁ(2;)”/\_—x1€ 3 HL’?(Z;)' (315)
Here g is chosen close to 7, so that the integral in
HZ"A(’C)e“E"> (3.16)
A—xl Lq(ZX)

converges. Since

i(y)~—2nloglyl, (3.17)
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for A sufficiently negative, we can make

CH A—x)?% S| <L (3.18)
L2 (%))
It follows from (3.15) that
H wa(x) o0 —0, (3.19)
A=x gy
hence, ¥, must be empty, therefore
wy(x)>0, VxeX,, for all sufficiently negative A. (3.20)

Step 2. Inequality (3.20) provides a starting point to move the plane T, from which

we move the plane toward the right to its limiting position as long as (3.20) holds. Let
Ao =sup{ A <0 |w,(x) >0, x€X,, u<A}. (3.21)

We prove that A, =0. Otherwise, if A, <0, then from

=Yl [ o) e x|
=c, | 1 o W) — o) | dy 4 ylog -, 3.22
wy, (x)=c /ZM 8 Ty [e e ] y+rlogr A (3.22)
one can see that

wy,(x) >0, VxeX,,. (3.23)

Based on this, using (3.15), and going through a similar argument as in Step 2 of the proof
for Proposition 4.2, we can deduce that, there exists € >0, such that

wy(x)>0, VxeX,, forall A\, <A<A,+e. (3.24)

This contradicts the definition of A,. Therefore, we must have A, =0 and thus complete
the proof of Lemma 3.1. O

Remark 3.1. Note in (3.20), when we choose A < %)\0, the constant C depends on A, only.
Hence we can choose R sufficiently large and then ¢ and € sufficiently small, such that

2ii(x)

CH(A—xl)Ze 3

o<1 (3.25)
L2 (25)

Then we apply the method of moving spheres in integral forms to prove the converse
direction.
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Lemma 3.2. Let « be the constant defined in (3.2). Then it holds that
a<2n. (3.26)

Proof. We will use the method of moving spheres in integral forms to rule out the possibility
that a > 2n.

Given any point x° € R", consider the ball B, (x°) of radius A centered at x°. For a
point x € B, (x?), its inversion point about the sphere S, (x°) =9dB, (x°) is %

We will compare the value of u(x) and its Kelvin transform with respect to the sphere
Sa(x?)

(A% (x—x) A
MA,XG(X):M<W+XO> +2n10gm (327)
In the case a >2n, we will show that
Uy xo(x)<u(x), VxeB,(x°), forall A>0. (3.28)

To this end, we first establish inequality (3.28) for sufficiently large A, then we move
(more precisely, shrink) the sphere S, (x°) as long as (3.28) holds to its limiting position.
The condition « > 2n enable us to shrink the sphere all the way to its center and thus
arrive at (3.28) for all positive real value A.

Based on (3.28), due to the arbitrariness of the center x°, and through an elementary
calculus argument, we will deduce that Vu(x) =0 at any point x € R", and hence u must
be constant. This would contradicts the equation.

Without loss of generality, we may take x°=0 and write u, o(x) as u,(x). In order that
u and u, take the same form, we express

e"Wdy+c. (3.29)

VYl
|x—y]|

u(x) :cn/ nlog

Then by a straight forward calculation, one can verify that

v/ A
u)‘(x):cn/nlog’xlyy’f“(y)dy—'ylogm—kc, (3.30)
with y=a—2n>0. Consider
wy(x)=uy(x)—u(x), x€By=B,(0). (3.31)

Then by a long, but straight forward computation, we derive

_ Cn (/\2_ ’y|2)()\2_ ’x’2) uy(y) _ u(y) A
w;\(x)—m/BA o) [e MY —e }dy—'ylogm, (3.32)
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where

2
5§4—%% > 1, x,) = [x—y[2. (3:33)

Step 1. We show that for A sufficiently large,

w)(x)<0, Vx€B,. (3.34)

Let By ={x€ B, |w,(x) >0}. We argue that it must be empty. In fact, for any x € By, we
have that

Cn )L2— 2 )\2— x2
O T Tt
A s Ay
2
<@ L e, (y)dy. (3.35)

2 Jt Tr—yP°

Applying the Hardy-Littlewood-Sobolev and Holder inequalities, we arrive at, for
some g >0,

2| ,u 24| U
lwallLaary < CAZ[le AwAHL#Zm(BDSCA e AHLﬁ(BDHwAHLq(B;)
C
= ﬁHeu(x)|x|4HLn%2(BAc)HWAHL»;(B;)- (3.36)

Taking into account of the asymptotic behavior

u(x) ~—alog|x| with a>2n, (3.37)
one can see that, for A sufficiently large, both -5 and [[e*(*)[x|*|| Lt (pe) €A be arbitrarily
A
small, hence it follows from (3.36) that
lwallLas) =0, (3.38)

and this implies the empty-ness of B} . Therefore (3.34) holds for sufficiently large A.
Step 2. Now we decrease A (shrink the sphere S, (0)) to its limit as long as inequality
(3.34) holds. Let
Ao=inf{A|w, <0,x€ B, u>A}. (3.39)

We prove that A, =0. Suppose in the contrary, A, >0, we argue that one can shrink the
sphere further (just a tiny bit) while maintaining inequality (3.34). This would contradict
the definition of A,.
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From (4.6), due to the presence of —ylog %, we see that

wy,(x) <0, VxeB,, \{0}. (3.40)

In a small neighborhood of 0, w,, is negatively bounded away from 0, which can be seen
from,

wy, (x) ~—alogA, —'ylog% —u(x) for |x| <A, (3.41)

the right hand side of which approaches —co as |x|—0. Hence by (3.40), for any § >0,
there exists c¢; >0, such that

wy,(x) <—c5, YxEB), 5 (3.42)

Consequently, due to the continuity of w, with respect to A, there exists an € >0, such
that
forany A€ (A,—€,Ao], wa(x)<0, VxeB, ;.

Now B/J{ is confined in the (spherical) narrow region B, \ B),_s. Again in
oAl s S A . 00 s

letting 6 be sufficiently small, we have

1
Hw)\HLq(B;’) < EHWAHM(B;)-
Hence B} must be empty, and therefore
w)(x) <0, Vxe€By, A€(Ag—3,A).

This contradicts the definition of A,.

Step 3. Now, we have shown that

Uy (x)<u(x), YxeBy(x°), forall A>0. (3.43)
From here we will derive that for any y €IR",
Vu(y)=0.

Take A = |y| so that y lies on the boundary of B, (0). From (3.43) x° =0,

u<%>—u(x)§0, VxeB,(0). (3.44)
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Let v be the outward normal of 9B, (0), we show 3% () <0. Without loss of generality, we
may assume y=(A,0,---,0) and hence v=(1,0,---,0). For x=(x1,0,---,0),

A2x (A%

o) - =30 (L x), (3.46)

where ¢ is some point on the line segment linking x and % Taking into account that
0<x1; <A and by (3.44), we derive

By the mean value theorem

u

— <0. .

5, (&) <0 (3.47)
Let x;—A, then {—y and we arrive at

ou

— <0. .

o (y) <0 (3.48)

Now fixed this y and rotate the center x° around y with |x° —y| =A, we can similarly
show that for any unit vector v= y:—;‘, we have

ly
Ju
— <0. .
5, ) <0 (3.49)
This implies that
Vu(y)=0, (3.50)

and since y is any point in IR"”, u must be constant. This contradicts equation (1.40) and
completes the proof of Lemma 3.2. O

Combining Lemmas 3.1 and 3.2, we obtain Proposition 1.1. Then we will use the
method of moving spheres to classify the solutions, which completes the proof of Theorem
1.1.

Proof of Theorem 1.1. By Lemmas 3.1 and 3.2, we have a =2#n, and hence (3.32) becomes

_ tn (A2_|y’2)(/\2_|x|2) up(y) _ u(y)
w)‘(x)—Z)\2 /BA Ay) -[e MY —e ]dy. (3.51)

Similar to the proof of Lemma 3.2, we can still show that, for A sufficiently large,

wy(x) <0, VxeB,. (3.52)
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However, without the presence of the term —vlog ﬁ, one cannot shrink the sphere all

the way to its center, and this can be seen from asymptotic behavior of w, near 0 for each
fixed A:

wy(x)=u <’A2’§>+2nlog|2\| —u(x)~—2nlogA—u(x), (3.53)

which approaches —2nlogA—u(0) as x — 0. This quantity is obviously positive for suffi-
ciently small A. Therefore, in this case, we must have A, > 0.
So far, we have shown that, for each y € R", there is a A, >0, such that

A2(x—y) A
u(x)=u| L—"+vy | +2nlog ——, 3.54
(%) <|x_y,2 y 8Tx—y] (3.54)

and, in particular, for y=0,

/\2
u(x)= <| |2> +2nlog ’A § (3.55)
In (3.54), fix y and let |x|—o0,
u(y)+2nlogA, = | 1|1i>n (u(x)+2nlog|x—y|)=0. (3.56)
Similarly, (3.55) yields
u(0)+2nlogAo=0. (3.57)

For |x| large, via Taylor expansion at y in (3.54), and taking into account of (3.56), we have

Aj(x—y)
u(x):Vu(y)’yxT 2nlog|x— y|+0(| |) (3.58)
Similarly, (3.55) and (3.57) lead to
)\2
u(x)=vVu(0)- ’;’ 2nlog|x|—|—o(| |) (3.59)

Combining (3.58) and (3.59), we deduce

Aj(x—y) A2x

Y AL SN
Vu(y) T—yP =Vu(0) P 2ny |x|2+0(|x|)' (3.60)

Equating the coefficients of the order ﬁ, we arrive at

A;Vu(y) =A3Vu(0)—2ny. (3.61)
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By virtue of (3.56), if we write f(y) =e~ ‘2, then it becomes

Vi(y)=Vf(0)+2y. (3.62)
Integrating yields
fly)=atly—y " (3.63)
Since f is positive, the constant 2 must be positive, hence we can write
f)=A+y—y" (3.64)
Therefore
1
Noticing that, for any constant c, u+c also satisfies identity (3.54), we obtain
=nlog—————5+c. 3.66
u(y) nog/\2_|_’y_yo’2 ( )
Finally, taking into account of the total volume:
cn/ e“(y)dy:2n, (3.67)
we are able to determine constant c and arrive at the conclusion of Theorem 1.1. O

4 Symmetry of solutions in the case o(|x|?)

This section is to study the symmetry of the solutions u satisfying the asymptotic growth
rate u=o(|x|%).
To begin with, we have the following rigidity result.

Proposition 4.1. Assume that

u(x)=o(|x?), for |x|large, 4.1)
is a distributional solution to
(—=A)"?2u=e"),  xeR" (4.2)
Then it holds that
u(x) :v(X)Jriai(xi—x?)erc (4.3)

for some constants g; <0 and c €R, where

y[+1
v(x)=c, | lo e Wdy. (4.4)
(%) /IR” g|x—y[ Y
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Proof. Based on Lemmas 2.3 and 2.4 and under the assumption
u(x)=o(|x?), |x| = 400, (4.5)

w must be a second degree polynomial. After rotating the coordinates and completing
the square, we have

1 n
u(x):cn/nlog:Z’jy’e“(y)dy+2ai(xi—x?)2+c. (4.6)
i=1

Now, due to the bounded-ness of the total volume and Lemma 2.4, all a; must be
non-positive. This completes the proof of Proposition 4.1.
O

In the following, we will apply the method of moving planes in integral forms to obtain
the symmetry of solutions.

Proposition 4.2. Assume that u is locally bounded. Under the growth assumption u =
o(|x|?) as |x| — o0, if 4; <0, then u(x) is symmetric and monotone decreasing in x; about
the center x; = x7.

Before carrying out the method of moving planes, we need the regularity and asymp-
totic behavior of the solutions as stated in the following.

Proposition 4.3. Assume that u € L, is a distributional solution of Eq. (1.40) and
u(x):o(|x|3), |x| — +o00. 4.7)

Further assume that u is locally bounded from above. Then u(x) is continuous, differen-
tiable, uniformly bounded from above in R", and

u(x)

im
x| —+o0 lOg | x|

——a=cy / e”(y)dy. (4.8)

The proof is similar to some parts of the proof of Theorem 2.1, and it is much simpler
in the current case. Under the assumption that u be locally bounded from above, one can
derive immediately that

log Y11

eu(y)d (4 9)

is well defined for all x € R", continuous, and differentiable, so does u(x). Now by the
finite total volume condition, we can also express

e”(y)dy+2ai(xi—x?)2+c. (4.10)
i=1

R
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The proof of the uniform upper bound of u(x) is similar to the proof of Lemma 2.6
and 2.7, and the asymptotic behavior comes directly from Lemma 2.9. Notice that due to
a technical difficulty (see the proof of Lemma 2.6), we are not able to obtain the uniform
upper bound for u(x) without assuming the local upper bound for u(x).

Proof of Proposition 4.2. In the following, we let

| (
v(x)=c, | lo e Wdy. (4.11
(%) /IR” g|x—y[ Y )

Without loss of generality, we may assume that
ap=—1 and x{=0, (4.12)
then
u(x)=ov(x)—x3+P(x) (4.13)
where P(x) is a polynomial of x" = (xg,--,xy).
We will apply the method of moving planes in integral forms to show that u(x) is
symmetric in x; variable about the center x; =0, and at mean time, we derive that it is

monotone decreasing from the center.
Let

ZA:{XGRH|X1</\} and TA:{XERH|X1:/\}. (414)
Let x*= (2A —x1,x2,- -+, X, ) be the reflection of x about the plane T, and

u(xM) —u(x). (4.15)

wa(x) =up(x) —u(x)
Then it holds that
wy(x) = v(x™) —v(x) +4[A[(A—x1)

/\_
zz%tn—AX/nKAityﬂWMy+MAKA—xQ. (4.16)

Here we have applied the mean value theorem to
log|x—y[*~log|x" —y? (4.17)

and t(A,x,y) is valued between |x—y|? and |x} —y/|?.

Step 1. We show that for sufficiently negative A,

wy(x)>0, VxeX,. (4.18)
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LetX, ={x€X, |w,(x) <0}, the set where the inequality (4.18) is violated. We prove that
2., must be empty. For any xe X, by (4.16), we have

Cn u u
0<—wy(x)= E/Z (log|x)‘—y|2—log|x—y]2) [e W) _e A(y)}dy—4|/\](/\—x1)
A

— 2, (A~ AU ) _ _
=20y(Ax1) || e (—oa(y))dy—4lA| (A -x)

A | [ AT ) N
=4(A xl)[Z/z; |x_y’2€ lwa (y)|dy—|A|] - (4.19)

Here we have applied the mean value theorem to both
log|x* —y|* —log|x—y/? (4.20)
and
et _pta(y), (4.21)

t(A,x,y) is valued between |x* —y|? and |x—y|?, while &, (y) is between u, (y) and u(y).
Since

v(y) =—alogly|+o(1) for |y| large, (4.22)
for each fixed A,
o(y)—ov(y")—0, as|y|—oo, (4.23)
hence, foryeX,,
wr(y)| =v(y) —o(y") —4IAl[(A=y1) <o(y) —o(y*) =0, as |y|—oo. (4.24)
Therefore the integral
O [ LTI )y )y 425)

2 Je; [x—yl?

is bounded, and this bound will not increase as A becomes more negative.

It follows that for sufficiently negative A, the right hand side of (4.19) is negative,
which implies that 2., is empty.

Step 2. Step 1 provides a starting point to move the plane T). Now we move the plane

toward the right as long as inequality (4.18) holds to its limiting position. More precisely,
let

Ao =sup{A<0|w,(x)>0,xeX,, u<A}, (4.26)
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and we will show that A, =0 using the contradiction argument.

Suppose A, <0, we show that the plane can be moved a little bit to the right while
inequality (4.18) is still valid, which would contradict the definition of A,.

From the expression

wr,(x)=cn [ (logla—y|—loglx—y|) [ e ay+3— (R, @27)
A

we see that
wy,(x) >0 VxeX,,. (4.28)

Because the integral is non-negative due to the definition of A, and x — (x"*)? > 0.
We will derive that, for A greater and sufficiently close to A,, the right hand side of
(4.19) is negative.

a) First choose R sufficiently large, such that for all A near A,,

Aol

i DI ) o )y < 12, (129)

2 Jrinmg(0) [x—yP

where B$(0) is the complement of Bg(0).
b) By virtue of (4.28), for each § >0, there is ¢, >0, such that

wy,(x) >c,, VxeX,, _sNBr(0). (4.30)
Consequently, by the continuity of w, (x) with respect to A, there exists an € >0, such that
forall A€ [Ag,Ap+€), wa(x)>0, YxeX,, _sNBg(0). (4.31)

This implies that X" is contained in the union of BS(0) and a narrow region
N=(Ex\Xa,-5)NBg(0). (4.32)

Choose ¢ and € small, such that the measure of the narrow region is small enough to
ensure that

e [ A=Y ) < Al
2 )y |x_y’2€ lwa (y)|dy < 3 (4.33)
Now it follows from (4.19), (4.29), and (4.33) that, for x€ X,
0 ’)\0’
<—wA(x)§—4(A—x1)T<O, (4.34)

a contradiction. Therefore

S0 =0, VA€M, A0te), (4.35)
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that is,
wy(x)>0, VxeX,, VAE[Ap, Ao +E). (4.36)

This contradicts the definition of A,. Therefore, we must have A, =0. So far, we have
shown that
u(—x1,x") <u(x,x’), Vx>0. (4.37)

By using an entirely similar argument and starting moving the plane from near x; =+
to the left to its limiting position, we can show that

u(—x1,x") >u(x,x"), Va1 >0. (4.38)
Combining (4.37) and (4.38), we conclude that u is symmetric about the origin with re-
spect to x1, and thus completes the proof of Proposition 4.2. O
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