
Bio-Inspired Energy Distribution for Programmable Matter
Joshua J. Daymude

Arizona State University

Computer Science, CIDSE

Tempe, AZ, USA

jdaymude@asu.edu

Andréa W. Richa

Arizona State University

Computer Science, CIDSE

Tempe, AZ, USA

aricha@asu.edu

Jamison W. Weber

Arizona State University

Computer Science, CIDSE

Tempe, AZ, USA

jwweber@asu.edu

ABSTRACT
In systems of active programmable matter, individual modules re-

quire a constant supply of energy to participate in the system’s

collective behavior. These systems are often powered by an exter-
nal energy source accessible by at least one module and rely on

module-to-module power transfer to distribute energy throughout

the system. While much effort has gone into addressing challenging

aspects of power management in programmable matter hardware,

algorithmic theory for programmable matter has largely ignored

the impact of energy usage and distribution on algorithm feasibility

and efficiency. In this work, we present an algorithm for energy
distribution in the amoebot model that is loosely inspired by the

growth behavior of Bacillus subtilis bacterial biofilms. These bacte-

ria use chemical signaling to communicate their metabolic states

and regulate nutrient consumption throughout the biofilm, ensur-

ing that all bacteria receive the nutrients they need. Our algorithm

similarly uses communication to inhibit energy usage when there

are starving modules, enabling all modules to receive sufficient

energy to meet their demands. As a supporting but independent

result, we extend the amoebot model’s well-established spanning
forest primitive so that it self-stabilizes in the presence of crash fail-

ures. We conclude by showing how this self-stabilizing primitive

can be leveraged to compose our energy distribution algorithm

with existing amoebot model algorithms, effectively generalizing

previous work to also consider energy constraints.

CCS CONCEPTS
• Theory of computation→ Self-organization; Distributed al-
gorithms; • Applied computing→ Biological networks.

KEYWORDS
programmable matter, self-organization, distributed algorithms,

biologically-inspired algorithms, biofilms, energy

ACM Reference Format:
Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. 2021. Bio-

Inspired Energy Distribution for Programmable Matter. In International
Conference on Distributed Computing and Networking 2021 (ICDCN ’21),
January 5–8, 2021, Nara, Japan. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3427796.3427835

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICDCN ’21, January 5–8, 2021, Nara, Japan
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8933-4/21/01. . . $15.00

https://doi.org/10.1145/3427796.3427835

1 INTRODUCTION
The goal for programmable matter [25] is to realize physical ma-

terials that can dynamically change their physical properties on

command, acting autonomously or based on user input. In active
systems, the composing modules (or “particles”) of programmable

matter are often envisioned and designed to be simple, homoge-

neous units capable of internal computation, inter-module commu-

nication, and movement. These modules require a constant supply

of energy to function, but as the number of modules per collec-

tive increases and individual modules are miniaturized from the

centimeter/millimeter-scale [11, 14, 23] to the micro- and nano-

scale [9, 16], traditional methods of robotic power supply such as

internal battery storage and tethering become infeasible.

Programmable matter systems instead make use of an exter-
nal energy source accessible by at least one module and rely on

module-to-module power transfer to supply the system with en-

ergy [4, 11, 23]. This external energy can be supplied directly to

one or more modules in the form of electricity, as in [11], or may

be ambiently available as light, heat, sound, or chemical energy

in the environment [18, 21]. Since energy may not be uniformly

accessible to all modules in the system, a strategy for energy distri-
bution — or sharing energy between modules such that all modules

eventually obtain the energy they need to function — is imperative

but does not come for free. Significant energy loss can occur in

module-to-module transfer depending on the method used, and

even with perfect transfer successive voltage drops between mod-

ules can limit the number of modules that can be powered from a

single source [11]. Module geometry may further complicate the

problem by introducing short circuits, adding further constraints

to power routing algorithms [4].

Algorithmic theory for programmable matter has largely ig-

nored the role of energy (with notable exceptions, such as [9, 23]),

focusing primarily on characterizing the minimal capabilities indi-

vidual modules need to collectively achieve desired system-level

self-organizing behaviors. Across models of active programmable

matter — including population protocols [1], the nubot model [27],

mobile robots [10], hybrid programmable matter [12, 13], and the

amoebot model [5, 7] — most works either develop algorithms for

a desired behavior and bound their time complexity or prove that

a given behavior cannot be achieved within the given constraints.

To the extent of our knowledge, papers on these models have only

mentioned energy to justify constraints (e.g., why a system should

remain connected [19]) and have never directly treated the impact

of energy usage and distribution on an algorithm’s efficiency. In

contrast, both programmable matter practitioners and the modular

and swarm robotics literature view energy constraints as influential

aspects of algorithm design [2, 15, 20, 22, 26].

https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/3427796.3427835

ICDCN ’21, January 5–8, 2021, Nara, Japan Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

In this work, we present an algorithm for energy distribution in

the amoebot model that is loosely inspired by the growth behavior

of Bacillus subtilis bacterial biofilms [17, 24]. We assume that all

particles in the system require energy to perform their actions but

only some have access to an external energy source. Naive distribu-

tion strategies such as fully selfish or fully altruistic behaviors have

obvious problems: in the former, particles with access to energy

use it all and starve the others, while in the latter no particle ever

knows when it is safe to use its stored energy. This necessitates

a strategy in which particles shift between selfish and altruistic

energy usage depending on the needs of their neighbors. Our algo-

rithm mimics the way bacteria use long-range communication of

their metabolic stress to temporarily inhibit the biofilm’s energy

consumption, allowing for nutrients to reach starving bacteria and

effectively solving the energy distribution problem.

1.1 Biological Inspiration
Our strategy of shifting between selfish and altruistic energy usage

to achieve energy distribution is loosely inspired by the work of

Liu and Prindle et al. [17, 24] on the growth behavior of colonies of

Bacillus subtilis bacteria, which we summarize here for the sake of

completeness. These bacteria form densely packed biofilm colonies
when they become metabolically stressed (i.e., when they become

nutrient scarce and begin to starve). These bacteria consume glu-
tamine, which is produced from a combination of substrates gluta-
mate and ammonium. Glutamate is sourced from the environment

outside of the biofilm, whereas ammonium is produced by indi-

vidual bacterium. However, because ammonium can freely diffuse

across a bacterium’s cell membrane and be lost to its surround-

ings, production of ammonium is known as the futile cycle. The
futile cycle is detrimental for bacteria on the biofilm’s periphery,

as they lose all their ammonium to the external medium. Once a

biofilm colony is formed, however, bacteria in the biofilm’s interior

are shielded from the futile cycle by those on the periphery. This

creates a symbiotic co-dependence: bacteria in the interior are re-

liant on glutamate passed from the periphery, while bacteria on the

periphery are reliant on ammonium produced by the interior.

As the biofilm grows, overall glutamate consumption in the pe-

riphery increases, limiting the amount of glutamate that permeates

into the interior of the colony. This causes interior bacteria to be-

come metabolically stressed. Thus, in order to regulate glutamate

consumption on the periphery, interior bacteria communicate their

metabolic states to the peripheral bacteria via a long-range elec-

trochemical process known as potassium ion-channel-mediated sig-
naling [24]. This sudden influx of potassium inhibits a bacterium’s

glutamate intake and ammonium retention, allowing more nutri-

ents to pass into the biofilm’s interior. As a result, the biofilm grows

at an oscillating rate rather than a constant one, despite the fact

that there is plentiful glutamate in the environment. This emergent

oscillation enables continuous distribution of nutrients throughout

the colony, effectively solving the energy distribution problem.

1.2 The Amoebot Model
In the amoebot model [5, 7], programmable matter consists of in-

dividual, homogeneous computational elements called particles.
Any structure that a particle system can form is represented as

(a)

ebat

(b)

Figure 1: (a) Particles shown as black circles on the tri-
angular lattice 𝐺Δ, shown in gray. (b) A particle’s energy
anatomy. Energy is transferred between particles at their
contact points, shown as green markers on the particle’s pe-
riphery. A particle’s battery 𝑒𝑏𝑎𝑡 stores energy for its own
use and for sharing with its neighbors.

a subgraph of an infinite, undirected graph 𝐺 = (𝑉 , 𝐸) where 𝑉
represents all relative positions a particle can occupy and 𝐸 repre-

sents all possible adjacencies between particles.
1
Each node can be

occupied by at most one particle. The geometric amoebot model is a
standard model variant that assumes 𝐺 = 𝐺Δ, the triangular lattice

(see Figure 1a).

Two particles occupying adjacent nodes are said to be neighbors.
Although each particle is anonymous, lacking a unique identifier,
a particle can locally identify any given neighbor by its label for

the edge between them. Each particle has a constant-size local

memory that it and its neighbors can directly read from and write

to for communication. However, particles do not have any global

information, including a shared coordinate system or orientation.

The system progresses asynchronously through atomic actions.
In the amoebot model, an atomic action corresponds to a single par-

ticle’s activation in which it can perform a constant amount of local

computation involving information it reads from its local memory

and its neighbors’ memories and write updates to its neighbors’

memories. We assume these actions preserve atomicity, isolation,
and fairness. Atomicity requires that an action either completes

successfully or is aborted (e.g., due to a conflict) and completely

undone. A set of concurrent actions preserves isolation if they do

not interfere with each other; i.e., if their concurrent execution pro-

duces the same end result as if they were executed in any sequential

order. Fairness requires that each particle successfully completes

an action infinitely often.

It is well known that if a distributed system’s actions are atomic

and isolated, any set of such actions can be serialized [3]; i.e., there

exists a sequential ordering of the successful (non-aborted) actions

that produces the same end result as their concurrent execution.

Thus, while in reality many particles may be active concurrently,

it suffices when analyzing amoebot algorithms to consider the

sequential setting where only one particle is active at a time. By

our fairness assumption, if a particle 𝑃 is inactive at time 𝑡 in the

activation sequence, 𝑃 will be (successfully) activated again at some

time 𝑡 ′ > 𝑡 . An asynchronous round is complete once every particle

has been activated at least once.

1
We omit several core features of the amoebot model such as movements since they

are not needed in this work; see [5] for a full description of the model.

Bio-Inspired Energy Distribution for Programmable Matter ICDCN ’21, January 5–8, 2021, Nara, Japan

Energy Distribution. In addition to the standard model, we in-

troduce terminology specific to the problem of energy distribution.

Each particle 𝑃 has an energy battery denoted 𝑃 .𝑒𝑏𝑎𝑡 with constant

capacity 𝜅 > 0 (see Figure 1b). The battery represents stored energy
𝑃 can use for performing actions or for sharing with its neighbors.

Particles with access to an external energy source can harvest en-

ergy into their batteries directly, while those that do not depend on

their neighbors to share with them. In either case, each particle can

transfer at most a constant 𝛼 > 0 units of energy per activation.

1.3 Our Results
An instance of the energy distribution problem has the form (P, 𝜅, 𝛿)
where P is a finite connected particle system, 𝜅 is the capacity of

each particle’s battery, and energy demand 𝛿 (𝑃, 𝑖) denotes the en-
ergy cost for a particle 𝑃 to perform its 𝑖-th action. For convenience,

we will use 𝛿 (𝑃) to refer to the energy cost for 𝑃 to perform its

next action. An instance is valid if (1) P contains one or more “root”

particles with access to external energy sources and all non-root

particles are initially “idle” and (2) for all particle actions, 𝛿 (·, ·) ≤ 𝜅;

i.e., no energy demand exceeds the batteries’ energy capacity. A

particle 𝑃 is stressed if the energy level of its battery is strictly less

than the demand for its next action, i.e., if 𝑃 .𝑒𝑏𝑎𝑡 < 𝛿 (𝑃). An action

𝑎 of a particle 𝑃 is enabled if, barring any energy considerations, 𝑃

is able to perform action 𝑎. A local, distributed algorithm A solves
a valid instance of the energy distribution problem in time 𝑡 if,

when each particle executes A individually, no particle remains

stressed for more than 𝑡 asynchronous rounds and at least one

particle performs an enabled action every 𝑡 asynchronous rounds.

In Section 2, we present Energy-Sharing: a local, distributed algo-
rithm that solves the energy distribution problem in O(𝑛) asynchro-
nous rounds (Theorem 2.8), where𝑛 is the number of particles in the

system. This algorithm is asymptotically optimal when the number

of external energy sources is fixed (Theorem 2.9). We then show

simulation results in Section 3, demonstrating that without the

biofilm-inspired communication of particles’ energy states, Energy-
Sharing fails to distribute sufficient energy throughout the system.

In Section 4, we consider the impact of crash faults on the correct-

ness and runtime of our algorithm. Our fault mitigation strategy re-

lies on a new algorithmic primitive called Forest-Prune-Repair that
locally repairs the system’s underlying communication structure

after a particle crashes. This repair primitive is in fact of indepen-

dent interest, as it extends the amoebot model’s well-established

spanning forest primitive [5] to be self-stabilizing in the presence

of crash failures. Finally, we show how Forest-Prune-Repair can
be used to compose other amoebot algorithms with our Energy-
Sharing algorithm. This effectively generalizes all previous work

on the amoebot model to also consider energy constraints.

2 THE ENERGY DISTRIBUTION ALGORITHM
In this section, we present algorithm Energy-Sharing for energy

distribution in self-organizing particle systems. At a high level, this

algorithm works as follows. After some initial setup, each particle

continuously loops through a sequence of three phases: the com-

munication phase, the sharing phase, and the usage phase. In the

communication phase, particles propagate signals to communicate

the energy states of stressed particles, analogous to the long-range

electrochemical signaling via potassium ion channels in the biofilms.

Particles then attempt to harvest energy from an external energy

source or transfer energy to their neighbors in the sharing phase.
Finally, particles spend their stored energy to perform actions ac-

cording to their collective behavior in the usage phase. Note that the
system is not synchronized and each particle progresses through

these phases independently.

Section 2.1 details the setup and phases of Energy-Sharing. We

then analyze this algorithm’s correctness and runtime in Section 2.2.

Complete pseudocode was omitted due to space constraints but can

be found in the full version of this paper [6].

2.1 Algorithm Energy-Sharing
The Setup Phase. Recall that particle system P is connected. Par-

ticles with access to an external energy source are roots, and the

rest are idle. This phase organizes P as a spanning forest F of trees

rooted at the root particles. These trees facilitate an analogy to the

potassium ion signaling that the bacteria use to communicate when

they are metabolically stressed (discussed further in the commu-

nication phase). To form F , we make use of the well-established

spanning forest primitive [5]. If a particle 𝑃 is idle, it checks if it has

a root or active neighbor 𝑄 . If so, 𝑃 becomes active and updates its

parent pointer to 𝑃 .parent← 𝑄 . This repeats until all particles are

active, yielding a spanning forest F .

The Communication Phase. The communication phase facilitates

the long-range communication of particles’ energy states analogous

to the biofilm’s potassium ion signaling. This is achieved by sending

signals along a particle’s tree in the spanning forest F constructed

in the setup phase. In particular, any active particle 𝑃 that is stressed

— i.e., 𝑃 .𝑒𝑏𝑎𝑡 < 𝛿 (𝑃) — sets a stress flag that remains until 𝑃 is no

longer stressed. Any particle that has a child in its tree with their

stress flag set also sets their stress flag, effectively propagating this

signal up to its tree’s root particle. When the root particle receives

this stress signal (or if it is itself stressed), it sets an inhibit flag,
initiating a broadcast to the rest of the tree. Any particle whose

parent in the tree has their inhibit flag set also sets their inhibit

flag, propagating this inhibition signal throughout the tree. In the

usage phase, inhibited particles will be stopped from spending their

energy to perform actions, allowing more energy to pass on to the

stressed particles. As we will show in the simulations of Section 3,

omitting this phase can result in the indefinite starvation of many

of the system’s particles.

Signal resets behave analogously to how they are set. Any non-

root particle that is not stressed — i.e., 𝑃 .𝑒𝑏𝑎𝑡 ≥ 𝛿 (𝑃) — and has no

children with their stress flags set will reset its stress flag. Once a

root no longer has any children with stress flags (and it is itself not

stressed), it resets its inhibit flag. Any particle whose parent does

not have its inhibit flag set resets its own inhibit flag, and so on.

The Sharing Phase. During the sharing phase, particles harvest
energy from external energy sources and transfer energy to their

neighbors, if possible. A root particle begins the sharing phase by

harvesting min{𝛼, 𝜅 − 𝑃 .𝑒𝑏𝑎𝑡 } units of energy from its external

energy source. Any particle 𝑃 — root or active — then checks to

see if it has sufficient energy to share (i.e., 𝑃 .𝑒𝑏𝑎𝑡 ≥ 𝛼) and if any

of its children in the spanning forest F , say 𝑄 , need energy (i.e.,

ICDCN ’21, January 5–8, 2021, Nara, Japan Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

𝑄.𝑒𝑏𝑎𝑡 < 𝜅). If so, 𝑃 transfers min{𝛼, 𝜅 − 𝑄.𝑒𝑏𝑎𝑡 } units of energy
to 𝑄 in keeping with the assumption from Section 1.2 that each

particle can transfer at most 𝛼 units of energy per activation.

The Usage Phase. In the usage phase, particles spend their energy
to perform actions as required by their collective behavior. Suppose

that 𝑎 is the next action a particle 𝑃 wants to perform; recall that

its energy cost is given by 𝛿 (𝑃). If 𝑃 has sufficient stored energy to

perform this action — i.e., 𝑃 .𝑒𝑏𝑎𝑡 ≥ 𝛿 (𝑃) — and 𝑃 does not have its

inhibit flag set, then 𝑃 can spend the required energy and perform

action 𝑎. Otherwise, 𝑃 forgoes any action in this activation.

2.2 Analysis
We now prove the correctness and bound the runtime of the Energy-
Sharing algorithm. We begin with two straightforward results re-

garding the setup and communication phases. We state the first

without proof, as it follows directly from the analysis of the span-

ning forest primitive [5].

Lemma 2.1. All idle particles in the system become active and join
the spanning forest F within 𝑛 asynchronous rounds, where 𝑛 is the
number of particles in the system.

For the remainder of our analysis we focus on a single tree T ∈
F , which suffices since particles in any single tree act independently

from all particles in other trees of F .

Lemma 2.2. Suppose a particle 𝑃 in tree T ∈ F is stressed; i.e.,
𝑃 .𝑒𝑏𝑎𝑡 < 𝛿 (𝑃). If tree T has depth 𝑑T , then all particles in T will
have their inhibit flags set within 2𝑑T asynchronous rounds.2

Proof. Since every particle is activated at least once per asyn-

chronous round, 𝑃 will be activated within one round and will

set its stress flag since 𝑃 .𝑒𝑏𝑎𝑡 < 𝛿 (𝑃). Recall that stress flags are
propagated up to the root by parents setting their stress flags when

they see a child with its stress flag set. There can be at most 𝑑T − 2
ancestors of 𝑃 strictly between 𝑃 and the root. At least one more

ancestor will set its stress flag per asynchronous round, so in at

most 𝑑T − 2 rounds a child of the root will have its stress flag set.

Within one additional round, the root will be activated and will

set its inhibit flag. Inhibit flags are then propagated from the root

to all its descendants: in each round, any child that sees its parent’s

inhibit flag set will also set its own inhibit flag. The longest root-to-

descendant path in T is of length 𝑑T , so in at most 𝑑T rounds all

particles in T will have their inhibit flags set. □

Lemma 2.2 shows that when a tree contains at least one stressed

particle, every particle in the tree eventually becomes inhibited.

This inhibition remains until all stressed particles recharge, i.e.,
until they receive the energy they need to perform their next action.

The usage phase prohibits any inhibited particle from spending its

energy on actions, so it suffices when bounding the recharge time

to analyze how energy is shared within the tree.

In particular, we want to bound the worst case time for a stressed

particle in a given tree T to recharge once all particles in T are

inhibited. We make three observations that make this analysis

more tractable. First, we assume that all particles in T begin this

2
The depth of a particle 𝑃 in a tree T rooted at a particle 𝑅 is the number of nodes in

the 𝑅, 𝑃 -path in T (i.e., the root 𝑅 is at depth 1, and so on). The depth of a tree T is

max𝑃∈T {depth of 𝑃 }.

recharging process with empty batteries and need to meet maxi-

mum energy demand; i.e., we assume 𝑃 .𝑒𝑏𝑎𝑡 = 0 and 𝛿 (𝑃) = 𝜅 for

all 𝑃 ∈ T . Although the particles of T may have obtained some

energy before becoming inhibited, this assumption can only make

recharging slower since more energy is needed. Second, we assume

𝜅/𝛼 ∈ N, allowing us to assume all energy is transferred in units of

size exactly 𝛼 . This can be easily realized by rounding any given

capacity 𝜅 up to the next multiple of 𝛼 , as this can only increase

the energy required in recharging. Third, we show in the following

lemma that the recharge time in T is at most the recharge time in

a simple path with the same number of particles.

Lemma 2.3. Suppose T is a tree of 𝑘 particles rooted at a particle
𝑅 with access to external energy. If all 𝑘 particles are inhibited and
initially have no energy in their batteries, then the worst case number
of asynchronous rounds to recharge all particles’ batteries in T is
at most the worst case number of rounds to do so in a path L =

(𝑃1, . . . , 𝑃𝑘) in which 𝑃1 has access to external energy and 𝑃𝑖 .parent =
𝑃𝑖−1 for all 1 < 𝑖 ≤ 𝑘 .

Proof. Given any treeU of 𝑘 inhibited particles rooted at a par-

ticle 𝑅 with access to external energy and an activation sequence

𝐴 of the particles inU, let 𝑡𝐴 (U) denote the number of asynchro-

nous rounds required to recharge all particles’ batteries inU with

respect to activation sequence 𝐴. We use 𝑡 (U) = max𝐴{𝑡𝐴 (U)}
to denote the worst case recharge time forU. With this notation,

our goal is to show that 𝑡 (T) ≤ 𝑡 (L).
Consider the maximal “non-branching” path (𝑅 = 𝑃1, . . . , 𝑃ℓ =

𝑃) in tree T starting at the root 𝑅 such that 𝑃𝑖+1 is the only child

particle of 𝑃𝑖 in T for all 1 ≤ 𝑖 < ℓ . We argue by (reverse) induction

on ℓ , the total number of particles in the maximal non-branching

path of T . If ℓ = 𝑘 , then T is already a path L of 𝑘 particles and

we have 𝑡 (T) = 𝑡 (L) trivially. So suppose that ℓ < 𝑘 and for all

possible trees U composed of the same 𝑘 particles as T that are

rooted at 𝑅 and have at least ℓ + 1 particles in their maximal non-

branching paths starting at 𝑅, we have 𝑡 (U) ≤ 𝑡 (L). Our goal is
to modify T to form another tree T ′ that is composed of the same

particles, is rooted at 𝑅, and has exactly one more particle in its

maximal non-branching path such that 𝑡 (T) ≤ 𝑡 (T ′). Since T ′
has exactly ℓ + 1 particles in its maximal non-branching path, the

induction hypothesis lets us conclude that 𝑡 (T) ≤ 𝑡 (T ′) ≤ 𝑡 (L).
With maximal non-branching path (𝑅 = 𝑃1, . . . , 𝑃ℓ = 𝑃) of T ,

𝑃 = 𝑃ℓ is the “closest” particle to 𝑅 with multiple children, say

𝑄1, . . . , 𝑄𝑐 for 𝑐 ≥ 2; note that such a particle 𝑃 must exist since

ℓ < 𝑘 . Form the tree T ′ by reassigning 𝑄𝑖 .parent from 𝑃 to 𝑄1 for

each 2 ≤ 𝑖 ≤ 𝑐 . Then 𝑄1 is the only child of 𝑃 in T ′, and thus

(𝑅 = 𝑃1, . . . , 𝑃ℓ = 𝑃,𝑄1) is the maximal non-branching path of T ′
which has length ℓ + 1. So it suffices to show that 𝑡 (T) ≤ 𝑡 (T ′).

Consider any activation sequence 𝐴 = (𝑎1, . . . , 𝑎𝑓) where 𝑎𝑓
is the first activation after which all particles in T have finished

recharging; we must show that there exists an activation sequence

𝐴′ such that 𝑡𝐴 (T) ≤ 𝑡𝐴′ (T ′). We construct 𝐴′ from 𝐴 so that

the flow of energy through T ′ mimics that of T . Consider each
𝑎𝑖 ∈ 𝐴, for 1 ≤ 𝑖 ≤ 𝑓 . In most cases, 𝑎𝑖 has the same effect in both

T and T ′ and thus 𝑎′
𝑖
= 𝑎𝑖 can be appended to 𝐴′. However, any

activations 𝑎𝑖 in which 𝑃 passes energy to a child𝑄 𝑗 , for 2 ≤ 𝑗 ≤ 𝑐 ,

cannot be performed directly in T ′ since 𝑄 𝑗 is a child of 𝑄1 — not

of 𝑃 — in T ′. We instead add a pair of activations 𝑎′
𝑖
= (𝑎1

𝑖
, 𝑎2

𝑖
) to

Bio-Inspired Energy Distribution for Programmable Matter ICDCN ’21, January 5–8, 2021, Nara, Japan

𝐴′ that have the effect of passing energy from 𝑃 to 𝑄 𝑗 but use 𝑄1

as an intermediary. There are two cases. If𝑄1 has a full battery (i.e.,

𝑄1 .𝑒𝑏𝑎𝑡 = 𝜅) at the beginning of 𝑎𝑖 , then 𝑄1 passes energy to 𝑄 𝑗

in 𝑎1
𝑖
and 𝑃 passes energy to 𝑄1 in 𝑎2

𝑖
. Otherwise, 𝑃 passes energy

to 𝑄1 in 𝑎1
𝑖
and 𝑄1 passes energy to 𝑄 𝑗 in 𝑎2

𝑖
.

Under this construction of 𝐴′, if all particles start with empty

batteries, then the value of 𝑃 .𝑒𝑏𝑎𝑡 after each 𝑎𝑖 ∈ 𝐴 and 𝑎′
𝑖
∈ 𝐴′ is

the same in T and T ′, respectively, for all 1 ≤ 𝑖 ≤ 𝑓 . Thus, the

particles in T and T ′ only finish recharging after activations 𝑎𝑓
and 𝑎′

𝑓
, respectively. Moreover, 𝐴′ was obtained from 𝐴 by adding

activations which can only increase the number of asynchronous

rounds in 𝐴′. Therefore, we have 𝑡𝐴 (T) ≤ 𝑡𝐴′ (T ′), as desired. □

By Lemma 2.3, it suffices to analyze the case where T is a simple

path of 𝑘 particles. To bound the recharge time in this setting,

we use a dominance argument between asynchronous and parallel

executions which is structured as follows. First, we prove that for

any asynchronous execution, there exists a parallel execution that

makes at most as much progress towards recharging the system in

the same number of rounds.We then upper bound the recharge time

in parallel rounds. Combining these results gives a worst case upper

bound on the recharge time in asynchronous rounds, as desired.

Let a configuration 𝐶 of the path 𝑃1, . . . , 𝑃𝑘 encode the battery

values of each particle 𝑃𝑖 as 𝐶 (𝑃𝑖). A schedule is a sequence of con-
figurations (𝐶0, . . . ,𝐶𝑡). Note that in the following definition for the
parallel execution, we reduce each particle’s battery capacity from

𝜅 to 𝜅 ′ = 𝜅 −𝛼 . This does not apply to the asynchronous execution,

and is just a proof artifact that will be useful in Lemma 2.5.

Definition 2.4. A parallel energy schedule (𝐶0, . . . ,𝐶𝑡) is a sched-
ule such that for all configurations 𝐶𝑖 and particles 𝑃 𝑗 we have

𝐶𝑖 (𝑃 𝑗) ∈ [0, 𝜅 ′] and, for every 0 < 𝑖 ≤ 𝑡 , 𝐶𝑖 is reached from 𝐶𝑖−1
using the following for each particle 𝑃 𝑗 :

• 𝑃 𝑗 is a root, so it harvests energy from the external energy

source with 𝐶𝑖 (𝑃 𝑗) = 𝐶𝑖−1 (𝑃 𝑗) +min{𝛼,𝜅 ′ −𝐶𝑖−1 (𝑃 𝑗)}.
• 𝐶𝑖−1 (𝑃 𝑗) ≥ 𝛼 and 𝐶𝑖−1 (𝑃 𝑗+1) < 𝜅 ′, so 𝑃 𝑗 passes energy to

its child with:

– 𝐶𝑖 (𝑃 𝑗) = 𝐶𝑖−1 (𝑃 𝑗) −min{𝛼,𝜅 ′ −𝐶𝑖−1 (𝑃 𝑗+1)}
– 𝐶𝑖 (𝑃 𝑗+1) = 𝐶𝑖−1 (𝑃 𝑗+1) +min{𝛼, 𝜅 ′ −𝐶𝑖−1 (𝑃 𝑗+1)}

Such a schedule is greedy if the above actions are taken in parallel

whenever possible.

Now consider any fair asynchronous activation sequence 𝐴;

i.e., one in which every particle is activated infinitely often. We

compare a greedy parallel energy schedule to an asynchronous
energy schedule (𝐶𝐴

0 , . . . ,𝐶
𝐴
𝑡) where 𝐶𝐴

𝑖
is the configuration of the

path 𝑃1, . . . , 𝑃𝑘 at the completion of the 𝑖-th asynchronous round in

𝐴. For a particle 𝑃𝑖 in a configuration𝐶 , let Δ𝐶 (𝑃𝑖) denote the total
amount of energy in the batteries of particles 𝑃𝑖 , . . . , 𝑃𝑘 in 𝐶; i.e.,

Δ𝐶 (𝑃𝑖) =
∑𝑘

𝑗=𝑖 𝐶 (𝑃 𝑗). For any two configurations𝐶 and𝐶 ′, we say
𝐶 dominates 𝐶 ′ — denoted 𝐶 ⪰ 𝐶 ′ — if and only if for all particles

𝑃𝑖 in the path 𝑃1, . . . , 𝑃𝑘 , we have Δ𝐶 (𝑃𝑖) ≥ Δ𝐶′ (𝑃𝑖).

Lemma 2.5. Given any fair asynchronous activation sequence 𝐴
beginning at a configuration 𝐶𝐴

0 in which 𝑃𝑖 .𝑒𝑏𝑎𝑡 = 0 for all 1 ≤ 𝑖 ≤
𝑘 , there exists a greedy parallel energy schedule (𝐶0, . . . ,𝐶𝑡) with
𝐶0 = 𝐶𝐴

0 such that 𝐶𝐴
𝑖
⪰ 𝐶𝑖 for all 0 ≤ 𝑖 ≤ 𝑡 .

Proof. Given a fair asynchronous activation sequence𝐴 and an

initial configuration 𝐶𝐴
0 , we obtain a unique asynchronous energy

schedule (𝐶𝐴
0 , . . . ,𝐶

𝐴
𝑡). Our goal is to construct a parallel energy

schedule (𝐶0, . . . ,𝐶𝑡) such that 𝐶𝐴
𝑖
⪰ 𝐶𝑖 for all 0 ≤ 𝑖 ≤ 𝑡 . Let

𝐶0 = 𝐶𝐴
0 ; then, for 0 < 𝑖 ≤ 𝑡 , let 𝐶𝑖 be obtained from 𝐶𝑖−1 by

performing one parallel round: each particle greedily performs the

actions of Definition 2.4 if possible.

We now show 𝐶𝐴
𝑖
⪰ 𝐶𝑖 for all 0 ≤ 𝑖 ≤ 𝑡 by induction on 𝑖 .

Since 𝐶0 = 𝐶𝐴
0 , we trivially have 𝐶𝐴

0 ⪰ 𝐶0. So suppose 𝑖 > 0

and for all rounds 0 ≤ 𝑟 < 𝑖 we have 𝐶𝐴
𝑟 ⪰ 𝐶𝑟 . Considering any

particle 𝑃 𝑗 , we have Δ𝐶𝐴
𝑖−1
(𝑃 𝑗) ≥ Δ𝐶𝑖−1 (𝑃 𝑗) by the induction hy-

pothesis and want to show that Δ𝐶𝐴
𝑖
(𝑃 𝑗) ≥ Δ𝐶𝑖

(𝑃 𝑗). First suppose
the inequality from the induction hypothesis is strict and we have

Δ𝐶𝐴
𝑖−1
(𝑃 𝑗) > Δ𝐶𝑖−1 (𝑃 𝑗), meaning strictly more energy has been

passed into 𝑃 𝑗 , . . . , 𝑃𝑘 in the asynchronous setting than in the par-

allel one after rounds 𝑖 − 1 are complete. Because all successful

energy transfers pass 𝛼 energy either from the external source

to the root 𝑃1 or from a parent 𝑃 𝑗 to its child 𝑃 𝑗+1, we have that
Δ𝐶𝐴

𝑖−1
(𝑃 𝑗) ≥ Δ𝐶𝑖−1 (𝑃 𝑗) + 𝛼 . But by Definition 2.4, a particle can

receive at most 𝛼 energy per parallel round, so we have:

Δ𝐶𝑖
(𝑃 𝑗) ≤ Δ𝐶𝑖−1 (𝑃 𝑗) + 𝛼 ≤ Δ𝐶𝐴

𝑖−1
(𝑃 𝑗) ≤ Δ𝐶𝐴

𝑖
(𝑃 𝑗).

Thus, it remains to consider when Δ𝐶𝐴
𝑖−1
(𝑃 𝑗) = Δ𝐶𝑖−1 (𝑃 𝑗), mean-

ing the amount of energy passed into 𝑃 𝑗 , . . . , 𝑃𝑘 is exactly the same

in the asynchronous and parallel settings after rounds 𝑖 − 1 are

complete. It suffices to show that if 𝑃 𝑗 receives 𝛼 energy in parallel

round 𝑖 , then it also does so in asynchronous round 𝑖 .

We first prove that if 𝑃 𝑗 receives𝛼 energy in parallel round 𝑖 , then

𝐶𝐴
𝑖−1 (𝑃 𝑗) ≤ 𝜅 − 𝛼 ; i.e., 𝑃 𝑗 has enough room in its battery to receive

𝛼 energy whenever it is activated in asynchronous round 𝑖 . There

are two cases: either 𝑃 𝑗 already had enough room in its battery

to receive 𝛼 energy in parallel round 𝑖 (i.e., 𝐶𝑖−1 (𝑃 𝑗) ≤ 𝜅 ′ − 𝛼) or
it had a full battery (i.e., 𝐶𝑖−1 (𝑃 𝑗) = 𝜅 ′) but passed 𝛼 energy to

𝑃 𝑗+1 in parallel, “pipelining” energy to make room for the energy

it received. In either case, it is easy to see that 𝐶𝑖−1 (𝑃 𝑗) ≤ 𝜅 ′. By
supposition we have Δ𝐶𝐴

𝑖−1
(𝑃 𝑗) = Δ𝐶𝑖−1 (𝑃 𝑗) and by the induction

hypothesis we have Δ𝐶𝐴
𝑖−1
(𝑃 𝑗+1) ≥ Δ𝐶𝑖−1 (𝑃 𝑗+1). These yield:

𝐶𝐴
𝑖−1 (𝑃 𝑗) =

𝑘∑
ℓ=𝑗

𝐶𝐴
𝑖−1 (𝑃ℓ) −

𝑘∑
ℓ=𝑗+1

𝐶𝐴
𝑖−1 (𝑃ℓ)

= Δ𝐶𝐴
𝑖−1
(𝑃 𝑗) − Δ𝐶𝐴

𝑖−1
(𝑃 𝑗+1)

≤ Δ𝐶𝑖−1 (𝑃 𝑗) − Δ𝐶𝑖−1 (𝑃 𝑗+1)

=

𝑘∑
ℓ=𝑗

𝐶𝑖−1 (𝑃ℓ) −
𝑘∑

ℓ=𝑗+1
𝐶𝑖−1 (𝑃ℓ)

= 𝐶𝑖−1 (𝑃 𝑗) ≤ 𝜅 ′ = 𝜅 − 𝛼

Thus, regardless of whether 𝑃 𝑗 already had space for 𝛼 energy or

used pipelining in parallel round 𝑖 , 𝑃 𝑗 must have space for 𝛼 energy

at the start of asynchronous round 𝑖 , as desired.

Next, we show that if 𝑃 𝑗 receives 𝛼 energy in parallel round

𝑖 , then there is at least 𝛼 energy for 𝑃 𝑗 to receive in asynchro-

nous round 𝑖 . If 𝑃 𝑗 is the root, this is trivial: the external source of

energy is its infinite supply. Otherwise, 𝑗 > 1 and we can show

ICDCN ’21, January 5–8, 2021, Nara, Japan Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

𝐶𝐴
𝑖−1 (𝑃 𝑗−1) ≥ 𝛼 using the supposition Δ𝐶𝐴

𝑖−1
(𝑃 𝑗) = Δ𝐶𝑖−1 (𝑃 𝑗) and

the induction hypothesis Δ𝐶𝐴
𝑖−1
(𝑃 𝑗−1) ≥ Δ𝐶𝑖−1 (𝑃 𝑗−1) in an argu-

ment analogous to the one above (see [6] for details).

Thus, we have shown that if 𝑃 𝑗 receives 𝛼 energy in parallel

round 𝑖 , then𝐶𝐴
𝑖−1 (𝑃 𝑗) ≤ 𝜅 −𝛼 and either 𝑗 = 1 or𝐶𝐴

𝑖−1 (𝑃 𝑗−1) ≥ 𝛼 ,

meaning that at the end of asynchronous round 𝑖 − 1 there is both

𝛼 energy available to pass to 𝑃 𝑗 and 𝑃 𝑗 has room in its battery to

receive it. Though we do not control the order of activations in

asynchronous round 𝑖 , additional activations can only increase the

amount of energy available to pass to 𝑃 𝑗 (by, e.g., passing more

energy to 𝑃 𝑗−1) and increase the space available in 𝑃 𝑗 .𝑒𝑏𝑎𝑡 (by

passing more energy to 𝑃 𝑗+1). Since the activation sequence 𝐴 was

assumed to be fair, either 𝑗 = 1 and 𝑃 𝑗 will be activated at least

once in asynchronous round 𝑖 or 𝑗 > 1 and 𝑃 𝑗−1 will be activated

at least once in asynchronous round 𝑖; in either case, 𝑃 𝑗 will receive

𝛼 energy in asynchronous round 𝑖 . Therefore, in all cases we have

shown that Δ𝐶𝐴
𝑖
(𝑃 𝑗) ≥ Δ𝐶𝑖

(𝑃 𝑗), and since the choice of 𝑃 𝑗 was

arbitrary, we have 𝐶𝐴
𝑖
⪰ 𝐶𝑖 as desired. □

To conclude the dominance argument, we bound the number

of parallel rounds needed to recharge a path of 𝑘 particles. Com-

bined with Lemma 2.5, this gives an upper bound on the worst case

number of asynchronous rounds required to do the same.

Lemma 2.6. Let (𝐶0, . . . ,𝐶𝑡) be a greedy parallel energy schedule
where 𝐶0 is the configuration in which 𝑃𝑖 .𝑒𝑏𝑎𝑡 = 0 for all 1 ≤ 𝑖 ≤ 𝑘

and 𝐶𝑡 is the configuration in which 𝑃𝑖 .𝑒𝑏𝑎𝑡 = 𝜅 ′ = 𝜅 − 𝛼 for all
1 ≤ 𝑖 ≤ 𝑘 . Then 𝑡 = 𝜅′

𝛼 𝑘 = O(𝑘).

Proof. If 𝑘 = 1, then 𝑃1 = 𝑃𝑘 is the root particle that harvests 𝛼

energy per parallel round from the external source by Definition 2.4.

Since 𝑃1 has no children to which it may pass energy, clearly, within

𝜅′
𝛼 = O(𝑘) rounds 𝑃1 .𝑒𝑏𝑎𝑡 = 𝜅 ′ will be satisfied. Now suppose 𝑘 > 1
and that for all 1 ≤ 𝑗 < 𝑘 , a path of 𝑗 particles fully recharges in

𝜅′
𝛼 𝑗 parallel rounds. Once a particle 𝑃𝑖 has received energy for the

first time, it is easy to see by inspection of Definition 2.4 that 𝑃𝑖
will receive 𝛼 energy from 𝑃𝑖−1 (or the external energy source, in

the case that 𝑖 = 1) in every subsequent parallel round until 𝑃𝑖 .𝑒𝑏𝑎𝑡
is full. Similarly, Definition 2.4 ensures that 𝑃𝑖 will pass 𝛼 energy to

𝑃𝑖+1 in every subsequent parallel round until 𝑃𝑖+1 .𝑒𝑏𝑎𝑡 is full. Thus,
once 𝑃𝑖 receives energy for the first time, 𝑃𝑖 effectively acts as an

external energy source for the remaining particles 𝑃𝑖+1, . . . , 𝑃𝑘 .
The root 𝑃1 first harvests energy from the external energy source

in parallel round 0, and thus acts as a continuous energy source for

𝑃2, . . . , 𝑃𝑘 in all subsequent rounds. By the induction hypothesis,

we have that 𝑃2, . . . , 𝑃𝑘 will fully recharge in
𝜅′
𝛼 (𝑘 − 1) parallel

rounds, after which 𝑃1 will no longer pass energy to 𝑃2. The root

𝑃1 harvests 𝛼 energy from the source per round and already has

𝑃1 .𝑒𝑏𝑎𝑡 = 𝛼 , so in an additional
𝜅′
𝛼 − 1 parallel rounds we have

𝑃1 .𝑒𝑏𝑎𝑡 = 𝜅 ′. Therefore, the path 𝑃1, . . . , 𝑃𝑘 fully recharges in 1 +
𝜅′
𝛼 (𝑘 − 1) +

𝜅′
𝛼 − 1 = 𝜅′

𝛼 𝑘 = O(𝑘) parallel rounds, as required. □

Lemmas 2.3, 2.5, and 2.6 show that an inhibited tree T of 𝑘

particles will recharge all its stressed particles in at most O(𝑘)
asynchronous rounds. The following lemma shows that within a

bounded number of additional rounds, there will be some parti-

cle that is neither inhibited nor stressed and thus can perform an

enabled action (if it has one).

Lemma 2.7. Suppose that the last stressed particle in T has just
received the energy it needs to perform its next action. If T has depth
𝑑T , then within 2𝑑T additional rounds some particle in T with a
pending enabled action will be able to perform it.

Proof. Let T𝑎 be the set of particles in T that have enabled

actions to perform. By supposition, all particles in T𝑎 now have

sufficient energy stored in their batteries to perform their actions

(i.e., they are no longer stressed). It remains to bound the time for a

particle in T𝑎 to reset its inhibit flag, the only remaining obstacle

to performing its action.

Let S ⊆ T be the connected subtree of particles with their stress

flags set. All leaves of S at the start of an asynchronous round are

guaranteed to reset their stress flags by the completion of the round

since they are no longer stressed and do not have children with

stress flags set. A descendant-to-root path in S can have length at

most 𝑑T ; the depth of tree T . So in at most 𝑑T rounds, all particles

in T will reset their stress flags.

In the first asynchronous round in which the root does not have

any children with their stress flags set, the root resets its inhibit

flag. In each subsequent round, any child whose parent has reset its

inhibit flag will also reset its own inhibit flag. The longest root-to-

descendant path in T is of length 𝑑T , so in at most 𝑑T rounds there

must exist a particle in T𝑎 that resets its inhibit flag; let 𝑃 be the

first such particle. Particle 𝑃 has an enabled action, has sufficient

energy stored, and is not inhibited, so it performs its enabled action

during its next usage phase. □

We conclude our analysis with the following two theorems. Re-

call from Section 1.3 that an algorithm solves the energy distribution

problem in 𝑡 asynchronous rounds if no particle remains stressed

for more than 𝑡 rounds and at least one particle is able to perform

an enabled action every 𝑡 rounds.

Theorem 2.8. Algorithm Energy-Sharing solves the energy distri-
bution problem in O(𝑛) asynchronous rounds.

Proof. By Lemma 2.1, all 𝑛 particles in system P will join the

spanning forest F within 𝑛 asynchronous rounds. Since there is

no communication or energy transfer between different trees of F ,
it suffices to analyze an arbitrary tree T ∈ F . By Lemma 2.2, if T
contains a stressed particle then all particles of T will be inhibited

within 2𝑑T rounds, where 𝑑T is the depth of T . Lemma 2.3 shows

that assuming T has a path structure can only increase the time to

recharge its stressed particles, and Lemmas 2.5 and 2.6 prove that

even in the case that all particles have uniform, maximum demand

— i.e., 𝛿 (𝑃) = 𝜅 for all particles 𝑃 — all stressed particles will be

distributed enough energy to meet their demand within O(|T |)
rounds. Finally, Lemma 2.7 shows that within 2𝑑T additional rounds

some particle in T will use its energy to perform its next enabled

action. Therefore, since the depth of T can be at most its size (if T
is a path) and its size can be at most the number of particles in the

system (if T is the only tree in F), we conclude that Energy-Sharing
solves the energy distribution problem in 𝑛+2𝑑T +O(|T |) +2𝑑T =

O(𝑛) asynchronous rounds. □

Bio-Inspired Energy Distribution for Programmable Matter ICDCN ’21, January 5–8, 2021, Nara, Japan

To establish a lower bound, observe that for a system of 𝑛 parti-

cles each with a battery capacity of 𝜅 to fully recharge, the system

needs to harvest and distribute 𝑛𝜅 total energy. Each particle with

access to an external energy source may only be activated once per

asynchronous round in the worst case. So in this worst case, a sys-

tem with 𝑠 ≤ 𝑛 particles with energy access can harvest at most 𝑠𝛼

energy from external sources per asynchronous round. This yields

the following theorem, demonstrating that our Energy-Sharing
algorithm is asymptotically optimal when 𝑠 is a fixed constant.

Theorem 2.9. The worst case runtime for any local control algo-
rithm to solve the energy distribution problem when 𝑠 ≤ 𝑛 particles
have access to external energy sources is Ω(𝑛/𝑠) asynchronous rounds.

3 SIMULATION RESULTS
We now present simulations of the Energy-Sharing algorithm.

3
All

figures in this section use color intensity to indicate the energy level

of a particle’s battery, with more intense color corresponding to

more energy stored. Our first simulation (Figure 2) shows Energy-
Sharing running on a system of 91 particles with a single root

particle that has access to an external energy source. All particles

have a capacity of𝜅 = 10 and a transfer rate of𝛼 = 1. To incorporate
energy usage in the simulation, we assume that every particle has a

uniform, repeating demand of𝛿 (·, ·) = 5 energy per “action”, though
no explicit action is actually performed when the energy is used.

The system is organized as a hexagon with the root at its center for

visual clarity, but the resulting behavior is characteristic of other

initial configurations, root placements, and parameter settings.

All particles are initially idle, with the exception of the root

shown with a gray/black ring (Figure 2a). The setup phase estab-

lishes the spanning forest (or tree, in this case) rooted at particle(s)

with energy access; a particle’s parent direction is shown as an arc.

Since all particles start with empty batteries, stress flags (shown

as red rings) quickly propagate throughout the system and inhibit

flags soon follow (Figure 2b). As energy is harvested by the root and

shared throughout the system, some particles (shown with yellow

rings) receive sufficient energy to meet the demand for their next

action but remain inhibited from using it (Figure 2c). This inhibition

remains until all stressed particles in the system receive sufficient

energy to meet their demands (Figure 2d), at which point particles

(shown with green rings) can reset their inhibit flags and use their

energy (Figure 2e). After using energy, these particles may again

become stressed and trigger another stage of inhibition (Figure 2f).

Our second simulation demonstrates the necessity of the com-

munication phase for effective energy distribution. In Section 1,

we motivated the need for a strategy that leverages the biofilm-

inspired long-range communication of particles’ energy states to

shift between selfish and altruistic energy usage. Figure 3 shows a

simulation with the same initial configuration and parameters as

the first simulation (Figure 2), but with its communication phase

disabled. Without the communication phase to inhibit particles

from using energy while those that are stressed recharge, particles

continuously share any energy they have with their descendants in

3
Code for all simulations is openly available as part of AmoebotSim (https://github.com/

SOPSLab/AmoebotSim), a visual simulator for the amoebot model of programmable

matter. Enlarged videos of simulations can be viewed at https://sops.engineering.asu.

edu/sops/energy-distribution.

(a) 𝑡 = 0 async. rounds (b) 𝑡 = 10

(c) 𝑡 = 100 (d) 𝑡 = 190

(e) 𝑡 = 191 (f) 𝑡 = 192

Figure 2: A simulation of Energy-Sharing on 91 particles
with one root, 𝜅 = 10, 𝛼 = 1, and a repeating uniform de-
mand of 𝛿 (·, ·) = 5 for all particles. The black particle is the
root, red particles have their stress flags and possibly also
their inhibit flags set, yellow particles have only their in-
hibit flags set, and green particles have no flags set.

the spanning forest. Thus, while the leaves of the spanning forest

occasionally meet their energy demands (bold green particles in

Figure 3b–3d), even after 1000 rounds most particles have still not

met their energy demand even once.

4 EXTENSIONS
With our energy distribution algorithm in place, we now present

useful extensions. We begin by considering particle crash failures
in which a particle stops functioning and no longer participates

in the collective behavior. Crash failures pose a key challenge for

Energy-Sharing: they disrupt the structure of the spanning forest F
that the particles use for routing energy and communicating their

energy states. To achieve robustness to these crash failures, we

present algorithm Forest-Prune-Repair that enables the spanning
forest to self-repair so long as certain assumptions on the loca-

tions of faulty particles hold (Sections 4.1–4.2). We then show how

Forest-Prune-Repair can be leveraged to compose Energy-Sharing
with existing algorithms in the amoebot catalogue, effectively gen-

eralizing all previous work on the amoebot model to also consider

energy constraints (Section 4.3).

https://github.com/SOPSLab/AmoebotSim
https://github.com/SOPSLab/AmoebotSim
https://sops.engineering.asu.edu/sops/energy-distribution
https://sops.engineering.asu.edu/sops/energy-distribution

ICDCN ’21, January 5–8, 2021, Nara, Japan Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

(a) 𝑡 = 1 async. round (b) 𝑡 = 50

(c) 𝑡 = 200 (d) 𝑡 = 1000

Figure 3: A simulation of Energy-Sharingwith the same ini-
tial configuration and parameters as in Figure 2, butwith the
communication phase disabled. Without communication to
set stress and inhibit flags, all particles remain uninhibited
(green), but only the leaves of the spanning forest ever amass
enough energy to meet their demands.

We make three assumptions about crashed particles. First, the

neighbors of a crashed particle can detect that it is crashed. Second,

the subgraph induced by the positions of non-crashed particles must

remain connected at all times; otherwise, there may be no way for

components of non-crashed particles to communicate. Third, there

must always be at least one non-crashed root particle; otherwise,

the system would lose access to all external energy sources. We

do not claim that these detection, connectivity, and root-reliability
assumptions are necessary for fault tolerance, but each addresses a

non-trivial challenge that is beyond the scope of this work.

4.1 The Forest-Prune-Repair Algorithm
In the context of our energy distribution algorithm, crash failures

partition the spanning forest F into “non-faulty” trees F ∗ that
are rooted at particles with energy access and “faulty” trees F ′
that are disconnected from any external energy source. Together,

F ∗∪F ′ form a forest that spans all non-crashed particles. To make

our algorithms robust to these faults, we present Forest-Prune-
Repair, a local, ad hoc reconstruction that self-repairs F to reform

a spanning forest of trees rooted at particles with energy access.

Algorithm Forest-Prune-Repair works as follows. When a parti-

cle 𝑃 finds that its parent has crashed, it knows it has become the

root of a faulty tree in F ′. In response, 𝑃 broadcasts a “prune sig-

nal” throughout this new tree by setting a prune flag in each of its

children’s memories, informing its descendants of the crash failure.

It then clears its parent pointer, resets all flags, and becomes idle.

Any particle that has its prune flag set does the same, effectively

dissolving the faulty tree. Idle particles then rejoin an existing tree

in a manner similar to the setup phase described in Section 2.1.

When activated, an idle particle 𝑃 considers all its root or active

neighbors that do not have their prune flag set. Of these particles,

𝑃 chooses one to be its parent in a round-robin manner; i.e., if 𝑃 is

ever pruned again, it chooses the next such particle to be its parent.

Integrating Forest-Prune-Repairwith Energy-Sharing is straight-
forward. In the setting where the system is subject to crash faults,

Forest-Prune-Repair simply replaces the setup phase described in

Section 2.1. A particle proceeds with the communication, sharing,

and usage phases if it is not idle and its parent is not crashed.

4.2 Analysis
We now analyze Forest-Prune-Repair, beginning with two straight-

forward lemmas that we state without proofs due to space con-

straints. Proofs can be found in [6]; the proof of Lemma 4.2 uses

techniques identical to those of Lemma 2.2.

Lemma 4.1. If a non-faulty tree T ∈ F ∗ is initially acyclic, then
under Forest-Prune-Repair it will remain acyclic. Moreover, there will
always be at least one tree in F ∗.

Lemma 4.2. Suppose a particle crashes, yielding a new faulty tree
T ∈ F ′. For any particle 𝑃 at depth 𝑑 in tree T , 𝑃 will be pruned
(i.e., set its children’s prune flags, clear its memory, and become idle)
in at most 𝑑 asynchronous rounds.

Under Forest-Prune-Repair, a pruned particle 𝑃 chooses its new

parent 𝑄 from among its root or active neighbors that do not have

their prune flags set. There are two cases: (1) 𝑄 is in a non-faulty

tree, meaning 𝑃 has rejoined F ∗ as desired, or (2) 𝑄 is in a faulty

tree, say T ∈ F ′. In the latter case, there must be prune flags

propagating throughout T because T ∈ F ′, so Lemma 4.2 shows

𝑃 will now be pruned again, this time from T .
An especially bad version of this case would occur if a particle

continually rejoined the tree it is pruning by choosing one of its

descendants as its new parent. In fact, if this choice is not made

carefully, it is possible that such a particle would always choose a

descendant as its parent and thus never rejoin F ∗. We refer to this

situation as a chase cycle due to the way the prune flag propagation

“chases” the rejoining particles. However, since particles choose

their new parents from among their eligible neighbors in a round-

robin manner, chase cycles cannot continue for long:

Lemma 4.3. Suppose a particle 𝑃 in faulty tree T ∈ F ′ has at least
one neighbor in a non-faulty tree of F ∗. Then the number of times 𝑃
will be pruned before it rejoins F ∗ is at most 6.

Proof. Each time 𝑃 is pruned, it chooses a new parent from

among its active or root neighbors that do not have their prune

flags set. By supposition, 𝑃 has at least one such neighbor in a tree

of F ∗. Moreover, its neighbor(s) in F ∗ will always be in the set

of eligible new parents since every particle in a non-faulty tree is

either a root or is active and is never pruned. By Lemma 4.2, 𝑃 will

be pruned again each time it chooses a parent in a faulty tree of F ′.
In a round-robin selection, 𝑃 can choose each neighbor in F ′ as
its parent at most once before choosing a parent in F ∗, as desired.
Every particle has at most 6 neighbors, so in the worst case the

number of times 𝑃 will be pruned before it rejoins F ∗ is 6. □

We conclude by bounding the stabilization time of Forest-Prune-
Repair, which captures the time required for all particles to rejoin

non-faulty trees once the last crash failure has occurred. We note

Bio-Inspired Energy Distribution for Programmable Matter ICDCN ’21, January 5–8, 2021, Nara, Japan

that our bound does not directly depend on the number of crash

failures 𝑓 , but rather on the number of non-crashed particles 𝑚

removed from non-faulty trees as a result of the crash failures.

Theorem 4.4. Suppose 𝑓 < 𝑛 particles crash (where 𝑛 = |P |),
yielding faulty trees F ′. If no other particles crash, all 𝑚 = |F ′ |
non-crashed particles rejoin F ∗ in O(𝑚2) rounds in the worst case.

Proof. If𝑚 = 1, then by Lemma 4.1 and the connectivity as-

sumption all non-crashed neighbors of the single non-crashed par-

ticle 𝑃 ∉ F ∗ must be in F ∗. By Lemma 4.2, 𝑃 will be pruned in one

round; 𝑃 will then choose a neighbor in F ∗ as its new parent in its

next activation. So 𝑃 rejoins F ∗ in at most O(1) = O(𝑚2) rounds.
Now suppose𝑚 > 1. Again by Lemma 4.1 and the connectivity

assumption, there must exist a non-crashed particle 𝑃 ∈ F ′ with
a neighbor in F ∗. By Lemma 4.2, 𝑃 will be pruned in at most𝑚

rounds since the depth of 𝑃 in its faulty tree can be at most the

total number of particles in faulty trees. Particle 𝑃 will then choose

a new parent from among its eligible neighbors; if it chooses any

neighbor in F ′ as its new parent, it will again be pruned in at most

another𝑚 rounds by Lemma 4.2. By Lemma 4.3, 𝑃 will in the worst

case need to repeat this process 6 times before choosing a neighbor

in F ∗ as its new parent. Thus, 𝑃 rejoins F ∗ in O(𝑚) rounds. This
leaves𝑚 − 1 non-crashed particles in F ′ needing to rejoin F ∗. By
the induction hypothesis, these particles rejoin F ∗ in O((𝑚 − 1)2)
rounds, so we conclude that all𝑚 non-crashed particles in F ′ will
rejoin F ∗ in O((𝑚 − 1)2) + O(𝑚) = O(𝑚2) rounds. □

4.3 Algorithm Composition
We ultimately envision Energy-Sharing as a subprocess that is exe-

cuted continuously, handling the energy demands of higher level

algorithms for the system’s self-organizing behaviors. In particular,

if every action of an amoebot algorithmwas assigned an energy cost,

Energy-Sharing must supply each particle with sufficient energy

to meet these costs. However, many amoebot algorithms involve

particle movements that would necessarily disrupt the spanning

forest F maintained by Energy-Sharing for energy routing and

communication. Just as was the case for crash failures (Section 4.1),

this necessitates a protocol for repairing F as particles move, dis-

connecting from existing neighbors and gaining new ones.

We can repurpose Forest-Prune-Repair to address moving parti-

cles with a simple modification. In this setting, instead of a particle

initiating the pruning of its subtree if it detects that its parent

has crashed, it initiates the pruning of its subtree and additionally

prunes itself (unless it is an energy root) whenever it moves accord-

ing to the higher level algorithm. The rest of Forest-Prune-Repair
stays the same with the pruning broadcast dissolving the subtree

and the resulting idle particles rejoining elsewhere.

With this modification in place, Energy-Sharing can be composed

with any amoebot algorithm A requiring energy distribution so

long as (1) the battery capacity 𝜅 is at least as large as the demand of

the most energy-intensive action inA, and (2)A maintains system

connectivity at all times (this is sufficient to satisfy the connectivity

assumption of Section 4 since no particles actually crash). Note that

A need not satisfy the root-reliability assumption; since each root

is not actually crashing when it moves, the system maintains its

access to external energy sources so long as it remains connected.

(a) 𝑡 = 0 async. rounds (b) 𝑡 = 500

(c) 𝑡 = 1000 (d) 𝑡 = 2000

Figure 4: A simulation of basic shape formation on 91 parti-
cles composed with Energy-Sharing with one root, 𝜅 = 10,
𝛼 = 1, and action demand 𝛿 (·, ·) = 5. The communica-
tion structure is maintained by Forest-Prune-Repair. Parti-
cle color and parent directions are visualized with respect
to Energy-Sharing. The energy root moves according to the
shape formation algorithm and need not be centered.

Actions required by algorithmA are handled in the usage phase

of Energy-Sharing. If some particle 𝑃 has an action to perform

according to algorithm A, then if 𝑃 has sufficient stored energy

and is not inhibited, it spends the energy and performs the ac-

tion; otherwise, it foregoes its action this activation. For example,

Figure 4 shows Energy-Sharing composed with the algorithm for

basic shape formation [5, 8] forming a hexagon. Theorem 2.8 en-

sures that all 𝑛 particles will meet their energy needs and at least

one particle will be able to perform an enabled action every O(𝑛)
asynchronous rounds. By Theorem 4.4, any disruption to the com-

munication structure caused by actions involving movements will

be repaired in O(𝑚2) asynchronous rounds, where𝑚 is the num-

ber of particles severed from the communication structure. Thus,

Energy-Sharing will not impede the progress of A but — accord-

ing to our proven bounds — may add significant overhead to its

runtime. However, we observe reasonable performance in practice:

for example, since hexagon formation terminates in O(𝑛) rounds,
our proven bounds suggest that the composed algorithm could

terminate in time O(𝑛2) or worse but Figure 5 demonstrates an

overhead that appears asymptotically sublinear. With the addition

of more energy roots, the composed algorithm is dramatically faster,

approaching the runtime achieved without energy constraints [6].

5 CONCLUSION
In this work, we extended the amoebot model to include energy

considerations. Our bacterial biofilm-inspired algorithm for energy

distribution is guaranteed to meet the energy demands of a sys-

tem of 𝑛 particles at least once every O(𝑛) asynchronous rounds
and is asymptotically optimal when the number of external energy

ICDCN ’21, January 5–8, 2021, Nara, Japan Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

Figure 5: Runtimes of the basic shape formation algorithm
alone (blue) vs. when it is composed with Energy-Sharing
(yellow) as a function of system size. Each experiment was
repeated 20 times; average runtime is shown as a solid line
and standard deviation is shown as an error tube. Asymp-
totic runtime bounds are shown as dotted lines; the com-
posed algorithm tracks most closely with O(𝑛 log2 𝑛).

sources is fixed. Existing amoebot model algorithms satisfying some

basic assumptions can be generalized to respect energy constraints

through composition with our energy distribution and spanning

forest repair algorithms. Moreover, the spanning forest repair algo-

rithm will be independently useful for future work in addressing

fault tolerance for existing amoebot model algorithms.

Our goal in this work was to meet the energy demands of fixed-

sized particle systems as they execute algorithm actions. One could

also consider using energy for reproduction, mimicking the bacterial

biofilms that inspired our algorithm. In preliminary simulations [6],

we obtain behavior that is qualitatively similar to the biofilm growth

patterns observed by Liu and Prindle et al. [17, 24]; in particular,

the use of communication and inhibition leads to an oscillatory

growth rate. Further work is needed to formally characterize our

algorithm’s behavior for these growing, dynamic systems.

ACKNOWLEDGMENTS
The authors gratefully acknowledge their support from the Na-

tional Science Foundation under awards CCF-1637393 and CCF-

1733680 and from the U.S. Department of Defense under MURI

award #W911NF-19-1-0233. We thank Prof. Deborah Gordon and

Prof. Saket Navlakha for their pointers to research on bacterial

biofilms and their helpful discussions that initiated this work. We

also thank Prof. Theodore Pavlic for generously sharing his knowl-

edge of bio-inspired approaches to energy management in swarm

robotics. Finally, we thank undergraduate researcher Christopher

Boor for his contributions to a preliminary version of this work.

REFERENCES
[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-

alta. 2006. Computation in networks of passively mobile finite-state sensors.

Distributed Computing 18, 4 (2006), 235–253.

[2] Palina Bartashevich, Doreen Koerte, and Sanaz Mostaghim. 2017. Energy-saving

decision making for aerial swarms: PSO-based navigation in vector fields. In 2017
IEEE Symposium Series on Computational Intelligence (SSCI ’17). 1–8.

[3] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[4] Jason Campbell, Padmanabhan Pillai, and Seth Copen Goldstein. 2005. The Robot

is the Tether: Active, Adaptive Power Routing for Modular Robots With Unary

Inter-robot Connectors. In 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’05). IEEE, 4108–4115.

[5] Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Schei-

deler. 2019. Computing by Programmable Particles. In Distributed Computing by
Mobile Entities: Current Research in Moving and Computing. 615–681.

[6] Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. 2020. Bio-Inspired

Energy Distribution for Programmable Matter. (2020). Available online at https:

//arxiv.org/abs/2007.04377.

[7] Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian

Scheideler, and Thim Strothmann. 2014. Brief Announcement: Amoebot - A New

Model for Programmable Matter. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’14). 220–222.

[8] Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andrea W.

Richa, and Christian Scheideler. 2015. Leader Election and Shape Formation

with Self-organizing Programmable Matter. In DNA Computing and Molecular
Programming. 117–132.

[9] Shlomi Dolev, Sergey Frenkel, Michael Rosenblit, Ram Prasadh Narayanan, and

K Muni Venkateswarlu. 2016. In-vivo energy harvesting nano robots. In 2016
IEEE International Conference on the Science of Electrical Engineering. 1–5.

[10] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro (Eds.). 2019. Distributed
Computing by Mobile Entities. Springer International Publishing, Switzerland.

[11] Kyle Gilpin, Ara Knaian, and Daniela Rus. 2010. Robot pebbles: One centime-

ter modules for programmable matter through self-disassembly. In 2010 IEEE
International Conference on Robotics and Automation (ICRA ’10). 2485–2492.

[12] Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian

Rudolph, and Christian Scheideler. 2018. Shape Recognition by a Finite Au-

tomaton Robot. In 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS ’18). 52:1–52:15.

[13] Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian

Rudolph, Christian Scheideler, and Thim Strothmann. 2019. Forming tile shapes

with simple robots. Natural Computing (2019).

[14] Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. 2005. Pro-

grammable Matter. Computer 38, 6 (2005), 99–101.
[15] Serge Kernbach. 2013. Handbook of Collective Robotics: Fundamentals and Chal-

lenges. Jenny Stanford Publishing.

[16] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. 2020. A

scalable pipeline for designing reconfigurable organisms. Proceedings of the
National Academy of Sciences 117, 4 (2020), 1853–1859.

[17] Jintao Liu, Arthur Prindle, Jacqueline Humphries, Marçal Gabalda-Sagarra, Mune-

hiro Asally, Dongyeon D. Lee, San Ly, Jordi Garcia-Ojalvo, and Gürol M. Süel.

2015. Metabolic co-dependence gives rise to collective oscillations within biofilms.

Nature 523 (2015), 550–554.
[18] Bruce J. MacLennan. 2015. The Morphogenetic Path to Programmable Matter.

Proc. IEEE 103, 7 (2015), 1226–1232.

[19] Othon Michail, George Skretas, and Paul G. Spirakis. 2019. On the transformation

capability of feasible mechanisms for programmable matter. J. Comput. System
Sci. 102 (2019), 18–39.

[20] Sanaz Mostaghim, Christoph Steup, and FabianWitt. 2016. Energy Aware Particle

Swarm Optimization as search mechanism for aerial micro-robots. In 2016 IEEE
Symposium Series on Computational Intelligence (SSCI ’16). 1–7.

[21] Nils Napp, Samuel Burden, and Eric Klavins. 2011. Setpoint regulation for stochas-

tically interacting robots. Autonomous Robots 30, 1 (2011), 57–71.
[22] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron,

and Magnus Egerstedt. 2017. The Robotarium: A remotely accessible swarm

robotics research testbed. In 2017 IEEE International Conference on Robotics and
Automation (ICRA ’17). 1699–1706.

[23] Benoit Piranda and Julien Bourgeois. 2018. Designing a quasi-spherical module

for a huge modular robot to create programmable matter. Autonomous Robots 42
(2018), 1619–1633.

[24] Arthur Prindle, Jintao Liu, Munehiro Asally, San Ly, Jordi Garcia-Ojalvo, and

Gürol M. Süel. 2015. Ion channels enable electrical communication in bacterial

colonies. Nature 527 (2015), 59–63.
[25] Tommaso Toffoli and Norman Margolus. 1991. Programmable matter: Concepts

and realization. Physica D: Nonlinear Phenomena 47, 1 (1991), 263–272.
[26] HongxingWei, BinWang, Yi Wang, Zili Shao, and Keith C.C. Chan. 2012. Staying-

alive path planning with energy optimization for mobile robots. Expert Systems
with Applications 39, 3 (2012), 3559–3571.

[27] Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree,

and Peng Yin. 2013. Active Self-Assembly of Algorithmic Shapes and Patterns

in Polylogarithmic Time. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science (ITCS ’13).

https://arxiv.org/abs/2007.04377
https://arxiv.org/abs/2007.04377

	Abstract
	1 Introduction
	1.1 Biological Inspiration
	1.2 The Amoebot Model
	1.3 Our Results

	2 The Energy Distribution Algorithm
	2.1 Algorithm Energy-Sharing
	2.2 Analysis

	3 Simulation Results
	4 Extensions
	4.1 The Forest-Prune-Repair Algorithm
	4.2 Analysis
	4.3 Algorithm Composition

	5 Conclusion
	Acknowledgments
	References

