Bio-Inspired Energy Distribution for Programmable Matter

Joshua J. Daymude
Arizona State University
Computer Science, CIDSE
Tempe, AZ, USA
jdaymude@asu.edu

ABSTRACT

In systems of active programmable matter, individual modules re-
quire a constant supply of energy to participate in the system’s
collective behavior. These systems are often powered by an exter-
nal energy source accessible by at least one module and rely on
module-to-module power transfer to distribute energy throughout
the system. While much effort has gone into addressing challenging
aspects of power management in programmable matter hardware,
algorithmic theory for programmable matter has largely ignored
the impact of energy usage and distribution on algorithm feasibility
and efficiency. In this work, we present an algorithm for energy
distribution in the amoebot model that is loosely inspired by the
growth behavior of Bacillus subtilis bacterial biofilms. These bacte-
ria use chemical signaling to communicate their metabolic states
and regulate nutrient consumption throughout the biofilm, ensur-
ing that all bacteria receive the nutrients they need. Our algorithm
similarly uses communication to inhibit energy usage when there
are starving modules, enabling all modules to receive sufficient
energy to meet their demands. As a supporting but independent
result, we extend the amoebot model’s well-established spanning
forest primitive so that it self-stabilizes in the presence of crash fail-
ures. We conclude by showing how this self-stabilizing primitive
can be leveraged to compose our energy distribution algorithm
with existing amoebot model algorithms, effectively generalizing
previous work to also consider energy constraints.

CCS CONCEPTS

« Theory of computation — Self-organization; Distributed al-
gorithms; « Applied computing — Biological networks.

KEYWORDS

programmable matter, self-organization, distributed algorithms,
biologically-inspired algorithms, biofilms, energy

ACM Reference Format:

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. 2021. Bio-
Inspired Energy Distribution for Programmable Matter. In International
Conference on Distributed Computing and Networking 2021 (ICDCN °21),
January 5-8, 2021, Nara, Japan. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3427796.3427835

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICDCN °21, January 5-8, 2021, Nara, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8933-4/21/01...$15.00
https://doi.org/10.1145/3427796.3427835

Andréa W. Richa
Arizona State University
Computer Science, CIDSE
Tempe, AZ, USA
aricha@asu.edu

Jamison W. Weber

Arizona State University
Computer Science, CIDSE
Tempe, AZ, USA
jwweber@asu.edu

1 INTRODUCTION

The goal for programmable matter [25] is to realize physical ma-
terials that can dynamically change their physical properties on
command, acting autonomously or based on user input. In active
systems, the composing modules (or “particles”) of programmable
matter are often envisioned and designed to be simple, homoge-
neous units capable of internal computation, inter-module commu-
nication, and movement. These modules require a constant supply
of energy to function, but as the number of modules per collec-
tive increases and individual modules are miniaturized from the
centimeter/millimeter-scale [11, 14, 23] to the micro- and nano-
scale [9, 16], traditional methods of robotic power supply such as
internal battery storage and tethering become infeasible.

Programmable matter systems instead make use of an exter-
nal energy source accessible by at least one module and rely on
module-to-module power transfer to supply the system with en-
ergy [4, 11, 23]. This external energy can be supplied directly to
one or more modules in the form of electricity, as in [11], or may
be ambiently available as light, heat, sound, or chemical energy
in the environment [18, 21]. Since energy may not be uniformly
accessible to all modules in the system, a strategy for energy distri-
bution — or sharing energy between modules such that all modules
eventually obtain the energy they need to function — is imperative
but does not come for free. Significant energy loss can occur in
module-to-module transfer depending on the method used, and
even with perfect transfer successive voltage drops between mod-
ules can limit the number of modules that can be powered from a
single source [11]. Module geometry may further complicate the
problem by introducing short circuits, adding further constraints
to power routing algorithms [4].

Algorithmic theory for programmable matter has largely ig-
nored the role of energy (with notable exceptions, such as [9, 23]),
focusing primarily on characterizing the minimal capabilities indi-
vidual modules need to collectively achieve desired system-level
self-organizing behaviors. Across models of active programmable
matter — including population protocols [1], the nubot model [27],
mobile robots [10], hybrid programmable matter [12, 13], and the
amoebot model [5, 7] — most works either develop algorithms for
a desired behavior and bound their time complexity or prove that
a given behavior cannot be achieved within the given constraints.
To the extent of our knowledge, papers on these models have only
mentioned energy to justify constraints (e.g., why a system should
remain connected [19]) and have never directly treated the impact
of energy usage and distribution on an algorithm’s efficiency. In
contrast, both programmable matter practitioners and the modular
and swarm robotics literature view energy constraints as influential
aspects of algorithm design [2, 15, 20, 22, 26].

https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/3427796.3427835

ICDCN ’21, January 5-8, 2021, Nara, Japan

In this work, we present an algorithm for energy distribution in
the amoebot model that is loosely inspired by the growth behavior
of Bacillus subtilis bacterial biofilms [17, 24]. We assume that all
particles in the system require energy to perform their actions but
only some have access to an external energy source. Naive distribu-
tion strategies such as fully selfish or fully altruistic behaviors have
obvious problems: in the former, particles with access to energy
use it all and starve the others, while in the latter no particle ever
knows when it is safe to use its stored energy. This necessitates
a strategy in which particles shift between selfish and altruistic
energy usage depending on the needs of their neighbors. Our algo-
rithm mimics the way bacteria use long-range communication of
their metabolic stress to temporarily inhibit the biofilm’s energy
consumption, allowing for nutrients to reach starving bacteria and
effectively solving the energy distribution problem.

1.1 Biological Inspiration

Our strategy of shifting between selfish and altruistic energy usage
to achieve energy distribution is loosely inspired by the work of
Liu and Prindle et al. [17, 24] on the growth behavior of colonies of
Bacillus subtilis bacteria, which we summarize here for the sake of
completeness. These bacteria form densely packed biofilm colonies
when they become metabolically stressed (i.e., when they become
nutrient scarce and begin to starve). These bacteria consume glu-
tamine, which is produced from a combination of substrates gluta-
mate and ammonium. Glutamate is sourced from the environment
outside of the biofilm, whereas ammonium is produced by indi-
vidual bacterium. However, because ammonium can freely diffuse
across a bacterium’s cell membrane and be lost to its surround-
ings, production of ammonium is known as the futile cycle. The
futile cycle is detrimental for bacteria on the biofilm’s periphery,
as they lose all their ammonium to the external medium. Once a
biofilm colony is formed, however, bacteria in the biofilm’s interior
are shielded from the futile cycle by those on the periphery. This
creates a symbiotic co-dependence: bacteria in the interior are re-
liant on glutamate passed from the periphery, while bacteria on the
periphery are reliant on ammonium produced by the interior.

As the biofilm grows, overall glutamate consumption in the pe-
riphery increases, limiting the amount of glutamate that permeates
into the interior of the colony. This causes interior bacteria to be-
come metabolically stressed. Thus, in order to regulate glutamate
consumption on the periphery, interior bacteria communicate their
metabolic states to the peripheral bacteria via a long-range elec-
trochemical process known as potassium ion-channel-mediated sig-
naling [24]. This sudden influx of potassium inhibits a bacterium’s
glutamate intake and ammonium retention, allowing more nutri-
ents to pass into the biofilm’s interior. As a result, the biofilm grows
at an oscillating rate rather than a constant one, despite the fact
that there is plentiful glutamate in the environment. This emergent
oscillation enables continuous distribution of nutrients throughout
the colony, effectively solving the energy distribution problem.

1.2 The Amoebot Model

In the amoebot model [5, 7], programmable matter consists of in-
dividual, homogeneous computational elements called particles.
Any structure that a particle system can form is represented as

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

() (b)

Figure 1: (a) Particles shown as black circles on the tri-
angular lattice G5, shown in gray. (b) A particle’s energy
anatomy. Energy is transferred between particles at their
contact points, shown as green markers on the particle’s pe-
riphery. A particle’s battery e, stores energy for its own
use and for sharing with its neighbors.

a subgraph of an infinite, undirected graph G = (V, E) where V
represents all relative positions a particle can occupy and E repre-
sents all possible adjacencies between particles.! Each node can be
occupied by at most one particle. The geometric amoebot model is a
standard model variant that assumes G = Gp, the triangular lattice
(see Figure 1a).

Two particles occupying adjacent nodes are said to be neighbors.
Although each particle is anonymous, lacking a unique identifier,
a particle can locally identify any given neighbor by its label for
the edge between them. Each particle has a constant-size local
memory that it and its neighbors can directly read from and write
to for communication. However, particles do not have any global
information, including a shared coordinate system or orientation.

The system progresses asynchronously through atomic actions.
In the amoebot model, an atomic action corresponds to a single par-
ticle’s activation in which it can perform a constant amount of local
computation involving information it reads from its local memory
and its neighbors’ memories and write updates to its neighbors’
memories. We assume these actions preserve atomicity, isolation,
and fairness. Atomicity requires that an action either completes
successfully or is aborted (e.g., due to a conflict) and completely
undone. A set of concurrent actions preserves isolation if they do
not interfere with each other; i.e., if their concurrent execution pro-
duces the same end result as if they were executed in any sequential
order. Fairness requires that each particle successfully completes
an action infinitely often.

It is well known that if a distributed system’s actions are atomic
and isolated, any set of such actions can be serialized [3]; i.e., there
exists a sequential ordering of the successful (non-aborted) actions
that produces the same end result as their concurrent execution.
Thus, while in reality many particles may be active concurrently,
it suffices when analyzing amoebot algorithms to consider the
sequential setting where only one particle is active at a time. By
our fairness assumption, if a particle P is inactive at time ¢ in the
activation sequence, P will be (successfully) activated again at some
time ¢ > t. An asynchronous round is complete once every particle
has been activated at least once.

'We omit several core features of the amoebot model such as movements since they
are not needed in this work; see [5] for a full description of the model.

Bio-Inspired Energy Distribution for Programmable Matter

Energy Distribution. In addition to the standard model, we in-
troduce terminology specific to the problem of energy distribution.
Each particle P has an energy battery denoted P.ep,; with constant
capacity k > O (see Figure 1b). The battery represents stored energy
P can use for performing actions or for sharing with its neighbors.
Particles with access to an external energy source can harvest en-
ergy into their batteries directly, while those that do not depend on
their neighbors to share with them. In either case, each particle can
transfer at most a constant @ > 0 units of energy per activation.

1.3 Our Results

An instance of the energy distribution problem has the form (P, x, §)
where P is a finite connected particle system, « is the capacity of
each particle’s battery, and energy demand 5(P, i) denotes the en-
ergy cost for a particle P to perform its i-th action. For convenience,
we will use §(P) to refer to the energy cost for P to perform its
next action. An instance is valid if (1) P contains one or more “root”
particles with access to external energy sources and all non-root
particles are initially “idle” and (2) for all particle actions, (-, -) < k;
i.e., no energy demand exceeds the batteries’ energy capacity. A
particle P is stressed if the energy level of its battery is strictly less
than the demand for its next action, i.e., if P.ep,; < §(P). An action
a of a particle P is enabled if, barring any energy considerations, P
is able to perform action a. A local, distributed algorithm A solves
a valid instance of the energy distribution problem in time ¢ if,
when each particle executes A individually, no particle remains
stressed for more than t asynchronous rounds and at least one
particle performs an enabled action every t asynchronous rounds.

In Section 2, we present Energy-Sharing: a local, distributed algo-
rithm that solves the energy distribution problem in O(n) asynchro-
nous rounds (Theorem 2.8), where n is the number of particles in the
system. This algorithm is asymptotically optimal when the number
of external energy sources is fixed (Theorem 2.9). We then show
simulation results in Section 3, demonstrating that without the
biofilm-inspired communication of particles’ energy states, Energy-
Sharing fails to distribute sufficient energy throughout the system.

In Section 4, we consider the impact of crash faults on the correct-
ness and runtime of our algorithm. Our fault mitigation strategy re-
lies on a new algorithmic primitive called Forest-Prune-Repair that
locally repairs the system’s underlying communication structure
after a particle crashes. This repair primitive is in fact of indepen-
dent interest, as it extends the amoebot model’s well-established
spanning forest primitive [5] to be self-stabilizing in the presence
of crash failures. Finally, we show how Forest-Prune-Repair can
be used to compose other amoebot algorithms with our Energy-
Sharing algorithm. This effectively generalizes all previous work
on the amoebot model to also consider energy constraints.

2 THE ENERGY DISTRIBUTION ALGORITHM

In this section, we present algorithm Energy-Sharing for energy
distribution in self-organizing particle systems. At a high level, this
algorithm works as follows. After some initial setup, each particle
continuously loops through a sequence of three phases: the com-
munication phase, the sharing phase, and the usage phase. In the
communication phase, particles propagate signals to communicate
the energy states of stressed particles, analogous to the long-range

ICDCN ’21, January 5-8, 2021, Nara, Japan

electrochemical signaling via potassium ion channels in the biofilms.
Particles then attempt to harvest energy from an external energy
source or transfer energy to their neighbors in the sharing phase.
Finally, particles spend their stored energy to perform actions ac-
cording to their collective behavior in the usage phase. Note that the
system is not synchronized and each particle progresses through
these phases independently.

Section 2.1 details the setup and phases of Energy-Sharing. We
then analyze this algorithm’s correctness and runtime in Section 2.2.
Complete pseudocode was omitted due to space constraints but can
be found in the full version of this paper [6].

2.1 Algorithm Energy-Sharing

The Setup Phase. Recall that particle system % is connected. Par-
ticles with access to an external energy source are roots, and the
rest are idle. This phase organizes ¥ as a spanning forest ¥ of trees
rooted at the root particles. These trees facilitate an analogy to the
potassium ion signaling that the bacteria use to communicate when
they are metabolically stressed (discussed further in the commu-
nication phase). To form ¥, we make use of the well-established
spanning forest primitive [5]. If a particle P is idle, it checks if it has
a root or active neighbor Q. If so, P becomes active and updates its
parent pointer to P.parent «<— Q. This repeats until all particles are
active, yielding a spanning forest ¥

The Communication Phase. The communication phase facilitates
the long-range communication of particles’ energy states analogous
to the biofilm’s potassium ion signaling. This is achieved by sending
signals along a particle’s tree in the spanning forest # constructed
in the setup phase. In particular, any active particle P that is stressed
—ie., P.epys < O(P) — sets a stress flag that remains until P is no
longer stressed. Any particle that has a child in its tree with their
stress flag set also sets their stress flag, effectively propagating this
signal up to its tree’s root particle. When the root particle receives
this stress signal (or if it is itself stressed), it sets an inhibit flag,
initiating a broadcast to the rest of the tree. Any particle whose
parent in the tree has their inhibit flag set also sets their inhibit
flag, propagating this inhibition signal throughout the tree. In the
usage phase, inhibited particles will be stopped from spending their
energy to perform actions, allowing more energy to pass on to the
stressed particles. As we will show in the simulations of Section 3,
omitting this phase can result in the indefinite starvation of many
of the system’s particles.

Signal resets behave analogously to how they are set. Any non-
root particle that is not stressed — i.e., P.ep,; = 6(P) — and has no
children with their stress flags set will reset its stress flag. Once a
root no longer has any children with stress flags (and it is itself not
stressed), it resets its inhibit flag. Any particle whose parent does
not have its inhibit flag set resets its own inhibit flag, and so on.

The Sharing Phase. During the sharing phase, particles harvest
energy from external energy sources and transfer energy to their
neighbors, if possible. A root particle begins the sharing phase by
harvesting min{a, x — P.ep,; } units of energy from its external
energy source. Any particle P — root or active — then checks to
see if it has sufficient energy to share (i.e., P.ep,; > @) and if any
of its children in the spanning forest 7, say Q, need energy (i.e.,

ICDCN ’21, January 5-8, 2021, Nara, Japan

Q.epar < k). If so, P transfers min{a, k — Q.epq; } units of energy
to Q in keeping with the assumption from Section 1.2 that each
particle can transfer at most o units of energy per activation.

The Usage Phase. In the usage phase, particles spend their energy
to perform actions as required by their collective behavior. Suppose
that a is the next action a particle P wants to perform; recall that
its energy cost is given by §(P). If P has sufficient stored energy to
perform this action — i.e., P.ep,s = 6(P) — and P does not have its
inhibit flag set, then P can spend the required energy and perform
action a. Otherwise, P forgoes any action in this activation.

2.2 Analysis

We now prove the correctness and bound the runtime of the Energy-
Sharing algorithm. We begin with two straightforward results re-
garding the setup and communication phases. We state the first
without proof, as it follows directly from the analysis of the span-
ning forest primitive [5].

LEmMA 2.1. All idle particles in the system become active and join
the spanning forest ¥ within n asynchronous rounds, where n is the
number of particles in the system.

For the remainder of our analysis we focus on a single tree 7~ €
¥, which suffices since particles in any single tree act independently
from all particles in other trees of 7.

LEMMA 2.2. Suppose a particle P in tree T € F is stressed; i.e.,
P.epar < O(P). If tree T has depth d-, then all particles in T will
have their inhibit flags set within 2dq- asynchronous rounds.?

ProoF. Since every particle is activated at least once per asyn-
chronous round, P will be activated within one round and will
set its stress flag since P.ep,; < O(P). Recall that stress flags are
propagated up to the root by parents setting their stress flags when
they see a child with its stress flag set. There can be at most dq-— 2
ancestors of P strictly between P and the root. At least one more
ancestor will set its stress flag per asynchronous round, so in at
most dg- — 2 rounds a child of the root will have its stress flag set.

Within one additional round, the root will be activated and will
set its inhibit flag. Inhibit flags are then propagated from the root
to all its descendants: in each round, any child that sees its parent’s
inhibit flag set will also set its own inhibit flag. The longest root-to-
descendant path in 7 is of length d-, so in at most dg- rounds all
particles in 7~ will have their inhibit flags set. O

Lemma 2.2 shows that when a tree contains at least one stressed
particle, every particle in the tree eventually becomes inhibited.
This inhibition remains until all stressed particles recharge, i.e.,
until they receive the energy they need to perform their next action.
The usage phase prohibits any inhibited particle from spending its
energy on actions, so it suffices when bounding the recharge time
to analyze how energy is shared within the tree.

In particular, we want to bound the worst case time for a stressed
particle in a given tree 7 to recharge once all particles in 7~ are
inhibited. We make three observations that make this analysis
more tractable. First, we assume that all particles in 7~ begin this
’The depth of a particle P in a tree 7 rooted at a particle R is the number of nodes in

the R, P-path in 7 (i.e., the root R is at depth 1, and so on). The depth of a tree 7" is
maxpey{depth of P}.

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

recharging process with empty batteries and need to meet maxi-
mum energy demand; i.e., we assume P.ep,; = 0 and §(P) = k for
all P € 7. Although the particles of 7 may have obtained some
energy before becoming inhibited, this assumption can only make
recharging slower since more energy is needed. Second, we assume
k/a € N, allowing us to assume all energy is transferred in units of
size exactly a. This can be easily realized by rounding any given
capacity k up to the next multiple of «, as this can only increase
the energy required in recharging. Third, we show in the following
lemma that the recharge time in 7~ is at most the recharge time in
a simple path with the same number of particles.

LEMMA 2.3. Suppose T is a tree of k particles rooted at a particle
R with access to external energy. If all k particles are inhibited and
initially have no energy in their batteries, then the worst case number
of asynchronous rounds to recharge all particles’ batteries in T is
at most the worst case number of rounds to do so in a path L =
(P1,...,Py) inwhich P1 has access to external energy and P;.parent =
Pi_q foralll <i<k.

Proor. Given any tree U of k inhibited particles rooted at a par-
ticle R with access to external energy and an activation sequence
A of the particles in U, let t4 (U) denote the number of asynchro-
nous rounds required to recharge all particles’ batteries in U with
respect to activation sequence A. We use t(U) = maxa{ta(U)}
to denote the worst case recharge time for 9. With this notation,
our goal is to show that t(7) < t(L).

Consider the maximal “non-branching” path (R = Py,...,Pp =
P) in tree 7 starting at the root R such that P;,1 is the only child
particle of P; in 7 for all 1 < i < £. We argue by (reverse) induction
on £, the total number of particles in the maximal non-branching
path of 7. If ¢ = k, then 7 is already a path L of k particles and
we have t(77) = t(£) trivially. So suppose that £ < k and for all
possible trees U composed of the same k particles as 7 that are
rooted at R and have at least £ + 1 particles in their maximal non-
branching paths starting at R, we have t(U) < t(L). Our goal is
to modify 7~ to form another tree 7’ that is composed of the same
particles, is rooted at R, and has exactly one more particle in its
maximal non-branching path such that (7)) < (7). Since 7'’
has exactly ¢ + 1 particles in its maximal non-branching path, the
induction hypothesis lets us conclude that t(7°) < t(77) < t(L).

With maximal non-branching path (R = P1,...,P, = P) of T,
P = Py is the “closest” particle to R with multiple children, say
Q1,...,0Qc for ¢ > 2; note that such a particle P must exist since
¢ < k. Form the tree 7 by reassigning Q;.parent from P to Q; for
each 2 < i < c. Then Qg is the only child of P in 7, and thus
(R="P1,...,Pp = P,Qq) is the maximal non-branching path of 7’
which has length ¢ + 1. So it suffices to show that t(7") < t(7).

Consider any activation sequence A = (ai,...,ay) where ar
is the first activation after which all particles in 7~ have finished
recharging; we must show that there exists an activation sequence
A’ such that t4(7) < ta (7). We construct A’ from A so that
the flow of energy through 7 mimics that of 7. Consider each
a; € A, for 1 <i < f.Inmost cases, a; has the same effect in both
7 and 7 and thus a] = a; can be appended to A”. However, any
activations a; in which P passes energy to a child Q;, for2<j<e,
cannot be performed directly in 7’ since Qj is a child of Q1 — not
of P —in 7. We instead add a pair of activations al’. = (al.l, al.z) to

Bio-Inspired Energy Distribution for Programmable Matter

A’ that have the effect of passing energy from P to Q; but use Q1
as an intermediary. There are two cases. If Q1 has a full battery (i.e.,
Q1.epq; = k) at the beginning of a;, then Q1 passes energy to Q;
in al.1 and P passes energy to Q1 in al.2. Otherwise, P passes energy
to Q1 in al.1 and Q1 passes energy to Q; in al.2.

Under this construction of A’, if all particles start with empty
batteries, then the value of P.e, after each a; € Aand a] € A’ is
the same in 7~ and 7/, respectively, for all 1 < i < f. Thus, the
particles in 7" and 7 only finish recharging after activations as
and a}, respectively. Moreover, A” was obtained from A by adding

activations which can only increase the number of asynchronous
rounds in A’. Therefore, we have t5(7) < ta(7”), as desired. O

By Lemma 2.3, it suffices to analyze the case where 7™ is a simple
path of k particles. To bound the recharge time in this setting,
we use a dominance argument between asynchronous and parallel
executions which is structured as follows. First, we prove that for
any asynchronous execution, there exists a parallel execution that
makes at most as much progress towards recharging the system in
the same number of rounds. We then upper bound the recharge time
in parallel rounds. Combining these results gives a worst case upper
bound on the recharge time in asynchronous rounds, as desired.

Let a configuration C of the path Py, ..., Py encode the battery
values of each particle P; as C(P;). A schedule is a sequence of con-
figurations (Co, . . ., Ct). Note that in the following definition for the
parallel execution, we reduce each particle’s battery capacity from
Kk to k” = k — a. This does not apply to the asynchronous execution,
and is just a proof artifact that will be useful in Lemma 2.5.

Definition 2.4. A parallel energy schedule (C, . ..,C;) is a sched-
ule such that for all configurations C; and particles P; we have
Ci(Pj) € [0,x’] and, for every 0 < i < t, C; is reached from C;_1
using the following for each particle P;:

e Pjisaroot, so it harvests energy from the external energy
source with C;(Pj) = Ci—1(P;) + min{a, k" — Ci—1(Pj)}.
e Ci-1(Pj) 2 @ and C;_1(Pjs1) < k', so Pj passes energy to
its child with:
- Ci(Pj) = Ci-1(Pj) — min{a, k" — Ci—1(Pj+1)}
= Ci(Pj+1) = Ci-1(Pj+1) + min{e, k" — Ci—1(Pj+1)}
Such a schedule is greedy if the above actions are taken in parallel
whenever possible.

Now consider any fair asynchronous activation sequence A;
i.e., one in which every particle is activated infinitely often. We
compare a greedy parallel energy schedule to an asynchronous
energy schedule (CS‘, ey Cf) where C{“ is the configuration of the
path P1, ..., Py at the completion of the i-th asynchronous round in
A. For a particle P; in a configuration C, let Ac(P;) denote the total
amount of energy in the batteries of particles P;,..., P, in C; i.e.,
Ac(P;) = Z/J?:i C(Pj). For any two configurations C and C’, we say
C dominates C’ — denoted C = C” — if and only if for all particles
P; in the path Py, ..., P, we have Ac(P;) > A (P;).

LEMMA 2.5. Given any fair asynchronous activation sequence A
beginning at a configuration CS‘ in which P;.epy; =0 forall1 <i <
k, there exists a greedy parallel energy schedule (Co, ...,Ct) with
Co = CS\ such that Cf‘ >Ciforall0<i<t.

ICDCN ’21, January 5-8, 2021, Nara, Japan

ProoF. Given a fair asynchronous activation sequence A and an
initial configuration CQ, we obtain a unique asynchronous energy
schedule (C4, ..., C;‘). Our goal is to construct a parallel energy
schedule (Cy,...,C) such that CIA > Cijforall0 < i <t Let
Co = Cé; then, for 0 < i < ¢, let C; be obtained from C;_1 by
performing one parallel round: each particle greedily performs the
actions of Definition 2.4 if possible.

We now show C{‘ > C;forall 0 < i < t by induction on i.
Since Cp = C’O“, we trivially have Cg > Cp. So suppose i > 0
and for all rounds 0 < r < i we have C2 > C,. Considering any
particle P;, we have AC{‘,l (Pj) = Ac,_, (Pj) by the induction hy-
pothesis and want to show that A~a(P;) > Ac,(P;). First suppose
the inequality from the induction ﬁypothesis is strict and we have
AC,»A,l (Pj) > Ac,_, (Pj), meaning strictly more energy has been
passed into Pj, ..., Py in the asynchronous setting than in the par-
allel one after rounds i — 1 are complete. Because all successful
energy transfers pass a energy either from the external source
to the root P; or from a parent P; to its child Pj;1, we have that
Acﬁl (Pj) = Ac,_, (Pj) + a. But by Definition 2.4, a particle can
receive at most @ energy per parallel round, so we have:

ACi(Pj) < ACFl (Pj) +a < AclA—l (Pj) < ACiA(Pj).

Thus, it remains to consider when A ~a) (Pj) = Ac,_, (Pj), mean-
ing the amount of energy passed into sz ..., Py is exactly the same
in the asynchronous and parallel settings after rounds i — 1 are
complete. It suffices to show that if P; receives a energy in parallel
round i, then it also does so in asynchronous round i.

We first prove that if P; receives a energy in parallel round i, then
C?_l (Pj) < x — a; i.e,, Pj has enough room in its battery to receive
a energy whenever it is activated in asynchronous round i. There
are two cases: either P; already had enough room in its battery
to receive & energy in parallel round i (i.e., Ci—1(P;) < k¥’ —a) or
it had a full battery (i.e., Ci—1(P;) = k) but passed a energy to
Pj,1 in parallel, “pipelining” energy to make room for the energy
it received. In either case, it is easy to see that C;_1(P;) < k’. By
supposition we have AC? . (Pj) = Ac,_, (Pj) and by the induction
hypothesis we have Acﬁl (Pj+1) = Ac,_, (Pj+1). These yield:

k k
CRy (P = Y CR (P~) CRy(Po)
t=j

s}
=Aca (P)) =Aca (Pj1)
< Ac,_, (Pj) = Ac,_, (Pj+1)

k k
Zci—l(Pt’)— Z Ci-1(Py)
= ¢

=j+1

=Ci-1(Pj) <k’ =xk-a

Thus, regardless of whether P; already had space for a energy or
used pipelining in parallel round i, P; must have space for a energy
at the start of asynchronous round i, as desired.

Next, we show that if P; receives a energy in parallel round
i, then there is at least a energy for P; to receive in asynchro-
nous round i. If Pj is the root, this is trivial: the external source of
energy is its infinite supply. Otherwise, j > 1 and we can show

ICDCN ’21, January 5-8, 2021, Nara, Japan

C{‘_l (Pj-1) 2 a using the supposition Acﬁl (Pj) = Ac,_, (Pj) and
the induction hypothesis Acﬁl (Pj-1) = Ac,_, (Pj-1) in an argu-
ment analogous to the one above (see [6] for details).

Thus, we have shown that if P; receives a energy in parallel
round i, then CI.A_1 (Pj) < kx—aand either j =1 or CIA_I (Pj-1) 2 a,
meaning that at the end of asynchronous round i — 1 there is both
@ energy available to pass to P; and P; has room in its battery to
receive it. Though we do not control the order of activations in
asynchronous round i, additional activations can only increase the
amount of energy available to pass to P; (by, e.g., passing more
energy to Pj_1) and increase the space available in P;.ep,; (by
passing more energy to Pj41). Since the activation sequence A was
assumed to be fair, either j = 1 and P; will be activated at least
once in asynchronous round i or j > 1 and P;_1 will be activated
at least once in asynchronous round i; in either case, P ; will receive
a energy in asynchronous round i. Therefore, in all cases we have
shown that AC? (Pj) = Ac,(Pj), and since the choice of P was

arbitrary, we have Cf\ > C; as desired. O

To conclude the dominance argument, we bound the number
of parallel rounds needed to recharge a path of k particles. Com-
bined with Lemma 2.5, this gives an upper bound on the worst case
number of asynchronous rounds required to do the same.

LEmMA 2.6. Let (Co,...,Cy) be a greedy parallel energy schedule
where Cq is the configuration in which Pj.ep,; =0 foralll <i <k
and Cy is the configuration in which Pi.epq = k' = k — a for all
1<i<k Thent=5k=0(k).

ProoF. If k = 1, then P1 = Py is the root particle that harvests
energy per parallel round from the external source by Definition 2.4.
Since P has no children to which it may pass energy, clearly, within
KE’ = O(k) rounds P; .ep,; = k’ will be satisfied. Now suppose k > 1
and that for all 1 < j < k, a path of j particles fully recharges in
% Jj parallel rounds. Once a particle P; has received energy for the
first time, it is easy to see by inspection of Definition 2.4 that P;
will receive a energy from P;_1 (or the external energy source, in
the case that i = 1) in every subsequent parallel round until P;.epq;
is full. Similarly, Definition 2.4 ensures that P; will pass « energy to
Pj4+1 in every subsequent parallel round until P;.j.ep,; is full. Thus,
once P; receives energy for the first time, P; effectively acts as an
external energy source for the remaining particles Piy1, ..., Pg.

The root P first harvests energy from the external energy source
in parallel round 0, and thus acts as a continuous energy source for
Po, ..., Py in all subsequent rounds. By the induction hypothesis,
we have that P, ..., P, will fully recharge in %(k — 1) parallel
rounds, after which P1 will no longer pass energy to Pa. The root
P; harvests a energy from the source per round and already has
Pj.epqar = @, so in an additional % — 1 parallel rounds we have
P;.epqs = k’. Therefore, the path Py, ..., Py fully rechargesin 1 +
%’(k -1+ KEI -1= %k = O(k) parallel rounds, as required. O

Lemmas 2.3, 2.5, and 2.6 show that an inhibited tree 7 of k
particles will recharge all its stressed particles in at most O(k)
asynchronous rounds. The following lemma shows that within a

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

bounded number of additional rounds, there will be some parti-
cle that is neither inhibited nor stressed and thus can perform an
enabled action (if it has one).

LEmMMA 2.7. Suppose that the last stressed particle in 7 has just
received the energy it needs to perform its next action. If T has depth
dq-, then within 2dg- additional rounds some particle in T~ with a
pending enabled action will be able to perform it.

Proor. Let 7; be the set of particles in 7~ that have enabled
actions to perform. By supposition, all particles in 7; now have
sufficient energy stored in their batteries to perform their actions
(i.e., they are no longer stressed). It remains to bound the time for a
particle in 75 to reset its inhibit flag, the only remaining obstacle
to performing its action.

Let S C 7 be the connected subtree of particles with their stress
flags set. All leaves of S at the start of an asynchronous round are
guaranteed to reset their stress flags by the completion of the round
since they are no longer stressed and do not have children with
stress flags set. A descendant-to-root path in S can have length at
most dg; the depth of tree 7. So in at most dg- rounds, all particles
in 7 will reset their stress flags.

In the first asynchronous round in which the root does not have
any children with their stress flags set, the root resets its inhibit
flag. In each subsequent round, any child whose parent has reset its
inhibit flag will also reset its own inhibit flag. The longest root-to-
descendant path in 7 is of length d-, so in at most dg- rounds there
must exist a particle in 7; that resets its inhibit flag; let P be the
first such particle. Particle P has an enabled action, has sufficient
energy stored, and is not inhibited, so it performs its enabled action
during its next usage phase. O

We conclude our analysis with the following two theorems. Re-
call from Section 1.3 that an algorithm solves the energy distribution
problem in ¢ asynchronous rounds if no particle remains stressed
for more than ¢ rounds and at least one particle is able to perform
an enabled action every ¢ rounds.

THEOREM 2.8. Algorithm Energy-Sharing solves the energy distri-
bution problem in O(n) asynchronous rounds.

Proor. By Lemma 2.1, all n particles in system # will join the
spanning forest # within n asynchronous rounds. Since there is
no communication or energy transfer between different trees of 7,
it suffices to analyze an arbitrary tree 7~ € ¥. By Lemma 2.2, if 7~
contains a stressed particle then all particles of 7~ will be inhibited
within 2dg- rounds, where dg- is the depth of 7. Lemma 2.3 shows
that assuming 7~ has a path structure can only increase the time to
recharge its stressed particles, and Lemmas 2.5 and 2.6 prove that
even in the case that all particles have uniform, maximum demand
—ie, 6(P) = «k for all particles P — all stressed particles will be
distributed enough energy to meet their demand within O(|7|)
rounds. Finally, Lemma 2.7 shows that within 2ds- additional rounds
some particle in 7~ will use its energy to perform its next enabled
action. Therefore, since the depth of 7~ can be at most its size (if 7~
is a path) and its size can be at most the number of particles in the
system (if 7~ is the only tree in), we conclude that Energy-Sharing
solves the energy distribution problem in n+2dq+O(|7|) +2dg =
O(n) asynchronous rounds. O

Bio-Inspired Energy Distribution for Programmable Matter

To establish a lower bound, observe that for a system of n parti-
cles each with a battery capacity of « to fully recharge, the system
needs to harvest and distribute nk total energy. Each particle with
access to an external energy source may only be activated once per
asynchronous round in the worst case. So in this worst case, a sys-
tem with s < n particles with energy access can harvest at most s«
energy from external sources per asynchronous round. This yields
the following theorem, demonstrating that our Energy-Sharing
algorithm is asymptotically optimal when s is a fixed constant.

THEOREM 2.9. The worst case runtime for any local control algo-
rithm to solve the energy distribution problem when s < n particles
have access to external energy sources is Q(n/s) asynchronous rounds.

3 SIMULATION RESULTS

We now present simulations of the Energy-Sharing algorithm.® All
figures in this section use color intensity to indicate the energy level
of a particle’s battery, with more intense color corresponding to
more energy stored. Our first simulation (Figure 2) shows Energy-
Sharing running on a system of 91 particles with a single root
particle that has access to an external energy source. All particles
have a capacity of k = 10 and a transfer rate of @ = 1. To incorporate
energy usage in the simulation, we assume that every particle has a
uniform, repeating demand of §(+, -) = 5 energy per “action”, though
no explicit action is actually performed when the energy is used.
The system is organized as a hexagon with the root at its center for
visual clarity, but the resulting behavior is characteristic of other
initial configurations, root placements, and parameter settings.
All particles are initially idle, with the exception of the root
shown with a gray/black ring (Figure 2a). The setup phase estab-
lishes the spanning forest (or tree, in this case) rooted at particle(s)
with energy access; a particle’s parent direction is shown as an arc.
Since all particles start with empty batteries, stress flags (shown
as red rings) quickly propagate throughout the system and inhibit
flags soon follow (Figure 2b). As energy is harvested by the root and
shared throughout the system, some particles (shown with yellow
rings) receive sufficient energy to meet the demand for their next
action but remain inhibited from using it (Figure 2c). This inhibition
remains until all stressed particles in the system receive sufficient
energy to meet their demands (Figure 2d), at which point particles
(shown with green rings) can reset their inhibit flags and use their
energy (Figure 2e). After using energy, these particles may again
become stressed and trigger another stage of inhibition (Figure 2f).
Our second simulation demonstrates the necessity of the com-
munication phase for effective energy distribution. In Section 1,
we motivated the need for a strategy that leverages the biofilm-
inspired long-range communication of particles’ energy states to
shift between selfish and altruistic energy usage. Figure 3 shows a
simulation with the same initial configuration and parameters as
the first simulation (Figure 2), but with its communication phase
disabled. Without the communication phase to inhibit particles
from using energy while those that are stressed recharge, particles
continuously share any energy they have with their descendants in

3Code for all simulations is openly available as part of AmoebotSim (https://github.com/
SOPSLab/AmoebotSim), a visual simulator for the amoebot model of programmable
matter. Enlarged videos of simulations can be viewed at https://sops.engineering.asu.
edu/sops/energy-distribution.

ICDCN ’21, January 5-8, 2021, Nara, Japan

e e o 0o o o o e o o 0 0o 0 o
e o o 0 0 0 o o e o o 0 o 0 o o
e o o 0o 0 0 0 o o e o o 0 0 0 0 o o
e o o 0o 0 0 0 0 o o ® e o 0o 0 0 0 0 0 o
e o 06 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 o
e o 0o 0 0 0 0 0 0 o e o 0o 0 0 0 0 0 0 o
e e 0o 0 0 0 0 o o e e o 0 0 0 0 o o
e e o 0 0 0 o o e o o o 0o 0 o o
e e o 0o 0 o o e o o o o o o

(a) t = 0 async. rounds (b) t =10

e o o o o o e o o o o o
e o o o o o o e o o o o o o
o o 0 06 060 00 o o 0o 00 0 00
® & & o o o o o o ® & & o o o 0 o o
o & o o o o o o o o
e o 00 @e o0 0 e

e o 0o 0 0 0 0 0 0 0
e o o 0o 0o ® o o o o o
e o 0 0 0 0 0 0 0 o
e o 0o 0 0 0 0 0 o © o 0 0 0 0 0 0 o
e e 0o 0 0 0 0 o e e o 0 0 0 o o
e o 0o 0o 0 o o o e o 0 0 0o o

(© =100 @t =190
e o 0 @® @ 0 0 0 0 0 R SORC
e o 0 0@ o 0 o o

e e 0o 0o 0 0 0 o o
e e o 0 0 0o o o

(&)t =191 (F)t =192

Figure 2: A simulation of Energy-Sharing on 91 particles
with one root, x = 10, = 1, and a repeating uniform de-
mand of §(-,-) = 5 for all particles. The black particle is the
root, red particles have their stress flags and possibly also
their inhibit flags set, yellow particles have only their in-
hibit flags set, and green particles have no flags set.

the spanning forest. Thus, while the leaves of the spanning forest
occasionally meet their energy demands (bold green particles in
Figure 3b-3d), even after 1000 rounds most particles have still not
met their energy demand even once.

4 EXTENSIONS

With our energy distribution algorithm in place, we now present
useful extensions. We begin by considering particle crash failures
in which a particle stops functioning and no longer participates
in the collective behavior. Crash failures pose a key challenge for
Energy-Sharing: they disrupt the structure of the spanning forest 7
that the particles use for routing energy and communicating their
energy states. To achieve robustness to these crash failures, we
present algorithm Forest-Prune-Repair that enables the spanning
forest to self-repair so long as certain assumptions on the loca-
tions of faulty particles hold (Sections 4.1-4.2). We then show how
Forest-Prune-Repair can be leveraged to compose Energy-Sharing
with existing algorithms in the amoebot catalogue, effectively gen-
eralizing all previous work on the amoebot model to also consider
energy constraints (Section 4.3).

https://github.com/SOPSLab/AmoebotSim
https://github.com/SOPSLab/AmoebotSim
https://sops.engineering.asu.edu/sops/energy-distribution
https://sops.engineering.asu.edu/sops/energy-distribution

ICDCN ’21, January 5-8, 2021, Nara, Japan

e e o 0 o o o e e o 0o o o o
e o o 0 o 0 o o e e o 0 0 0 o o
e o o 0o 0 0 0 o o e o o 0o 0 0 0 0 o
® o o 0 0 0 0 0 0 o e o o 0o 0 0 0 0 o o
e o 0o 0 0 0 0 0 0 0 o e o 0o 0 0 0 0 0 0 0 o
® o 0o 0 0 0 0 0 0 o e e o 0 0 0 0 0 o o
e o o 0 0 0 0 o o e o 0o 0 0 0 0 o o
e e o 0 0 0 o o e o o 0 0 0 o o
e e o 0 0o o o e e o 0 0 o o

(a) t = 1 async. round (b) t =50

e o o 0o 0 0 0 o o e o o 0 0 0 0 o o

e o o 0 0 0 o o e o o 0 0 0 o o

(¢) t =200 (d) ¢ = 1000

Figure 3: A simulation of Energy-Sharing with the same ini-
tial configuration and parameters as in Figure 2, but with the
communication phase disabled. Without communication to
set stress and inhibit flags, all particles remain uninhibited
(green), but only the leaves of the spanning forest ever amass
enough energy to meet their demands.

We make three assumptions about crashed particles. First, the
neighbors of a crashed particle can detect that it is crashed. Second,
the subgraph induced by the positions of non-crashed particles must
remain connected at all times; otherwise, there may be no way for
components of non-crashed particles to communicate. Third, there
must always be at least one non-crashed root particle; otherwise,
the system would lose access to all external energy sources. We
do not claim that these detection, connectivity, and root-reliability
assumptions are necessary for fault tolerance, but each addresses a
non-trivial challenge that is beyond the scope of this work.

4.1 The Forest-Prune-Repair Algorithm

In the context of our energy distribution algorithm, crash failures
partition the spanning forest ¥ into “non-faulty” trees #* that
are rooted at particles with energy access and “faulty” trees ¥’
that are disconnected from any external energy source. Together,
F*UF’ form a forest that spans all non-crashed particles. To make
our algorithms robust to these faults, we present Forest-Prune-
Repair, a local, ad hoc reconstruction that self-repairs # to reform
a spanning forest of trees rooted at particles with energy access.
Algorithm Forest-Prune-Repair works as follows. When a parti-
cle P finds that its parent has crashed, it knows it has become the
root of a faulty tree in F”. In response, P broadcasts a “prune sig-
nal” throughout this new tree by setting a prune flag in each of its
children’s memories, informing its descendants of the crash failure.
It then clears its parent pointer, resets all flags, and becomes idle.
Any particle that has its prune flag set does the same, effectively
dissolving the faulty tree. Idle particles then rejoin an existing tree
in a manner similar to the setup phase described in Section 2.1.
When activated, an idle particle P considers all its root or active

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

neighbors that do not have their prune flag set. Of these particles,
P chooses one to be its parent in a round-robin manner; i.e., if P is
ever pruned again, it chooses the next such particle to be its parent.

Integrating Forest-Prune-Repair with Energy-Sharing is straight-
forward. In the setting where the system is subject to crash faults,
Forest-Prune-Repair simply replaces the setup phase described in
Section 2.1. A particle proceeds with the communication, sharing,
and usage phases if it is not idle and its parent is not crashed.

4.2 Analysis

We now analyze Forest-Prune-Repair, beginning with two straight-
forward lemmas that we state without proofs due to space con-
straints. Proofs can be found in [6]; the proof of Lemma 4.2 uses
techniques identical to those of Lemma 2.2.

LEMMA 4.1. If a non-faulty tree T € F* is initially acyclic, then
under Forest-Prune-Repair it will remain acyclic. Moreover, there will
always be at least one tree in F*.

LEMMA 4.2. Suppose a particle crashes, yielding a new faulty tree
T € F'. For any particle P at depth d in tree T, P will be pruned
(i.e., set its children’s prune flags, clear its memory, and become idle)
in at most d asynchronous rounds.

Under Forest-Prune-Repair, a pruned particle P chooses its new
parent Q from among its root or active neighbors that do not have
their prune flags set. There are two cases: (1) Q is in a non-faulty
tree, meaning P has rejoined ¥ as desired, or (2) Q is in a faulty
tree, say 7 € F’. In the latter case, there must be prune flags
propagating throughout 7 because 7~ € ¥, so Lemma 4.2 shows
P will now be pruned again, this time from 7.

An especially bad version of this case would occur if a particle
continually rejoined the tree it is pruning by choosing one of its
descendants as its new parent. In fact, if this choice is not made
carefully, it is possible that such a particle would always choose a
descendant as its parent and thus never rejoin F*. We refer to this
situation as a chase cycle due to the way the prune flag propagation
“chases” the rejoining particles. However, since particles choose
their new parents from among their eligible neighbors in a round-
robin manner, chase cycles cannot continue for long:

LEMMA 4.3. Suppose a particle P in faulty tree T € ¥ has at least
one neighbor in a non-faulty tree of ¥ *. Then the number of times P
will be pruned before it rejoins F* is at most 6.

Proor. Each time P is pruned, it chooses a new parent from
among its active or root neighbors that do not have their prune
flags set. By supposition, P has at least one such neighbor in a tree
of ¥*. Moreover, its neighbor(s) in #* will always be in the set
of eligible new parents since every particle in a non-faulty tree is
either a root or is active and is never pruned. By Lemma 4.2, P will
be pruned again each time it chooses a parent in a faulty tree of 7.
In a round-robin selection, P can choose each neighbor in ¥ as
its parent at most once before choosing a parent in F*, as desired.
Every particle has at most 6 neighbors, so in the worst case the
number of times P will be pruned before it rejoins F* is 6. O

We conclude by bounding the stabilization time of Forest-Prune-
Repair, which captures the time required for all particles to rejoin
non-faulty trees once the last crash failure has occurred. We note

Bio-Inspired Energy Distribution for Programmable Matter

that our bound does not directly depend on the number of crash
failures f, but rather on the number of non-crashed particles m
removed from non-faulty trees as a result of the crash failures.

THEOREM 4.4. Suppose f < n particles crash (where n = |P|),
yielding faulty trees F. If no other particles crash, all m = |F’|
non-crashed particles rejoin ¥* in O(m?) rounds in the worst case.

Proor. If m = 1, then by Lemma 4.1 and the connectivity as-
sumption all non-crashed neighbors of the single non-crashed par-
ticle P ¢ ¥* must be in ¥*. By Lemma 4.2, P will be pruned in one
round; P will then choose a neighbor in #* as its new parent in its
next activation. So P rejoins F* in at most O(1) = O(m?) rounds.

Now suppose m > 1. Again by Lemma 4.1 and the connectivity
assumption, there must exist a non-crashed particle P € ¥ with
a neighbor in ¥*. By Lemma 4.2, P will be pruned in at most m
rounds since the depth of P in its faulty tree can be at most the
total number of particles in faulty trees. Particle P will then choose
a new parent from among its eligible neighbors; if it chooses any
neighbor in ¥ as its new parent, it will again be pruned in at most
another m rounds by Lemma 4.2. By Lemma 4.3, P will in the worst
case need to repeat this process 6 times before choosing a neighbor
in F* as its new parent. Thus, P rejoins #* in O(m) rounds. This
leaves m — 1 non-crashed particles in ¥’ needing to rejoin ¥*. By
the induction hypothesis, these particles rejoin * in O((m — 1)?)
rounds, so we conclude that all m non-crashed particles in ¥ will
rejoin F* in O((m — 1)2) + O(m) = O(m?) rounds. O

4.3 Algorithm Composition

We ultimately envision Energy-Sharing as a subprocess that is exe-
cuted continuously, handling the energy demands of higher level
algorithms for the system’s self-organizing behaviors. In particular,
if every action of an amoebot algorithm was assigned an energy cost,
Energy-Sharing must supply each particle with sufficient energy
to meet these costs. However, many amoebot algorithms involve
particle movements that would necessarily disrupt the spanning
forest ¥ maintained by Energy-Sharing for energy routing and
communication. Just as was the case for crash failures (Section 4.1),
this necessitates a protocol for repairing ¥ as particles move, dis-
connecting from existing neighbors and gaining new ones.

We can repurpose Forest-Prune-Repair to address moving parti-
cles with a simple modification. In this setting, instead of a particle
initiating the pruning of its subtree if it detects that its parent
has crashed, it initiates the pruning of its subtree and additionally
prunes itself (unless it is an energy root) whenever it moves accord-
ing to the higher level algorithm. The rest of Forest-Prune-Repair
stays the same with the pruning broadcast dissolving the subtree
and the resulting idle particles rejoining elsewhere.

With this modification in place, Energy-Sharing can be composed
with any amoebot algorithm A requiring energy distribution so
long as (1) the battery capacity « is at least as large as the demand of
the most energy-intensive action in (A, and (2) A maintains system
connectivity at all times (this is sufficient to satisfy the connectivity
assumption of Section 4 since no particles actually crash). Note that
A need not satisfy the root-reliability assumption; since each root
is not actually crashing when it moves, the system maintains its
access to external energy sources so long as it remains connected.

ICDCN ’21, January 5-8, 2021, Nara, Japan

(¢) ¢t = 1000 (d) £ = 2000

Figure 4: A simulation of basic shape formation on 91 parti-
cles composed with Energy-Sharing with one root, x = 10,
a = 1, and action demand §(-,-) = 5. The communica-
tion structure is maintained by Forest-Prune-Repair. Parti-
cle color and parent directions are visualized with respect
to Energy-Sharing. The energy root moves according to the
shape formation algorithm and need not be centered.

Actions required by algorithm A are handled in the usage phase
of Energy-Sharing. If some particle P has an action to perform
according to algorithm A, then if P has sufficient stored energy
and is not inhibited, it spends the energy and performs the ac-
tion; otherwise, it foregoes its action this activation. For example,
Figure 4 shows Energy-Sharing composed with the algorithm for
basic shape formation [5, 8] forming a hexagon. Theorem 2.8 en-
sures that all n particles will meet their energy needs and at least
one particle will be able to perform an enabled action every O(n)
asynchronous rounds. By Theorem 4.4, any disruption to the com-
munication structure caused by actions involving movements will
be repaired in O(m?) asynchronous rounds, where m is the num-
ber of particles severed from the communication structure. Thus,
Energy-Sharing will not impede the progress of A but — accord-
ing to our proven bounds — may add significant overhead to its
runtime. However, we observe reasonable performance in practice:
for example, since hexagon formation terminates in O(n) rounds,
our proven bounds suggest that the composed algorithm could
terminate in time O(n?) or worse but Figure 5 demonstrates an
overhead that appears asymptotically sublinear. With the addition
of more energy roots, the composed algorithm is dramatically faster,
approaching the runtime achieved without energy constraints [6].

5 CONCLUSION

In this work, we extended the amoebot model to include energy
considerations. Our bacterial biofilm-inspired algorithm for energy
distribution is guaranteed to meet the energy demands of a sys-
tem of n particles at least once every O(n) asynchronous rounds
and is asymptotically optimal when the number of external energy

ICDCN ’21, January 5-8, 2021, Nara, Japan

Impact of Energy Distribution Composition on Runtime

14000 A —— Hexagon Formation
Energy + Hexagon
12000 A n
nin”~2(n)

g n"~2
S 10000 1
i=}
-4
g
< 8000 +
%)
<
& 6000 -
v
£
<
S 4000 -
4

2000

0 L T T T T T T
0 50 100 150 200 250

Particles

Figure 5: Runtimes of the basic shape formation algorithm
alone (blue) vs. when it is composed with Energy-Sharing
(yellow) as a function of system size. Each experiment was
repeated 20 times; average runtime is shown as a solid line
and standard deviation is shown as an error tube. Asymp-
totic runtime bounds are shown as dotted lines; the com-
posed algorithm tracks most closely with O(nlog? n).

sources is fixed. Existing amoebot model algorithms satisfying some
basic assumptions can be generalized to respect energy constraints
through composition with our energy distribution and spanning
forest repair algorithms. Moreover, the spanning forest repair algo-
rithm will be independently useful for future work in addressing
fault tolerance for existing amoebot model algorithms.

Our goal in this work was to meet the energy demands of fixed-
sized particle systems as they execute algorithm actions. One could
also consider using energy for reproduction, mimicking the bacterial
biofilms that inspired our algorithm. In preliminary simulations [6],
we obtain behavior that is qualitatively similar to the biofilm growth
patterns observed by Liu and Prindle et al. [17, 24]; in particular,
the use of communication and inhibition leads to an oscillatory
growth rate. Further work is needed to formally characterize our
algorithm’s behavior for these growing, dynamic systems.

ACKNOWLEDGMENTS

The authors gratefully acknowledge their support from the Na-
tional Science Foundation under awards CCF-1637393 and CCF-
1733680 and from the U.S. Department of Defense under MURI
award #W911NF-19-1-0233. We thank Prof. Deborah Gordon and
Prof. Saket Navlakha for their pointers to research on bacterial
biofilms and their helpful discussions that initiated this work. We
also thank Prof. Theodore Pavlic for generously sharing his knowl-
edge of bio-inspired approaches to energy management in swarm
robotics. Finally, we thank undergraduate researcher Christopher
Boor for his contributions to a preliminary version of this work.

REFERENCES

[1] Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, and René Per-
alta. 2006. Computation in networks of passively mobile finite-state sensors.
Distributed Computing 18, 4 (2006), 235-253.

[2

[3

=
&

=
&

[16]

[17

[18

[19

™
=

[21

[22

[23

[24]

™~
2

[26

[27

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber

Palina Bartashevich, Doreen Koerte, and Sanaz Mostaghim. 2017. Energy-saving
decision making for aerial swarms: PSO-based navigation in vector fields. In 2017
IEEE Symposium Series on Computational Intelligence (SSCI '17). 1-8.

Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

Jason Campbell, Padmanabhan Pillai, and Seth Copen Goldstein. 2005. The Robot
is the Tether: Active, Adaptive Power Routing for Modular Robots With Unary
Inter-robot Connectors. In 2005 IEEE/RSY International Conference on Intelligent
Robots and Systems (IROS °05). IEEE, 4108-4115.

Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Schei-
deler. 2019. Computing by Programmable Particles. In Distributed Computing by
Mobile Entities: Current Research in Moving and Computing. 615-681.

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. 2020. Bio-Inspired
Energy Distribution for Programmable Matter. (2020). Available online at https:
//arxiv.org/abs/2007.04377.

Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian
Scheideler, and Thim Strothmann. 2014. Brief Announcement: Amoebot - A New
Model for Programmable Matter. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’14). 220-222.

Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andrea W.
Richa, and Christian Scheideler. 2015. Leader Election and Shape Formation
with Self-organizing Programmable Matter. In DNA Computing and Molecular
Programming. 117-132.

Shlomi Dolev, Sergey Frenkel, Michael Rosenblit, Ram Prasadh Narayanan, and
K Muni Venkateswarlu. 2016. In-vivo energy harvesting nano robots. In 2016
IEEE International Conference on the Science of Electrical Engineering. 1-5.

Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro (Eds.). 2019. Distributed
Computing by Mobile Entities. Springer International Publishing, Switzerland.
Kyle Gilpin, Ara Knaian, and Daniela Rus. 2010. Robot pebbles: One centime-
ter modules for programmable matter through self-disassembly. In 2010 IEEE
International Conference on Robotics and Automation (ICRA ’10). 2485-2492.
Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian
Rudolph, and Christian Scheideler. 2018. Shape Recognition by a Finite Au-
tomaton Robot. In 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS ’18). 52:1-52:15.

Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian
Rudolph, Christian Scheideler, and Thim Strothmann. 2019. Forming tile shapes
with simple robots. Natural Computing (2019).

Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. 2005. Pro-
grammable Matter. Computer 38, 6 (2005), 99-101.

Serge Kernbach. 2013. Handbook of Collective Robotics: Fundamentals and Chal-
lenges. Jenny Stanford Publishing.

Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. 2020. A
scalable pipeline for designing reconfigurable organisms. Proceedings of the
National Academy of Sciences 117, 4 (2020), 1853-1859.

Jintao Liu, Arthur Prindle, Jacqueline Humphries, Mar¢al Gabalda-Sagarra, Mune-
hiro Asally, Dongyeon D. Lee, San Ly, Jordi Garcia-Ojalvo, and Giirol M. Siiel.
2015. Metabolic co-dependence gives rise to collective oscillations within biofilms.
Nature 523 (2015), 550-554.

Bruce J. MacLennan. 2015. The Morphogenetic Path to Programmable Matter.
Proc. IEEE 103, 7 (2015), 1226-1232.

Othon Michail, George Skretas, and Paul G. Spirakis. 2019. On the transformation
capability of feasible mechanisms for programmable matter. J. Comput. System
Sci. 102 (2019), 18-39.

Sanaz Mostaghim, Christoph Steup, and Fabian Witt. 2016. Energy Aware Particle
Swarm Optimization as search mechanism for aerial micro-robots. In 2016 IEEE
Symposium Series on Computational Intelligence (SSCI ’16). 1-7.

Nils Napp, Samuel Burden, and Eric Klavins. 2011. Setpoint regulation for stochas-
tically interacting robots. Autonomous Robots 30, 1 (2011), 57-71.

Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron,
and Magnus Egerstedt. 2017. The Robotarium: A remotely accessible swarm
robotics research testbed. In 2017 IEEE International Conference on Robotics and
Automation (ICRA ’17). 1699-1706.

Benoit Piranda and Julien Bourgeois. 2018. Designing a quasi-spherical module
for a huge modular robot to create programmable matter. Autonomous Robots 42
(2018), 1619-1633.

Arthur Prindle, Jintao Liu, Munehiro Asally, San Ly, Jordi Garcia-Ojalvo, and
Giirol M. Siiel. 2015. Ton channels enable electrical communication in bacterial
colonies. Nature 527 (2015), 59-63.

Tommaso Toffoli and Norman Margolus. 1991. Programmable matter: Concepts
and realization. Physica D: Nonlinear Phenomena 47, 1 (1991), 263-272.
Hongxing Wei, Bin Wang, Yi Wang, Zili Shao, and Keith C.C. Chan. 2012. Staying-
alive path planning with energy optimization for mobile robots. Expert Systems
with Applications 39, 3 (2012), 3559-3571.

Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree,
and Peng Yin. 2013. Active Self-Assembly of Algorithmic Shapes and Patterns
in Polylogarithmic Time. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science (ITCS ’13).

https://arxiv.org/abs/2007.04377
https://arxiv.org/abs/2007.04377

	Abstract
	1 Introduction
	1.1 Biological Inspiration
	1.2 The Amoebot Model
	1.3 Our Results

	2 The Energy Distribution Algorithm
	2.1 Algorithm Energy-Sharing
	2.2 Analysis

	3 Simulation Results
	4 Extensions
	4.1 The Forest-Prune-Repair Algorithm
	4.2 Analysis
	4.3 Algorithm Composition

	5 Conclusion
	Acknowledgments
	References

