
Convex Hull Formation for Programmable Matter
Joshua J. Daymude

Arizona State University

Computer Science, CIDSE

Tempe, AZ, USA

jdaymude@asu.edu

Robert Gmyr

University of Houston

Department of Computer Science

Houston, TX, USA

rgmyr@uh.edu

Kristian Hinnenthal

Paderborn University

Department of Computer Science

Paderborn, Germany

krijan@mail.upb.de

Irina Kostitsyna

TU Eindhoven

Department of Mathematics and

Computer Science

Eindhoven, The Netherlands

i.kostitsyna@tue.nl

Christian Scheideler

Paderborn University

Department of Computer Science

Paderborn, Germany

scheidel@mail.upb.de

Andréa W. Richa

Arizona State University

Computer Science, CIDSE

Tempe, AZ, USA

aricha@asu.edu

ABSTRACT
We envision programmable matter as a system of nano-scale agents

(called particles) with very limited computational capabilities that

move and compute collectively to achieve a desired goal. Motivated

by the problem of sealing an object using minimal resources, we

show how a particle system can self-organize to form an object’s

convex hull. We give a distributed, local algorithm for convex hull

formation and prove that it runs in O(B) asynchronous rounds,
where B is the length of the object’s boundary. Within the same

asymptotic runtime, this algorithm can be extended to also form

the object’s (weak) O-hull, which uses the same number of particles

but minimizes the area enclosed by the hull. Our algorithms are

the first to compute convex hulls with distributed entities that have

strictly local sensing, constant-size memory, and no shared sense of
orientation or coordinates. Ours is also the first distributed approach
to computing restricted-orientation convex hulls. This approach

involves coordinating particles as distributed memory; thus, as

a supporting but independent result, we present and analyze an

algorithm for organizing particles with constant-size memory as

distributed binary counters that efficiently support increments,

decrements, and zero-tests — even as the particles move.

CCS CONCEPTS
• Theory of computation → Self-organization; Distributed al-
gorithms; Computational geometry.

KEYWORDS
programmable matter, self-organization, distributed algorithms,

computational geometry, convex hull, restricted-orientation geom-

etry

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICDCN 2020, January 4–7, 2020, Kolkata, India
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7751-5/20/01. . . $15.00

https://doi.org/10.1145/3369740.3372916

ACM Reference Format:
Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna,

Christian Scheideler, and Andréa W. Richa. 2020. Convex Hull Formation

for Programmable Matter. In 21st International Conference on Distributed
Computing and Networking (ICDCN 2020), January 4–7, 2020, Kolkata, India.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3369740.3372916

1 INTRODUCTION
The vision for programmable matter [25] is to realize a physical

material that can dynamically alter its properties (shape, density,

conductivity, etc.) in a programmable fashion, controlled either by

user input or its own autonomous sensing of its environment. Such

systems would have broad engineering and societal impact with

applications such as reusable construction materials, self-repairing

spacecraft components, and even nanoscale medical devices. While

the form factor of each programmable matter system would vary

widely depending on its intended application domain, a budding

theoretical investigation has formed over the last decade into the

algorithmic underpinnings common among these systems. In partic-

ular, the unifying inquiry is to better understand what sophisticated,
collective behaviors are achievable by a programmable matter sys-

tem composed of simple, limited computational units. Towards this
goal, many theoretical works, complementary simulations, and

even a recent experimental study [24] have been conducted using

the amoebot model [8] for self-organizing particle systems.
In this paper, we give a local, distributed algorithm for convex

hull formation (formally defined within our context in Section 1.2)

under the amoebot model. Though this well-studied problem is

usually considered from the perspectives of computational geom-

etry and combinatorial optimization as an abstraction, we treat

it as the task of forming a physical seal around a static object us-

ing as few particles as possible. This is an attractive behavior for

programmable matter, as it would enable systems to, for example,

isolate and contain oil spills [28], mimic the collective transport

capabilities seen in ant colonies [17, 18], or surround and engulf

malignant entities in the human body as phagocytes do [1]. Though

our algorithm is certainly not the first distributed approach taken

to computing convex hulls, to our knowledge it is the first to do so

with distributed computational entities that have no sense of global
orientation nor of their coordinates and are limited to only local sens-
ing and constant-size memory. Moreover, to our knowledge ours is

https://doi.org/10.1145/3369740.3372916
https://doi.org/10.1145/3369740.3372916


ICDCN 2020, January 4–7, 2020, Kolkata, India J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa

(a)

0 1
2
3
4
5

0
12

3
4 5

6
7
8
9

(b)

Figure 1: (a) Expanded and contracted particles (black cir-
cles) on the triangular latticeG∆ (gray). Particleswith a black
line between their nodes are expanded. (b) Two particles
with different offsets for their port labels.

the first distributed approach to computing restricted-orientation

convex hulls, a generalization of usual convex hulls (see definitions

in Section 1.1). Finally, our algorithm has a gracefully degrading

property: when the number of particles is insufficient to form an

object’s convex hull, a maximal partial convex hull is still formed.

Due to space constraints, many details are omitted from this

conference paper. A complete version of this paper with all proofs,

extensions, and pseudocode can be found on arXiv [6].

1.1 The Amoebot Model
In the amoebot model [8],1 programmable matter consists of in-

dividual, homogeneous computational elements called particles.
Any structure that a particle system can form is represented as a

subgraph of an infinite, undirected graphG = (V , E)whereV repre-

sents all positions a particle can occupy and E represents all atomic

movements a particle can make. Each node can be occupied by at

most one particle. The geometric amoebot model further assumes

G = G∆, the triangular lattice (Figure 1a).

Each particle occupies either a single node in V (i.e., it is con-
tracted) or a pair of adjacent nodes in V (i.e., it is expanded), as in
Figure 1a. Particles move via a series of expansions and contractions:
a contracted particle can expand into an unoccupied adjacent node

to become expanded, and completes its movement by contracting

to once again occupy a single node. An expanded particle’s head is

the node it last expanded into and the other node it occupies is its

tail; a contracted particle’s head and tail are both the single node it

occupies.

Two particles occupying adjacent nodes are said to be neighbors.
Neighboring particles can coordinate their movements in one of

two types of handovers. A contracted particle P can “push” an

expanded neighbor Q by expanding into a node occupied by Q ,
forcing it to contract. Alternatively, an expanded particle Q can

“pull” a contracted neighbor P by contracting, forcing P to expand

into the node it is vacating.

Each particle keeps a collection of ports — one for each edge

incident to the node(s) it occupies — that have unique labels from

its own local perspective. Although each particle is anonymous,
lacking a unique identifier, a particle can locally identify any given

neighbor by its labeled port corresponding to the edge between

1
See [8] for a full description of the model including omitted details that are not

necessary for convex hull formation.

them. Particles do not share a coordinate system or global compass

and may have different offsets for their port labels, as in Figure 1b.

Each particle has a constant-size local memory that it and its

neighbors can directly read from and write to for communication.
2

However, particles do not have any global information and — due

to the limitation of constant-size memory — cannot locally count

or estimate the total number of particles in the system.

The system progresses asynchronously through atomic actions.
In the amoebot model, an atomic action corresponds to a single

particle’s activation, in which it can (i) perform a constant amount

of local computation involving information it reads from its local

memory and its neighbors’ memories, (ii) directly write updates

to at most one neighbor’s memory, and (iii) perform at most one

expansion or contraction. We assume these actions preserve atom-
icity, isolation, fairness, and reliability. Atomicity requires that if an

action is aborted before its completion (e.g., due to a conflict), any

progress made by the particle(s) involved in the action is completely

undone. A set of concurrent actions preserves isolation if they do

not interfere with each other; i.e., if their concurrent execution pro-

duces the same end result as if they were executed in any sequential

order. Fairness requires that each particle successfully completes an

action infinitely often. Finally, for this work, we assume reliability,

meaning all particles are non-faulty.

While it is straightforward to ensure atomicity and isolation

in each particle’s immediate neighborhood (using a simple lock-

ing mechanism), particle writes and expansions can influence the

2-neighborhood and thus must be handled carefully.Conflicts of

movement can occur when multiple particles attempt to expand

into the same unoccupied node concurrently. These conflicts are

resolved arbitrarily such that at most one particle expands into a

given node at any point in time.

It is well known that if a distributed system’s actions are atomic

and isolated, any set of such actions can be serialized [4]; i.e., there

exists a sequential ordering of the successful (non-aborted) actions

that produces the same end result as their concurrent execution.

Thus, while in reality many particles may be active concurrently,

it suffices when analyzing amoebot algorithms to consider a se-

quence of activations where only one particle is active at a time.

By our fairness assumption, if a particle P is inactive at time t in
the activation sequence, P will be (successfully) activated again at

some time t ′ > t . An asynchronous round is complete once every

particle has been activated at least once.

Additional Terminology for Convex Hulls. We now define some

terminology specific to our application of convex hull formation.

An object O ⊂ V is a static, finite, simply connected set of nodes.

The boundary B(O) of an object O is the set of all nodes in V \O
that are adjacent to O . An object contains a tunnel of width 1 if

its boundary is 1-connected. We assume particles can differentiate

between object nodes and nodes occupied by other particles.

To generalize the notions of convexity and convex hulls to our

discrete setting on the triangular lattice, we introduce the concepts

of restricted-orientation convexity (also known as O-convexity) and
strong restricted-orientation convexity (or strong O-convexity) which
are well established in computational geometry [13, 23]. In the

2
Here, we assume the direct write communication extension of the amoebot model as

it enables a simpler description of our algorithms; see [8] for details.



Convex Hull Formation for Programmable Matter ICDCN 2020, January 4–7, 2020, Kolkata, India

(a) (b)

Figure 2: An object O (black) with a tunnel of width 1 on
its right side and its (a) O-hull (dashed line) and O∆-hull
H ′(O) (solid black line), and (b) strong O-hull (dashed line)
and strong O∆-hull H (O) (solid black line).

continuous setting, given a set of orientations O in R2, a geometric

object is said to be O-convex if its intersection with every line with

an orientation from O is empty or connected. The O-hull of an
object A is the intersection of all O-convex sets containing A, or,
equivalently, the minimal O-convex set containing A. An O-block
of two points in R2 is the intersection of all half-planes defined by

lines with orientations in O that contain both points. The strong
O-hull of a geometric objectA is the minimal O-block containingA.

For our discrete setting, let O be the orientation set of G∆, i.e.,

the three orientations of axes of the triangular lattice. The (weak)
O∆-hull of object O , denoted H ′(O), is the set of nodes in V \ O
adjacent to the O-hull of O in R2 (Figure 2a). Analogously, the

strong O∆-hull of object O , denoted H (O), is the set of nodes in

V \O adjacent to the strong O-hull ofO in R2 (Figure 2b). We offset

the hulls from their traditional definitions by one layer of nodes

since particles cannot occupy nodes of O . Unless there is a risk of

ambiguity, we will use the terms “strong O∆-hull” and “convex hull”

interchangeably throughout this work.

1.2 Our Results
An instance of the strong O∆-hull (convex hull) formation problem
has the form (P,O)whereP is a finite, connected system of initially

contracted particles and O ⊂ V is an object. Let B = |B(O)| denote
the length of the object’s boundary and H = |H (O)| denote the

length of the object’s convex hull. We assume that (i) P contains

a unique leader particle ℓ initially adjacent to O ,3 (ii) there are at
least |P | > log

2
(H ) particles in the system, and (iii) O does not

have any tunnels of width 1.
4
A local, distributed algorithm A

solves an instance (P,O) of the convex hull formation problem if,

when each particle executes A individually, P is reconfigured so

that every node of H (O) is occupied by a contracted particle. The

O∆-hull formation problem can be stated analogously.

We present a local, distributed algorithm for the strong O∆-
hull formation problem that runs inO(B) rounds and later show
how it can be extended to also solve the O∆-hull formation prob-
lem in an additional O(H ) rounds. Our algorithm is gracefully

degrading: if there are insufficient particles to completely fill the

3
One could use the leader election algorithm for the amoebot model in [7] to obtain

such a leader in O(|P |) asynchronous rounds, with high probability. Removing this

assumption would simply change all the deterministic guarantees given in this work

to guarantees with high probability.

4
We believe our algorithm could be extended to handle tunnels of width 1 in objectO ,

but this would require technical details beyond the scope of this conference paper.

convex hull with contracted particles (i.e., if |P | < H ) our algorithm

will still form a maximal partial convex hull. To our knowledge, our

algorithm is the first to address distributed convex hull formation

using entities that have no sense of global orientation nor of their

coordinates and are limited to only constant-size memory and local

communication. It is also the first distributed algorithm for forming

restricted-orientation convex hulls (see Section 1.3).

Our approach relies on the leader maintaining and updating

the distances from its current position to each of the half-planes

whose intersection composes the object’s convex hull. However,

these distances can far exceed the constant-size memory capacity

of an individual particle. To address this problem, we give new

results on coordinating a particle system as a distributed binary

counter that supports increments and decrements by one as well as

zero-testing, or testing the counter value’s equality to zero. These

results supplant existing work on increment-only distributed binary

counters under the amoebot model [21]. Moreover, these results

are agnostic of convex hull formation and can be used as a modular

primitive for future applications.

1.3 Related Work
The convex hull problem is one of the best-studied problems in

computational geometry. Many parallel algorithms have been pro-

posed to solve it (e.g., [2, 12, 14]), as have several distributed al-

gorithms [11, 19, 22]. However, conventional models of parallel

and distributed computation assume that the computational and

communication capabilities of the individual processors far exceed

those of individual particles of programmable matter. Most com-

monly, processors are assumed to know their global coordinates and

can communicate non-locally. Particles in the amoebot model have

only constant-size memory and can communicate only with their

immediate neighbors. Furthermore, the object’s boundary may be

much larger than the number of particles, making it impossible for

the particle system to store all the geographic locations. Finally, to

our knowledge, there only exist centralized algorithms to compute

(strong) restricted-orientation convex hulls (see, e.g., [16] and the

references therein); ours is the first to do so in a distributed setting.

The amoebot model for self-organizing particle systems is an

active system of programmable matter — in which the computa-

tional units have control over their own movements and actions —

as opposed to a passive system such as population protocols and

models of molecular self-assembly (e.g., [3, 20]). Other active sys-

tems include modular self-reconfigurable robot systems (e.g., [27]

and the references therein), the nubot model for molecular com-

puting [26], and mobile robots (see [15] and the references therein)

where robots abstracted as points in the real plane or on graphs

solve problems such as pattern formation and gathering. A notable

difference between the amoebot model and the mobile robots lit-

erature is in their treatment of progress and time: mobile robots

progress according to fine-grained “look-compute-move” cycles

where actions are comprised of exactly one look, move, or compute

operation. In comparison — at the scale where particles can only

perform a constant amount of computation and are restricted to

immediate neighborhood sensing — the amoebot model assumes

coarser atomic actions (as described in Section 1.1).



ICDCN 2020, January 4–7, 2020, Kolkata, India J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa

Lastly, we distinguish convex hull formation from the related

problems of shape formation and object coating, both of which have

been studied under the amoebot model. Like shape formation [9],

convex hull formation is a task of reconfiguring a particle system’s

shape; however, the desired hull shape is based on the object and

thus is not known to the particles ahead of time. Object coating [10]

also depends on an object, but may not form a convex seal using

the minimum number of particles.

1.4 Organization
Our convex hull formation algorithm has two phases: the particle

system first explores the object to learn the convex hull’s dimen-

sions, and then uses this knowledge to form the convex hull. In

Section 2, we introduce the main ideas behind the learning phase

as a novel local algorithm run by a single particle with unbounded

memory. We then give new results on organizing a system of par-

ticles each with O(1) memory into binary counters in Section 3.

Combining the results of these two sections, we present the full dis-

tributed algorithm for learning and forming the strong O∆-hull in

Section 4. We conclude by presenting an extension of our algorithm

to solve the O∆-hull formation problem in Section 5.

2 THE SINGLE-PARTICLE ALGORITHM
We first consider a particle system composed of a single particle P
with unbounded memory and present a local algorithm for learning

the strong O∆-hull of objectO . As will be the case in the distributed

algorithm, particle P does not know its global coordinates or orien-

tation. We assume P is initially on B(O), the boundary of O . The
main idea of this algorithm is to let P perform a clockwise traversal

of B(O), updating its knowledge of the convex hull as it goes.

In particular, the convex hull can be represented as the inter-

section of six half-planes H = {N ,NE, SE, S, SW ,NW }, which P
can label using its local compass (see Figure 3). Particle P esti-

mates the location of these half-planes by maintaining six counters

{dh : h ∈ H}, where each counter dh represents the L1-distance
from the position of P to half-plane h. If at least one of these coun-
ters is equal to 0, P is on its current estimate of the convex hull.

Each counter is initially set to 0, and P updates them as it moves.

Let [6] = {0, . . . , 5} denote the six directions P can move in, corre-

sponding to its contracted port labels. In each step, P first computes

the direction i ∈ [6] to move toward using the right-hand rule,

yielding a clockwise traversal of B(O). Since O was assumed to

not have tunnels of width 1, direction i is unique. Particle P then

updates its distance counters by setting dh ← max{0,dh + δi ,h }
for all h ∈ H , where δi = (δi ,N , δi ,NE , δi ,SE , δi ,S , δi ,SW , δi ,NW )
is defined as follows:

δ0 = (1, 1, 0,−1,−1, 0) δ1 = (0, 1, 1, 0,−1,−1)
δ2 = (−1, 0, 1, 1, 0,−1) δ3 = (−1,−1, 0, 1, 1, 0)
δ4 = (0,−1,−1, 0, 1, 1) δ5 = (1, 0,−1,−1, 0, 1)

Thus, every movement decrements the distance counters of the

two half-planes to which P gets closer and increments the distance

counters of the two half-planes from which P gets farther away.

Whenever P moves toward a half-plane h for which dh = 0, the

distance stays 0, essentially “pushing” the estimation of the half-

plane one step further (see Figure 4).

0

1 2

3
45N

NE
SE

S

SW
NW

(a)

N

NE

SE

S

SW

NW

(b)

Figure 3: (a) A particle’s local labeling of the six half-planes
composing the convex hull: the half-plane between its local
0 and 5-labeled edges isN , and the remaining half-planes are
labeled accordingly. (b) An object (black) and the six half-
planes (dashed lines with shading on included side) whose
intersection forms its convex hull (black line). As an exam-
ple, the node depicted in the upper-right is distance 0 from
the S and SE half-planes and distance 7 from N .

N

NE

SE
S

SW

NW

(a)

N

NE

SE
S

SW

NW

(b)

N

NE

SE

S

SW

NW

(c)

Figure 4: The particle P with its convex hull estimate (gray
line) after traversing the path (dashed line) from its starting
point (small black dot). (a) dh ≥ 1 for all h ∈ H , so its next
move does not push a half-plane. (b) Its next move is toward
the SE half-plane and dSE = 0, so (c) SE is pushed.

Finally, P needs to detect when it has learned the complete con-

vex hull. To do so, it stores six terminating bits {bh : h ∈ H}, where
bh is equal to 1 if P has visited half-plane h (i.e., if dh has been 0)

since P last pushed any half-plane, and 0 otherwise. Whenever

P moves without pushing a half-plane (e.g., Figure 4a–4b), it sets

bh ← 1 for all h such that dh = 0 after the move. If its move pushed

a half-plane (e.g., Figure 4b–4c), it resets all its terminating bits to

0. Once all six terminating bits are 1, P contracts and terminates.



Convex Hull Formation for Programmable Matter ICDCN 2020, January 4–7, 2020, Kolkata, India

Analysis. We now analyze the correctness and runtime of this

single-particle algorithm. For a given round i , let Hi (O) ⊂ V be

the set of all nodes enclosed by P ’s estimate of the convex hull

of O after round i , i.e., all nodes in the closed intersection of the

six half-planes. We first show that P ’s estimate of the convex hull

represents the correct convex hull H (O) after at most one traversal

of the object’s boundary, and does not change afterwards.

Lemma 2.1. If P completes its traversal of B(O) in round i∗, then
Hi (O) = H (O) for all i ≥ i∗.

Proof. P exclusively traverses B(O), so Hi (O) ⊆ H (O) for all
rounds i . Furthermore, Hi (O) ⊆ Hi+1(O) for any round i . Once P
has traversed the whole boundary, it has visited a node of each

half-plane corresponding to H (O), and thus Hi∗ (O) = H (O). □

We now show particle P terminates if and only if it has learned

the complete convex hull.

Lemma 2.2. If Hi (O) ⊂ H (O) after some round i , then bh = 0 for
some half-plane h ∈ H .

Proof. Suppose to the contrary that after round i ,Hi (O) ⊂ H (O)
but bh = 1 for all h ∈ H ; let i be the first such round. Then after

round i − 1, there was exactly one half-plane h1 ∈ H such that

bh1 = 0; all other half-planes h ∈ H \ {h1} have bh = 1. Let

h2, . . . ,h6 be the remaining half-planes in clockwise order, and let

round tj < i − 1 be the one in which bhj was most recently flipped

from 0 to 1, for 2 ≤ j ≤ 6. Particle P could only set bhj = 1 in round

tj if its move in round tj did not push any half-planes and dhj = 0

after the move. There are two ways this could have occurred.

First, P may have already had dhj = 0 in round tj − 1 and simply

moved along hj in round tj , leaving dhj = 0. But for this to hold

and for P to have had bhj = 0 after round tj − 1, P must have just

pushed hj , resetting all its terminating bits to 0. Particle P could

not have pushed any half-plane during rounds t2 up to i − 1, since
bh2 = · · · = bh6 = 1, so this case only could have occurred with

half-plane h2.
For the remaining half-planes hj , for 3 ≤ j ≤ 6, P must have had

dhj = 1 in round tj−1 andmoved intohj in round tj . But this is only

possible if P pushed hj in some round prior to tj − 1, implying that

P has already visited h3, . . . ,h6. Therefore, P has completed at least

one traversal of B(O) by round i , but Hi (O) ⊂ H (O), contradicting
Lemma 2.1. □

Lemma 2.3. Suppose Hi (O) = H (O) for the first time after some
round i . Then P terminates at some node of H (O) after at most one
additional traversal of B(O).

Proof. Since i is the first round in which Hi (O) = H (O), parti-
cle P must have just pushed some half-plane h — resetting all its

terminating bits to 0 — and now occupies a node u with distance 0

to h. Due to the geometry of the triangular lattice, the next node

in a clockwise traversal of B(O) from u must also have distance 0

to h, so P will set bh to 1 after its next move. As P continues its

traversal, it will no longer push any half-planes because its convex

hull estimation is complete. Thus, P will visit every other half-plane

h′ without pushing it, causing P to set each bh′ to 1 before reaching
u again. Particle P sets its last terminating bit bh∗ to 1 when it next

visits a node v with distance 0 to h∗. Therefore, P terminates at

v ∈ B(O) ∩ H (O). □

The previous lemmas imply the following theorem.

Theorem 2.4. The single-particle algorithm terminates after t∗ =
O(B) asynchronous rounds with particle P at a nodeu ∈ B(O)∩H (O)
and Ht ∗ (O) = H (O).

3 A BINARY COUNTER OF PARTICLES
For a system of particles each with constant-size memory to em-

ulate the single-particle algorithm of Section 2, the particles need

a mechanism to distributively store the distances to each of the

strong O∆-hull’s six half-planes. To that end, we now describe a

local, distributed algorithm for coordinating a particle system as a

binary counter that supports increments and decrements by one

as well as zero-testing, subsuming previous work on an increment-

only binary counter under the amoebot model [21]. This algorithm

uses tokens, or constant-size messages passed between particles [8].

Suppose that the participating particles are organized as a simple

path with the leader particle at its start: ℓ = P0, P1, P2, . . . , Pk . Each
particle Pi stores a value Pi .bit ∈ {∅, 0, 1}, where Pi .bit = ∅ implies

Pi is not part of the counter; i.e., it is beyond the most significant

bit. Each particle Pi also stores tokens in a queue Pi .tokens; the
leader ℓ can only store one token, while all other particles can store

up to two. These tokens can be increments c+, decrements c−, or
the unique final token f that represents the end of the counter. If a

particle Pi (for 0 < i ≤ k) holds f — i.e., Pi .tokens contains f — then

the counter value is represented by the bits of each particle from

the leader ℓ (storing the least significant bit) up to and including

Pi−1 (storing the most significant bit).

The leader ℓ is responsible for initiating counter operations,

while the rest of the particles use only local information and com-

munication to carry these operations out. To increment the counter,

the leader ℓ generates an increment token c+ (assuming it was not

already holding a token). Now consider this operation from the

perspective of any particle Pi holding a c+ token, where 0 ≤ i ≤ k .
If Pi .bit = 0, Pi consumes c+ and sets Pi .bit ← 1. Otherwise, if

Pi .bit = 1, this increment needs to be carried over to the next most

significant bit. As long as Pi+1.tokens is not full (i.e., Pi+1 holds at
most one token), Pi passes c

+
to Pi+1 and sets Pi .bit← 0. Finally, if

Pi .bit = ∅, this increment has been carried over past the counter’s

end, so Pi must also be holding the final token f . In this case, Pi
forwards f to Pi+1, consumes c+, and sets Pi .bit← 1.

To decrement the counter, the leader ℓ generates a decrement

token c− (if it was not holding a token). From the perspective of

any particle Pi holding a c
−
token, where 0 ≤ i < k , the cases for

Pi .bit ∈ {0, 1} are nearly anti-symmetric to those for the increment.

If Pi .bit = 0 and Pi+1.tokens is not full, Pi carries this decrement

over by passing c− to Pi+1 and setting Pi .bit ← 1. However, if

Pi .bit = 1, we only allow Pi to consume c− and set Pi .bit ← 0 if

Pi+1.bit , 1 or Pi+1 is not only holding a c−. While not necessary

for the correctness of the decrement operation, this will enable

conclusive zero-testing. Additionally, if Pi+1 is holding f , then Pi
is the most significant bit. So this decrement shrinks the counter

by one bit; thus, as long as Pi , P0, Pi additionally takes f from

Pi+1, consumes c−, and sets Pi .bit← ∅.



ICDCN 2020, January 4–7, 2020, Kolkata, India J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa

Finally, the zero-test operation: if P1.bit = 1 and P1 only holds a

decrement token c−, ℓ cannot perform the zero-test conclusively

(i.e., zero-testing is “unavailable”). Otherwise, the counter value is

0 if and only if P1 is only holding the final token f and (i) ℓ.bit = 0

and ℓ.tokens is empty or (ii) ℓ.bit = 1 and ℓ is only holding a

decrement token c−.

Analysis. Due to space constraints, we only summarize our rig-

orous analysis of the distributed binary counters; full proofs and

accompanying pseudocode can be found in the arXiv version [6].

Correctness of the increment and decrement operations follows

from the fact that the increment and decrement tokens remain in

the order they were created, so order of operations is preserved.

We then prove the correctness of zero-testing in two parts: first, we

show that zero-testing is always eventually available; then we show

that if the zero-test operation is available, it is always accurate.

To analyze the counter’s runtime, we employ a dominance argu-
ment between asynchronous and parallel executions, building upon

the analysis of [21] that bounded the running time of an increment-

only distributed counter. The general idea of the argument is as

follows. First, we prove that the counter operations are, in the worst

case, at least as fast in an asynchronous execution as they are in

a simplified parallel execution. We then give an upper bound on

the number of parallel rounds required to process these operations;

combining these two results also gives a worst case upper bound on

the running time in terms of asynchronous rounds. This analysis

culminates in the following result.

Theorem 3.1. Given any nonnegative sequence ofm operations
and any fair asynchronous activation sequence, the distributed binary
counter processes all operations in O(m) asynchronous rounds.

4 THE CONVEX HULL ALGORITHM
We now show how a system P of particles each with only constant-

size memory can emulate the single-particle algorithm of Section 2.

Recall that we assume P contains a unique leader particle ℓ initially

adjacent to the object. This leader ℓ is primarily responsible for em-

ulating the particle with unbounded memory in the single-particle

algorithm. To do so, it organizes the other particles in the system as

distributed memory, updating its distances dh to half-plane h as it

moves along the object’s boundary. This is our algorithm’s learning
phase. In the formation phase, ℓ uses these complete measurements

to lead the other particles in forming the convex hull. There is no

synchronization among the various (sub)phases of our algorithm;

for example, some particles may still be finishing the learning phase

after the leader has begun the formation phase. Pseudocode for the

entire algorithm can be found in the arXiv version [6].

4.1 Learning the Convex Hull
The learning phase combines the movement rules of the single-

particle algorithm (Section 2) with the distributed binary counters

(Section 3) to enable the leader to measure the convex hull H (O).
There are some nuances in adapting the general-purpose counters

for use in our convex hull formation algorithm. These are omitted

due to space constraints but can be found in the arXiv version [6].

In the learning phase, each particle P can be in one of three states,

denoted P .state: leader, follower, or idle. All non-leader particles

are assumed to be initially idle and contracted. To coordinate the

system’s movement, the leader ℓ orients the particle system as a

spanning tree rooted at itself using the spanning tree primitive (see,
e.g., [8]). If an idle particle P is activated and has a non-idle neighbor,

then P becomes a follower and sets P .parent to this neighbor. This

primitive continues until all idle particles become followers.

Imitating the single-particle algorithm of Section 2, ℓ performs

a clockwise traversal of the boundary of the object O using the

right-hand rule, updating its six distance counters dh along the way.

It terminates once it has visited all six half-planes without pushing

any of them, which it detects using its terminating bits bh . In this

multi-particle setting, we need to carefully consider both how ℓ

updates its counters and interacts with its followers as it moves.

Rules for Leader Computation and Movement. If ℓ is expanded
and it has a contracted follower child P in the spanning tree that is

keeping counter bits, ℓ pulls P in a handover. Otherwise, suppose ℓ

is contracted. If all its terminating bits bh are equal to 1, then ℓ has

learned the convex hull, completing this phase. Otherwise, it must

continue its traversal of the object’s boundary. If the zero-test oper-

ation is unavailable or if it is holding increment/decrement tokens

for any of its dh counters, it will not be able to move. Otherwise,

let i ∈ [6] be its next move direction according to the right-hand

rule, and letv be the node in direction i . There are two cases: either
v is unoccupied, or ℓ is blocked by another particle occupying v .

In the case ℓ is blocked by a contracted particle P , ℓ can role-swap
with P , exchanging its memory with the memory of P . In particular,

ℓ gives P its counter bits, its counter tokens, and its terminating

bits; promotes P to become the new leader by setting P .state ←
leader and clearing P .parent; and demotes itself by setting ℓ.state←

follower and ℓ.parent← P . This effectively advances the leader’s

position one node further along the object’s boundary.

If either v is unoccupied or ℓ can perform a role-swap with the

particle blocking it, ℓ first calculates whether the resulting move

would push one or more half-planes using update vector δi . Let
H ′ = {h ∈ H : δi ,h = −1 and dh = 0} be the set of half-planes

being pushed, and note that ℓ can locally check if dh = 0 since

zero-testing is currently available. It then generates the appropriate

increment and decrement tokens according to δi . Next, it updates
its terminating bits: if it is about to push a half-plane (i.e.,H ′ , ∅),
then it sets bh ← 0 for all h ∈ H ; otherwise, it can again use

zero-testing to set bh ← 1 for all h ∈ H such that dh + δi ,h = 0.

Finally, ℓ performs its move: if v is unoccupied, ℓ expands into v;
otherwise, ℓ role-swaps with the particle blocking it.

Rules for Follower Movement. Consider any follower P . If P is

expanded and has no children in the spanning tree nor any idle

neighbor, it simply contracts. If P is contracted and following the tail

of its expanded parent Q = P .parent, P can push Q in a handover.

Similarly, if Q is expanded and has a contracted child P , Q can pull

P in a handover. However, if P is not keeping counter bits but Q is,

then a handover between P and Q could disconnect the counters

(see Figure 5). So we only allow these handovers if either (i) both
keep counter bits, (ii) neither keep counter bits, or (iii) one does
not keep counter bits while the other holds the final token.



Convex Hull Formation for Programmable Matter ICDCN 2020, January 4–7, 2020, Kolkata, India

R2

R3R1

P0P1P2

P3

Q1

Q2

Q3

P4P5P6

Figure 5: The leader P0 (black dot) and its followers (black
circles). Followers with dots keep counter bits, and P6 holds
the final token. Allowing Q1 to handover with P3 would dis-
connect the counter; all other potential handovers are safe.

4.2 Forming the Convex Hull
The formation phase brings as many particles as possible into the

convex hull H (O). It is divided into two subphases. In the hull
closing subphase, the leader particle ℓ uses its binary counters to

lead the rest of system P along a clockwise traversal of H (O). If
ℓ completes its traversal, leaving every node of the convex hull

occupied by (possibly expanded) particles, the hull filling subphase

fills the convex hull with as many contracted particles as possible.

4.2.1 The Hull Closing Subphase. When the learning phase ends, ℓ

occupies some position s ∈ H (O) (by Lemma 2.3) and its distributed

binary counters dh contain accurate distances to each of the six

half-planes h ∈ H . The leader’s main role during the hull closing

subphase is to lead the rest of the particle system along a clockwise

traversal of H (O). In particular, ℓ uses its counters to detect when

it reaches one of the six vertices of H (O), at which point it turns

60
◦
clockwise to follow the next half-plane, and so on.

The particle system tracks the position s that ℓ started from by

ensuring a unique marker particle occupies it. The marker can only

contract out of s as part of a handover, at which point the marker

role is transferred so that the marker always occupies s . Thus,
when ℓ encounters the marker particle occupying the next node of

the convex hull, it can locally determine that it has completed its

traversal and this subphase.

However, there may not be enough particles to close the hull.

Recall that H = |H (O)| is the number of nodes in the convex hull.

If |P | < ⌈H/2⌉, eventually all particles enter H (O) and follow ℓ

as far as possible without disconnecting from the marker particle,

which cannot leave position s . With every hull particle expanded

and unable to move any farther, a token passing scheme is used

to inform ℓ that there are insufficient particles for closing the hull

and advancing to the next subphase. Upon receiving this message,

ℓ terminates, with the rest of the particles following suit.

Rules for Leader Computation and Movement. If the leader ℓ is
holding the “all expanded” token and does not have the marker

particle in its neighborhood — indicating that there are insufficient

particles to complete this subphase — it generates a “termination”

token and passes it to its child in the spanning tree. It then termi-

nates by setting ℓ.state← finished.
Otherwise, if ℓ is expanded, there are two cases. If ℓ has a con-

tracted hull childQ (i.e., a childQ withQ .state = hull), ℓ performs a

ℓ

Q

s

(a)

ℓ

Q
s

(b)

ℓ

Q
s

(c)

s

(d)

Figure 6: (a) After expanding for the first time, the leader
ℓ occupies the starting position s with its tail. (b) After per-
forming ahandoverwith ℓ, follower childQ becomes the pre-
marker (inner circles). (c) When Q contracts, it becomes the
marker (inner dot). (d) If there are insufficient particles to
close the hull, the marker will eventually become expanded
and unable to contract without vacating position s.

pull handover with Q . If ℓ does not have any hull children but does

have a contracted follower child Q keeping counter bits, then this

is its first expansion of the hull closing subphase and the marker

should occupy its current tail position. So ℓ sets Q .state ← pre-
marker and performs a pull handover with Q (see Figure 6a–6b).

During its traversal of H (O), ℓ keeps a variable ℓ.plane ∈ H

indicating which half-plane boundary it is currently following.

The leader updates ℓ.plane when it discovers (via zero-testing)

that it has reached the next half-plane. It then inspects the next

node of its traversal along ℓ.plane, say v . If v is occupied by the

marker particle Q , then ℓ has completed the hull closing subphase;

it updates Q .state← finished and then advances to the hull filling

subphase (Section 4.2.2). Otherwise, if ℓ is contracted, it continues

its traversal of the convex hull by either expanding into node v if

v is unoccupied or by role-swapping with the contracted particle

blocking it, just as it did in the learning phase.

Rules for the Marker Particle Logic. The marker role must be

passed between particles so that the marker particle always oc-

cupies the position at which the leader started its hull traversal.

Whenever a contracted marker particle P expands in a handover

with its parent, it remains a marker particle. When P subsequently

contracts as a part of a handover with a contracted child Q , P sets

P .state ← hull and Q .state ← pre-marker. Finally, when the pre-

markerQ contracts — either on its own or as part of a handover with

a contracted child — Q becomes the marker particle (see Figure 6c).

Importantly, the marker particle P never contracts outside of a

handover, as this would vacate the leader’s starting position (see

Figure 6d). If P is ever expanded but has no children or idle neigh-

bors, it generates the “all expanded” token and passes toward ℓ

along expanded particles only. If this ultimately causes ℓ to gen-

erate and pass a “termination” token back to P , P consumes the

termination token and becomes finished.



ICDCN 2020, January 4–7, 2020, Kolkata, India J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa

Rules for Follower and Hull Particle Behavior. Follower particles
behave just as they did in the learning phase, with twomodifications.

First, if ever a follower performs a handover with the (pre-)marker

particle, their states are updated as described above. Second, fol-

lower particles never perform handovers with hull particles.

Hull particles are simply follower particles that have joined the

convex hull. They only perform handovers with the leader and

other hull particles. Additionally, they pass the “all expanded” and

“termination” tokens: if an expanded hull particle P holds the “all

expanded” token and P .parent is also expanded, P passes this token

to P .parent. If a hull particle P is holding the “termination” token,

it terminates by passing this token to its hull or marker child and

becoming finished.

4.2.2 The Hull Filling Subphase. The hull filling subphase is the

final phase of the algorithm. It begins when the leader ℓ encounters

the marker particle in the hull closing subphase, completing its hull

traversal. At this point,H (O) is entirely filled with particles, though

some may be expanded. The remaining followers are either outside

the hull or are trapped between the hull and the object. The goal

of this subphase is to allow trapped particles to escape outside the

hull, and to use the followers outside the hull to “fill in” beside any

expanded hull particles, filling the hull with as many contracted

particles as possible.

At a high level, this subphase works as follows. The leader ℓ first

becomes finished. Each hull particle also becomes finished when its

parent is finished. A finished particle P labels a neighboring follower

Q as either trapped or filler depending on whether Q is inside or

outside the hull, respectively. This can be determined locally using

the relative position of Q to the parent of P . A trapped particle

performs a coordinated series of movements with a neighboring

finished particle to effectively take its place, “pushing” the finished

particle outside the hull as a filler particle. Filler particles perform a

clockwise traversal over the finished particles on the hull, searching

for an expanded finished particle to handover with, effectively

replacing it with two contracted ones.

There are two ways the hull filling subphase can terminate. If

⌈H/2⌉ ≤ |P| < H , there are enough particles to close the hull

but not enough to fill it with contracted particles. In this case,

all particles join the hull and become finished by following the

rules above. If instead |P | ≥ H , the entire hull can be filled with

contracted particles. This event is detected using a token passing

scheme that, on completion, triggers a broadcast of termination

tokens that cause all particles (including the extra ones outside

the hull) to finish. In the following, we describe the local rules

underlying the three important primitives for this subphase.

Freeing Trapped Particles. Suppose a finished particle P has la-

beled a neighboring contracted particleQ as trapped (see Figure 7a).

In doing so, P updates Q .parent← P . When Q is next activated, it

sets P .state← pre-filler (see Figure 7b). This indicates to P that it

should expand towards the outside of the hull as soon as possible

(Figure 7c). Once P has expanded, P andQ perform a handover (Fig-

ure 7d). This effectively pushes P out of the hull, where it becomes

a filler particle, and expands Q into the hull, where it becomes

pre-finished. Finally, whenever Q contracts — either on its own or

in a handover — it becomes finished, taking the original position

and role of P (Figure 7e).

P

Q

(a)

P

Q

(b)

P

Q

(c)
P

Q

(d)

P

Q

(e)

Figure 7: Freeing a trapped particle. (a) A finished particle P
marks a neighboring follower Q on the interior of the hull
as trapped (inner triangle). (b) Q marks its parent P as a pre-
filler (inner circle). (c) P expands outside the hull. (d) In a
handover between P andQ , P becomes a filler (inner dot) and
Q becomes pre-finished (gray). (e) Q contracts and finishes.

P

Q
R

(a)

P

Q

R

(b)

P

Q

R

(c)

Figure 8: Some movements of filler particles. (a) A finished
particle P marks neighboring followers Q and R on the ex-
terior of the hull as fillers (inner triangle). (b) Q performs
a handover with P to fill the hull, becoming pre-finished
(gray), while R expands along a clockwise traversal of the
hull. (c) Q contracts and becomes finished.

Filling the Hull. A particle P becomes a filler either by being

labeled so by a neighboring finished particle or by being ejected

from the hull while freeing a trapped particle, as described above.

If P is expanded, it simply contracts if it has no children or idle

neighbors, or performs a pull handover with a contracted follower

child if it has one. If P is contracted, it finds the next node v on its

clockwise traversal over the finished particles. P simply expands

intov unless the first occupied node clockwise fromv is occupied by

the tail of an expanded finished particle Q . In this case, P performs

a push handover with Q , sets Q to be its parent, and becomes pre-

finished. Whenever P next contracts, either on its own or during a



Convex Hull Formation for Programmable Matter ICDCN 2020, January 4–7, 2020, Kolkata, India

handover, it becomes finished. An example of some filler particle

movements is depicted in Figure 8.

Detecting Termination. Before ℓ becomes finished at the start of

this subphase, it generates an “all contracted” token containing a

counter t initially set to 0. This token is passed backwards along

the hull to contracted finished particles only. Whenever the token

is passed through a vertex of the convex hull, the counter t is incre-
mented. Thus, if a contracted finished particle is ever holding the

“all contracted” token and its counter t is equal to 7, it terminates

by consuming the “all contracted” token and broadcasting “termi-

nation” tokens to all its neighbors. Whenever a particle receives a

termination token, it also terminates by becoming finished.

4.3 Analysis
Due to space constraints, we only give the highlights of our analysis

here; the complete arguments can be found in the arXiv version [6].

Our correctness arguments begin with proving several safety prop-

erties of our distributed binary counters despite the adaptations

required for convex hull formation. In particular, we use the as-

sumption from Section 1.2 that our system contains |P | > log
2
H

particles in conjunction with the leader’s traversal path to prove

two useful results regarding the lengths of the counters.

Lemma 4.1. Let L be the path of nodes traversed by leader ℓ from
the start of the algorithm to its current position. Then there are at
most ⌊log

2
min{|L|,H }⌋ + 1 particles holding bits of a distributed

binary counter dh .

Lemma 4.2. Let L be the path of nodes traversed by leader ℓ from
the start of the algorithm to its current position. Then there are at
least min{|P|, ⌈|L|/2⌉} particles including ℓ along L.

Using these lemmas, we can immediately conclude that the dis-

tributed binary counters never disconnect or intersect themselves

and that there are always enough particles to maintain the counters.

We then show the counters never impede the leader’s ability to

move forward indefinitely.

Lemma 4.3. If ℓ only has one bit of a distributed binary counter
dh and is not holding the final token fh at time t , thereby being
prohibited from moving, then there exists a time t ′ > t when ℓ either
has two bits of dh or is holding fh .

We then prove a series of correctness results analyzing the vari-

ous (sub)phases of the algorithm. For the learning phase, it suffices

to show that the leader ℓ traverses the boundary of object O and

obtains an accurate measurement of the convex hull. Since we al-

ready argued about the correctness of the counters, it suffices to

show the following.

Lemma 4.4. If ℓ is contracted, it can always eventually expand or
role-swap along its clockwise traversal of B(O). If ℓ is expanded, it
can always eventually perform a handover with a follower.

For the hull formation phase, we analyze what level of hull

completion is achieved based on the number of particles |P |. We

first show that the leader successfully closes the hull if and only

if there are at least ⌈H/2⌉ particles in the system; otherwise, a

maximal partial convex hull is formed. We then show that as long

as the hull closing subphase completes, the hull will be filled with as

many contracted particles as possible; however, if there are less than

H particles in the system, not all nodes of H (O) will be occupied by
contracted particles. Synthesizing these lemmas yields the following

correctness theorem.

Theorem 4.5. The Convex Hull Algorithm correctly solves instance
(P,O) of the convex hull formation problem if |P | ≥ |H (O)|, and
otherwise forms a maximal partial strong O∆-hull of O .

We then bound the worst-case number of asynchronous rounds

for the leader ℓ to learn and form the convex hull. As in Section 3,

we use dominance arguments to show that the worst-case number

of parallel rounds required by a carefully defined parallel schedule

is no less than the runtime of our algorithm. The first dominance ar-

gument shows that the counters bits are forwarded quickly enough

to avoid blocking leader expansions and role-swaps. This argument

culminates in the following lemma.

Lemma 4.6. Suppose leader ℓ only has one bit of a counter dh and
is not holding the final token fh in round 0 ≤ t ≤ T − 2 of greedy
parallel bit forwarding schedule (C0, . . . ,CT ). Then within the next
two parallel rounds, ℓ will either have a second bit of dh or will be
holding fh , allowing it to role-swap.

The second dominance argument relates the time required for ℓ

to traverse the object’s boundary and convex hull to the running

time of our algorithm. Both build upon previous work [5], which an-

alyzed spanning trees of particles led by their root particles. Several

nontrivial extensions are needed here to address the interactions

between the counters and particle movements as well as traversal

paths that can be temporarily blocked. The key lemma here is the

following, which relates the time required for ℓ to traverse a path

to the path’s length.

Lemma 4.7. If L is the (not necessarily simple) path of the leader’s
traversal, the leader traverses this path in O(|L|) asynchronous rounds
in the worst case.

Using Lemma 4.7, we can directly relate the distance the leader ℓ

has traversed to the system’s progress towards learning and form-

ing the convex hull. By Lemma 5 of [5], B particles self-organize as

a spanning tree rooted at ℓ in at most O(B) asynchronous rounds.
By Lemmas 2.1 and 2.3, ℓ traverses B(O) at most twice before com-

pleting the learning phase. Thus, by Lemma 4.7:

Lemma 4.8. The learning phase completes in at most O(B) asyn-
chronous rounds.

The hull closing and filling subphases can be analyzed similarly

(with additional technicalities), ultimately yielding the following.

Lemma 4.9. In at most O(H ) asynchronous rounds from when the
leader ℓ completes the learning phase, either ℓ completes its traversal
of H (O) and closes the hull or every particle in the system terminates,
expanded over two nodes of H (O).

Lemma 4.10. In at most O(H ) asynchronous rounds from when
the leader ℓ closes the hull, min{|P|,H } nodes of H (O) will be filled
with contracted finished particles.

Putting it all together, the algorithm is correct by Theorem 4.5,

the learning phase terminates in O(B) asynchronous rounds by
Lemma 4.8, the hull closing subphase terminates in an additional



ICDCN 2020, January 4–7, 2020, Kolkata, India J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa

Figure 9: Transforming the cycle of tightening particles that
initially form H (O) into H ′(O) by moving convex particles
(black dots) towards the object.

O(H ) asynchronous rounds by Lemma 4.9, and the hull filling sub-

phase fills the convex hull with as many contracted particles as

possible in another O(H ) asynchronous rounds by Lemma 4.10.

Thus, since B ≥ H , we have:

Theorem 4.11. In at most O(B) asynchronous rounds, the Convex
Hull Algorithm either solves instance (P,O) of the convex hull for-
mation problem if |P | ≥ |H (O)| or forms a maximal partial strong
O∆-hull of O otherwise.

The time required for all particles in the system to terminate

may be longer than the bound given in Theorem 4.11, depending

on the number of particles. As termination is further broadcast

to the rest of the system, we know that at least one non-finished

particle receives a termination signal and becomes finished in each

asynchronous round. So,

Corollary 4.12. All particles in system P terminate the Convex
Hull Algorithm in O(|P|) asynchronous rounds in the worst case.

5 FORMING THE (WEAK) O∆-HULL
To conclude, we informally describe how the Convex Hull Algo-

rithm can be extended to form the (weak) O∆-hull of object O ,
solving the O∆-hull formation problem. We refer the interested

reader to the arXiv version [6] for the rigorous algorithm details

and analysis. This O∆-Hull Algorithm extends the Convex Hull Al-

gorithm at the point when a finished particle first receives the “all

contracted” token with counter value 7, which usually triggers ter-

mination. Instead of terminating, this particle organizes the other

contracted finished particles on H (O) into a directed cycle of tight-
ening particles. A tightening particle is convex if there is exactly

one node in its neighborhood between its parent and child in the

directed cycle, sweeping clockwise. The main idea of this algorithm

is to repeatedly move convex tightening particles towards the ob-

ject, progressively transforming the directed cycle into the object’s

O∆-hull (Figure 9). By arguments similar to those for the Convex

Hull Algorithm, we have the following theorem.

Theorem 5.1. In at most O(H ) asynchronous rounds, the O∆-Hull
Algorithm solves instance (P,O) of the O∆-hull formation problem
if |P | ≥ H . All particles terminate in an additional O(|P|) rounds.

ACKNOWLEDGMENTS
Daymude and Richa are supported in part by the National Science

Foundation under awards CCF-1422603, CCF-1637393, and CCF-

1733680. Hinnenthal and Scheideler are supported by the German

Research Foundation (DFG) under Project SCHE 1592/6-1.

REFERENCES
[1] Alan Aderem and David M. Underhill. 1999. Mechanisms of phagocytosis in

macrophages. Annual Review of Immunology 17, 1 (1999), 593–623.

[2] Selim G. Akl and Kelly A. Lyons. 1993. Parallel Computational Geometry. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-

alta. 2006. Computation in networks of passively mobile finite-state sensors.

Distributed Computing 18, 4 (2006), 235–253.

[4] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[5] Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, An-

dréa W. Richa, Christian Scheideler, and Thim Strothmann. 2018. On the Runtime

of Universal Coating for Programmable Matter. Natural Computing 17, 1 (2018),

81–96.

[6] Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian

Scheideler, and AndréaW. Richa. 2019. Convex Hull Formation for Programmable

Matter. (2019). Available online at https://arxiv.org/abs/1805.06149.

[7] Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler,

and Thim Strothmann. 2017. Improved Leader Election for Self-Organizing

Programmable Matter. In Algorithms for Sensor Systems (ALGOSENSORS ’17).
Springer, Cham, 127–140.

[8] Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Schei-

deler. 2019. Computing by Programmable Particles. In Distributed Computing by
Mobile Entities. Springer, Cham, 615–681.

[9] Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and

Thim Strothmann. 2016. Universal Shape Formation for Programmable Matter.

In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’16). ACM, New York, NY, USA, 289–299.

[10] Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and

Thim Strothmann. 2017. Universal Coating for Programmable Matter. Theoretical
Computer Science 671 (2017), 56–68.

[11] Mohamadou Diallo, Afonso Ferreira, Andrew Rau-Chaplin, and Stéphane Ubéda.

1999. Scalable 2D Convex Hull and Triangulation Algorithms for Coarse Grained

Multicomputers. J. Parallel and Distrib. Comput. 56, 1 (1999), 47–70.
[12] Patrick Dymond, Jieliang Zhou, and Xiaotie Deng. 2001. A 2-D parallel convex

hull algorithm with optimal communication phases. Parallel Comput. 27, 3 (2001),
243–255.

[13] Eugene Fink and Derick Wood. 2004. Restricted-Orientation Convexity. Springer-
Verlag Berlin Heidelberg, Berlin, Germany.

[14] Per-Olof Fjällström, Jyrki Katajainen, Christos Levcopoulos, and Ola Petersson.

1990. A sublogarithmic convex hull algorithm. BIT Numerical Mathematics 30, 3
(1990), 378–384.

[15] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro (Eds.). 2019. Distributed
Computing by Mobile Entities. Springer International Publishing, Switzerland.

[16] Rolf G. Karlsson and Mark H. Overmars. 1988. Scanline algorithms on a grid.

BIT Numerical Mathematics 28, 2 (1988), 227–241.
[17] C. Ronald Kube and Eric Bonabeau. 2000. Cooperative transport by ants and

robots. Robotics and Autonomous Systems 30, 1 (2000), 85–101.
[18] Helen F. McCreery and Michael D. Breed. 2014. Cooperative transport in ants: a

review of proximate mechanisms. Insectes Sociaux 61, 2 (2014), 99–110.

[19] Russ Miller and Quentin F. Stout. 1988. Efficient parallel convex hull algorithms.

IEEE Trans. Comput. 37, 12 (1988), 1605–1618.
[20] Matthew J. Patitz. 2014. An introduction to tile-based self-assembly and a survey

of recent results. Natural Computing 13, 2 (2014), 195–224.

[21] Alexandra Porter and Andréa W. Richa. 2018. Collaborative Computation in

Self-organizing Particle Systems. In Unconventional Computation and Natural
Computation (UCNC ’18). Springer, Cham, 188–203.

[22] Sergio Rajsbaum and Jorge Urrutia. 2011. Some problems in distributed compu-

tational geometry. Theoretical Computer Science 412, 41 (2011), 5760–5770.
[23] Gregory J. E. Rawlins. 1987. Explorations in Restricted Orientation Geometry. Ph.D.

Dissertation. University of Waterloo, Ontario.

[24] William Savoie, Sarah Cannon, Joshua J. Daymude, Ross Warkentin, Shengkai

Li, Andréa W. Richa, Dana Randall, and Daniel I. Goldman. 2018. Phototactic

Supersmarticles. Artificial Life and Robotics 23, 4 (2018), 459–468.
[25] Tommaso Toffoli and Norman Margolus. 1991. Programmable matter: Concepts

and realization. Physica D: Nonlinear Phenomena 47, 1 (1991), 263–272.
[26] Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree,

and Peng Yin. 2013. Active Self-assembly of Algorithmic Shapes and Patterns

in Polylogarithmic Time. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science (ITCS ’13). ACM, New York, NY, USA, 353–354.

[27] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson,

Eric Klavins, and Gregory S. Chirikjian. 2007. Modular Self-Reconfigurable Robot

Systems. IEEE Robotics Automation Magazine 14, 1 (2007), 43–52.
[28] Guoxian Zhang, Gregory K. Fricke, and Devendra P. Garg. 2013. Spill Detec-

tion and Perimeter Surveillance via Distributed Swarming Agents. IEEE/ASME
Transactions on Mechatronics 18, 1 (2013), 121–129.

https://arxiv.org/abs/1805.06149

	Abstract
	1 Introduction
	1.1 The Amoebot Model
	1.2 Our Results
	1.3 Related Work
	1.4 Organization

	2 The Single-Particle Algorithm
	3 A Binary Counter of Particles
	4 The Convex Hull Algorithm
	4.1 Learning the Convex Hull
	4.2 Forming the Convex Hull
	4.3 Analysis

	5 Forming the (Weak) O-Hull
	Acknowledgments
	References

