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ABSTRACT

We envision programmable matter as a system of nano-scale agents
(called particles) with very limited computational capabilities that
move and compute collectively to achieve a desired goal. Motivated
by the problem of sealing an object using minimal resources, we
show how a particle system can self-organize to form an object’s
convex hull. We give a distributed, local algorithm for convex hull
formation and prove that it runs in O(B) asynchronous rounds,
where B is the length of the object’s boundary. Within the same
asymptotic runtime, this algorithm can be extended to also form
the object’s (weak) O-hull, which uses the same number of particles
but minimizes the area enclosed by the hull. Our algorithms are
the first to compute convex hulls with distributed entities that have
strictly local sensing, constant-size memory, and no shared sense of
orientation or coordinates. Ours is also the first distributed approach
to computing restricted-orientation convex hulls. This approach
involves coordinating particles as distributed memory; thus, as
a supporting but independent result, we present and analyze an
algorithm for organizing particles with constant-size memory as
distributed binary counters that efficiently support increments,
decrements, and zero-tests — even as the particles move.

CCS CONCEPTS

« Theory of computation — Self-organization; Distributed al-
gorithms; Computational geometry.

KEYWORDS

programmable matter, self-organization, distributed algorithms,
computational geometry, convex hull, restricted-orientation geom-
etry

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICDCN 2020, January 4-7, 2020, Kolkata, India

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7751-5/20/01...$15.00
https://doi.org/10.1145/3369740.3372916

Robert Gmyr
University of Houston
Department of Computer Science
Houston, TX, USA
rgmyr@uh.edu

Christian Scheideler
Paderborn University
Department of Computer Science
Paderborn, Germany
scheidel@mail.upb.de

Kristian Hinnenthal
Paderborn University
Department of Computer Science
Paderborn, Germany
krijan@mail.upb.de

Andréa W. Richa

Arizona State University
Computer Science, CIDSE
Tempe, AZ, USA
aricha@asu.edu

ACM Reference Format:

Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna,
Christian Scheideler, and Andréa W. Richa. 2020. Convex Hull Formation
for Programmable Matter. In 21st International Conference on Distributed
Computing and Networking (ICDCN 2020), January 4-7, 2020, Kolkata, India.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3369740.3372916

1 INTRODUCTION

The vision for programmable matter [25] is to realize a physical
material that can dynamically alter its properties (shape, density,
conductivity, etc.) in a programmable fashion, controlled either by
user input or its own autonomous sensing of its environment. Such
systems would have broad engineering and societal impact with
applications such as reusable construction materials, self-repairing
spacecraft components, and even nanoscale medical devices. While
the form factor of each programmable matter system would vary
widely depending on its intended application domain, a budding
theoretical investigation has formed over the last decade into the
algorithmic underpinnings common among these systems. In partic-
ular, the unifying inquiry is to better understand what sophisticated,
collective behaviors are achievable by a programmable matter sys-
tem composed of simple, limited computational units. Towards this
goal, many theoretical works, complementary simulations, and
even a recent experimental study [24] have been conducted using
the amoebot model [8] for self-organizing particle systems.

In this paper, we give a local, distributed algorithm for convex
hull formation (formally defined within our context in Section 1.2)
under the amoebot model. Though this well-studied problem is
usually considered from the perspectives of computational geom-
etry and combinatorial optimization as an abstraction, we treat
it as the task of forming a physical seal around a static object us-
ing as few particles as possible. This is an attractive behavior for
programmable matter, as it would enable systems to, for example,
isolate and contain oil spills [28], mimic the collective transport
capabilities seen in ant colonies [17, 18], or surround and engulf
malignant entities in the human body as phagocytes do [1]. Though
our algorithm is certainly not the first distributed approach taken
to computing convex hulls, to our knowledge it is the first to do so
with distributed computational entities that have no sense of global
orientation nor of their coordinates and are limited to only local sens-
ing and constant-size memory. Moreover, to our knowledge ours is
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Figure 1: (a) Expanded and contracted particles (black cir-
cles) on the triangular lattice G, (gray). Particles with a black
line between their nodes are expanded. (b) Two particles
with different offsets for their port labels.

the first distributed approach to computing restricted-orientation
convex hulls, a generalization of usual convex hulls (see definitions
in Section 1.1). Finally, our algorithm has a gracefully degrading
property: when the number of particles is insufficient to form an
object’s convex hull, a maximal partial convex hull is still formed.
Due to space constraints, many details are omitted from this
conference paper. A complete version of this paper with all proofs,
extensions, and pseudocode can be found on arXiv [6].

1.1 The Amoebot Model

In the amoebot model [8],' programmable matter consists of in-
dividual, homogeneous computational elements called particles.
Any structure that a particle system can form is represented as a
subgraph of an infinite, undirected graph G = (V, E) where V repre-
sents all positions a particle can occupy and E represents all atomic
movements a particle can make. Each node can be occupied by at
most one particle. The geometric amoebot model further assumes
G = Gp, the triangular lattice (Figure 1a).

Each particle occupies either a single node in V (i.e., it is con-
tracted) or a pair of adjacent nodes in V (i.e., it is expanded), as in
Figure 1a. Particles move via a series of expansions and contractions:
a contracted particle can expand into an unoccupied adjacent node
to become expanded, and completes its movement by contracting
to once again occupy a single node. An expanded particle’s head is
the node it last expanded into and the other node it occupies is its
tail; a contracted particle’s head and tail are both the single node it
occupies.

Two particles occupying adjacent nodes are said to be neighbors.
Neighboring particles can coordinate their movements in one of
two types of handovers. A contracted particle P can “push” an
expanded neighbor Q by expanding into a node occupied by Q,
forcing it to contract. Alternatively, an expanded particle Q can
“pull” a contracted neighbor P by contracting, forcing P to expand
into the node it is vacating.

Each particle keeps a collection of ports — one for each edge
incident to the node(s) it occupies — that have unique labels from
its own local perspective. Although each particle is anonymous,
lacking a unique identifier, a particle can locally identify any given
neighbor by its labeled port corresponding to the edge between

!See [8] for a full description of the model including omitted details that are not
necessary for convex hull formation.
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them. Particles do not share a coordinate system or global compass
and may have different offsets for their port labels, as in Figure 1b.

Each particle has a constant-size local memory that it and its
neighbors can directly read from and write to for communication.?
However, particles do not have any global information and — due
to the limitation of constant-size memory — cannot locally count
or estimate the total number of particles in the system.

The system progresses asynchronously through atomic actions.
In the amoebot model, an atomic action corresponds to a single
particle’s activation, in which it can (i) perform a constant amount
of local computation involving information it reads from its local
memory and its neighbors’ memories, (ii) directly write updates
to at most one neighbor’s memory, and (iii) perform at most one
expansion or contraction. We assume these actions preserve atom-
icity, isolation, fairness, and reliability. Atomicity requires that if an
action is aborted before its completion (e.g., due to a conflict), any
progress made by the particle(s) involved in the action is completely
undone. A set of concurrent actions preserves isolation if they do
not interfere with each other; i.e., if their concurrent execution pro-
duces the same end result as if they were executed in any sequential
order. Fairness requires that each particle successfully completes an
action infinitely often. Finally, for this work, we assume reliability,
meaning all particles are non-faulty.

While it is straightforward to ensure atomicity and isolation
in each particle’s immediate neighborhood (using a simple lock-
ing mechanism), particle writes and expansions can influence the
2-neighborhood and thus must be handled carefully.Conflicts of
movement can occur when multiple particles attempt to expand
into the same unoccupied node concurrently. These conflicts are
resolved arbitrarily such that at most one particle expands into a
given node at any point in time.

It is well known that if a distributed system’s actions are atomic
and isolated, any set of such actions can be serialized [4]; i.e., there
exists a sequential ordering of the successful (non-aborted) actions
that produces the same end result as their concurrent execution.
Thus, while in reality many particles may be active concurrently,
it suffices when analyzing amoebot algorithms to consider a se-
quence of activations where only one particle is active at a time.
By our fairness assumption, if a particle P is inactive at time ¢ in
the activation sequence, P will be (successfully) activated again at
some time t’ > t. An asynchronous round is complete once every
particle has been activated at least once.

Additional Terminology for Convex Hulls. We now define some
terminology specific to our application of convex hull formation.
An object O C V is a static, finite, simply connected set of nodes.
The boundary B(O) of an object O is the set of all nodes in V' \ O
that are adjacent to O. An object contains a tunnel of width 1 if
its boundary is 1-connected. We assume particles can differentiate
between object nodes and nodes occupied by other particles.

To generalize the notions of convexity and convex hulls to our
discrete setting on the triangular lattice, we introduce the concepts
of restricted-orientation convexity (also known as O-convexity) and
strong restricted-orientation convexity (or strong O-convexity) which
are well established in computational geometry [13, 23]. In the

2Here, we assume the direct write communication extension of the amoebot model as
it enables a simpler description of our algorithms; see [8] for details.
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Figure 2: An object O (black) with a tunnel of width 1 on
its right side and its (a) O-hull (dashed line) and Ox-hull
H’(O) (solid black line), and (b) strong O-hull (dashed line)
and strong Op-hull H(O) (solid black line).

continuous setting, given a set of orientations O in R?, a geometric
object is said to be O-convex if its intersection with every line with
an orientation from O is empty or connected. The O-hull of an
object A is the intersection of all O-convex sets containing A, or,
equivalently, the minimal O-convex set containing A. An O-block
of two points in R? is the intersection of all half-planes defined by
lines with orientations in O that contain both points. The strong
O-hull of a geometric object A is the minimal O-block containing A.

For our discrete setting, let O be the orientation set of Gy, i.e.,
the three orientations of axes of the triangular lattice. The (weak)
Op-hull of object O, denoted H’(O), is the set of nodes in V' \ O
adjacent to the O-hull of O in R? (Figure 2a). Analogously, the
strong Op-hull of object O, denoted H(O), is the set of nodes in
V'\ O adjacent to the strong O-hull of O in R? (Figure 2b). We offset
the hulls from their traditional definitions by one layer of nodes
since particles cannot occupy nodes of O. Unless there is a risk of
ambiguity, we will use the terms “strong Oa-hull” and “convex hull”
interchangeably throughout this work.

1.2 Our Results

An instance of the strong Op-hull (convex hull) formation problem
has the form (P, O) where P is a finite, connected system of initially
contracted particles and O C V is an object. Let B = |B(O)| denote
the length of the object’s boundary and H = |H(O)| denote the
length of the object’s convex hull. We assume that (i) # contains
a unique leader particle ¢ initially adjacent to O, (ii) there are at
least |P| > log,(H) particles in the system, and (iii) O does not
have any tunnels of width 1.* A local, distributed algorithm A
solves an instance (P, O) of the convex hull formation problem if;
when each particle executes A individually, £ is reconfigured so
that every node of H(O) is occupied by a contracted particle. The
Op-hull formation problem can be stated analogously.

We present a local, distributed algorithm for the strong Ox-
hull formation problem that runs in O(B) rounds and later show
how it can be extended to also solve the Op-hull formation prob-
lem in an additional O(H) rounds. Our algorithm is gracefully
degrading: if there are insufficient particles to completely fill the

30ne could use the leader election algorithm for the amoebot model in [7] to obtain
such a leader in O(|#P]) asynchronous rounds, with high probability. Removing this
assumption would simply change all the deterministic guarantees given in this work
to guarantees with high probability.

4We believe our algorithm could be extended to handle tunnels of width 1 in object O,
but this would require technical details beyond the scope of this conference paper.
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convex hull with contracted particles (i.e., if || < H) our algorithm
will still form a maximal partial convex hull. To our knowledge, our
algorithm is the first to address distributed convex hull formation
using entities that have no sense of global orientation nor of their
coordinates and are limited to only constant-size memory and local
communication. It is also the first distributed algorithm for forming
restricted-orientation convex hulls (see Section 1.3).

Our approach relies on the leader maintaining and updating
the distances from its current position to each of the half-planes
whose intersection composes the object’s convex hull. However,
these distances can far exceed the constant-size memory capacity
of an individual particle. To address this problem, we give new
results on coordinating a particle system as a distributed binary
counter that supports increments and decrements by one as well as
zero-testing, or testing the counter value’s equality to zero. These
results supplant existing work on increment-only distributed binary
counters under the amoebot model [21]. Moreover, these results
are agnostic of convex hull formation and can be used as a modular
primitive for future applications.

1.3 Related Work

The convex hull problem is one of the best-studied problems in
computational geometry. Many parallel algorithms have been pro-
posed to solve it (e.g., [2, 12, 14]), as have several distributed al-
gorithms [11, 19, 22]. However, conventional models of parallel
and distributed computation assume that the computational and
communication capabilities of the individual processors far exceed
those of individual particles of programmable matter. Most com-
monly, processors are assumed to know their global coordinates and
can communicate non-locally. Particles in the amoebot model have
only constant-size memory and can communicate only with their
immediate neighbors. Furthermore, the object’s boundary may be
much larger than the number of particles, making it impossible for
the particle system to store all the geographic locations. Finally, to
our knowledge, there only exist centralized algorithms to compute
(strong) restricted-orientation convex hulls (see, e.g., [16] and the
references therein); ours is the first to do so in a distributed setting.

The amoebot model for self-organizing particle systems is an
active system of programmable matter — in which the computa-
tional units have control over their own movements and actions —
as opposed to a passive system such as population protocols and
models of molecular self-assembly (e.g., [3, 20]). Other active sys-
tems include modular self-reconfigurable robot systems (e.g., [27]
and the references therein), the nubot model for molecular com-
puting [26], and mobile robots (see [15] and the references therein)
where robots abstracted as points in the real plane or on graphs
solve problems such as pattern formation and gathering. A notable
difference between the amoebot model and the mobile robots lit-
erature is in their treatment of progress and time: mobile robots
progress according to fine-grained “look-compute-move” cycles
where actions are comprised of exactly one look, move, or compute
operation. In comparison — at the scale where particles can only
perform a constant amount of computation and are restricted to
immediate neighborhood sensing — the amoebot model assumes
coarser atomic actions (as described in Section 1.1).
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Lastly, we distinguish convex hull formation from the related
problems of shape formation and object coating, both of which have
been studied under the amoebot model. Like shape formation [9],
convex hull formation is a task of reconfiguring a particle system’s
shape; however, the desired hull shape is based on the object and
thus is not known to the particles ahead of time. Object coating [10]
also depends on an object, but may not form a convex seal using
the minimum number of particles.

1.4 Organization

Our convex hull formation algorithm has two phases: the particle
system first explores the object to learn the convex hull’s dimen-
sions, and then uses this knowledge to form the convex hull. In
Section 2, we introduce the main ideas behind the learning phase
as a novel local algorithm run by a single particle with unbounded
memory. We then give new results on organizing a system of par-
ticles each with O(1) memory into binary counters in Section 3.
Combining the results of these two sections, we present the full dis-
tributed algorithm for learning and forming the strong Oa-hull in
Section 4. We conclude by presenting an extension of our algorithm
to solve the Oa-hull formation problem in Section 5.

2 THE SINGLE-PARTICLE ALGORITHM

We first consider a particle system composed of a single particle P
with unbounded memory and present a local algorithm for learning
the strong Oa-hull of object O. As will be the case in the distributed
algorithm, particle P does not know its global coordinates or orien-
tation. We assume P is initially on B(O), the boundary of O. The
main idea of this algorithm is to let P perform a clockwise traversal
of B(O), updating its knowledge of the convex hull as it goes.

In particular, the convex hull can be represented as the inter-
section of six half-planes H = {N, NE, SE, S, SW, NW}, which P
can label using its local compass (see Figure 3). Particle P esti-
mates the location of these half-planes by maintaining six counters
{dy, : h € H}, where each counter dj, represents the L;-distance
from the position of P to half-plane h. If at least one of these coun-
ters is equal to 0, P is on its current estimate of the convex hull.

Each counter is initially set to 0, and P updates them as it moves.
Let [6] = {0, ...,5} denote the six directions P can move in, corre-
sponding to its contracted port labels. In each step, P first computes
the direction i € [6] to move toward using the right-hand rule,
yielding a clockwise traversal of B(O). Since O was assumed to
not have tunnels of width 1, direction i is unique. Particle P then
updates its distance counters by setting dj, < max{0,dp, + 6; p,}
for all h € H, where 6; = (6;,N,6i NE> 0i,SE> 0i.5, 8i,.sw» 0i, Nw)
is defined as follows:

8 =(1,1,0,—-1,-1,0)

8 =(-1,0,1,1,0,-1)
34 =(0,-1,-1,0,1,1)

8 =(0,1,1,0,—1,-1)
83 = (-1,-1,0,1,1,0)
05 =(1,0,-1,-1,0,1)

Thus, every movement decrements the distance counters of the
two half-planes to which P gets closer and increments the distance
counters of the two half-planes from which P gets farther away.
Whenever P moves toward a half-plane h for which d, = 0, the
distance stays 0, essentially “pushing” the estimation of the half-
plane one step further (see Figure 4).
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Figure 3: (a) A particle’s local labeling of the six half-planes
composing the convex hull: the half-plane between its local
0 and 5-labeled edges is N, and the remaining half-planes are
labeled accordingly. (b) An object (black) and the six half-
planes (dashed lines with shading on included side) whose
intersection forms its convex hull (black line). As an exam-
ple, the node depicted in the upper-right is distance 0 from
the S and SE half-planes and distance 7 from N.

Figure 4: The particle P with its convex hull estimate (gray
line) after traversing the path (dashed line) from its starting
point (small black dot). (a) dj, > 1 for all h € H, so its next
move does not push a half-plane. (b) Its next move is toward
the SE half-plane and dsg = 0, so (c) SE is pushed.

Finally, P needs to detect when it has learned the complete con-
vex hull. To do so, it stores six terminating bits {by, : h € H}, where
by, is equal to 1 if P has visited half-plane h (i.e., if dj, has been 0)
since P last pushed any half-plane, and 0 otherwise. Whenever
P moves without pushing a half-plane (e.g., Figure 4a—4b), it sets
by, « 1for all h such that dj, = 0 after the move. If its move pushed
a half-plane (e.g., Figure 4b—4c), it resets all its terminating bits to
0. Once all six terminating bits are 1, P contracts and terminates.
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Analysis. We now analyze the correctness and runtime of this
single-particle algorithm. For a given round i, let H;(O) c V be
the set of all nodes enclosed by P’s estimate of the convex hull
of O after round i, i.e., all nodes in the closed intersection of the
six half-planes. We first show that P’s estimate of the convex hull
represents the correct convex hull H(O) after at most one traversal
of the object’s boundary, and does not change afterwards.

LEMMA 2.1. If P completes its traversal of B(O) in round i*, then
H;(0) = H(O) foralli > i*.

ProOF. P exclusively traverses B(O), so H;(O) € H(O) for all
rounds i. Furthermore, H;(O) C H;+1(O) for any round i. Once P
has traversed the whole boundary, it has visited a node of each
half-plane corresponding to H(O), and thus H;+(0) = H(O). O

We now show particle P terminates if and only if it has learned
the complete convex hull.

LEmMA 2.2. IfH;(O) c H(O) after some round i, then by, = 0 for
some half-plane h € H.

PRrROOF. Suppose to the contrary that after round i, H;(O) ¢ H(O)
but by, = 1 for all h € H; let i be the first such round. Then after
round i — 1, there was exactly one half-plane h; € H such that
bp, = 0; all other half-planes h € H \ {h1} have b, = 1. Let
ha, ..., he be the remaining half-planes in clockwise order, and let
round ¢; < i — 1 be the one in which by, . was most recently flipped
from 0 to 1, for 2 < j < 6. Particle P could only set by, = 1 in round
tj if its move in round ¢; did not push any half-planes and dj; = 0
after the move. There are two ways this could have occurred.

First, P may have already had dj,; = 0 in round #; - 1 and simply
moved along h; in round ¢}, leaving dj; = 0. But for this to hold
and for P to have had bp, =0 after round t; — 1, P must have just
pushed h;, resetting all its terminating bits to 0. Particle P could
not have pushed any half-plane during rounds t; up to i — 1, since
bp, = -+ = by, = 1, so this case only could have occurred with
half-plane h,.

For the remaining half-planes h;, for 3 < j < 6, P must have had
dp, = 1inroundt;—1and moved into h; in round ¢;. But this is only
possible if P pushed h; in some round prior to t; — 1, implying that
P has already visited hs, . . ., hg. Therefore, P has completed at least
one traversal of B(O) by round i, but H;(O) c H(O), contradicting
Lemma 2.1. O

LEMMA 2.3. Suppose H;(O) = H(O) for the first time after some
round i. Then P terminates at some node of H(O) after at most one
additional traversal of B(O).

ProOF. Since i is the first round in which H;(O) = H(O), parti-
cle P must have just pushed some half-plane h — resetting all its
terminating bits to 0 — and now occupies a node u with distance 0
to h. Due to the geometry of the triangular lattice, the next node
in a clockwise traversal of B(O) from u must also have distance 0
to h, so P will set by, to 1 after its next move. As P continues its
traversal, it will no longer push any half-planes because its convex
hull estimation is complete. Thus, P will visit every other half-plane
h” without pushing it, causing P to set each by to 1 before reaching
u again. Particle P sets its last terminating bit by« to 1 when it next
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visits a node v with distance 0 to h*. Therefore, P terminates at
v € B(O) N H(O). o

The previous lemmas imply the following theorem.

THEOREM 2.4. The single-particle algorithm terminates after t* =
O(B) asynchronous rounds with particle P at a nodeu € B(O)NH(O)
and Hy+(0) = H(O).

3 A BINARY COUNTER OF PARTICLES

For a system of particles each with constant-size memory to em-
ulate the single-particle algorithm of Section 2, the particles need
a mechanism to distributively store the distances to each of the
strong Op-hull’s six half-planes. To that end, we now describe a
local, distributed algorithm for coordinating a particle system as a
binary counter that supports increments and decrements by one
as well as zero-testing, subsuming previous work on an increment-
only binary counter under the amoebot model [21]. This algorithm
uses tokens, or constant-size messages passed between particles [8].

Suppose that the participating particles are organized as a simple
path with the leader particle at its start: £ = Py, Py, Py, .. ., Pr.. Each
particle P; stores a value P;.bit € {0, 0, 1}, where P;.bit = 0 implies
P; is not part of the counter; i.e., it is beyond the most significant
bit. Each particle P; also stores tokens in a queue P;.tokens; the
leader ¢ can only store one token, while all other particles can store
up to two. These tokens can be increments ¢*, decrements ¢~, or
the unique final token f that represents the end of the counter. If a
particle P; (for 0 < i < k) holds f —i.e., P;.tokens contains f — then
the counter value is represented by the bits of each particle from
the leader ¢ (storing the least significant bit) up to and including
P;_1 (storing the most significant bit).

The leader ¢ is responsible for initiating counter operations,
while the rest of the particles use only local information and com-
munication to carry these operations out. To increment the counter,
the leader ¢ generates an increment token ¢* (assuming it was not
already holding a token). Now consider this operation from the
perspective of any particle P; holding a c* token, where 0 < i < k.
If P; .bit = 0, P; consumes ¢t and sets P;.bit < 1. Otherwise, if
P;.bit = 1, this increment needs to be carried over to the next most
significant bit. As long as P;1.tokens is not full (i.e., P;+1 holds at
most one token), P; passes ¢t to P11 and sets P;.bit « 0. Finally, if
P;.bit = 0, this increment has been carried over past the counter’s
end, so P; must also be holding the final token f. In this case, P;
forwards f to P;y1, consumes c*, and sets P;.bit « 1.

To decrement the counter, the leader ¢ generates a decrement
token ¢~ (if it was not holding a token). From the perspective of
any particle P; holding a c¢™ token, where 0 < i < k, the cases for
P;.bit € {0, 1} are nearly anti-symmetric to those for the increment.
If P;.bit = 0 and P;+1.tokens is not full, P; carries this decrement
over by passing ¢~ to Pj41 and setting P;.bit « 1. However, if
P;.bit = 1, we only allow P; to consume ¢~ and set P;.bit « 0 if
Pjy1.bit # 1 or Pj4q is not only holding a ¢~. While not necessary
for the correctness of the decrement operation, this will enable
conclusive zero-testing. Additionally, if P;;; is holding f, then P;
is the most significant bit. So this decrement shrinks the counter
by one bit; thus, as long as P; # Py, P; additionally takes f from
P;j+1, consumes ¢, and sets P;.bit « 0.
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Finally, the zero-test operation: if P;.bit = 1 and P; only holds a
decrement token ¢, £ cannot perform the zero-test conclusively
(i.e., zero-testing is “unavailable”). Otherwise, the counter value is
0 if and only if P; is only holding the final token f and (i) £.bit = 0
and {.tokens is empty or (ii) £.bit = 1 and ¢ is only holding a
decrement token ¢~

Analysis. Due to space constraints, we only summarize our rig-
orous analysis of the distributed binary counters; full proofs and
accompanying pseudocode can be found in the arXiv version [6].
Correctness of the increment and decrement operations follows
from the fact that the increment and decrement tokens remain in
the order they were created, so order of operations is preserved.
We then prove the correctness of zero-testing in two parts: first, we
show that zero-testing is always eventually available; then we show
that if the zero-test operation is available, it is always accurate.

To analyze the counter’s runtime, we employ a dominance argu-
ment between asynchronous and parallel executions, building upon
the analysis of [21] that bounded the running time of an increment-
only distributed counter. The general idea of the argument is as
follows. First, we prove that the counter operations are, in the worst
case, at least as fast in an asynchronous execution as they are in
a simplified parallel execution. We then give an upper bound on
the number of parallel rounds required to process these operations;
combining these two results also gives a worst case upper bound on
the running time in terms of asynchronous rounds. This analysis
culminates in the following result.

THEOREM 3.1. Given any nonnegative sequence of m operations
and any fair asynchronous activation sequence, the distributed binary
counter processes all operations in O(m) asynchronous rounds.

4 THE CONVEX HULL ALGORITHM

We now show how a system % of particles each with only constant-
size memory can emulate the single-particle algorithm of Section 2.
Recall that we assume P contains a unique leader particle ¢ initially
adjacent to the object. This leader ¢ is primarily responsible for em-
ulating the particle with unbounded memory in the single-particle
algorithm. To do so, it organizes the other particles in the system as
distributed memory, updating its distances dj, to half-plane h as it
moves along the object’s boundary. This is our algorithm’s learning
phase. In the formation phase,  uses these complete measurements
to lead the other particles in forming the convex hull. There is no
synchronization among the various (sub)phases of our algorithm;
for example, some particles may still be finishing the learning phase
after the leader has begun the formation phase. Pseudocode for the
entire algorithm can be found in the arXiv version [6].

4.1 Learning the Convex Hull

The learning phase combines the movement rules of the single-
particle algorithm (Section 2) with the distributed binary counters
(Section 3) to enable the leader to measure the convex hull H(O).
There are some nuances in adapting the general-purpose counters
for use in our convex hull formation algorithm. These are omitted
due to space constraints but can be found in the arXiv version [6].

In the learning phase, each particle P can be in one of three states,
denoted P.state: leader, follower, or idle. All non-leader particles
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are assumed to be initially idle and contracted. To coordinate the
system’s movement, the leader ¢ orients the particle system as a
spanning tree rooted at itself using the spanning tree primitive (see,
e.g., [8]). Ifan idle particle P is activated and has a non-idle neighbor,
then P becomes a follower and sets P.parent to this neighbor. This
primitive continues until all idle particles become followers.
Imitating the single-particle algorithm of Section 2, £ performs
a clockwise traversal of the boundary of the object O using the
right-hand rule, updating its six distance counters d, along the way.
It terminates once it has visited all six half-planes without pushing
any of them, which it detects using its terminating bits by, In this
multi-particle setting, we need to carefully consider both how ¢
updates its counters and interacts with its followers as it moves.

Rules for Leader Computation and Movement. If { is expanded
and it has a contracted follower child P in the spanning tree that is
keeping counter bits, £ pulls P in a handover. Otherwise, suppose £
is contracted. If all its terminating bits by, are equal to 1, then ¢ has
learned the convex hull, completing this phase. Otherwise, it must
continue its traversal of the object’s boundary. If the zero-test oper-
ation is unavailable or if it is holding increment/decrement tokens
for any of its dj, counters, it will not be able to move. Otherwise,
let i € [6] be its next move direction according to the right-hand
rule, and let v be the node in direction i. There are two cases: either
v is unoccupied, or ¢ is blocked by another particle occupying v.

In the case ¢ is blocked by a contracted particle P, £ can role-swap
with P, exchanging its memory with the memory of P. In particular,
¢ gives P its counter bits, its counter tokens, and its terminating
bits; promotes P to become the new leader by setting P.state «—
leader and clearing P.parent; and demotes itself by setting .state «
follower and {.parent « P. This effectively advances the leader’s
position one node further along the object’s boundary.

If either v is unoccupied or £ can perform a role-swap with the
particle blocking it, ¢ first calculates whether the resulting move
would push one or more half-planes using update vector §;. Let
H’' ={heH :p =-1anddy = 0} be the set of half-planes
being pushed, and note that ¢ can locally check if dj, = 0 since
zero-testing is currently available. It then generates the appropriate
increment and decrement tokens according to §;. Next, it updates
its terminating bits: if it is about to push a half-plane (i.e., H’ # 0),
then it sets b, « 0 for all h € H; otherwise, it can again use
zero-testing to set by, « 1 for all h € H such thatdy + §; = 0.
Finally, £ performs its move: if v is unoccupied, ¢ expands into v;
otherwise, ¢ role-swaps with the particle blocking it.

Rules for Follower Movement. Consider any follower P. If P is
expanded and has no children in the spanning tree nor any idle
neighbor, it simply contracts. If P is contracted and following the tail
of its expanded parent Q = P.parent, P can push Q in a handover.
Similarly, if Q is expanded and has a contracted child P, Q can pull
P in a handover. However, if P is not keeping counter bits but Q is,
then a handover between P and Q could disconnect the counters
(see Figure 5). So we only allow these handovers if either (i) both
keep counter bits, (ii) neither keep counter bits, or (iii) one does
not keep counter bits while the other holds the final token.
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Figure 5: The leader Py (black dot) and its followers (black
circles). Followers with dots keep counter bits, and Ps holds
the final token. Allowing Q; to handover with P; would dis-
connect the counter; all other potential handovers are safe.

4.2 Forming the Convex Hull

The formation phase brings as many particles as possible into the
convex hull H(O). It is divided into two subphases. In the hull
closing subphase, the leader particle ¢ uses its binary counters to
lead the rest of system P along a clockwise traversal of H(O). If
¢ completes its traversal, leaving every node of the convex hull
occupied by (possibly expanded) particles, the hull filling subphase
fills the convex hull with as many contracted particles as possible.

4.2.1 The Hull Closing Subphase. When the learning phase ends, ¢
occupies some position s € H(O) (by Lemma 2.3) and its distributed
binary counters dj, contain accurate distances to each of the six
half-planes h € H. The leader’s main role during the hull closing
subphase is to lead the rest of the particle system along a clockwise
traversal of H(O). In particular, € uses its counters to detect when
it reaches one of the six vertices of H(O), at which point it turns
60° clockwise to follow the next half-plane, and so on.

The particle system tracks the position s that ¢ started from by
ensuring a unique marker particle occupies it. The marker can only
contract out of s as part of a handover, at which point the marker
role is transferred so that the marker always occupies s. Thus,
when ¢ encounters the marker particle occupying the next node of
the convex hull, it can locally determine that it has completed its
traversal and this subphase.

However, there may not be enough particles to close the hull.
Recall that H = |H(O)]| is the number of nodes in the convex hull.
If |P| < [H/2], eventually all particles enter H(O) and follow ¢
as far as possible without disconnecting from the marker particle,
which cannot leave position s. With every hull particle expanded
and unable to move any farther, a token passing scheme is used
to inform ¢ that there are insufficient particles for closing the hull
and advancing to the next subphase. Upon receiving this message,
¢ terminates, with the rest of the particles following suit.

Rules for Leader Computation and Movement. If the leader ¢ is
holding the “all expanded” token and does not have the marker
particle in its neighborhood — indicating that there are insufficient
particles to complete this subphase — it generates a “termination”
token and passes it to its child in the spanning tree. It then termi-
nates by setting .state « finished.

Otherwise, if ¢ is expanded, there are two cases. If £ has a con-
tracted hull child Q (i.e., a child Q with Q.state = hull), £ performs a
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Figure 6: (a) After expanding for the first time, the leader
{ occupies the starting position s with its tail. (b) After per-
forming a handover with ¢, follower child Q becomes the pre-
marker (inner circles). (c) When Q contracts, it becomes the
marker (inner dot). (d) If there are insufficient particles to
close the hull, the marker will eventually become expanded
and unable to contract without vacating position s.

pull handover with Q. If £ does not have any hull children but does
have a contracted follower child Q keeping counter bits, then this
is its first expansion of the hull closing subphase and the marker
should occupy its current tail position. So ¢ sets Q.state «— pre-
marker and performs a pull handover with Q (see Figure 6a-6b).

During its traversal of H(O), ¢ keeps a variable ¢.plane € H
indicating which half-plane boundary it is currently following.
The leader updates ¢.plane when it discovers (via zero-testing)
that it has reached the next half-plane. It then inspects the next
node of its traversal along {.plane, say v. If v is occupied by the
marker particle Q, then £ has completed the hull closing subphase;
it updates Q.state «— finished and then advances to the hull filling
subphase (Section 4.2.2). Otherwise, if ¢ is contracted, it continues
its traversal of the convex hull by either expanding into node v if
v is unoccupied or by role-swapping with the contracted particle
blocking it, just as it did in the learning phase.

Rules for the Marker Particle Logic. The marker role must be
passed between particles so that the marker particle always oc-
cupies the position at which the leader started its hull traversal.
Whenever a contracted marker particle P expands in a handover
with its parent, it remains a marker particle. When P subsequently
contracts as a part of a handover with a contracted child Q, P sets
P.state « hull and Q.state < pre-marker. Finally, when the pre-
marker Q contracts — either on its own or as part of a handover with
a contracted child — Q becomes the marker particle (see Figure 6c).

Importantly, the marker particle P never contracts outside of a
handover, as this would vacate the leader’s starting position (see
Figure 6d). If P is ever expanded but has no children or idle neigh-
bors, it generates the “all expanded” token and passes toward ¢
along expanded particles only. If this ultimately causes ¢ to gen-
erate and pass a “termination” token back to P, P consumes the
termination token and becomes finished.
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Rules for Follower and Hull Particle Behavior. Follower particles
behave just as they did in the learning phase, with two modifications.
First, if ever a follower performs a handover with the (pre-)marker
particle, their states are updated as described above. Second, fol-
lower particles never perform handovers with hull particles.

Hull particles are simply follower particles that have joined the
convex hull. They only perform handovers with the leader and
other hull particles. Additionally, they pass the “all expanded” and
“termination” tokens: if an expanded hull particle P holds the “all
expanded” token and P.parent is also expanded, P passes this token
to P.parent. If a hull particle P is holding the “termination” token,
it terminates by passing this token to its hull or marker child and
becoming finished.

4.2.2  The Hull Filling Subphase. The hull filling subphase is the
final phase of the algorithm. It begins when the leader £ encounters
the marker particle in the hull closing subphase, completing its hull
traversal. At this point, H(O) is entirely filled with particles, though
some may be expanded. The remaining followers are either outside
the hull or are trapped between the hull and the object. The goal
of this subphase is to allow trapped particles to escape outside the
hull, and to use the followers outside the hull to “fill in” beside any
expanded hull particles, filling the hull with as many contracted
particles as possible.

At a high level, this subphase works as follows. The leader ¢ first
becomes finished. Each hull particle also becomes finished when its
parent is finished. A finished particle P labels a neighboring follower
Q as either trapped or filler depending on whether Q is inside or
outside the hull, respectively. This can be determined locally using
the relative position of Q to the parent of P. A trapped particle
performs a coordinated series of movements with a neighboring
finished particle to effectively take its place, “pushing” the finished
particle outside the hull as a filler particle. Filler particles perform a
clockwise traversal over the finished particles on the hull, searching
for an expanded finished particle to handover with, effectively
replacing it with two contracted ones.

There are two ways the hull filling subphase can terminate. If
[H/2] < |P| < H, there are enough particles to close the hull
but not enough to fill it with contracted particles. In this case,
all particles join the hull and become finished by following the
rules above. If instead |P| > H, the entire hull can be filled with
contracted particles. This event is detected using a token passing
scheme that, on completion, triggers a broadcast of termination
tokens that cause all particles (including the extra ones outside
the hull) to finish. In the following, we describe the local rules
underlying the three important primitives for this subphase.

Freeing Trapped Particles. Suppose a finished particle P has la-
beled a neighboring contracted particle Q as trapped (see Figure 7a).
In doing so, P updates Q.parent «— P. When Q is next activated, it
sets P.state «— pre-filler (see Figure 7b). This indicates to P that it
should expand towards the outside of the hull as soon as possible
(Figure 7c). Once P has expanded, P and Q perform a handover (Fig-
ure 7d). This effectively pushes P out of the hull, where it becomes
a filler particle, and expands Q into the hull, where it becomes
pre-finished. Finally, whenever Q contracts — either on its own or
in a handover — it becomes finished, taking the original position
and role of P (Figure 7e).
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Figure 7: Freeing a trapped particle. (a) A finished particle P
marks a neighboring follower Q on the interior of the hull
as trapped (inner triangle). (b) Q marks its parent P as a pre-
filler (inner circle). (c) P expands outside the hull. (d) In a
handover between P and Q, P becomes a filler (inner dot) and
Q becomes pre-finished (gray). (e) Q contracts and finishes.
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Figure 8: Some movements of filler particles. (a) A finished
particle P marks neighboring followers Q and R on the ex-
terior of the hull as fillers (inner triangle). (b) Q performs
a handover with P to fill the hull, becoming pre-finished
(gray), while R expands along a clockwise traversal of the
hull. (c) Q contracts and becomes finished.

Filling the Hull. A particle P becomes a filler either by being
labeled so by a neighboring finished particle or by being ejected
from the hull while freeing a trapped particle, as described above.
If P is expanded, it simply contracts if it has no children or idle
neighbors, or performs a pull handover with a contracted follower
child if it has one. If P is contracted, it finds the next node v on its
clockwise traversal over the finished particles. P simply expands
into v unless the first occupied node clockwise from v is occupied by
the tail of an expanded finished particle Q. In this case, P performs
a push handover with Q, sets Q to be its parent, and becomes pre-
finished. Whenever P next contracts, either on its own or during a
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handover, it becomes finished. An example of some filler particle
movements is depicted in Figure 8.

Detecting Termination. Before ¢ becomes finished at the start of
this subphase, it generates an “all contracted” token containing a
counter ¢ initially set to 0. This token is passed backwards along
the hull to contracted finished particles only. Whenever the token
is passed through a vertex of the convex hull, the counter ¢ is incre-
mented. Thus, if a contracted finished particle is ever holding the
“all contracted” token and its counter ¢ is equal to 7, it terminates
by consuming the “all contracted” token and broadcasting “termi-
nation” tokens to all its neighbors. Whenever a particle receives a
termination token, it also terminates by becoming finished.

4.3 Analysis

Due to space constraints, we only give the highlights of our analysis
here; the complete arguments can be found in the arXiv version [6].
Our correctness arguments begin with proving several safety prop-
erties of our distributed binary counters despite the adaptations
required for convex hull formation. In particular, we use the as-
sumption from Section 1.2 that our system contains |P| > log, H
particles in conjunction with the leader’s traversal path to prove
two useful results regarding the lengths of the counters.

LEMMA 4.1. Let L be the path of nodes traversed by leader { from
the start of the algorithm to its current position. Then there are at
most |log, min{|L|, H}] + 1 particles holding bits of a distributed
binary counter dy,.

LEMMA 4.2. Let L be the path of nodes traversed by leader { from
the start of the algorithm to its current position. Then there are at
least min{|P|, [|L|/21} particles including ¢ along L.

Using these lemmas, we can immediately conclude that the dis-
tributed binary counters never disconnect or intersect themselves
and that there are always enough particles to maintain the counters.
We then show the counters never impede the leader’s ability to
move forward indefinitely.

LeEMMA 4.3. If € only has one bit of a distributed binary counter
dy and is not holding the final token f; at time t, thereby being
prohibited from moving, then there exists a time t’ > t when { either
has two bits of dy, or is holding f},.

We then prove a series of correctness results analyzing the vari-
ous (sub)phases of the algorithm. For the learning phase, it suffices
to show that the leader ¢ traverses the boundary of object O and
obtains an accurate measurement of the convex hull. Since we al-
ready argued about the correctness of the counters, it suffices to
show the following.

LEMMA 4.4. If{ is contracted, it can always eventually expand or
role-swap along its clockwise traversal of B(O). If € is expanded, it
can always eventually perform a handover with a follower.

For the hull formation phase, we analyze what level of hull
completion is achieved based on the number of particles |P|. We
first show that the leader successfully closes the hull if and only
if there are at least [H/2] particles in the system; otherwise, a
maximal partial convex hull is formed. We then show that as long
as the hull closing subphase completes, the hull will be filled with as
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many contracted particles as possible; however, if there are less than
H particles in the system, not all nodes of H(O) will be occupied by
contracted particles. Synthesizing these lemmas yields the following
correctness theorem.

THEOREM 4.5. The Convex Hull Algorithm correctly solves instance
(P, O) of the convex hull formation problem if |P| > |H(O)|, and
otherwise forms a maximal partial strong Op-hull of O.

We then bound the worst-case number of asynchronous rounds
for the leader ¢ to learn and form the convex hull. As in Section 3,
we use dominance arguments to show that the worst-case number
of parallel rounds required by a carefully defined parallel schedule
is no less than the runtime of our algorithm. The first dominance ar-
gument shows that the counters bits are forwarded quickly enough
to avoid blocking leader expansions and role-swaps. This argument
culminates in the following lemma.

LEMMA 4.6. Suppose leader € only has one bit of a counter dy, and
is not holding the final token f;, in round 0 < t < T — 2 of greedy
parallel bit forwarding schedule (Co, . .., Ct). Then within the next
two parallel rounds, € will either have a second bit of dy, or will be
holding f,, allowing it to role-swap.

The second dominance argument relates the time required for ¢
to traverse the object’s boundary and convex hull to the running
time of our algorithm. Both build upon previous work [5], which an-
alyzed spanning trees of particles led by their root particles. Several
nontrivial extensions are needed here to address the interactions
between the counters and particle movements as well as traversal
paths that can be temporarily blocked. The key lemma here is the
following, which relates the time required for ¢ to traverse a path
to the path’s length.

LEMMA 4.7. IfL is the (not necessarily simple) path of the leader’s
traversal, the leader traverses this path in O(|L|) asynchronous rounds
in the worst case.

Using Lemma 4.7, we can directly relate the distance the leader £
has traversed to the system’s progress towards learning and form-
ing the convex hull. By Lemma 5 of [5], B particles self-organize as
a spanning tree rooted at £ in at most O(B) asynchronous rounds.
By Lemmas 2.1 and 2.3, £ traverses B(O) at most twice before com-
pleting the learning phase. Thus, by Lemma 4.7:

LEMMA 4.8. The learning phase completes in at most O(B) asyn-
chronous rounds.

The hull closing and filling subphases can be analyzed similarly
(with additional technicalities), ultimately yielding the following.

LEMMA 4.9. In at most O(H) asynchronous rounds from when the
leader € completes the learning phase, either € completes its traversal
of H(O) and closes the hull or every particle in the system terminates,
expanded over two nodes of H(O).

LEMMA 4.10. In at most O(H) asynchronous rounds from when
the leader € closes the hull, min{|P|, H} nodes of H(O) will be filled
with contracted finished particles.

Putting it all together, the algorithm is correct by Theorem 4.5,
the learning phase terminates in O(B) asynchronous rounds by
Lemma 4.8, the hull closing subphase terminates in an additional
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Figure 9: Transforming the cycle of tightening particles that
initially form H(O) into H’(O) by moving convex particles
(black dots) towards the object.

O(H) asynchronous rounds by Lemma 4.9, and the hull filling sub-
phase fills the convex hull with as many contracted particles as
possible in another O(H) asynchronous rounds by Lemma 4.10.
Thus, since B > H, we have:

THEOREM 4.11. In at most O(B) asynchronous rounds, the Convex
Hull Algorithm either solves instance (P, O) of the convex hull for-
mation problem if |P| > |H(O)| or forms a maximal partial strong
Op-hull of O otherwise.

The time required for all particles in the system to terminate
may be longer than the bound given in Theorem 4.11, depending
on the number of particles. As termination is further broadcast
to the rest of the system, we know that at least one non-finished
particle receives a termination signal and becomes finished in each
asynchronous round. So,

COROLLARY 4.12. All particles in system P terminate the Convex
Hull Algorithm in O(|P|) asynchronous rounds in the worst case.

5 FORMING THE (WEAK) O,-HULL

To conclude, we informally describe how the Convex Hull Algo-
rithm can be extended to form the (weak) Oa-hull of object O,
solving the Oa-hull formation problem. We refer the interested
reader to the arXiv version [6] for the rigorous algorithm details
and analysis. This Oa-Hull Algorithm extends the Convex Hull Al-
gorithm at the point when a finished particle first receives the “all
contracted” token with counter value 7, which usually triggers ter-
mination. Instead of terminating, this particle organizes the other
contracted finished particles on H(O) into a directed cycle of tight-
ening particles. A tightening particle is convex if there is exactly
one node in its neighborhood between its parent and child in the
directed cycle, sweeping clockwise. The main idea of this algorithm
is to repeatedly move convex tightening particles towards the ob-
ject, progressively transforming the directed cycle into the object’s
Oa-hull (Figure 9). By arguments similar to those for the Convex
Hull Algorithm, we have the following theorem.

THEOREM 5.1. In at most O(H) asynchronous rounds, the Op-Hull
Algorithm solves instance (P, O) of the Oa-hull formation problem
if |P| = H. All particles terminate in an additional O(|P|) rounds.
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