®

Check for
updates

Simplifying Neural Networks Using
Formal Verification

Sumathi Gokulanathan!, Alexander Feldsher!, Adi Malca!, Clark Barrett?,
and Guy Katz!(®)

! The Hebrew University of Jerusalem, Jerusalem, Israel
{sumathi.giokolanat,feld,adimalca,guykatz}@cs.huji.ac.il
2 Stanford University, Stanford, USA
barrett@cs.stanford.edu

Abstract. Deep neural network (DNN) verification is an emerging field,
with diverse verification engines quickly becoming available. Demonstrat-
ing the effectiveness of these engines on real-world DNNs is an important
step towards their wider adoption. We present a tool that can leverage
existing verification engines in performing a novel application: neural net-
work simplification, through the reduction of the size of a DNN without
harming its accuracy. We report on the work-flow of the simplification
process, and demonstrate its potential significance and applicability on
a family of real-world DNNs for aircraft collision avoidance, whose sizes
we were able to reduce by as much as 10%.

Keywords: Deep neural networks - Simplification - Verification -
Marabou

1 Introduction

Deep neural networks (DNNs) are revolutionizing the way complex software is
produced, obtaining unprecedented results in domains such as image recogni-
tion [28], natural language processing [5], and game playing [27]. There is now
even a trend of using DNNs as controllers in autonomous cars and unmanned
aircraft [2,18]. With DNNs becoming prevalent, it is highly important to develop
automatic techniques to assist in creating, maintaining and adjusting them.

As DNNs are used in tackling increasingly complex tasks, their sizes (i.e.,
number of neurons) are also increasing—to a point where modern DNNs can
have millions of neurons [13]. DNN size is thus becoming a liability, as deploy-
ing larger networks takes up more space, increases energy consumption, and
prolongs response times. Network size can even become a limiting factor in sit-
uations where system resources are scarce. For example, consider the ACAS Xu
airborne collision avoidance system for unmanned aircraft, which is currently
being developed by the Federal Aviation Administration [18]. This is a highly
safety-critical system, for which a DNN-based implementation is being consid-
ered [18]. Because this system will be mounted on actual drones with limited
© Springer Nature Switzerland AG 2020

R. Lee et al. (Eds.): NFM 2020, LNCS 12229, pp. 85-93, 2020.
https://doi.org/10.1007/978-3-030-55754-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55754-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-55754-6_5

86 S. Gokulanathan et al.

memory, efforts are being made to reduce the sizes of the ACAS Xu DNNs as
much as possible, without harming their accuracy [17,18].

Most work to date on DNN simplification uses various heuristics, and does
not provide formal guarantees about the simplified network’s resemblance to
the original. A common approach is to start with a large network, and reduce
its size by removing some of its components (i.e., neurons and edges) [12,15].
The parts to be removed from the network are determined heuristically, and
network accuracy may be harmed, sometimes requiring additional training after
the simplification process has been performed [12].

Here, we propose a novel simplification technique that harnesses recent
advances in DNN verification (e.g., [9,19,32]). Using verification queries, we pro-
pose to identify components of the network that never affect its output. These
components can be safely removed, creating a smaller network that is completely
equivalent to the original. We empirically demonstrate that many such removable
components exist in networks of interest.

We implement our technique in a proof-of-concept tool, called NNSimplify.
The tool uses the following work-flow: (i) it performs lightweight simulations
to identify parts of the DNN that are candidates for removal; (ii) it invokes
an underlying verification engine to dispatch queries that determine which of
those parts can indeed be removed without affecting the network’s outputs; and
(iii) it constructs the simplified network, which is equivalent to the original. A
major benefit of the proposed verification-based simplification is that it does not
require any retraining of the simplified network, which may be expensive.

Our implementation of NNSimplify (available online [10]) can use existing
DNN verification tools as a backend. For the evaluation reported here, we used
the recently published Marabou framework [21] as the underlying verification
engine. We evaluated our approach on the ACAS Xu family of DNNs for airborne
collision avoidance [18], and were able to reduce the sizes of these DNNs by up to
10%—a highly significant reduction for systems where resources are scarce.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
background on DNNs and their verification and simplification. Next, we describe
our verification-based approach to simplification in Sect. 3, followed by an eval-
uation in Sect.4. We then conclude in Sect. 5.

2 Background: DNNs, Verification and Simplification

DNNs are comprised of an input layer, an output layer, and multiple hidden
layers in between. A layer is comprised of multiple nodes (neurons), each con-
nected to nodes from the preceding layer using a predetermined set of weights
(see Fig. 1). By assigning values to inputs and then feeding them forward through
the network, values for each layer can be computed from the values of the pre-
vious layer, finally resulting in values for the outputs.

As DNNs are increasingly used in safety-critical applications (e.g., [2,18]),
there is a surge of interest in verification methods that can provide formal guar-
antees about DNN behavior. A DNN verification query consists of a neural net-
work and a property to be checked; and it results in either a formal guarantee

Simplifying Neural Networks Using Formal Verification 87

Input Hidden Output
layer layer layer

Fig. 1. A small neural network with 2 hidden nodes in one hidden layer. Weights are
denoted over the edges. Hidden node values are typically determined by computing
a weighted sum according to the weights, and then applying a non-linear activation
function to the result.

that the network satisfies the property, or a concrete input for which the property
is violated (a counter-example). Verification queries can encode various proper-
ties about DNNs; e.g., that slight perturbations to a network’s inputs do not
affect its output, and that it is thus robust to adversarial perturbations [1,4,30].

Recently, there has been significant progress on DNN verification tools
that can dispatch such queries (see a recent survey [24]). Some of the pro-
posed approaches for DNN verification include the use of specialized SMT
solvers [14,19,21], the use of LP and MILP solvers [7,31], symbolic interval prop-
agation [32], abstract interpretation [9], and many others (e.g., [3,6,8,25,26]).
This new technology has been applied in a variety of contexts, such as collision
avoidance [19], adversarial robustness [11,14,20], hybrid systems [29], and com-
puter networks [22]. Although DNN verification technology is improving rapidly,
scalability remains a major limitation of existing approaches. It has been shown
that a common variant of the DNN verification problem is NP-complete, and
becomes exponentially harder as the network size increases [19,23].

In recent years, enormous DNNs have been appearing in order to tackle
increasingly complex tasks—to a point where DNN size is becoming a liability,
because large networks take longer to train and even to evaluate when deployed.
Techniques for neural network minimization and simplification have thus started
to emerge: typically, these take an initial, large network, and reduce its size by
removing some of its components [12]. The pruning phase involves the removal of
edges from the network. The selection of which edges to remove is done heuristi-
cally, often by selecting edges that have very small weights, because these edges
are less likely to significantly affect the network’s outputs. If all edges connect-
ing a node to the preceding layer or to the succeeding layer are removed, then
the node itself can be removed. After the pruning phase, the reduced network is
retrained [12,15].

3 Simplification Using Verification

Despite the demonstrated usefulness of pruning-based DNN simplification [12,
15], heuristic-based approaches might miss removable edges, if these edges do not
have particularly small weights. However, such edges can be identified using ver-
ification. For example, consider the network shown in Fig. 2. As all edge weights

88 S. Gokulanathan et al.

have identical magnitudes, none of them would be pruned by a heuristic-based
approach. However, using a verification engine, it is possible to check the prop-
erty: “does there exist an input for which v, takes a non-zero value?”. If the
verification tool answers “no”, as is the case for the network in Fig.2 (because
vy = vy — vz and v = v3), then we are guaranteed that vs is always assigned
0, regardless of the input. In turn, this means that v, can never affect nodes in
subsequent layers. In this case, v4 and all its edges can be safely removed from
the network (rendering the network’s output constant). Due to the soundness of
the verification process, we are guaranteed that the simplified DNN is completely
equivalent to the original DNN, and thus no retraining is required.

o /17.\1) ‘—1) %
T

Fig. 2. Using verification, we can discover that node v4 can safely be removed from
the network.

Using verification to identify nodes that are always assigned 0 for every pos-
sible input, and can thus be removed, is the core of our technique. However,
because verification is costly, posing this query for every node of the DNN might
take a long time. To mitigate this difficulty, we propose the following work-flow:

1. Use lightweight simulations to identify nodes that are candidates for removal.
Initially, all hidden nodes are such candidates. We then evaluate the network
for random input values, and remove from the list of candidates any hidden
node that is assigned a non-zero value for some input. With each simulation,
the number of candidates for removal decreases.

2. For each remaining candidate node v, we create a separate verification query
stating that v # 0, and use the underlying verification engine to dispatch
it. If we get an UNSAT answer, we mark node v for removal. The candidates
are explored in a layer-by-layer order, which allows us to only examine a
part of the DNN for every query. For example, when addressing a candidate
in layer #2, we do not encode layers #3 and on as part of our verification
query, as a node’s assignment can only be affected by nodes in preceding
layers. Because verifying smaller networks is generally easier, this layer-by-
layer approach accelerates the process as a whole. In addition, this process
naturally lends itself to parallelization, by running each verification query on
a separate machine.

3. Finally, we construct the simplified network, in which the nodes marked for
removal and all their incoming and outgoing edges are deleted. We can also
remove any nodes that subsequently become irrelevant due to the removal
of all of their incoming or outgoing edges (e.g., for the DNN in Fig. 2, after
removing v4 we can also remove vy and ws, as neither has any remaining
outgoing edges).

Simplifying Neural Networks Using Formal Verification 89

We note that our technique can be extended to simplify DNNs in additional
ways, by using different verification queries. For example, it can identify separate
nodes that are always assigned identical, non-zero values (duplicates) and unify
them, thus reducing the overall number of nodes. It can also identify and remove
nodes that can be expressed as linear combinations of other nodes.

4 FEvaluation

Our proof-of-concept implementation of the approach, called NNSimplify, is com-
prised of three Python modules, one for performing each of the aforementioned
steps. The tool is general, in two ways: (1) it can be applied to simplify any
DNN, regardless of its application domain; and (2) it can use any DNN verifica-
tion engine as a backend, benefiting from any future improvement in verification
technology. For our experiments we used the Marabou [21] verification engine.
In practice, it is required that the DNN in question be supported by the backend
verification engine—for example, some engines may not support certain network
topologies. Additionally, the DNN needs to be provided in a format supported
by NNSimplify; currently, the tool supports the NNet format [16], and we plan
to extend it to additional formats. The tool, additional documentation, and all
the benchmarks reported in this section are available online [10].

We evaluated NNSimplify on the ACAS Xu family of DNNs for airborne
collision avoidance [18]. This set contains 45 DNNs, each with 5 input neurons,
5 output neurons, and 300 hidden neurons spread across 6 hidden layers. The
ACAS Xu networks are fully connected, and use the ReLU activation function
in each of their hidden nodes—and are thus supported by Marabou.

For each of the 45 ACAS Xu DNNs, we ran the first Python module of
NNSimplify (random simulations), resulting in a list of candidate nodes for
removal. For each DNN we performed 20000 simulations, and this narrowed
down the list of nodes that are candidates for removal to about 7% of all hidden
nodes (see Fig. 3). The simulations were performed on points sampled uniformly
at random, although other distributions could of course be used.

250
®
200 °

150 | N
100
50

1 100 10000

Number of Simulations (logscale)

Number of Candidate
Nodes

Fig. 3. Using simulation to identify nodes that are candidates for removal, on one
ACAS Xu network.

90 S. Gokulanathan et al.

Next, for each candidate for removal we ran the second Python module,
which takes as input a DNN and a node v that is a candidate for removal. This
module constructs a temporary, smaller DNN, where the candidate node v is the
only output node (subsequent layers are omitted). These temporary DNNs were
then passed to the underlying verification engine, with the query v # 0. Here,
we encountered the following issue: the Marabou framework, like many linear-
programming based tools, does not provide a way to directly specify that v #£ 0,
but rather only to state that v > ¢ for some € > 0 (we assume all hidden nodes
are, by definition, never negative, which is the case for the ACAS Xu DNNs).
We experimented with various values of € (see Fig.4), and concluded that the
choice of € has very little effect on the outcome of the experiment—i.e., nodes
tend to either be obsolete, or take on large values. The set of removed nodes
was almost identical in all experiments, with minor differences due to different
queries timing out for different values of €.

15

13
1 I I I

0.00001 0.0001 0.001

Value of €

=

Number of removed nodes

[I ¥ B N B Vo)

Fig. 4. Number of removed nodes as a function of the value of €, on one of the ACAS
Xu networks.

Finally, we ran the third Python module that uses the results of the previous
steps to construct the simplified network.

We performed this process for each of the 45 DNNs. We ran the experiments
on machines with Intel Xeon E5-2670 CPUs (2.60GHz) and 8GB of memory,
and used € = 0.01. Each verification query was given a 4-h timeout. Out of
1069 verification queries (1 per candidate node), 535 were UNSAT (node marked
for removal), 15 were SAT, and 519 timed out (node not marked for removal).
Thus, on average, 4% of the nodes were marked for removal (535 nodes out
of 13500). Figure5 depicts their distribution across the 45 DNNs. In most net-
works, between 11 and 15 nodes (out of 300) could be removed; but for a few
networks, this number was higher. For one of the networks we discovered 29 neu-
rons that could be removed—approximately 10% of that network’s total number
of neurons.

Simplifying Neural Networks Using Formal Verification 91

25
20

15
5

0-5 6-10 11-15 16-20 21-25 26-30

Number of Networks

Number of Removed Nodes

Fig. 5. Total number of removed nodes in the ACAS Xu networks.

5 Conclusion

DNN verification is an emerging field, and we are just now beginning to tap
its potential in assisting engineers in DNN development. We presented here the
NNSimplify tool, which uses black-box verification engines to simplify neural net-
works. We demonstrated that this approach can lead to a substantial reduction
in DNN size. Although our experiments show that the tool is already applicable
to real-world DNNs, its scalability is limited by the scalability of its underlying
verification engine; but as the scalability of verification technology improves, that
limitation will diminish. In the future, we plan to extend this work along several
axes. First, we intend to explore additional verification queries, which would
allow to simplify DNNs in more sophisticated ways—for example by revealing
that some neurons can be expressed as linear combinations of other neurons, or
that some neurons are always assigned identical values and can be merged. In
addition, we plan to investigate more aggressive simplification steps, which may
change the DNN’s output, while using verification to ensure that these changes
remain within acceptable bounds. Finally, we intend to apply the technique to
additional real-world DNNs and case studies.

Acknowledgements. This project was partially supported by grants from the Bina-
tional Science Foundation (2017662), the Israel Science Foundation (683/18), and the
National Science Foundation (1814369).

References

1. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Proceedings of 30th Confer-
ence on Neural Information Processing Systems (NIPS) (2016)

2. Bojarski, M., et al.: End to end learning for self-driving cars. Technical report
(2016). http://arxiv.org/abs/1604.07316

3. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: Piecewise linear neural
network verification: a comparative study. Technical report (2017). https://arxiv.
org/abs/1711.00455v1

http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1711.00455v1
https://arxiv.org/abs/1711.00455v1

92

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Gokulanathan et al.

Carlini, N., Katz, G., Barrett, C., Dill, D.: Provably minimally-distorted adversarial
examples. Technical report (2017). https://arxiv.org/abs/1709.10207

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR)
12, 2493-2537 (2011)

. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for

deep neural networks. In: Proceedings of 10th NASA Formal Methods Symposium
(NFM), pp. 121-138 (2018)

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings of 15th International Symposium on Automated Technology for
Verification and Analysis (ATVA), pp. 269-286 (2017)

Elboher, Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural
network verification. Technical report (2019). http://arxiv.org/abs/1910.14574
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C., Katz, G.: The NNSimplify
Code (2020). https://drive.google.com/open?id=19TbPS7P9fo-2tRX08ENnggLY
1LxxPCd1

Gopinath, D., Katz, G., Pasareanu, C., Barrett, C.: DeepSafe: a data-driven app-
roach for checking adversarial robustness in neural networks. In: Proceedings of
16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pp. 3-19 (2018)

Han, S., Mao, H., Dally, W.: Deep compression: compressing deep neural networks
with pruning, trained quantization and Huffman coding. Technical report (2015).
http://arxiv.org/abs/1510.00149

Howard, A., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. Technical report (2017). http://arxiv.org/abs/1704.04861
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3-29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Tandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size. Technical report (2016). http://arxiv.org/abs/1602.07360

Julian, K.: NNet Format (2018). https://github.com/sisl/NNet

Julian, K., Kochenderfer, M., Owen, M.: Deep neural network compression for
aircraft collision avoidance systems. J. Guid. Control Dyn. 42(3), 598-608 (2019)
Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: Proceedings of 35th Digital
Avionics Systems Conference (DASC), pp. 1-10 (2016)

Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient
SMT solver for verifying deep neural networks. In Proceedings of 29th International
Conference on Computer Aided Verification (CAV), pp. 97-117 (2017)

Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Towards proving the
adversarial robustness of deep neural networks. In: Proceedings of 1st Workshop
on Formal Verification of Autonomous Vehicles (FVAV), pp. 19-26 (2017)

Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Proceedings of 31st International Conference on Computer
Aided Verification (CAV), pp. 443-452 (2019)

https://arxiv.org/abs/1709.10207
http://arxiv.org/abs/1910.14574
https://drive.google.com/open?id=19TbPS7P9fo-2tRXo8ENnggLY1LxxPCd1
https://drive.google.com/open?id=19TbPS7P9fo-2tRXo8ENnggLY1LxxPCd1
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1602.07360
https://github.com/sisl/NNet

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Simplifying Neural Networks Using Formal Verification 93

Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems.
In: Proceedings of 1st ACM SIGCOMM Workshop on Network Meets AI & ML
(NetAI), pp. 83-89 (2019)

Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks. Technical report
(2018). https://arxiv.org/abs/1801.05950

Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.: Algorithms for ver-
ifying deep neural networks. Technical report (2019). http://arxiv.org/abs/1903.
06758

Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. Technical report (2017). http://arxiv.org/abs/1706.07351
Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. Technical report (2017). http://arxiv.
org/abs/1709.06662

Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484-489 (2016)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Technical report (2014). http://arxiv.org/abs/1409.1556

Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC), pp. 147-156 (2019)

Szegedy, C., et al.: Intriguing properties of neural networks. Technical report
(2013). http://arxiv.org/abs/1312.6199

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of 7th International Conference on
Learning Representations (ICLR) (2019)

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. Technical report (2018). http://arxiv.
org/abs/1804.10829

https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829

	Simplifying Neural Networks Using Formal Verification
	1 Introduction
	2 Background: DNNs, Verification and Simplification
	3 Simplification Using Verification
	4 Evaluation
	5 Conclusion
	References

