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Ising-FPGA: A Spintronics-based Reconfigurable Ising

Model Solver

ANKIT MONDAL and ANKUR SRIVASTAVA, University of Maryland College Park

The Ising model has been explored as a framework for modeling NP-hard problems, with several diverse sys-

tems proposed to solve it. The Magnetic Tunnel Junction– (MTJ) based Magnetic RAM is capable of replacing

CMOS in memory chips. In this article, we propose the use of MTJs for representing the units of an Ising model

and leveraging its intrinsic physics for finding the ground state of the system through annealing. We design

the structure of a basic MTJ-based Ising cell capable of performing the functions essential to an Ising solver.

The hardware overhead of the Ising model is analyzed, and a technique to use the basic Ising cell for scaling to

large problems is described. We then go on to propose Ising-FPGA, a parallel and reconfigurable architecture

that can be used to map a large class of NP-hard problems, and show how a standard Place and Route tool

can be utilized to program the Ising-FPGA. The effects of this hardware platform on our proposed design

are characterized and methods to overcome these effects are prescribed. We discuss how three representative

NP-hard problems can be mapped to the Ising model. Further, we suggest ways to simplify these problems

to reduce the use of hardware and analyze the impact of these simplifications on the quality of solutions.

Simulation results show the effectiveness of MTJs as Ising units by producing solutions close/comparable to

the optimum and demonstrate that our design methodology holds the capability to account for the effects of

the hardware.
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1 INTRODUCTION

Computing efficiency is becoming increasingly limited by memory bandwidth, which lags far
behind processor computing speeds. Several real world problems come under the category of
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combinatorial optimization and are NP-hard, for, e.g., the travelling salesman problem, graph col-
oring, and so on. This means that the problems are not computationally scalable with traditional
von Neumann computing methods [2]. The lack of a known polynomial time algorithm forces us
to resort to approximate methods for large-scale problems, often sacrificing the quality of solu-
tion for faster computations. The capabilities provided by non–von Neumann architectures have
motivated research [3–5] on accelerating the process of solving such problems.

The Ising model [6], a mathematical model to describe interactions between magnetic spins, can
be leveraged to express and formulate many NP-hard problems due to the combinatorial nature of
the model. It consists of a system of spins that can take one of two possible values {1,−1}. These
spins interact with one another in such a way that decreases the energy of the system. By reducing
the temperature of the system sufficiently slowly, one can reach the global optimum, representing
the best solution to the NP-hard problem that it encodes.

The computational complexity of the Ising model has long been explored and investigated [7]
and so has been the search for efficient hardware systems [8–13] for solving combinatorial prob-
lems. For example, the process of quantum annealing [14, 15] naturally holds the capability to
solve the Ising model, which requires the system to move out of local minima so as to continue
converging to the ground state. However, the quantum technology is far from reaching maturity in
terms of a large-scale commercial use due to its requirement of operating superconducting devices
at very low temperatures. CMOS-based implementations [9] of Ising solvers have also been looked
at, including the use of GPUs [16] for exploiting the inherent parallelism of Ising computations.
However, some of these have made use of extra hardware [10, 17] or memory [16] for generating
random numbers to simulate annealing properties in the model. Further, the Ising model often
requires a large number of connections among Ising spins, which has led to the use of techniques
such as cell cloning in fixed two-dimensiona (2D) spin arrays [17], or to retaining only the nearest-
neighbor connections [9] leading to sub-optimal outcomes.

Recent work [3, 18, 19] has investigated the use of spintronic (nanomagnetic) devices for em-
ulating the behavior of Ising spins by exploiting their natural physics. These devices have only
two stable states, and their stochastic switching dynamics make them a potential candidate for the
hardware realization of Ising spins. The work in Reference [3] demonstrates through simulations
such capability in stochastic nanomagnets operating at very high speeds; but these had very low
energy barriers, implying that in reality they can suffer from fabrication complexity, read disturbs,
and inability to write to several other Ising spins. Shim et al. [18] have used Magnetic Tunnel
Junctions (MTJs) with higher energy barriers as Ising spin devices. Such stable MTJs form the cen-
tral component of Spin Transfer Torque Magnetic RAM (STT-MRAM), the spintronic non-volatile
memory that is replacing CMOS technology in cache and embedded memories [20]. However, they
limit Ising spin connectivity to only the (four) nearest neighbors and restrict their interactions to
binary. Although this strategy yields a simple design, it severely limits the nature and size of NP-
hard problems that can be encoded onto the hardware. Both Reference [3] and Reference [19]
assume a fully connected network of these magnetic devices without any consideration for the
cost or feasibility of such high connectivity. The work in Reference [19] does not detail how the
influences from different units, in the form of voltages, would be added up.

In our work, we propose to evaluate an Ising model computing platform based on stable MTJs
that tackles simultaneously several of the aforementioned issues not addressed in previous work.
Our contributions can be summarized as follows:

• We design the hardware of an Ising cell, where an MTJ represents an Ising unit, and show
how it can perform Ising computations.

• We demonstrate how a cell with fixed number of inputs can be slightly modified to make it
scalable to large problems.
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Fig. 1. (a) An Ising graph with five spin units. (b) The system transitions from state 1 to 2, a local min-

ima. Random perturbations can take it to state 3 so that it transitions to 4 and can eventually reach global

optimum 5.

• We then propose Ising-FPGA, a parallel and reconfigurable architecture composed of several
of these Ising cells and having an interconnect topology similar to an FPGA. Allowing flex-
ibility in the connections on the hardware platform would enable the mapping of different
kinds of problems on the same piece of hardware.

• We analyze the degradation in signals in the hardware platform to get a more realistic
picture of such implementations, and attempt to take them into account while mapping an
NP-hard problem.

• In addition, we also propose approaches to smartly simplify the Ising connectivity graph for
different NP-hard problems to reduce hardware usage or to satisfy any resource constraint,
and characterize the resulting tradeoff with solution quality.

2 PRELIMINARIES

In this section, we provide the background of the Ising model and the Magnetic Tunnel Junction
and mention related work in this field.

2.1 The Ising Model

The Ising model was originally developed to study the behavior of ferromagnets and consists of a
number of spin units (ferromagnetic elements) with pairwise interactions [6]. The energy of the
system is described by the Ising Hamiltonian and is given as

H (x ) = −
N∑
i, j

Ji jxix j −
N∑
i

hixi , (1)

where N is the number of units; xi is the spin of the ith unit and can assume one of two values, say
“+1” (up spin) and “−1” (down spin); Ji j is the coefficient of pairwise interaction between the ith
and the jth units; and hi is a bias term accounting for external fields. Figure 1(a) shows a complete
Ising graph with f ive units. Note that the model considers a symmetric J , implying a reciprocal
nature of the interactions. Also, there are no self-interactions, thus Jii = 0.

Solving the system involves finding a configuration x of the spin units that minimizes the en-
ergy H . Obtaining this ground state is an NP-hard problem due to the discrete nature of xi , and
this property of the Ising model has enabled the mapping of several combinatorial optimization
problems to it [21]. The ground state of the spins represents the solution of the NP-hard problem
it encodes.

Theoretically, the probability of finding the system in a particular state x is given as [6]

P (x ) =
e−H (x )/(kBT )∑
y e−H (y )/(kBT )

, (2)
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Fig. 2. (a) Schematic of an MTJ in P and AP states. (b) Switching probabilities of the MTJ with 2-ns pulse

width. Note that current polarities would be opposite for P → AP andAP → P . Data obtained from MTJ Sto-

chastic LLG simulations [22, 23] in HSPICE, at steps of 0.1 μA with 10,000 points per step. Device parameters

are listed in Table 1.

where kB is the Boltzmann constant andT is the temperature of the system. At high temperatures,
the system explores the solution space and is almost equally likely to be found in any state [6],
whereas at low temperatures, states with lower energy would dominate. Ideally, the system should
start from a high temperature and be slowly cooled down—a process known as annealing—so that
it eventually reaches the ground state.

The underlying parallelism in the model can be exploited while searching for the ground state.
The energy due to a single unit xi and its connections, called the local Hamiltonian, is expressed
as [16]

H (xi ) = −
N∑
j

Ji jx jxi − hixi , (3)

which considers the interactions with its neighbors and its bias. Each step in the process of finding
the ground state of the system involves lowering the local Hamiltonian of each unit in parallel,
which can be done by simply changing the state of xi if that helps lower H (xi ). However, the
system would soon get stuck in a local minima rather than converging to the global optimum. The
way out of this is to randomly perturb the system and allow it to go to a higher energy state for
the time being. Figure 1(b) depicts the energy landscape with the local and global minima, and
demonstrates the effect of annealing.

2.2 Magnetic Tunnel Junction

The MTJ is an emerging non-volatile spintronic device technology. The Magnetic RAM, which is
based on the MTJ, is a viable candidate for replacing CMOS as the basic element of future embed-
ded memory [20]. It has demonstrated high write speeds, good scalability, high endurance, and
compatibility with CMOS. The MTJ essentially comprises two ferromagnetic layers (CoFeB) and
a thin tunnel barrier (typically MgO) sandwiched between them. The magnetic orientation of one
of the ferromagnetic layers is pinned in a particular direction, whereas that of the other is free, as
illustrated in Figure 2(a).

MTJs possess 2 stable states where the relative magnetizations of the free and pinned layers (FL
and PL respectively) are Parallel (P) and Anti-Parallel (AP), respectively, with the P state exhibiting
a lower resistance than the AP state (RP < RAP ). It is this difference in resistance that allows a
single-bit value to be encoded in the MTJ.

The magnetic orientation of the MTJ’s FL can be changed by passing spin-polarized current
of appropriate polarity [24]. This spin current exerts a torque on the magnetization of the FL,
a mechanism known as spin-transfer torque [25], and can flip its direction. The magnetization
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dynamics of the FL is governed by the stochastic Landau-Lifshitz-Gilbert (LLG) equation1:

dm̂

dt
= −γ

(
m̂ × �Hef f

)
+ α

(
m̂ × dm̂

dt

)
+

1

qNs

(
m̂ × m̂ × IsM̂

)
. (4)

It is a time-differential equation capturing the effect of the net magnetic field and spin current on
the FL magnetization vector [18, 25]. It is common to have a heavy metal layer below the MTJ,
which converts charge current to spin current with high efficiency through the Spin Hall Effect
[18]. Regardless of the exact method, the LLG equation always holds.

The LLG equation accounts for the effect of the spin current Is and also includes the random field
Hth due to thermal noise [18], which is uncorrelated in all 3 directions. Thus, the time required
to switch the MTJ from the P state to the AP state (or vice versa) is heavily dependent on the
magnitude of the switching current. In addition, the random thermal noiseHth causes fluctuations
in the initial magnetization angle and also affects the switching behavior [25].

Therefore, the switching process is stochastic in nature, implying that a current pulse of given
amplitude and duration has only a certain probability of successfully changing the state. This
stochasticity does not arise from defects or variations in the device, but is an intrinsic property
of the STT switching. Figure 2(b) illustrates the probabilistic switching characteristics for P → AP
andAP → P transitions for a current pulse of 2 ns. The asymmetry in the current requirements for
the two directions is because the spin transfer efficiency (which characterizes how much charge
current is converted to spin current) for AP → P is higher than that for P → AP [24].

Under specific conditions, the MTJ switching behavior can be different from what is suggested
by the LLG equation. Here we list two such deviations that are commonly referenced and well
known in the literature.

• Subvolume Effect in MTJs: When MTJs are scaled below a size of 40 nm diameter, a new
phenomena other than the conventional macrospin theory arises. This results in a higher
than expected switching spin-torque efficiency [26, 27]. It is due to the slightly different
magnetization properties at the interface between the free layer and the oxide barrier. As
per the macrospin limit, efficiency κ = Eb/Ic0, where Eb is the thermal energy barrier and
Ic0 is the critical switching current. Reduction in MTJ size beyond a certain limit tends to
increase the energy barrier (as compared to what it would have been given its size) and
decrease the critical current slightly. This leads to more efficient switching activity, with
power savings and longer data retention and improves the scope of MTJ-based memories
(MRAMs) to take off in the future.

• Thermal activation switching: The LLG equation for the MTJ magnetization dynamics is
typically used when the switching current is above the critical current Ic0. It is known as
the precessional (high-speed) regime. But, for currents below the critical value, thermal
activation plays an important role. The switching is governed by the Neel-Brown law [25,
26], and the switching probability distribution is given as [28, 29]

Psw (Is , t ) = 1 − exp
⎡⎢⎢⎢⎢⎣
− t

τ0
exp

⎧⎪⎨⎪⎩
−Δ

(
1 − Is

Ic0

)2⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎦
, (5)

where t is the switching pulse width, τ0 is the attempt time (≈1 ns), and Δ is the thermal
stability factor.

1Where m̂ is the unit vector along the direction of FL magnetization, γ is the electron gyromagnetic ratio, �Hef f is the

effective magnetic field acting on the FL, α is the Gilbert damping constant, Is is the spin current, M̂ is the PL magnetization,

and Ns = MsV /μB is the number of spins in the FL, with Ms being the saturation magnetization of the FL material, V

the FL volume, and μB the Bohr magneton.
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2.3 Related Work

The idea of leveraging the Ising model to represent combinatorial optimization problems and de-
veloping specific hardware systems for solving them (or similar problems) has been explored in
several works. Here we summarize some of the recent ones (done in the last few years), most of
which tend to depart from conventional computing methods.

A Fully CMOS-based design: Yamaoka et al. [9] design an Ising chip with 20,000 spins in
CMOS technology and fabricated using a 65nm process. They discuss its potential to obtain better
solutions than heuristic algorithms implemented on von-Neumann computers. The topology is a
3D lattice implemented physically as a 2D array of CMOS SRAM circuits, with each spin unit being
connected to five5 others. Interactions are ternary (−1, 0,+1) in nature, and Ising computations are
realized using XOR gates and analog majority voter circuits. Randomness for annealing is achieved
by occasionally reducing the supply voltage of SRAM cells storing the spin values. The authors
demonstrate their proposed circuit by running a custom max-cut problem.

Non-conventional source of randomness: Cook et al. [16] consider the implementation of
an Ising model solver on a GPU. The natural randomness of GPU thread scheduling is exploited
during the annealing process to randomize the update of Ising spins and improve GPU resource
utilization. The authors of Reference [17] propose a novel shift-register-based spin flipper (SRSF)
that helps the annealing process to converge without using area-expensive random number gen-
erators. However, the SRSF introduces a bias in the annealing process by introducing different
temperatures for different Ising spins. Only binary interaction values and 2D grid torus structures
are considered.

Exploiting RRAM crossbars: In Reference [10] the use of an RRAM crossbar architecture
is proposed for a part of Ising computations involving dot products. Remaining operations are
performed using digital CMOS components; hence the architecture is an RRAM/CMOS hybrid. It
is shown to achieve better power efficiency than the fully digital architecture of Gyoten et al. [17].
A hardware accelerator based on Boltzmann machine was proposed in Reference [13] to solve NP-
hard problems and realize Deep Belief Networks. It too exploited the in-situ computing capability
of a 1-Transistor 1-Resistor memristive array.

Using Neuromorphic Computing: Corder et al. [4] demonstrate the use of a neuromorphic
processor, which had erstwhile been used mostly for implementing spiking neural networks or
enabling learning-based systems to operate, for mapping and solving the Ising model. The mapping
requires some pre-processing in terms of satisfying fan-in and fan-out constraints, which was done
via approximate graph-partitioning, and solving time-dependency constraints (scheduling node
update), which was done through approximate graph coloring. Experimental results for the vertex
cover problem were shown to be competitive with that of an approximate algorithm.

Alom et al. [8] also perform NP-hard optimizations of the Quadratic Unconstrained Binary Op-
timization (QUBO) type, which can be expressed using the Ising model, on the IBM Neurosynaptic
TrueNorth system. Experiments were performed on general graph problems and potential ap-
plications are discussed such as image segmentation, density estimation of vehicles and cellular
network users, and monitoring of weather and super-computing centers. Fonseca et al. [30] de-
velop a software framework to demonstrate the solving of constraint satisfaction problems on the
SpiNNaker neuromorphic chip through stochastic search of the solution space.

FPGAs for invertible circuits: Unstable stochastic units called probabilistic bits (p-bits) can
be used to construct probabilistic circuits that solve a large class of optimization and inference
problems. Each p-bit produces an output m that is related to its input I , with some randomness,
as

m(t ) = siдn{rand[−1, 1] + tanh(I (t ))}, (6)
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where I is obtained through a dot product, a weighted sum of other p-bits. The authors of Refer-
ence [31] propose the implementation of such a circuit on FPGAs. Weight values are represented
using fixed point arithmetic and the activation function tanh is realized with an LUT. Threshold-
ing of input I is done to avoid exceeding the input range of the LUT with the help of comparators
and a MUX. A 32-bit LFSR is used for the random number generation. 16 weighted p-bits can be
implemented in a 4 × 4 tile that will allow the realization of a 16 × 16 weight matrix. Each of the
16 p-bits are updated sequentially for proper system operation. An AND gate and a full adder are
demonstrated within a tile in floating and invertible modes, whereas larger circuits such as a 32-bit
RCA required a cascade of several system tiles.

Use of spintronic devices: Recent works [3, 12, 18, 19] have considered nanomagnetic devices
for realizing Ising spin units to take advantage of their intrinsic physics. A conceptual demonstra-
tion was given by Sutton et al. [3] by simulating stochastic nanomagnets with very low thermal
stability; emphasis was not laid on implementation beyond the device level. Multiferroic oxide de-
vices exhibiting magnetoelectric effect were utilized for Ising spins in the work by Sharmin et al.
[19]. Voltage controlled spin units were envisioned to reduce current flow in the design and im-
prove scalability. LLG simulations of Travelling Salesman Problem were performed, but circuit
level details were not discussed. In Reference [18], MRAMs were the candidates for Ising units
due to their stability and their possibility for being integrated with CMOS circuits. These works
have proved that nanomagnetic devices are suitable for representing Ising units. However, they
had their own limitations, as described in Section 1, which we try to overcome in our work.

Other works in the literature (not counting those based on the quantum phenomena) include
taking inspiration from the dynamics of Cellular Neural Networks (CNNs) [32], developing analog
circuits implementing a continuous-time dynamical system [33], and using networks of coupled
oscillators [34].

3 ISING-FPGA FRAMEWORK

An NP-hard problem with N variables requires N Ising units, implying an O (N 2) connectivity
among the units. Such full connectivity was assumed by some prior works [3, 19] demonstrat-
ing Ising model hardware; even if we build ASICs to solve a specific NP-hard problem, such an
overhead is substantial and could be impractical.

We envision a reconfigurable MTJ-based architecture that allows a large class of Ising models
to be implemented. To this end, we leverage the advancements made in the FPGA technology to
propose a similar architecture for our Ising-model hardware platform, and call it the Ising-FPGA. In
this article, we present the design of such an MTJ-based Ising-FPGA possessing a routing network
similar to regular FPGAs. We develop techniques that account for the effects of the hardware
platform in the Ising model. Also, due to limited computation units and routing resources, problems
beyond a specific size are unable to be exactly implemented on such a platform (just as in a regular
FPGA). Therefore, we propose Ising model simplification strategies that allow for the best use of
the FPGA resources.

It must be noted that the Ising-FPGA is only an architecture, consisting of an array of MTJs,
which exhibits reconfigurability and has a routing topology similar to FPGAs. It serves the purpose
of mapping and solving problems that can be formulated using the Ising model. The Ising-FPGA is
not a standard FPGA, with some components being made of MTJs, which is to be used for mapping
digital logic functions.

3.1 Solving the Ising Model

The local Hamiltonian in Equation (3) tells us how the spin of an Ising unit should be modified
toward lower energy. Taking the negative of derivative of both sides, we get
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−∂H (xi )

∂xi
=

N∑
j

Ji jx j + hi = βi (say), (7)

where βi represents the cumulative influence on the ith unit by the other units (all x j ). The sign
of βi at a certain time step decides the direction in which xi should be updated to lower the local
energy. For example, if xi = −1, and βi > 0, then xi should be switched to +1 (otherwise it should
remain at −1). This is similar to a gradient descent approach, although it must be noted that xi can
only be binary. Algorithm 1 summarizes the process of solving the Ising model. After all spin units
are initialized randomly (line 1), each iteration involves calculating influence βi (line 4), modifying
the spin value accordingly (line 7), and then flipping it randomly with a small probability (line 8)
to enable escaping from local minima (Figure 1(b)). Observe that both the inner for loops can be
executed in parallel for the N units.

ALGORITHM 1: Annealing process for the Ising model

1: Initialize all xi randomly from {−1, 1}
2: for n = 1 to iters do

3: for i = 1 to N do

4: Calculate βi from Equation (7)

5: end for

6: for i = 1 to N do

7: x ′i = siдn(βi )
8: x ′i = −x

′
i with probability p << 1

9: end for

10: Assign x = x ′ and reduce p.

11: end for

3.2 MTJ as an Ising Spin Unit

The stochastic switching characteristics of the MTJ has been an impediment to the realization of
energy-efficient STT-MRAM based memory chips [20]. However, many applications where compu-
tations can be non–von Neumann in nature, particularly neuromorphic computing, have leveraged
this same characteristic of spintronics to obtain better performance than traditional CMOS-based
methods [35]. The absence of stochasticity in CMOS memory/logic necessitates the use of pseudo-
random number generators to mimic probabilistic behavior.

In our work, we propose using an MTJ to realize an Ising spin unit, since it has two stable states,
just as is required of an Ising unit. Other non-volatile devices such as Resistive RAMs and Phase
Change Memory devices tend to have several intermediate states [36], and therefore, the MTJ
is a better choice. It forms the central component of a basic cell of our MTJ-based Ising-FPGA.
We exploit its probabilistic switching characteristics to guide the entire system of spins through
the states that reduce the energy of the system (H (x ) in Equation (1), with the goal of reaching
the ground state. Additionally, when the system gets stuck in a local energy minima, the same
characteristic would also be used to get it out of the minima. The system of Ising spin units realized
with the MTJs would involve interactions among units through voltages and currents that would
depend on the parameters of the encoded NP-hard problem and the present state of the system.
Details of the implementation shall be discussed shortly.

3.2.1 Finding a Local Optimum. The magnitude of βi in Equation (7) provides the extent to
which xi can lower the energy of the system, and is thus indicative of the probability with which
xi should change its state (if necessary). For the MTJ-based Ising unit, we can encode the direction
and probability with which it should switch in the polarity and magnitude respectively of the
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Fig. 3. Different stages of an iteration in the process of finding the ground state of an Ising model. Each

stage is of duration 2 ns, and hence an iteration takes 10 ns. The dashed arrows show where the spin value

read is utilized.

switching current provided to it. Although the switching characteristics vary non-linearly with the
current as per Figure 2(b), we can perform a linear mapping for simplicity as follows. Considering
the gradient in Equation (7), the write current passed through the ith unit may be written as

Ii = Imin +
βi

k
(Imax − Imin ), (8)

where Imin is the minimum current provided to overcome the soft threshold below which the
switching probability is negligible and k is a normalizing factor to ensure that Ii is bounded by a
maximum current Imax . Naturally,

k = max
i

(max |βi |) = max
i

��
�

N∑
j

|Ji j | + |hi |��
�
, (9)

which is largest possible influence on any unit.
Once the Ising unit’s MTJ is updated probabilistically using the write current in Equation (8), we

can allow the magnetization a while to settle, and then read the value stored in the MTJ by passing
a small current (say < 5 μA) through it and sensing the potential drop across it [37]. This value
read would then be used to update the states of the other spins in the next iteration. The effect of
random noise in the system can be realized by passing a small current IRF that flips the MTJ with
a small probability and, once again, letting it relax. Ideally, the probability with which this random
flip occurs should go down with time to maintain an equivalence with the theoretical notion of
annealing, which is “cooling the system.” Hence the current IRF must also reduce in magnitude
after each cycle.

Figure 3 depicts the timeline of these stages where the Random Flip of a spin unit is done ac-
cording to its own value read in the previous iteration but before the write stage to avoid another
readout. Thus in each cycle/iteration, some of the spin units get updated depending on their in-
teractions with the rest. The entire system evolves through several iterations and the Ising energy
reduces over time when observed on a large scale, since occasional increases must be expected due
to the random flipping.

3.2.2 Device and Circuit Parameters. We choose values of Imin and Imax that correspond to
switching probabilities of roughly 0.1% and 98%, respectively, for a 2-ns pulse duration. For
P → AP , Imin = −22 μA, Imax = −44 μA, and for AP → P , Imin = 13 μA, Imax = 26 μA. Note that
directly feeding the current obtained from the analog dot product to the MTJ eliminates the use
of ADCs.

The parameters of the MTJ chosen are summarized in Table 1. The critical switching current of
the MTJ was calculated to be IP→AP

c0 = 17.93 μA and IAP→P
c0 = 8.49 μA using the following formula
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Table 1. MTJ Device Parameters

Quantity Symbol Value
Size of free layer a × a × tF 22 nm × 22 nm × 1.5 nm

Damping constant α 0.01
Saturation Magnetization Ms 800 emu/cm3

Magnetic Anisotropy Hk 2.25 × 103 Oe
Polarization factor P 0.6

MTJ resistances RP and RAP 5.2 and 13.7 kΩ, respectively
TMR ratio (RAP − RP )/RP 1.63

Fig. 4. The proposed Ising spin cell. Switches WR, RD, and RF are turned on in the Write, Read, and Random

Flip stages, respectively. The dashed boundary includes the MTJ write control circuit. Power rails exist for

positive, negative, and ground (0V ) voltages.

for the critical switching current density:

Jc0 =
2eμ0αMsHktF

�η
, (10)

where e is the charge of an electron, μ0 is the permittivity of vacuum, and η is the spin transfer
efficiency given as ηP→AP = 0.5P/(1 + P2) and ηAP→P = 0.5P/(1 − P2) [24].

3.3 MTJ-based Ising-FPGA Cell

Let us now describe the structure of an Ising spin cell, which is the basic unit of our hardware
platform, and show how Equation (8) would be realized. Each Ising cell corresponds to one spin
variable and houses the MTJ whose state represents the value of the spin. It is responsible for (a)
receiving the states of the other spin units and writing to its MTJ with a certain current, (b) reading
the state of its MTJ, and also (c) flipping it randomly.

The coefficients of interactions (Ji j ) between spin units can be represented by variable resistors,
and the summation in Equation (7) can be obtained through an op-amp with N − 1 inputs. Figure 4
shows the Ising cell in a system with five variables. In this figure, we specifically illustrate the Ising
cell of variable x1. It receives binary voltage signalsV2 . . .V5 ∈ {−Vm ,Vm } from the cells of the other
variables x2 . . . x5, where the voltage polarity represents their spin values (Vm for +1 and −Vm for
−1). These input voltages are modulated by the resistors R12 . . .R15 and fed to the positive terminal
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of an op-amp OA1, along with an internal bias voltage Vh1 through Rh1. The output Vo of the op-
amp OA1, with feedback resistor Rf , is provided to the MTJ write control circuit shown within
the dashed box. It regulates the direction of current I1 through the MTJ with the help of a pair
of switches. These are controlled by the output of comparator OA2 (in open loop configuration),
which turns ON one and only one of the two switches. The switch controlled by WR is turned on
in the Write stage. VoltagesV+ andV− of opposite polarity are added toVo to offset it and obtain the
minimum current Imin for AP → P and P → AP respectively. Assume without loss of generality
that the MTJ can be switched (probabilistically) from

• AP → P (that is −1→ 1) if Vo > 0 (⇒ I1 > 0), and
• P → AP (that is 1→ −1) if Vo < 0 (⇒ I1 < 0)

The output Vo of op-amp OA1 can be expressed as

Vo = −Rf
��
�

5∑
j=2

Vj

R1j
+
Vh1

Rh1

��
�
= −Rf

��
�

5∑
j=2

VjG1j +Vh1Gh1
��
�
, (11)

where G denotes the respective conductances. The above relation resembles Equation (7) sug-
gesting that a weighted sum of the outputs from other Ising cells can be easily obtained through
an op-amp and resistors. The conductances Gi j ∈ [Gmin ,Gmax ] would be directly proportional to
the magnitude of the interaction coefficient, |Ji j |. If all Ji j are normalized such that |Ji j | ≤ 1, then
Gi j = |Ji j |Gmax . The minus sign in Equation (11) due to the inverting nature of the op-amp shall
be taken care of in a moment.

The value of the feedback resistance Rf is dependent on the number of inputs to the Ising cell
and the desired maximum current Imax . For an N -variable Ising model, with each Ising cell having
(N − 1) inputs, we can use the maximum influence in Equation (9) to calculate the largest possible
magnitude of Vo as

Vmax
o = −Rf (k × (−Vm )Gmax ) = Rf VmkGmax . (12)

Thus, Rf would depend on Vmax
o , which is in turn decided by Imax . In Figure 4, parameters V+ =

0.227V , V− = −0.172, Vmax
o = 0.184V , obtained with HSPICE simulations using Vm = 0.4V , and

values of Imax and Imin mentioned previously.
The state of the MTJ is sensed by and stored in the Read unit in the cell that then provides

voltage signals to the other cells (in the next cycle) accordingly. The Read Unit would be similar to
a conventional read circuit (say, with a pre-charge sense amplifier). The Random Flip unit sends
the current IRF to the MTJ to flip it with a small probability, wherein the direction of the current
is dependent on the state stored in the Read Unit.

3.3.1 Realizing the Sign of J . The interaction between any 2 Ising spin variables xi and x j can be
either ferromagnetic, with Ji j > 0, favouring same spin values of xi and x j , or anti-ferromagnetic,
with Ji j < 0, favouring opposite spin values of xi and x j . But the resistors that represent these
interactions are always positive values. To implement bipolar J , we can simply add an inverter to
each of the (N − 1) inputs of xi ’s cell to make bothVj and −Vj available, and choose from between
the two. Figure 5 shows how this is done for the example in Figure 4.

3.4 Splitting Inputs to Multiple Cells

The Ising model thus involves each variable communicating its value to all other variables. This
suggests anO (N ) growth in the number of inputs to each Ising cell, andO (N 2) growth in the total
number of connections in the most general case. This may be manageable for a small-sized prob-
lem, but wiring congestion would definitely be a major hindrance to scalability for large problems.
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Fig. 5. Inverters at cell inputs for capturing both +ve and -ve interactions.

Fig. 6. (a) The Modified Ising cell. (b) Multi-level Ising cells. Observe that R12 . . .R19 are in Level A, whereas

Rh1 is in the last level cell.

Any non–von Neumann hardware platform designed for solving an Ising-like problem would
have a fixed number of inputs per Ising cell, however might it be implemented—spintronics-based
[3, 18, 19] or otherwise [9, 10]. Even our Ising-FPGA has a fixed number of inputs per cell. As
the problem grows in size, this is going to pose a limitation to the number of connections made
from/to the Ising cells, even if routing may not be an issue.

Our approach to dealing with limited fan-in Ising cells is a cascading of several of these cells to
accommodate as many inputs as required. The analog nature of the computation in Equation (11)
allows for this divide-and-conquer approach with only a small addition to the basic Ising cell. This
is in the form of another op-amp OA3 that lets us revert back to the original sign of the dot product
in Equation (11). Figure 6(a) shows the modified Ising cell with I = 4 inputsVa . . .Vd . It can output
either from its OA3 or from its Read Unit as required.

Now, considering a fan-in of I = 4 per cell, let us show how we can split inputs to a spin vari-
able into multiple Ising cells for an Ising system consisting of nine variables. The idea is to have
several layers/levels (named A, B,...) of the basic Ising cell connected in a treelike sequence, with
outputs from the cells of one level fed into inputs of a cell in the next level until the number of
inputs remaining is less than or equal to the fan-in of each cell. Figure 6(b) shows how we can
split the inputs V2 . . .V9 into two Ising cells (at Level A) that then feeds into the last level cell of
variable x1.

Each of the Ising cells would have identical structure and still retain the Write, Read and Ran-
dom Flip (WR&RF) units, (not shown for simplicity). But there are certain differences in how the
programmable quantities in the cells are set, and how each cell is operated, depending on its level
as detailed in Table 2. The outputs of the cells shown in Figure 6(b) would be

Vo1 = Rs (V2G12 + . . .V5G15) & Vo2 = Rs (V6G16 + . . .V9G19), (13)

Vo = −Rf

(
Vo1

Rs
+
Vo2

Rs
+
Vh1

Rh1

)
= −Rf

��
�

9∑
j=2

VjG1j +Vh1Gh1
��
�
, (14)
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Table 2. Configuration of Ising Cells as per Their Level

Component/ Quantity Level A,B... cells Last level cell

WR&RF units & MTJ Disabled (inactive) Active (MTJ stores x1)
Bias voltage (Vh ) 0V Vh1 (desired value for x1)

Output from OA3 Read Unit
Output sent to Next level cell Level A cells of x2 . . . x9

Feedback of OA1 Any value (say Rs ) Rf from Equation (12)
Input Resistors For Level A: Ri j , Others: Rs Rs

Bias Resistor (Rh ) Any value (don’t care) Rh1 (desired bias for x1)

Entries of last column specifically for variable x1.

Fig. 7. The FPGA architecture. CLBs are connected through CBs and SBs.

where Vo is the output of OA1 in the last level cell. Note that Equation (14) is identical to Equa-
tion (11) indicating the same voltage to the Write control unit as required.

Ising-FPGA size: Thus, with the proposed approach of splitting the fan-in to several cells, the
total number of levels for every spin variable is �loдI (N − 1)	, and the number of cells dedicated to
a single variable is ≈(N − 1)/(I − 1). Hence, the total number of cells required (with N variables)
is quadratic in N .

4 ARCHITECTURE OF THE ISING-FPGA

Field Programmable Gate Arrays (FPGAs) are integrated circuits that offer easy re-
programmability, allowing the implementation of any desired logic function [38], and have thus
found use in different application domains. VTR/VPR [39, 40] is an open source platform for model-
ing and analyzing FPGA architecture and CAD. The routing topology of the FPGA is a good match
for the kind of network connectivity exhibited by an Ising model-based platform such as the one
proposed above. The flexibility of connections required by an Ising solver such as the Ising-FPGA
can be fulfilled by the reconfigurability provided by an FPGA-like architecture.

4.1 Architecture of an FPGA

Let us first go over the basics of the FPGA architecture before describing how the proposed
Ising-FPGA relates to it and how problems can be mapped to the latter. Figure 7 shows the
architecture and the traditional interconnect topology of an FPGA. It consists of Configurable
Logic Blocks (CLBs) each of which contains a cluster of Basic Logic Elements (BLEs). A BLE is
made up of a k-input LUT and provides the LUT’s output either directly or through a flip-flop.
The interconnects in the FPGA are arranged in several horizontal and vertical channels all around
the CLBs, each channel consisting of multiple tracks. The I/O pins of the CLBs are connected
to the tracks of the adjacent channels through Connection Boxes (CBs). At the intersection of
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Fig. 8. (a) The BFG creates the .bli f file. (b) an excerpt from the .bli f file responsible for variablex1 specifying

connections in Figure 6(b).

a vertical and a horizontal channel lies a Switch Box (SB) that is responsible for connecting the
tracks of the channels incident on it, thereby facilitating communication between CLBs.

VTR/VPR [39, 40] is an open source platform for modeling and analyzing FPGA architecture
and CAD. It takes in an architecture file (.xml) describing the FPGA, and the circuit’s behavioral
description in Verilog HDL, and produces an optimized netlist in the Berkeley Logic Interchange
Format (BLIF) [41]. In the .blif file, a logic gate is declared with a .names keyword followed by its
inputs and its output. The flip-flops in the BLEs are declared by a .latch statement. VPR uses this
netlist to pack, place, and route the design. It outputs a .route file (among others) listing the size of
the FPGA, the number of CLBs in use, and the connections (that is, the nets) from each Source to
its Sinks, including the channels that the net passes through.

4.2 Reconfigurable Ising Model Hardware

Let us discuss the analogous of the FPGA’s hardware for our Ising-model solver (that is, the Ising-
FPGA) and then explain how part of VPR’s software flow can be used for configuring the design.

Ising-FPGA: Herein each BLE of an FPGA corresponds to an Ising cell with multiple inputs and
one output that can be either the output of OA3 or from the Read Unit, and each CLB contains only
one BLE. The size of the LUTs, which in our case would be same as the number of inputs to the
CLB, is set to the number of inputs to the Ising cell. Thus, for example, Figure 6(b) shows 3 BLEs
(or CLBs), each with I = 4 inputs. The architecture file (.xml) of the FPGA was used to describe
certain parameters of the Ising-FPGA.

Recall that each Ising cell in the last level outputs from its Read Unit, whereas cells in other
levels output from their OA3. Thus, there is a continuous flow of signal (current) from the last level
cell of a spin variable to that of another variable. The equivalent of this for an FPGA is that the
BLEs representing last level cells were chosen to output from their flip-flops, while the rest could
output straight from their LUTs. The connections between cells is captured by the reprogrammable
connectivity of the Ising-FPGA. For our analog design, we can use muxes based on transmission
gates (TGs) as switches in the Switch Box, in a way very similar to directional SBs [42]. Thus, a
net has one TG for each SB that it passes through (similar to regular FPGAs).

Using VPR for Ising-FPGA: We build a BLIF File Generator (BFG) (Figure 8(a)) that takes in
the number of spin variables (N ) and the fan-in of each Ising cell (I ) as inputs, and creates a .blif file
by connecting Ising cells in a hierarchical way as demonstrated earlier. Since the .blif file should
specify only those connections that exist, the BFG also takes in the Ising graph, which lists the
pairs of variables (i, j ) that have a non-zero interaction (Ji j � 0). Using this Ising graph and value
of I , the BFG determines how many spin variables each variable xi is connected to, and how many
Ising cells are required for making those connections. VPR uses this output .blif netlist to place
and route the mapped Ising design.

Figure 8(b) shows a fragment of the .blif file generated for the connections2 pertaining to
Figure 6(b). Therein, FF ∼ j refers to the output from the last level cell of the jth spin variable,

2The latch does not indicate a connection from one cell to another and only serves the purpose of marking the end of the

combinational circuit.
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Fig. 9. Routing of nets. (a) The source, sink, and path of a net in textual form in the .route file. (b) View of

the routing. The source is in dark blue, and the sink is in green. The net has been highlighted by us in sky

blue.

Fig. 10. Signal degradation model for paths from a last level cell (source) to Level A cells (destinations).

n1_A0 and n1_A1 are outputs of the Level A cells of x1, and n1 is that of the last level cell of x1.
Hence, the first line describes the I/O nets of the Level A purple cell of Figure 6(b) taking inputs
from the last level cells of x2, x3, x4, x5, and so on. Since the BFG only connects variable pairs
specified in the Ising graph, if Ji j = 0, then FF ∼ i is not an input to any Level A cell of x j (and
vice versa) in the .blif file.

4.3 Signal Degradation and Recovery

The use of TGs for switches in our analog design implies that their finite resistance will result in
a potential drop across it and also bring down the current that was supposed to flow into an Ising
cell. We estimate this degradation in every path (from each source cell to its destinations) of the
circuit and propose methods to recover the original signal.

Figure 9(a) shows the description of one net in the .route file provided by VPR. It specifies the
location of the source, n106_A1 at (14, 33) in this example, the sections of X- and Y-channels that
the net passes through, and the sink/destination (n106 at (13, 34)). The net is depicted in Figure 9(b).
It crosses two SBs and hence has two TGs in its path, and we say it has a path length of 2. We use
the information provided in the .route file to find the length of the path for each (src, dest) pair in
the design.

We consider a linear model for the signal degradation, in the sense that the total resistance
offered by a path is directly proportional to its length and is independent of the length of other
paths (if any) from the same source cell.

Let us first look at the degradation in current before the Level A of Ising cells. Figure 10 shows
a net from the last level cell of x j to many Level A cells, all with different path lengths. Consider
for now the path to Level A cell of xi having length li j . The current flowing through the input
resistance Ri j should ideally be Vj/Ri j . The presence of TGs, each with resistance RG , in the path
means that this current is now going to beVj/(li jRG + Ri j ). To get back the original current level,
we can simply reduce the input resistance Ri j by li jRG subject to a minimum. The new resistance
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Ri j is given as

Ri j =
⎧⎪⎨⎪⎩

(Ri j − li jRG ) if (Ri j − li jRG ) ≥ Rmin/Jmax

Rmin/Jmax otherwise,
(15)

where Rmin = 1/Gmax and Jmax ≥ 1 is the largest interaction coefficient for the equivalent of the

smallest possible Ri j . Because Ri j may not still be low enough, we can increase the magnitude ofVj

for recovering the desired current. Since different destinations would have different path lengths

from the source, they would require to boost Vj by different amounts. Let δ j
i be the increment in

Vj required by the ith destination. Equating the desired and obtained currents,

Vj (1 + δ j
i )

Ri j + li jRG

=
Vj

Ri j
⇒ δ j

i =
Ri j + li jRG

Ri j
− 1. (16)

For any source j, the amount of boosting is decided by the destination having the highest value

of δ (δ j
max = maxi δ

j
i ). This boosting can be performed by amplifying the output voltage of the

source cell’s Read unit through suitable circuits. No extra routing is required for this modification.

Now thatVj has been boosted by δ j
max , the new connection resistances can be obtained yet again

by substituting δ j
max in Equation (16). This gives us the final value of the resistors as

Ri j = Ri j

(
1 + δ j

max

)
− li jRG . (17)

For the next level of signal propagation, that is from the o/p of Level A cell to the input of next
level’s cell, the source connects to only a single destination. Thus, any modifications at the source
will depend only on the path for this (src,dest ) pair and can be done by increasing the feedback
resistance Rs of the OA1 in the Level A cell of the src .

5 ISING GRAPH SIMPLIFICATION

In this section, we describe the combinatorial optimization problems that were mapped to the
Ising model and demonstrated using our proposed architecture. A sizeable NP-hard problem has a
large number of parameters and constraints that translate to lots of connections among Ising spin
variables. In Section 3.4, the total number of Ising cells was calculated to be O (N 2) for a general
Ising graph with N nodes. Therefore, we develop strategies to simplify Ising graphs for reducing
the hardware usage on the Ising-FPGA. Such simplification would have to done in a way that
causes minimal changes to the solution to the problems.

5.1 Maximum Cut

Given an undirected graph G (V ,E), the Max-cut problem requires partitioning the vertices of G

into 2 subsets S and S such that the total weight of the edges having one end in S and the other in

S is maximized. Mathematically, this can be stated as [21]

maximize
1

2

∑
i, j ∈V

Wi j (1 − xix j ), (18)

whereWi j is the weight of the edge between the ith and jth vertices and xi ,x j ∈ {−1, 1} indicate

whether these vertices belong to S or S . Clearly, this objective can be mapped to the Ising Hamil-
tonian in Equation (1) by choosing Ji j = −Wi j/maxi j |Wi j | (recall thatH is minimized, whereas the
cut is maximized). This normalizes all the interactions to the range [−1, 1]. The bias terms h would
be 0.

For any graph, edge weights having larger magnitude can affect the maxcut value to a higher
extent by their presence or absence in the cut. Whereas edges having small weights cannot much
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Fig. 11. Arrangement of Ising spin units for a five-city TSP. Arrows show interactions of x3,3: Solid red

ones enforce constraints, whereas dashed blue ones promote progress of tour. Current spin configuration

corresponds to the tour of cities 2,5,1,3,4 in that order.

affect the maxcut value. Therefore, we can simplify the graph by ignoring edges with relatively
smaller |Wi j | (or |Ji j |). If fs denotes the fraction of edges that are to be removed for simplification,
then we propose to get rid of the bottom fs fraction of the edges when sorted in decreasing order
of |Wi j |. However, we always ensure that each vertex is connected to at least 1 other, lest it would
be isolated from the graph and would not be influenced by any other vertex.

However, for a graph with no weights assigned to edges, no simplification is possible on this
basis. Therefore, we choose to remove edges randomly, again maintaining a minimum degree of 1
for every vertex.

5.2 Travelling Salesman Problem

The TSP is another well-known NP-hard problem that, given N cities and their locations, seeks to
find a tour of minimum distance such that each city must be visited exactly once. The Ising formu-
lation of the TSP has a system of N 2 spin variables as shown in Figure 11. Each row corresponds
to a particular city and each column to a particular visit order. Thus xv, j = 1 means that city v is
visited in the jth order, whereas xv, j = 0 (not −1, note the difference) implies it was not visited in
the jth order. The Ising Hamiltonian is given as [21]

H =
N∑

v=1

��
�
1 −

N∑
j=1

xv, j
��
�

2

+

N∑
j=1

�
�
1 −

N∑
v=1

xv, j
�
�

2

+ λ
∑
uv j

Wuvxu, jxv, j+1. (19)

Here the first two terms ensure that the constraints on the solution to a problem (each city
visited exactly once) are satisfied. The last term corresponds to the distance travelled in the tour,
with Wuv being the distance between cities u and v , and λ is a proportionality constant to make
sure that the constraints are never violated in favor of a shorter tour, for which the condition
λ < 1/maxW (u,v ) should be satisfied.

Any two spin units lying in the same row would not be in a “+1” state at the same time in any
valid tour, because it violates the restriction that each city should not be visited more than once.
Thus if xv, j = 1, it should attempt to turn all xv,i off. Whereas if xv, j = 0, it should not influence
xv,i in any way (the latter would be decided by other terms of the Hamiltonian) [19]. A similar
restriction is also imposed on all pairs of spin units lying in the same column. We therefore choose
J(v, j )(u,i ) = −1 whenever u = v or i = j.

The last term of H adds up the distances between the cities visited consecutively. If city v is
travelled at the jth order, then it prompts all other cities to be visited just before and after it;
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that is, order j − 1 and j + 1. The influence in this case is proportional inversely to the distance
between the cities, because cities close by are more likely to be visited consecutively in an optimal
solution. We therefore choose J(v, j )(u,i ) = dmin/Wuv , whenever i = j − 1 or j + 1, where dmin is the
minimum distance between any pair of cities.

While trying to simplify the TSP Ising graph, we cannot do away with the interactions that
enforce the restrictions for a valid tour (solid arrows in Figure 11). But we can try to remove those
that prompt the travelling between cities (dashed arrows), which is equivalent to removing the
paths between some pairs of cities. The best candidates for this are pairs of cities located far away,
since they are unlikely to be travelled consecutively in the optimal tour. Therefore, we can sort
the N (N − 1)/2 inter-city distances in decreasing order and remove the top fs fraction (fs again
denotes the extent of simplification).

However, care must be taken so that the removal of paths between cities does not lead to the
formation of two or more (isolated) clusters. Hence, we first find the Minimum Spanning Tree
(MST) of the graph of cities (with edge weights equal to pairwise distances) and ensure the edges
of the MST are included in the simplified graph. Only after considering the MST, do we include as
many edges as allowed by the value of fs . Thus, if the edge between cities u and v are removed,
then J(v, j )(u,i ) = J(u, j )(v,i ) = 0 even for i = j − 1 and j + 1.

5.3 Binary Quadratic Programming

The Binary Quadratic Programming (BQP) is another NP-hard problem that seeks to optimize
a quadratic objective function with linear constraints in place. It is a special case of the Mixed
Integer Quadratic Programming (MIQP) with the solution space being binary. The BQP finds use
in portfolio optimization and has an objective that can be expressed as follows:

minimize | |Ax − b | |2 subject to Cx = d, (20)

where x is then-dimensional binary variable,A andC are matrices of dimensionm1 × n andm2 × n,
respectively, and b and d are vectors with m1 and m2 components, with m2 being the number of
constraints. The Ising Hamiltonian of this problem with n spins can be written in the form of a
Lagrange function:

H = | |Ax − b | |22 + λ | |Cx − d | |22 , (21)

with λ being the Lagrange multiplier. The interaction matrix J and bias h of the Ising model can
be obtained as

Ji j = −
∂H

∂xi∂x j
= −

m1∑
k=1

AkiAk j − λ
m2∑
l=1

Cl iCl j , (22)

hi = Constant terms in − ∂H
∂xi
=

m1∑
k=1

Akibk + λ
m2∑
l=1

Cl idl . (23)

Both J andh are made up of terms from the objective function as well as the constraint (unlike TSP
where non-zero interactions were dependent on either problem parameters or tour constraints).
For performing graph simplification, it is best to remove connections having a small magnitude of
Ji j maintaining at least one non-zero element in each row/column of J as earlier. This ensures a
sparser graph at the cost of doing away with only the weak interactions.

6 SIMULATION SETUP AND RESULTS

6.1 Methodology

Figure 12 depicts the entire flow for simulation and evaluation. First, the nature and parameters of
the NP-hard problem are input to the Graph Simplifier, along with fs , which is the fraction of the
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Fig. 12. Steps performed in the simulations. We start with the Graph Simplification and end with the Sto-

chastic LLG simulations.

non-zero interactions that are to be removed (Section 5). It outputs the effective interaction matrix
J and also the Ising graph. The latter is input to the BLIF File Generator (BFG) that generates the
.bli f file according to the number of variables (N ) and the number of inputs per Ising cell (I )
(Section 4.2). Then, VPR uses the .bli f and .xml files to Place and Route the design. The resultant
.route file is analysed to obtain the lengths of the path between each pair of connected Ising cells,
which is accordingly used to find the degradation in the signals and the modifications necessary in
the design (see Section 4.3). This information is passed on to the Stochastic LLG solver along with
various other parameters such as the number of iterations to perform, various current values, and
so on.

The LLG simulations of the MTJ were performed using an HSPICE model3 [22, 23] that was
imported into MATLAB for scalability. The current IRF for Random Flipping (Section 3.2) was
chosen in a way that it corresponds to roughly 1% switching probability at the beginning of the
simulations (at the first iteration) and was then reduced linearly to a value that corresponded
roughly to 0.1% probability at the end. This is equivalent to the theoretical notion of annealing,
which requires “cooling the system.” For flipping

• AP → P , IRF = 14 μA (first iteration) down to 13 μA (last iteration)
• P → AP , IRF = −23.5 μA down to −22 μA.

Simplification of the Ising graph, with the specified extent fs , was done as described in Sec-
tions 5.1, 5.2, and 5.3. With regard to accounting for the effects of the hardware, simulations were
performed for three situations:

• Ideal - Not considering the effects of the underlying hardware, i.e., ignoring signal degra-
dation.

• With Signal Degradation (SD) - Considering the effect of the finite resistances of the paths
in the Ising-FPGA, taking RG = 3.45 kΩ, Rmin = 50 kΩ, but not recovering from the issue.

• Recovery (Rec) - The modifications made in the design to recover the original signals (i.e.,

using Ri j and δ j
max ) with Jmax = 10. We restrict δ j

max to a maximum of 1 for considerations
of power dissipation and any other issue that this approach might introduce.

We also consider the effect of device variations or process variations in the MTJ on the quality
of solution obtained through the Ising simulations. We assume variations in the resistances RP

and RAP of the MTJs. We consider a Gaussian distribution for the variation having a mean 0 and
standard deviation 10% of the original RP and RAP .

Power Estimation methodology: We provide an estimate of the power dissipated in the Ising-
FPGA for each problem type and parameters. We first obtain the average/expected value from

3Device parameters are listed in Table 1, simulation time step δt = 0.01 ns.
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Table 3. Descriptions of Graphs on Which Simulations Were Performed

Name Source Vertices Best Cut Weight Type & Range
G1 G1 from G-set [44] 800 11,429 Binary ({0, 1})
G2 Custom 140 2598.65 Fraction: U ∼ [0, 1]
G3 w01_100.0 from Biq mac [45] 100 645 Integer in [−10, 10]
G4 ising2.5-300_5555 from [45] 300 8.569 × 106 Integer in [−2, 2] × 105

simulation in Synopsys HSPICE for one Ising variable, and then multiply that by the number of
variables for getting the power for the entire design. The design in HSPICE consisted of connected
Ising cells, each with its op-amps, the MTJ and its control unit, and the variable resistors for in-
terconnections. Also included is an op-amp (not shown if Figure 4) that generates the negative
voltage supply −Vm from Vm . It adds 4 μW to the power consumption of each last level Ising cell.

The major source of power consumption is the write stage (see Figure 3), since it has current
flowing between the cells through the connections and the write control path. For problems with
a large number of Level A cells, the total power for a single Ising variable was obtained by extrap-
olating the values corresponding to a few Level A cells. This is justifiable, since it was observed
that the power increases linearly with the number of Level A cells. That is, if P1, P2, and P3 denote
the power consumption with 1, 2, and 3 Level A cells (assuming all connected to full capacity),
then P2 − P1 ≈ P3 − P2. Specific details are mentioned alongside the respective problems.

The power dissipation at the MTJs during the Random Flip stage was also considered by taking
the average of the I 2R of P → AP and AP → P switching. It turned out to be 2.55 μW per last level
cell (or Ising variable).

6.2 Results

Let us now present the outcome of the simulations performed for the 2 NP-hard problems. For
each of these, we mention the usage of the significant hardware components in the Ising-FPGA.
These include

(1) the total number of Ising cells in the Ising-FPGA,
(2) the minimum Channel Width Factor (CWF), which is the minimum number of tracks per

channel for successful routing, and
(3) the average length of the paths from the last level cells to the Level A cells (average of all

li j - Figure 10) at this CWF.

1) Max Cut: Table 3 specifies the graphs that were used for benchmarking along with their
number of vertices, the best cut value (obtained using an SDP solver [43]) and the type &
range/distribution of edge weights. Table 4 lists the aforementioned Ising-FPGA parameters at the
specified Ising cell fan-in (I ) and for select values of fs . Recall, that fs = 0 implies no graph simplifi-
cation; and larger values of fs indicate a sparser graph (Section 5.1). Also included is the estimate of
the average power consumption (inmW ) of the system for fs = 0 obtained through HSPICE. Since
graph G1 is binary, all connection resistances were programmed to represent |J | = 1. Whereas for
the other graphs, an average value of |J | = 0.5 was used.

It is evident from Table 4 that increasing the value of fs reduces the number of Ising cells in the
design. This is expected, since a more simplified graph has lesser number of connections between
Ising spins, thereby reducing the number of Level A Ising cells. A larger fan-in (I ) also has the
same effect. The minimum CWF and the Average Path Lengths vary in different ways depending
on the nature of the graph. The total power depends largely on the connectivity of the graphs,
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Table 4. Ising-FPGA Hardware Usage for Max Cut Problems

Name
No. of cells Min. CWF Avg Path Lengths Power (in mW )

����I
fs

0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75 0

G1 32 2,398 1,916 858 800 138 152 110 64 23.2 23.3 20.3 16.0 55.57

G2
16 1,400 1,118 817 515 48 48 48 44 8.3 7.7 7.9 10.1 13.95

32 840 668 530 330 48 52 54 62 8.3 8.1 9.3 9.7 15.43

G3 8 216 146 106 102 26 22 20 20 10.6 8.5 5.5 3.5 1.42

G4 8 1,044 898 544 300 20 20 20 16 5.8 4.8 4.3 4.7 6.625

Fig. 13. Max cut values (normalized) from the Ising simulations for the four graphs with different values of

fs .

other than the number of nodes of course. For example, G2 has higher power than G4 in spite of
being smaller, because it is fully connected, whereas G4 is much sparser.

Figure 13 shows the obtained cut values for the 4 graphs, each normalized by their respective
best cut values in Table 3. Each of the graphs was run 10 times, with 1000 iterations of the Ising
simulations per run; all maxcut values are thus average of 10 runs. As we can see, the Ideal maxcut
values obtained by simulating the Ising model at fs = 0 are very close to the best cut values ob-
tained by heuristics (especially for graphs G1 and G2), thereby revealing the potential of an Ising
solver.

From the data pertaining to Figure 13, Signal Degradation (SD) leads to an average relative
drop of 1.03% in the MaxCut values. If we define the extent of recovery in the maxcut values as
(Rec − SD)/(Ideal − SD), then the average recovery across graphs was 82.5%. Further, the relative
drop in maxcut due to graph simplification varies across graphs and increases with fs as expected.
With fs = 0.5, the maxcut reduced by only 3.57% on an average as compared to fs = 0, and the
Ising cell count drops significantly by 48.3%.

Figure 14 shows how the Ising Hamiltonian evolves with time for graph G2. The ragged nature
of the plot is due to the annealing through random flips. Last, Table 5 highlights the effect of
process variations (PV) in the MTJ device on the maxcut values for all five graphs. We consider
the Signal Degradation with recovery (Rec) scenario and assume no graph simplification (fs = 0).
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Fig. 14. Ising Hamiltonian H for graph G2 at

fs = 0.

Table 5. Maxcut Values with and without

Process Variations

Graph Name G1 G2(I = 16) G2(I = 32) G3 G4

Without PV 11420 2592.1 2591.2 612.4 8.106

With PV 11264 2567.8 2571.0 597.1 7.969

Table 6. Hardware Usage on the Ising-FPGA for TSP. Power is in mW.

No. of cells Min. CWF Avg Path Lengths Power
������Name

fs
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75 0

P01 1,125 990 930 870 48 8.72 8.20 8.63 9.13 14.49

GR17 1,445 1,411 1,309 1,156 48 8.59 9.17 9.35 10.05 20.12

FRI26 5,408 4,628 4,134 3,666 60 60 62 62 14.3 12.5 14.7 13.3 67.62

Table 7. Results of Ising Simulations for TSP

fs = 0 fs = 0.25 fs = 0.5 fs = 0.75
City set Valid MTL Valid MTL Valid MTL Valid MTL

P01
Ideal 20 443.1 19 411 19 391 19 351
SD 9 450.0 10 424 9 398 15 358
Rec 20 453.4 20 416 20 389 20 339

GR17
Ideal 19 3,448 19 3,414 15 3002 9 2,896
SD 12 3,765 12 3,444 14 3481 7 2,977
Rec 19 3,689 19 3,396 17 3163 9 2,825

FRI26
Ideal 16 2,262 18 2,034 16 1798 8 1,510
SD 6 2,416 6 2,125 0 — 1 1,572
Rec 19 2,290 18 2,056 7 1755 4 1,503

“Valid” denotes the number of runs (of 20) in which at least 1 valid tour was found, and MTL denotes the

average of the Minimum Tour Lengths obtained in those runs.

On an average, the maxcut reduces by only about 1.45%, indicating that even 10% variations does
not have a significant effect.

2) TSP: Three example problems were considered from a dataset [46, 47] (P01, GR17, and FRI26),
sets of 15, 17, and 26 cities with optimal tour lengths of 291, 2,085, and 937, respectively. Table 6
lists the hardware usage on the Ising-FPGA for four different values of fs and with I = 16. Ising
simulations were run 20 times (each having 2,000 iterations) for each city set and each value of fs .
Table 7 mentions the results in terms of the number of runs (of 20) in which at least 1 “valid” tour
was discovered and the average of their Minimum Tour Length (MTL). SD results in an increase
in the MTL by an average of 4.82% as compared to Ideal, but, more importantly, it reduces the
chances of finding a valid tour. With our recovery strategy, the number of valid tours is almost
as many as those in the Ideal case and the MTL is only 0.95% higher than Ideal on an average. It
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Fig. 15. Average (over 20 runs) number of valid tours found in a run.

Table 8. Effect of Process Variations on the Results for TSP (Average Number

of Valid Tours and MTL)

P01 GR17 FRI26
Valid tours MTL Valid tours MTL Valid tours MTL

Without PV 46.25 453.4 29.05 3,689 9.10 2,290
With PV 66.40 448.9 64.05 3,775 14.4 2,206

Table 9. Ising-FPGA Cell Count, Average Level A Wirelengths, and Minimum CWF for BQP

No. of cells Min. CWF Avg Path Lengths Power (in mW )
������Name

fs
0 0.25 0.5 0 0.25 0.5 0 0.25 0.5 0

QP1 2,800 2,155 1514 68 62 58 12.1 8.3 8.4 27.28

QP2 11,200 8,754 5661 132 130 112 13.8 11.2 10.8 109.03

must also be noted that simplifying the graph decreases the MTL, because cities located far away
have less chances of being travelled consecutively. However, it has the downside of reducing the
number of valid tours obtained.

Additionally, Figure 15 compares the average number of valid tours found in each run for the
cases Ideal, SD, and Rec. Due to SD, this value dropped by an average of 75.1% compared to the
Ideal, again indicating reduced chances of finding a valid tour. We could recover an average of
76.0% of this drop. Simplifying the Ising graph also decreases the average number of valid tours,
because each city now tends to be prompted for a visit by a lesser number of cities, and therefore
the chances that all cities are visited go down.

In Table 8, we show how PV changes the average number of valid tours (from Figure 15) and
the MTL (from Table 7) obtained from the simulations. Once again we take fs = 0 and consider the
Rec situation. While the number of valid tours goes up for all 3 city-sets, the MTL reduces slightly
by 0.78% on an average. Thus, PV would not have any significant impact on the solution quality.

3) Binary Quadratic Programming: Two custom problems were generated, QP1 and QP2 with
n = 200 and n = 400 spins, respectively. Both had three constraints, that is, m2 = 3, and m1 was
chosen to be 10. Smaller-sized problems with same values ofm1 andm2 were provided to the ILP-
based MIQP solving technique in MATLAB. However, the scalability in terms of time complexity
was poor. With n = 30, 35, and 40, the runtimes for finding the optimal value of the objective
function were 7, 50, and 980s, respectively, indicating that larger problems with n in the range of a
few hundreds would take several hours if not days. Table 9 lists the Ising-FPGA resource utilization
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Fig. 16. Best objective value obtained (averaged over 10 runs)

for different levels of graph simplification.

Table 10. QP Objective Values

in the Presence and Absence

of Process Variations

QP1 QP2
Without PV 6.36 7.45

With PV 6.15 7.33

for both QP1 and QP2 with Ising cell fan-in I = 16. The Ising cell count reduces as much as the
value of fs , whereas the CWF and average path length see lesser drops.

The Ising model simulation was run 10 times with 2,000 iterations in each run. Figure 16 provides
the average of the minimum of the objective function ( | |Ax − b | |2) achieved (when constraintCx =
d was satisfied). In the presence of SD, this value increases by about 38.1% and 21.0% as compared
to the ideal for QP1 and QP2, respectively. After signal recovery, it was restored to be close to the
ideal value. The effects of graph simplification in terms of increment in objective value is negligible
with fs = 0.25. However, further removal of graph edges (fs = 0.5) leads to an increase of about
65.7% for QP1 and 107% for QP2, the benefit being that the number of Ising cells is almost halved
and the CWF also reduces noticeably. Last, with 10% PV, the objective values (as listed in Table 10)
decrease by a small margin of 2.45%.

7 DISCUSSION

Let us now briefly analyze some aspects of our proposed approach and make comparisons with
related work.

• Propagation delay: Each stage of opamp induces a delay of about 20 ps (from Cadence
Virtuoso simulations). With three stages (OA1 and OA3 of Level A and OA1 of last level),
the expected propagation delay of Ising spin signals ±Vm in the write stage is about 0.06 ns.
However, this delay could be subsumed within the relax stage just before the write. Further,
any minor variations in delay from Ising cell to cell is unlikely to affect the entire system
or the final solution, since randomness is an essential part of the Ising computations.

• Resistive RAMs (RRAMs) are a suitable candidate for realizing the variable resistors that
capture the interactions between Ising units. These are memristive devices [13, 36] that
offer multiple levels of resistance and easy re-programmability with low energy. Such an
approach combining memristive and spintronic technology should be possible. Experiments
[48] have shown RRAM and MTJ devices placed side by side to be functioning as desired.
Our work has the MTJ write control circuit and an op-amp in between the two, and therefore
they all must be functioning correctly.

• Crossbar for Ising model: A good connectivity structure for an Ising processor, other
than the FPGA-like architecture proposed by us, is the crossbar architecture, in which a
grid/matrix of RRAMs can represent connections between Ising cells (as suggested in Ref-
erence [10]). While the crossbar is indeed an area-efficient way to realize Ising-like connec-
tivity, we highlight two differences from our Ising-FPGA.

(1) The size of crossbars required for solving moderate/big problems would be large. That
would require it to be split into several smaller crossbars and cascading them. For
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example, the 26-city TSP would require a 676 × 676 crossbar, which is not practically
feasible.

(2) A sub-optimality in the crossbar architecture would be the lack of its ability to exploit
sparsity present in the Ising connectivity matrix J . For example, in the G1 graph in
maxcut, each vertex is connected to only 6% of the remaining vertices on an average.
Similarly, in an N-city TSP, each Ising spin unit connects only with 4(N − 1) units rather
thanO (N 2) units. Further, our proposed graph simplification techniques only decreases
the density of connections in the Ising graph. Such sparsity in graph connectivity may
remain underutilized in a crossbar architecture. However, the Ising-FPGA design uses
hardware (Ising cells) incrementally and utilizes most of the connections physically
present.

• Research on hardware implementations of Ising model typically focuses on the possibil-
ity of mapping such models and on solving the associated optimization problem to ob-
tain answers. Only a few works have put any emphasis on the characterization of sys-
tem area/power/performance. Shim et al. [18] report on the energy consumption of only
the heavy metal layer (attached to the MTJ) during write and read operations as 0.27 and
0.04 pJ, respectively. They state that the energy consumption of the peripheral circuits is
small as compared to the spintronic part, perhaps, because each Ising cell is connected to
only four others. And Matsumoto et al. [10] report a power consumption of about 10 mW
for solving maxcut problems with a graph size of 800 nodes, which is indeed efficient.

• In Reference [31], the authors propose the implementation of probabilistic circuits, based
on unstable stochastic units called probabilistic bits, on FPGAs. These can be used for Ising
and quantum computations. Their entire implementation is on a real FPGA (and is therefore
completely based on digital CMOS logic and memory) that exhibits von-Neumann comput-
ing. On the contrary, our work proposes an FPGA-like architecture based on spintronic and
memristive devices so that their inherent randomness and in-memory computing capabili-
ties can be harnessed for realizing an Ising solver. It is expected to have a much smaller area
footprint than a fully digital implementation such as in Reference [31]. Since the authors of
that work do not report any figures on the area or power consumption of their design, we
are unable to make any thorough comparison.

• Process variations in MTJs does not affect the Ising system to any significant extent, again
because such variations add to the randomness in the system that it anyway requires. One
difference between the effect of signal degradation and process variations in MTJ may be
worth highlighting. SD can change the sign of β (in Equation (7)) andVo (in Equation (11)),
causing current to flow through the MTJ in a direction that is opposite to that desired.
Whereas MTJ device variations can only change the magnitude of the current, and not the
direction, thereby preventing undesired state changes. Hence, SD has a worse effect on Ising
system’s convergence than PV.

• Much like commercial FPGAs, the Ising-FPGA can also be heterogeneous [38], consisting
of some Ising cells that can be used as last level cells and others that can be used in levels
A, B, and so on. The latter type would not contain the MTJ and its write control unit, the
OA2, Read unit and Random Flip unit. This will significantly reduce the area of the design,
although the placement process will become less flexible.

8 CONCLUSION

In this article, we proposed an Ising model architecture based on MTJs, which can be used to map
and solve NP-hard problems. We discuss realistic hardware implementations in terms of Ising spin
cells and their read/write capabilities, network topology, and re-programmability of interactions

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 4. Pub. date: September 2020.



4:26 A. Mondal and A. Srivastava

among spin units to allow different kinds of NP-hard problems to be encoded. We present Ising-
FPGA, a parallel and reconfigurable architecture that can be configured using a standard FPGA
Place and Route tool, and discuss ways to incorporate the non-idealities in the hardware into the
Ising model. Last, we describe, for three NP-hard problems, approaches that can simplify their
Ising graphs for reducing the required area footprint on the Ising-FPGA and analyse the loss in
solution quality.
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