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ABSTRACT

The Ising model has been explored as a framework for modeling
NP-hard problems, with several diverse systems proposed to
solve it. The Magnetic Tunnel Junction (MTJ)-based Magnetic
RAM is capable of replacing CMOS in memory chips. In this
paper, we propose the use of MTJs for representing the units of
an Ising model and leveraging its intrinsic physics for finding
the ground state of the system through annealing. We design the
structure of a basic MTJ-based Ising cell capable of performing
the functions essential to an Ising solver. A technique to use the
basic Ising cell for scaling to large problems is described. We
then go on to propose Ising-FPGA, a parallel and reconfigurable
architecture that can be used to map a large class of NP-hard
problems, and show how a standard Place and Route tool can
be utilized to program the Ising-FPGA. The effects of this hard-
ware platform on our proposed design are characterized and
methods to overcome these effects are prescribed. We discuss
how two representative NP-hard problems can be mapped to
the Ising model. Simulation results show the effectiveness of
MTJs as Ising units by producing solutions close/comparable
to the optimum, and demonstrate that our design methodology
holds the capability to account for the effects of the hardware.
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1 INTRODUCTION

Computing efficiency is becoming increasingly limited by mem-
ory bandwidth, which lags far behind processor computing
speeds. Several real world problems come under the category of
combinatorial optimization and are NP-hard, for eg. the travel-
ling salesman problem, graph coloring, etc. This means that the
problems are not computationally scalable with traditional von
Neumann computing methods [25]. The capabilities provided
by non-von Neumann architectures have motivated research
[13, 17, 31] on accelerating the process of solving such problems.
The Ising model [11], a mathematical model to describe in-

teractions between magnetic spins, can be leveraged to express
and formulate many NP-hard problems due to the combinatorial
nature of the model. It consists of a system of spins which can
take one of 2 possible values {1,−1}. These spins interact with
one another in such a way that the system gradually evolves to
a minimum energy state, representing a solution to the NP-hard
problem that it encodes.
The computational complexity of the Ising model has long

been explored and investigated, and so has been the search
for efficient hardware systems [8–10, 18, 24, 33] for solving

combinatorial problems. For example, the process of quantum
annealing [6, 18] naturally holds the capability to solve the Ising
model, which requires the system to move out of local minima
so as to continue converging to the ground state. However, the
quantum technology is far from reaching maturity in terms of a
large-scale commercial use due to its requirement of operating
superconducting devices at very low temperatures. CMOS-based
implementations [33] of Ising solvers have also been looked at,
including the use of GPUs [12] for exploiting the inherent par-
allelism of Ising computations. However, some of these have
made use of extra hardware [16, 24] or memory [12] for gener-
ating random numbers to simulate annealing properties in the
model. Further, the Ising model often requires a large number
of connections among Ising spins, which has led to the use of
techniques such as cell cloning in fixed 2-D spin arrays [16], or
to retaining only the nearest neighbor connections [33] leading
to sub-optimal outcomes.
Recent work [29–31] has investigated the use of spintronic

(nanomagnetic) devices for emulating the behavior of Ising spins
by exploiting their natural physics. The work in [31] demon-
strates through simulations such capability in stochastic nano-
magnets operating at very high speeds; but these had very low
energy barriers, implying that in reality they can suffer from
fabrication complexity, read disturbs, and inability to write to
several other Ising spins. Shim et al. [30] have used Magnetic
Tunnel Junctions (MTJs) with higher energy barriers as Ising
spin devices. Such stable MTJs form the central component of
Spin Transfer Torque Magnetic RAM (STT-MRAM), the spin-
tronic non-volatile memory which is replacing CMOS technol-
ogy in cache and embedded memories [32]. However, they limit
Ising spin connectivity to only the (four) nearest neighbors, and
restrict their interactions to binary. Although this strategy yields
a simple design, it severely limits the nature and size of NP-hard
problems that can be encoded onto the hardware. The work in
[29] does not detail how the influences from different units, in
the form of voltages, would be added up.
In ourwork, we propose to evaluate an Isingmodel computing

platform based on stable MTJs which tackles simultaneously
several of the aforementioned issues not addressed in previous
work. Our contributions are as follows:

• We design the hardware of an Ising cell, where an MTJ rep-
resents an Ising unit, and show how it can perform Ising
computations.

• We demonstrate how a cell with fixed no. of inputs can be
slightly modified to make it scalable to large problems.

• We then propose Ising-FPGA, a parallel and reconfigurable
architecture composed of several of these Ising cells, and
having an interconnect topology similar to an FPGA.
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• We analyze the degradation in signals in the hardware plat-
form to get a more realistic picture of such implementations,
and attempt to take them into account while mapping an
NP-hard problem.

2 PRELIMINARIES

2.1 The Ising Model

The Ising model was originally developed to study the behavior
of ferromagnets and consists of a number of spin units (ferro-
magnetic elements) with pairwise interactions [11]. The energy
of the system is described by the Ising Hamiltonian

H (x) = −
N∑
i , j

Ji jxix j −
N∑
i

hixi (1)

where N is the no. of units, xi is the spin of the i
th unit and

can assume one of 2 values, say ‘+1’ (up spin) and ‘−1’ (down
spin), Ji j is the coefficient of pairwise interaction between the

ith and the jth units, andhi is a bias term accounting for external
fields. The model considers a symmetric J , implying a reciprocal
nature of the interactions. Also, there are no self-interactions,
thus Jii = 0.
Solving the system involves finding a configuration x of the

spin units that minimizes the energy H . Obtaining this ground
state is an NP-hard problem due to the discrete nature of xi ,
and this property of the Ising model has enabled the mapping
of several combinatorial optimization problems to it [22]. The
ground state of the spins represents the solution of the NP-hard
problem it encodes.
The energy due to a single unit xi and its connections, called

the local Hamiltonian, is expressed as[12]

H (xi ) = −
N∑
j

Ji jx jxi − hixi (2)

which considers the interactions with its neighbors and its bias.
Each step in the process of finding the ground state of the system
involves lowering the local Hamiltonian of each unit in parallel
which can be done by simply changing the state of xi if that
helps lower H (xi ). However, the system would soon get stuck
in a local minima rather than converging to the global optimum.
The way out of this is to randomly perturb the system and allow
it to go to a higher energy state for the time being - a popular
concept known as (simulated) annealing.

2.2 Magnetic Tunnel Junction

The MTJ is an emerging non-volatile spintronic device technol-
ogy. The Magnetic RAM, which is based on the MTJ, is a viable
candidate for replacing CMOS as the basic element of future
embedded memory [32]. MTJs possess 2 stable states depend-
ing on the relative magnetizations of its ferromagnetic layers -
Parallel (P) and Anti-Parallel (AP). The P state exhibits a lower
resistance than the AP state (RP < RAP ).
The state of theMTJ can be changed by passing spin-polarized

current of appropriate polarity [14] via the mechanism of spin-
transfer torque [21]. The magnetization dynamics of the MTJ is
governed by the stochastic Landau-Lifshitz-Gilbert (LLG) equa-
tion [21, 30]. It accounts for the effect of the spin current Is , and
also includes the random field Hth due to thermal noise [30]

which is uncorrelated in all 3 directions. Thus, the time required
to switch the MTJ from the P state to the AP state (or vice versa)
is heavily dependent on the magnitude of the switching current.
Not only that, the random thermal noiseHth causes fluctuations
in the initial magnetization angle and also affects the switching
behavior [21]. Therefore, the switching process is stochastic in
nature, implying that a current pulse of given amplitude and du-
ration has only a certain probability to successfully change the
state. Fig. 1 illustrates the probabilistic switching characteristics
for P → AP and AP → P for a current pulse of 2ns . 1

Figure 1: Switching probabilities of the MTJ with 2ns pulse width.
Note that current polarities would be opposite for P → AP andAP → P .

3 ISING-FPGA FRAMEWORK

AnNP-hard problemwithN variables requiresN Ising units, im-
plying anO(N 2) connectivity among the units. Also, the specific
nature/type of the connections depends on the problem itself.
We therefore envision a reconfigurable MTJ-based architecture
which allows a large class of Ising models to be implemented.
To this end, we leverage the advancements made in the FPGA
technology to propose a similar architecture for our Ising-model
hardware platform, and call it the Ising-FPGA. In this paper, we
present the design of such an MTJ-based Ising-FPGA possessing
a routing network similar to regular FPGAs. We develop tech-
niques which account for the effects of the hardware platform
in the Ising model.
It must be noted that the Ising-FPGA is only an architecture,

consisting of an array of MTJs, which exhibits reconfigurability
and has a routing topology similar to FPGAs. It serves the pur-
pose of mapping problems which can be formulated as the Ising
model. The Ising-FPGA is not a standard FPGA, with some com-
ponents are made of MTJs, and which is to be used for mapping
digital logic functions.

3.1 Solving the Ising model

The local Hamiltonian in eqn. 2 tells us how the spin of an
Ising unit should be modified towards lower energy. Taking the
negative of derivative of both sides, we get

−
∂H (xi )

∂xi
=

N∑
j

Ji jx j + hi = βi (say) (3)

where βi represents the cumulative influence on the ith unit
by the other units (all x j ). The sign of βi at a certain time step
decides the direction in which xi should be updated to lower
the local energy. For eg. if xi = −1, and βi > 0, xi should be

1The asymmetry in the current requirements for the 2 directions is because the

spin transfer efficiency for AP → P is higher than that for P → AP [14].
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switched to +1 (otherwise it should remain at −1). Algorithm 1
summarizes the process of solving the Ising model.

Algorithm 1 Annealing process for the Ising model

1: Initialize all xi randomly from {−1, 1}
2: for n = 1 to iters do � perform iters iterations
3: for i = 1 to N do � do parallely for each Ising unit
4: Calculate βi from eqn. 3. Assign x ′i = siдn(βi )
5: x ′i = −x

′
i with probability p << 1 � flipping randomly with

a small probability
6: end for

7: Assign x = x ′ and reduce p.
8: end for

3.2 MTJ as an Ising spin unit

In our work, we propose using an MTJ to realize an Ising spin
unit since it has 2 stable states, just as is required of an Ising
unit. Other non-volatile devices such as RRAMs and PCMs tend
to have several intermediate states [34], and therefore, the MTJ
is a better choice. It forms the central component of a basic
cell of our MTJ-based Ising-FPGA. We exploit its probabilistic
switching characteristics to guide the entire system of spins
through the states which reduce the energy of the system (H (x)
in eqn. 1), with the goal of reaching the ground state.
For the MTJ-based Ising unit, we can encode the direction

and probability with which it should switch in the polarity and
magnitude respectively of the switching current provided to
it. Considering the gradient in eqn. 3, the write current passed

through the ith unit may be written as

Ii = Imin +
βi
k
(Imax − Imin) (4)

where Imin is the minimum current provided to overcome the
soft threshold below which the switching probability is negli-
gible, k is a normalizing factor to ensure that Ii is bounded by
a maximum current Imax . We choose values of Imin and Imax

that correspond to probabilities of roughly 0.1% and 98% respec-
tively for a 2ns pulse duration. For P → AP , Imin = −22μA,
Imax = −44μA, and for AP → P , Imin = 13μA, Imax = 26μA.
Once the Ising unit’s MTJ is updated probabilistically using

the write current in eqn. 4, we can allow the magnetization a
while to settle, and then read the value stored in the MTJ by
passing a small current (say < 5μA) through it and sensing the
potential drop across it [19]. This value read would then be
used to update the states of the other spins in the next iteration.
The effect of random noise in the system can be realized by
passing a small current IRF which flips the MTJ with a small
probability and, once again, letting it relax. Fig. 2 depicts the
timeline of these stages where the Random Flip of a spin unit is
done according to its own value read in the previous iteration,
but before the write stage to avoid another readout.

3.3 MTJ-based Ising-FPGA cell

Let us now describe the structure of an Ising spin cell, which
is the basic unit of our hardware platform, and show how eqn.
4 would be realized. Each Ising cell corresponds to one spin
variable and houses the MTJ whose state represents the value
of the spin. It is responsible for (a) receiving the states of the
other spin units and writing to its MTJ with a certain current,
(b) reading the state of its MTJ, and also (c) flipping it randomly.

The coefficients of interactions (Ji j ) between spin units can
be represented by variable resistors, and the summation in eqn.
3 can be obtained through an op-amp with N − 1 inputs. Fig. 3
shows the Ising cell in a system with 5 variables. In this figure,
we specifically illustrate the Ising cell of variable x1. It receives
binary voltage signals V2 . . .V5 ∈ {−Vm,Vm} from the cells of
the other variables x2 . . . x5, where the voltage polarity repre-
sents their spin values (Vm for +1 and −Vm for −1). These input
voltages are modulated by the resistors R12 . . .R15 and fed to
the positive terminal of an op-amp OA1, along with an internal
bias voltageVh1 through Rh1. The outputVo of the op-amp OA1,
with feedback resistor Rf , is provided to the MTJ write control
circuit shown within the dashed box. It regulates the direction
of current I1 through the MTJ with the help of a pair of switches.
These are controlled by the output of comparator OA2 (in open
loop configuration) which turns on one and only one of the two
switches. The switch controlled by WR is turned on in the Write
stage. VoltagesV+ andV− of opposite polarity are added toVo to
offset it and obtain the minimum current Imin for AP → P and
P → AP respectively.
The output Vo of op-amp OA1 can be expressed as

Vo = −Rf

(
5∑
j=2

Vj

R1j
+
Vh1
Rh1

)
= −Rf

(
5∑
j=2

VjG1j +Vh1Gh1

)
(5)

whereG denotes the respective conductances. The above rela-
tion resembles eqn. 3 suggesting that a weighted sum of the
outputs from other Ising cells can be easily obtained through
an op-amp and resistors. The conductances Gi j ∈ [Gmin,Gmax ]

would be directly proportional to the magnitude of the interac-
tion coefficient, |Ji j |. If all Ji j are normalized such that |Ji j | ≤ 1,

Figure 2: Different stages of an iteration in the process of finding the
ground state of an Ising model. Each stage is of duration 2ns , and hence
an iteration takes 10ns . The dashed arrows show where the spin value
read is utilized.

0

Figure 3: The proposed Ising spin cell. Switches WR, RD and RF are
turned on in the Write, Read and Random Flip stages respectively. Pa-
rametersV+ = 0.227V ,V− = −0.172, obtained with HSPICE simulations
using Vm = 0.4V ,RP = 5.2kΩ, RAP = 13.7kΩ.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 06,2021 at 03:03:17 UTC from IEEE Xplore.  Restrictions apply. 



thenGi j = |Ji j |Gmax . To implement bipolar Ji j , we can simply
add an inverter to each of the (N − 1) inputs of xi ’s cell to make
both Vj and −Vj available, and choose from between the two.
The state of the MTJ is sensed by and stored in the Read unit

which then provides voltage signals to the other cells (in the
next cycle) accordingly. The Random Flip unit sends current IRF
to the MTJ to flip it with a small probability, the direction of the
current being dependent on the state stored in the Read Unit.

3.4 Splitting inputs to multiple cells

Any non-von Neumann hardware platform designed for solving
an Ising-like problem would have a fixed number of inputs per
Ising cell, however might it be implemented - spintronics-based
[29–31] or otherwise [24, 33]. Even our Ising-FPGA has a fixed
number of inputs per cell. As the problem grows in size, this
is going to pose a limitation to the no. of connections made
from/to the Ising cells.
Our approach to dealing with limited fan-in Ising cells is a

cascading of several of these cells to accommodate as many
inputs as required. The analog nature of the computation in eqn.
5 allows for this divide-and-conquer approach with only a small
addition to the basic Ising cell. This is in the form of another
op-amp OA3. Fig. 4(a) shows the modified Ising cell with I = 4
inputs Va . . .Vd . It can output either from its OA3 or from its
Read Unit as required.
Now, considering a fan-in of I = 4 per cell, let us show howwe

can split inputs to a spin variable into multiple Ising cells for an
Ising system consisting of 9 variables. The idea is to have several
layers/levels (named A,B,. . . ) of the basic Ising cell connected in
a tree-like sequence, with outputs from the cells of one level fed
into inputs of a cell in the next level until the number of inputs
remaining is less than or equal to the fan-in of each cell. The
programmable quantities in these cells would be set as required
(depending on their level). Fig. 4(b) shows how we can split the
inputs V2 . . .V9 into 2 Ising cells (at level A) which then feeds
into the last level cell of variable x1.

(a) OA3 added to the Ising cell

(b) Splitting 8 inputs into 2 cells

Figure 4: (a) The Modified Ising cell. (b) Multi-level Ising cells. Ob-
serve that R12 . . .R19 are in level A, but Rh1 is in the last level cell.

The outputs of the cells shown in fig. 4(b) would be

Vo1 = Rs (V2G12 + . . .V5G15) & Vo2 = Rs (V6G16 + . . .V9G19) (6)

Vo = −Rf

(
Vo1
Rs
+
Vo2
Rs
+
Vh1
Rh1

)
= −Rf

��	
9∑
j=2

VjG1j +Vh1Gh1

�� (7)

where Vo is the output of last level cell’s OA1, and is as desired.

4 ARCHITECTURE OF THE ISING-FPGA

Field Programmable Gate Arrays (FPGAs) are integrated circuits
that offer easy re-programmability, allowing the implementation
of any desired logic function [26]. VTR/VPR [5, 23] is an open-
source platform for modeling and analyzing FPGA architecture
and CAD. The reconfigurable routing topology of the FPGA is a
good match for the kind of network connectivity exhibited by
an Ising model-based platform such as the one proposed above.

4.1 Reconfigurable Ising model hardware

Let us discuss the analogous of the FPGA’s hardware for our
Ising-model solver (that is, the Ising-FPGA) and then explain
how part of VPR’s software flow can be used for configuring
the design.
Ising-FPGA: Each Configurable Logic Block (CLB) of an

FPGA corresponds to an Ising cell with multiple inputs and
one output which can be either the output of OA3 or from the
Read Unit. The no. of inputs to the CLB is set to the no. of inputs
to the Ising cell. Thus, for eg. fig. 4(b) shows 3 CLBs, each with
I = 4 inputs. The architecture file (.xml) of the FPGA was used
to describe certain parameters of the Ising-FPGA.
The connections between cells is captured by the reprogrammable

connectivity of the Ising-FPGA. For our analog design, we can
use muxes based on transmission gates (TGs) as switches in the
Switch Box (SB), in a way very similar to directional SBs [20].
Thus, a connection between 2 cells has one TG for each SB that
it passes through.
Using VPR for Ising-FPGA: VPR produces a .blif file that

describes the netlist of the synthesized network, and uses it
to perform place and route of the design. We build a BLIF File
Generator (BFG) which takes in the no. of spin variables (N ) and
the fan-in of each Ising cell (I ) as inputs, and creates a .blif file
by connecting Ising cells in a hierarchical way as demonstrated
earlier. Since the .blif file should specify only those connections
that exist, the BFG also takes in the Ising graph, which lists
the pairs of variables (i, j) which have a non-zero interaction
(Ji j � 0). VPR uses this .blif netlist to pack, place and route the
design. It outputs a .route file (among many others) that contains
the design’s routing information.

4.2 Signal Degradation and Recovery

The use of TGs for switches in our analog design implies that
their finite resistance will result in a potential drop across it,
and also bring down the current that was supposed to flow into
an Ising cell. We estimate this degradation in every path (from
each source cell to its destinations) of the circuit and show how
we can recover the original signal.
We consider a linear model for the signal degradation, in the

sense that the total resistance offered by a path is directly pro-
portional to its length and is independent of the length of other
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Figure 5: Signal degradation model for paths from a last level cell
(source) to level A cells (destinations).

paths (if any) from the same source cell. We use the information
provided in the .route file to find the length of the path for each
(src,dest) pair in the design.
Let us look at the degradation in current before the Level A

of Ising cells. Fig. 5 shows a net from the last level cell of x j
to many level A cells, all with different path lengths. Consider
for now the path to level A cell of xi having length li j . The
current flowing through the input resistance Ri j should ideally
be Vj/Ri j . The presence of TGs, each with resistance RG , in the
path means that this current is now going to beVj/(li jRG +Ri j ).
To get back the original current level, we can simply reduce the
input resistance Ri j by li jRG subject to a minimum. The new

resistance Ri j is given as

Ri j =

{
(Ri j − li jRG ) if (Ri j − li jRG ) ≥ Rmin/Jmax

Rmin/Jmax otherwise (8)
whereRmin = 1/Gmax and Jmax ≥ 1 is the largest interaction co-

efficient for the equivalent of the smallest possible Ri j . Because

Ri j may not still be low enough, we can increase the magnitude
of Vj for recovering the desired current. Since different destina-
tions would have different path lengths from the source, they

would require to boost Vj by different amounts. Let δ
j
i be the

increment in Vj required by the i
th destination. Equating the

desired and obtained currents,

Vj (1 + δ
j
i )

Ri j + li jRG
=

Vj

Ri j
⇒ δ ji =

Ri j + li jRG

Ri j
− 1 (9)

For any source j, the amount of boosting is decided by the

destination having the highest value of δ (δ jmax = maxi δ
j
i ). This

boosting can be performed by amplifying the output voltage of
the source cell’s Read unit through suitable circuits. No extra
routing is required for this modification.

Now that Vj has been boosted by δ
j
max , the new connection

resistances can be obtained yet again by substituting δ jmax in
eqn. 9. This gives us the final value of the resistors as

Ri j = Ri j (1 + δ
j
max ) − li jRG (10)

For the next level of signal propagation, that is from the
output of level A cell to the input of next level’s cell, the source
connects to only a single destination. Thus, any modifications
at the source will depend only on the path for this (src,dest )
pair, and can be done by increasing the feedback resistance Rs
of the OA1 in the level A cell of the src .

5 ISING GRAPHS OF NP-HARD PROBLEMS

5.1 Maximum Cut

Given an undirected graphG(V , E), the Max-cut problem’s ob-
jective can be stated mathematically as [22]

maximize
1

2

∑
i , j ∈V

Wi j (1 − xix j ) (11)

whereWi j is the weight of the edge between the i
th and jth ver-

tices, and xi , x j ∈ {−1, 1} indicate which partition they belong to.
Clearly, this objective can be mapped to the Ising Hamiltonian
in eqn. 1 by choosing Ji j = −Wi j/maxi j |Wi j |.

5.2 Travelling Salesman Problem

The TSP is another well-known NP-hard problem which, given
N cities and their locations, seeks to find a tour of minimum
distance such that each city must be visited exactly once. The
Ising formulation of the TSP has a system of N 2 spin variables.
The Ising Hamiltonian is given as [22]

H =
N∑
v=1

��	1 −
N∑
j=1

xv , j

��
2

+

N∑
j=1

(
1 −

N∑
v=1

xv , j

)2
+ λ

∑
uv j

Wuvxu , jxv , j+1

(12)

Here the first 2 terms ensure that the constraints on the solu-
tion to a problem (each city visited exactly once) are satisfied, for
which J(v , j)(u ,i) = −1 whenever u = v or i = j. The last term cor-
responds to the distance travelled in the tour, withWuv being the
distance between cities u and v , and λ is a proportionality con-
stant tomake sure that the constraints are never violated in favor
of a shorter tour, for which the condition λ < 1/maxW (u,v)
should be satisfied. We have J(v , j)(u ,i) = dmin/Wuv , whenever
i = j − 1 or j + 1, where dmin is the minimum distance between
any pair of cities.

6 SIMULATION SETUP AND RESULTS

Fig. 6 depicts the entire flow for simulation and evaluation. First,
the nature and parameters of the NP-hard problem are input
to the Graph Generator which outputs the interaction matrix J
and also the Ising graph. The Ising graph is input to the BLIF
File Generator (BFG) which creates the .bli f file according to
the no. of variables (N ) and the no. of inputs per Ising cell (I )
(sec. 4.1). Then, VPR uses the .bli f and .xml files to Place and
Route the design. The resultant .route file is analysed to obtain
the lengths of the path between each pair of connected Ising
cells, which is accordingly used to find the degradation in the
signals and the modifications necessary in the design (sec. 4.2
- Signal Degradation and Recovery - SD&R). This information
is passed on to the Stochastic LLG solver along with various
other parameters such as the number of iterations to perform,
various current values, etc. The LLG simulations of the MTJ
were performed using an HSPICE model2 [4, 15] which was
imported into MATLAB for scalability.

Rij, δ jmax  

Graph
Generator

Problem
type and

parameters

Ising
graph

BFG

N .blif file

VTR/VPR
.xml
file

XML
gen

.route
file

Routing
Analysis

I

J

Path
lengths

SD&R

J

Stochastic
LLG Solver

num_iters

IRF , Imax ,
Imin , k

N

(lij etc. )

Figure 6: Steps performed in the simulations. We start with the Graph
Generator and end with the Stochastic LLG simulations.

2Device parameters: MTJ cell dimension - 22nm × 22nm × 1.5nm, damping

constant α = 0.01, simulation time step δt = 0.01ns , saturation magnetization

Ms = 800emu/cm3
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The current IRF for Random Flipping (sec. 3.2) was chosen in
a way that it corresponds to roughly 1% switching probability at
the beginning of the simulations (at the 1st iteration), and was
then reduced linearly to a value that corresponded roughly to
0.1% probability at the end. This is equivalent to the theoretical
notion of annealing, which requires “cooling the system”.
With regard to accounting for the effects of the hardware,

simulations were performed for 3 situations:

• Ideal - Not considering the effects of the underlying hardware,
i.e. ignoring signal degradation.

• With Signal Degradation (SD) - Considering the effect of the
finite resistances of the paths in the Ising-FPGA, taking RG =
3.45kΩ,Rmin = 50kΩ, but not recovering from the issue.

• Recovery (Rec) - The modifications made in the design to

recover the original signals (using Ri j , δ
j
max ) with Jmax = 10.

Let us now present the results of the simulations performed
for the 2 NP-hard problems. For each of these, we mention the
usage of the significant hardware components in the Ising-FPGA.
These include

(1) the total no. of Ising cells in the Ising-FPGA,
(2) the minimum Channel Width Factor (CWF), (the minimum

no. of tracks per channel for successful routing),
(3) the average length of the paths from the last level cells to

the Level A cells (average of all li j - fig. 5) at this CWF.

Max Cut: Table 1 specifies the graphs that were used for bench-
marking along with their no. of vertices, the best cut value
(obtained using an SDP solver [1]) and the type & range or
distribution of edge weights. Table 2 lists the aforementioned
Ising-FPGA parameters at the specified Ising cell fan-in (I ). Also
included is an estimate of the power consumption (inmW ) of
the system obtained through HSPICE. Fig. 7 shows the obtained
cut values for the 4 graphs, each normalized by their respective
best cut values in table 1. Each of the graphs was run 10 times,
with 1000 iterations of the Ising simulations per run; all maxcut
values are thus average of 10 runs. It is evident that the Ideal
maxcut values obtained by simulating the Ising model are very
close to the best cut values obtained by heuristics (especially for
graphs G1 and G2), thereby revealing the potential of an Ising
solver.
Name Source Verts Best Cut Weight Type & Range

G1 G1 from G-set [2] 800 11429 Binary ({0, 1})

G2 Custom 140 2598.65 Fraction: U ∼ [0, 1]

G3 w01_100.0 from Biq mac [3] 100 645 Integer in [−10, 10]

G4 ising2.5-300_5555 from [3] 300 8.569 × 106 Int in [−2, 2] × 105

Table 1: Descriptions of graphs for Maxcut simulations.

Name G1 G2 G3 G4

I 32 16 32 8 8

No. of cells 2398 1400 840 216 1044

Min. CWF 138 48 48 26 20

Avg. Path Lengths 23.2 8.3 8.3 10.6 5.8

Power 52.37 13.39 14.81 1.02 5.065

Table 2: Ising-FPGA hardware usage for Max Cut. Power inmW .

From the data pertaining to fig. 7, Signal Degradation (SD)
leads to an average relative drop of 1.43% in the MaxCut values.
If we define the extent of recovery in the maxcut values as
(Rec − SD)/(Ideal − SD), the average recovery across graphs
was 78.48%. From table 2, we see that a larger fan-in (I ) reduces
the no. of Ising cells of graph G2 as expected. TheminimumCWF

Figure 7: Max cut values (normalized) from the Ising simulations for
the 4 graphs, with 2 different values of Ising cell fan-in (I ) used for G2.

and the Average Path Lengths vary in different ways depending
on the nature of the graph.
TSP: Three example problems were considered from a dataset

[7, 28] - P01, GR17 and FRI26, sets of 15, 17 and 26 cities with
optimal tour lengths of 291, 2085 and 937 respectively. Table 3
lists the hardware usage on the Ising-FPGA with I = 16. Ising
simulations were run 20 times (each having 2000 iterations) for
each city set. Table 4 mentions the results in terms of the no. of
runs (out of 20) in which at least 1 “valid” tour was discovered
and the average of theirMinimumTour Length (MTL). SD results
in an increase in the MTL by an average of 5.86% as compared
to Ideal, but, more importantly, it reduces the chances of finding
a valid tour. With our recovery strategy, the no. of valid tours is
almost as many as those in the Ideal case and the MTL is only
3.49% higher than Ideal on an average.

Name No.of cells Min. CWF Avg.Path lengths Power

P01 1125 48 8.72 8.17

GR17 1445 48 8.59 12.58

FRI26 5408 60 14.3 45.13

Table 3: Ising-FPGA hardware usage for TSP. Power is inmW .

Additionally, fig. 8 compares the average no. of valid tours
found in each run for the cases Ideal, SD and Rec. Due to SD,
this value dropped by an average of 76.83% compared to the
Ideal, again indicating reduced chances of finding a valid tour.
We could recover an average of 83.78% of this drop.

Figure 8: Average (over 20 runs)
no. of valid tours found in a run.

City set P01 GR17 FRI26

Valid
Ideal 20 19 16
SD 9 12 6
Rec 20 19 19

MTL
Ideal 443 3448 2262
SD 450 3765 2416
Rec 453 3689 2290

Table 4: Results of Ising simu-
lations for TSP.

7 DISCUSSION

Let us now briefly analyze some aspects of our proposed ap-
proach and make comparisons with related work.

• Propagation delay: Each stage of opamp induces a delay
of about 20ps (from Cadence Virtuoso simulations). With 3
stages (OA1 & OA3 of level A, and OA1 of last level), the
expected propagation delay of Ising spin signals ±Vm in the
write stage is about 0.06ns . However, this delay could be sub-
sumed within the relax stage just before the write. Further,
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any minor variations in delay from Ising cell to cell is un-
likely to affect the entire system or the final solution, since
randomness is an essential part of the Ising computations.

• Resistive RAMs (RRAMs) are a suitable candidate for realizing
the variable resistors that capture the interactions between
Ising units. These are memristive devices [10, 34] that offer
multiple levels of resistance and easy re-programmability.

• Pervaiz et. al. [27] propose the implementation of probabilistic
circuits, based on unstable stochastic units called probabilistic
bits, on FPGAs. These can be used for Ising and quantum
computations. Their entire implementation is on a real FPGA
(and is therefore completely based on digital CMOS logic and
memory). On the contrary, our work proposes an FPGA-like
architecture based on spintronic and memristive devices so
that their inherent randomness and in-memory computing
capabilities can be harnessed for realizing an Ising solver. It
is expected to have a much smaller area footprint than a fully
digital implementation such as [27]. Since the authors of that
work do not report any figures on the area or power con-
sumption of their design, we are unable to make any detailed
analysis.

Research on hardware implementations of Ising model
typically focuses on the possibility of mapping such models
and on solving the associated optimization problem to obtain
answers. There is not much emphasis on the characterization
of system area/power/performance (yet).

• Process variations in MTJs and RRAMs isn’t expected to af-
fect the Ising system to any significant extent, again because
such variations add to the randomness in the system which it
anyway requires.

8 CONCLUSION

In this paper, we proposed an Ising model architecture based on
MTJs, which can be used to map and solve NP-hard problems.
We discuss realistic hardware implementations in terms of Ising
spin cells and their read/write capabilities, network topology,
and re-programmability of interactions among spin units to
allow different kinds of NP-hard problems to be encoded. We
present Ising-FPGA, a parallel and reconfigurable architecture
which can be configured using a standard FPGA Place and Route
tool, and discuss ways to incorporate the non-idealities in the
hardware into the Ising model.
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